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Abstract

Manipulation of wave propagation through open resonant systems has attracted tremendous interest.
When accessible to the open system, the system under study is prone to tempering to out of
equilibrium, and a lack of reciprocity is the rule rather than the exception. Open systems correspond
to non-hermitian Hamiltonians with very unique properties such as resulting exceptional points and
ideal isolation. Here, we have found a highly sensitive modulation for the intersection of resonant
patch antennas with respect to cavity magnonic coupling by means of an open coupling system of
three resonant modes. Two types of crossings are implemented in this study: the first type of
crossing remotely controls the sharp switching of the transmission line 's transmittance, while
regulating the repulsive behavior of its zero-reflection states. The second type of crossing
corresponds to the modulation of non-reciprocal phase transitions, which enables a more desirable
isolation effect. Three different coupling models are realized by a non-Hermitian scattering
Hamiltonian, revealing distinct spatial overlaps between modes. This elucidates that dissipative
coupling of at least two modes to the environment is crucial for non-reciprocal transport. Our work
not only reveals the versatility of cavity magnonic systems but also provides a way to design

functional devices for general wave optics using patch antenna crossings.

Introduction
Conservation of energy is a fundamental concept used to describe physical systems. In a closed
system, the Hamiltonian of the system is Hermitian and its corresponding eigenvalues are purely
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real. Most of the time this is used to describe an overall total system, however there are times when
we want to focus on one or some subsystems. In this case, the system of interest can exchange
energy or matter between the particular system specified and the environment it is in'>. This
particular subsystem will become an open system. These systems have Hamiltonian whose
eigenvalues will correspond to complex*. Their imaginary part represents the exchange of energy
or matter between the subsystem and the external environment. The Hamiltonian of this subsystem
which usually accompanied by non-reciprocal phase transitions>® will be non-Hermitian. One of
the most important of non-hermitian is the Parity-Time (PT) symmetry’°, which breaks the
traditionally held belief that only hermitian Hamiltonian can exhibit purely real spectral behaviour.

Non-hermitian systems also have unique behaviours such as non-hermitian skinning effects'*!3,

417 and loss-induced transparency'®.

, optics'"?2, heat transport>*,thermal atom>*?°

fractional topological charges'®, complex energy band braiding
Non-hermitian studies in the fields of acoustics!'®!%-%!
and optical mechanics?*?” have been very colourful. Recent studies based on the cavity-magnonic
coupling system have shown that the energy exchange between the transmission waveguide is
considerable to the coherent coupling rate. Non-reciprocity transmission?®, ideal isolation®, perfect
microwave coherent absorption®**! have been achieved in the cavity-magnonic system.

The main focus has been on the study of their scattering spectra, and the study of their
eigenvalues has concentrated on two modes. For the coupling of two resonant modes, the hybridised

32-34 are relatively well defined. The

eigenstates exhibiting either level repulsive or level attractive
behaviour of coupling due to three or more resonant modes is less clear. It was even found to exhibit
energy level attraction in its reflection spectrum and level repulsion behaviour in its unit
transmission?® (UT) spectrum.

This study investigates the coupling dynamics of two interconnected cavities incorporating a
ferromagnetic resonance mode. We observe distinct characteristic behaviors arising from varying
coupling strengths among the three modes within the scattering spectrum. Furthermore, we identify
contrasting behaviors in the corresponding eigenvalues across three distinct coupling scenarios.
Notably, we identify two phase transition points delineating different coupling regimes. One set of
phase transition points marks the transition from the zero-reflection state to total reflection, while
the other signifies the shift from reciprocal to non-reciprocal transmission. These findings unveil
the unique coupling dynamics among the three modes and offer novel insights for leveraging non-

Hermitian cavity magnonic systems.

Results and discussion

Structure of the coupled cavity and magnon system

In the diagram of our device (Fig. 1a), a patch antenna consisting of three rectangular pieces of
copper. There are two X waveguides and one Y waveguide, the longer X waveguide is impedance
matched to the two ports and acts as a transmission line (TML), which subsequently named TML.
The individual Y waveguide and TML form a T-shaped electromagnetic resonator. A single T-
shaped electromagnetic resonator has a resonance frequency of 3.857 GHz, which corresponds to
three-quarters of the wavelength and is a bright mode (B mode in Fig. 1b) with the line width of
314MHz as Fig.1c showed. Adding a quarter resonant wavelength X waveguide to the T-shaped
electromagnetic resonator, a dark mode (D mode in Fig. 1b) as the same center frequency of 3.857
GHz can be found at the upper boundary of the Y waveguide and the right boundary of the X
waveguide (Fig. 1b). B-mode and D-mode interactions exhibit rabi-like strong coupling, inducing



a transparent window at the original resonance frequency (Fig. 1d). A 0.5 mm diameter yttrium iron
garnet (YIG) single crystal sphere is placed on the surface of the patch antenna by means of a
displacement stage, and an applied magnetic field (H-field) is applied perpendicular to the plane of
the waveguide with a magnitude larger than the saturation field of the YIG sphere. Microwave
signals are loaded from either port 1 or port 2 to excite ferromagnetic resonance (FMR) in the two
YIG spheres. The frequency of the individual magnetic modes can be flexibly modulated by the
applied magnetic field (w,, « H), and for simplicity the Kittle mode is generally chosen for the
study. The magnon mode have a small line width of only 2 MHz (Fig. 1d) show substantially
narrower resonances compared to the cavity, and have a large Q value equal to about 1000. The
YIG sphere is moved in the y direction on the Y waveguide by a cantilevered rod with a
displacement stage, which allows flexible modulation of the non-hermitian three-modes system.
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Fig. 1 | Device structure and basic characteristics. a Schematic diagram of the cavity magnonic sample.

A Y-shaped cavity resonator, which contained a Y-waveguide that is three-quarters of the resonant
wavelength and an X-waveguide that is one-quarter of the resonant wavelength, is coupled to the TML,
concurrently supporting a bright (B) mode and a dark (D) mode. The purple envelope curve represents
the magnetic field intensity distribution of the standing wave on the surface. A YIG crystal sphere is
placed on the Y-shaped resonator. An externally applied magnetic field perpendicular to the sample plane
allows flexible control of the magnetic field strength. The two ports of the TML are connected to a vector
network analyzer to carry the traveling wave, where the red waveform represents the wave traveling from
port 1 to port 2. b Schematic diagram illustrating the distribution of three modes (magnon mode (M),
bright mode (B), and dark mode (D)) on the Y-shaped resonator. ¢ Transmittance spectra of the
uncoupled bright mode, obtained by measuring the transmission spectra (red for |S,4|, blue for |S;5])
when only the Y waveguide and TML are present(without the quarter-wavelength-long X waveguide).
The black line represents the fitting curve. d Scattering spectra without the YIG crystal sphere (red for
|S,11, blue for |S;,|, green for |S;;], black for |S,,|). The red line (black line) represents the calculated
curve for transmission (reflection). e Transmission spectra of the YIG crystal sphere placed on a separate
TML (red for |S;,|, black for |S,;]), with the black line indicating the fitted data. The resonance



frequency can be flexibly adjusted by the external magnetic field H.

Non-hermitian three-mode coupled systems with three different coupling models

For non-hermitian system, the approach of solving the quantum master equation’>-*

using Markov
approximation is generally taken to study it. Time-domain coupled mode theory’’ is also a very
good approach for this type of side-coupling waveguide system.

To describe such an open cavity magnonic system, We start with the effective resonant Hamiltonian
of the open system. In general, for the uncoupled complex resonant frequency can be expressed as
@; = w; — ty;, where i = b,d, m denote the cavity's bright and dark modes and magnon modes,

and y; corresponds to its intrinsic damping rate, respectively. The effective resonant Hamiltonian

(H,s) taking account of the openness of the coupled system>’* can be written as,
,l —iKp 1 J2
Hres=H0_5DTD = ]1 md ]3 (1)
J2 J 3 Wy — Wy

In this configuration, the B-mode and magnon mode are coupled to the reservoir (TML) whit
external damping rates of k; and k,, rate, whereas the D-mode has no direct coupling to the
@y o )2
] 1 o d ] 3 is the
] 2 ] 3 am

Hamiltonian of the closed system with coupled cavity magnon being isolated from the environment

TML(k; = 0) due to lack of direct access to energy exchange. where H, =

Kp 0
Kp 0 \/'a

three resonant modes and two ports. The coherent coupling rate between the B-mode and D-mode

(MTL) except intrinsic damping (y;). D = ] is the coupling matrix between

is J;, meanwhile J, and J; represent their respective coherent coupling rate to the magnon. The

scattering-matrix (S-matrix) in the complex frequency is S = C [I —1iD - DT] 2)

where w is the complex frequency in the non-Hermitian scenario, C 1is the coupling matrix

between input and output ports and, in our present configuration, C = [(1) (1)] I is the unit matrix,

ie., I= (1) (1)] The effective resonant Hamiltonian H,,; had used to represent the

eigenbehaviour of the scattering spectrum, it is found that H,..; describes the eigenbehaviour of
the poles of the scattering spectrum when dealing with multi-mode coupled non-reciprocal open
systems. In order to further describe its true eigenbehaviour at different scattering potentials, The
effective scattering Hamiltonian H,., was raised, which can more accurately describe the
scattering eigenbehaviour.

Sij=A i
Hscé = Hres - A_;CU |¢i,in><¢j,out| (3)

The input and output vectors are |¢1,in) = [\/K_b 0 \/a [ P2, m = [\/_ 0 \/a T
and (¢1,out| = [\/K_b 0 —,/Km|, (¢2‘0ut| = [\/K_b 0 1/Km|. (see Supplementary Text S2).

=2 .
The physical advantage of Hsca is that the eigenvalues of Hsca can be seen directly from the



S spectra with a arbitrary target complex S-element value of S;; =A. Hgq shows that the
scattering problem is an open system and that the dissipative coupling effects in the external part of
the system directly affect the scattering spectrum.

We found different coupling conditions when the YIG were placed at different positions in the Y-
waveguide, there are two unique phase transition points exist here, one at the intersection of the X-
waveguide with the Y-waveguide and the other at the intersection of the Y-waveguide with the TML.
As shown in the Fig. 2a-b at y = 0 mm and y = 36 correspond to phase transition points 1 and 2
respectively. Three different coupling regions (I:x=0, y= 0-12 mm, II:x=0, y= 12-36, IIl:x= -12-12
mm, y=36.5mm) corresponded to the YIG sphere as it moved from the very top of the Y waveguide
to the TML. Inregion 1, the B-mode and D-mode overlap, and when the YIG is placed in this region,
the three modes are directly coherently coupled to each other (Fig.2a). At this point, one of the
intermediate hybridisation modes corresponds to a state of zero transmission (ZT) at the
transmission frequency (indicated by the black arrow in Fig.2¢). In regions I and II, the magnon
mode is not in contact with the TML, so there is no direct coupling with the TML such that k,, =
0. In region 2, the magnon mode no longer has any spatial overlap with the D-mode, such that J;
goes straight to zero (Fig.2a). At the A= —5MHz the transmission has a additional peak
corresponds to a UT state (indicated by the black arrow in Fig.2c). In region 3, the magnon begins
to coupling directly with the TML where it produces a considerable k,,. At this point the
transmission spectral lines show a non-reciprocal behaviour, with |S;,| showing a valley and |S,,|
showing a peak at the frequency indicated by the arrows in Fig.2c. We obtained the coupling
coefficients for the YIG sphere at different positions in the Y-Waveguide by fitting Eq. (2) as shown
in Fig. 2d. It can be found that the sudden change at the two crossing points corresponding to J3
and J, respectively. These two mutation points also correspond to drastic changes in the scattering
spectrum as shown in Fig. 2f, accompanied by a phase transition from zero to unit transmission.
The changes in the spectral lines are extremely sensitive to the position of the YIG at these two

turning points.
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Fig. 2 | Distinct scattering spectra transitions involving three coupling regions and two unique
phase transition points. a Schematic diagram illustrating coupling models in the three regions,
represented by blue, peach, and purple colors for 1, 2, and 3, respectively. b A schematic diagram of the
three coupling regions delineated by points I (y=12mm) and II (y=36mm), where the representative
measuring points are 1 (y=12mm), 2 (y=12.5mm), and 3 (y=36.5mm). ¢ The transmission spectra (red
(blue) curves for |S;,| (]S21])) in three coupling regions reveal distinctive resonant features induced by
magnon introduction. From top to bottom, the curves correspond to the positions 1, 2, and 3, respectively,
as illustrated in Figs. (a) and (b). the middle resonant frequency, indicated by the arrow, transitions from
zero transmission (ZT) to unit transmission (UT) (1 to 2). From 2 to 3, only |S;,| (red detuned (4,,,=-
5MH?z)) shifts to perfect zero transmission (PZT), by the way, |S,;| shifts in the blue-detuned case, as
shown in the supplementary materials. Solid black lines represent theoretical curves. In regions 1 and 2,
within the reciprocal regime (|S;,|=[S,11); in region 3, non-reciprocal phenomena emerge (|S;|#]S211).
d Relationship between the coherent coupling strength among the three modes and magnon position (y-
coordinate values) obtained through theoretical formula fitting. Abrupt changes occur at positions I and
I1. e Reflection spectra corresponding to the three regions, where gray (green) lines depict |S;1] (1S221),
and black lines represent theoretically calculated curves (|S;1|=[S,2|). Moving the YIG crystal sphere
illustrates zero-reflection undergoing Rabi-like strong coupling (1), decoupling (2), and dissipative
coupling (3) phenomena in turn. f The variation of S-parameters with the magnon at different positions

when A4,,=-5MHz is illustrated. In regions 1 and 2, two distinct phase transition behaviors are evident.

The zero to unit transmission (Z2U) turning point

We now examine the nature of the Z2U turning point, which is the critical point of the coupling
region 1 and 2. We set the k,, = 0 because there is no direct coupling between the magnon and the
TML. Figures 3a-f show, respectively, the mapping of |S;1| or |S31|, which are plotted as a function
of the frequency detuning (A= w — w},) and field detuning(A,,= w,, — wp).

We focus on the uncoupling cavity mode w;, = 3.857GHz. From Fig. 3a to Fig. 3b, magnon moves



only 2 mm on the Y waveguide, but achieves a ZT to UT switch at w;, frequence.
We get the UT by setting the S; ; = 1, in this condition, the eigenvalue of the Eq. (3), @yr =

L@, + @ + /(@4 — @,,) — J2), correspond to two high transmission hybridized states. When
2 d m d m 3 P g

weset S;; =0,

We obtain eigenvalues @,z of the same form as @y, both of them showing anti-crossing in
their spectral behaviour in region 1 and crossing in region 2 as Figs. 3a-b showed. When the
detuning of the magnon and uncoupling B-mode is zero, i.e. A,,= &0,z — &, = 0, the difference
between the upper and lower branch Ay= @, — @_ = 2J; . This theoretically suggests that UT
and zero reflection (ZR) behave in the same way and exhibit reciprocity, with both their level
repulsions being dominated by by the non-zero /5. (See Supplementary Text S2.1 for details) Fitting
the experimental transmission scattering spectra at A,,= 0 MHz using Eq. (3) yields J;=23 MHz
in region 1 and J3=0 MHz in region 2, respectively. It is further shown that the J; value drops
sharply to zero at this Z2U turning point leading to an anti-cross phase transition in the spectrum.
We get the ZT by setting the S; ; = 0, in this condition, the eigenvalue of the Eq. (3) is @y,

In Fig. 3e it can be seen that the eigenvalues in the middle of ZT intersect the real part of the
eigen solution of UT at w = w,, This is not a contradiction because their imaginary parts (Fig. 3h)
are different, Im(wzr) # Im(wyr), and therefore at this point it is the UT that is acting, and the
value of the imaginary part of ZT is too large, and this state is decayed. Figure 3g shows that when
the D-mode and magnon mode form a hybridised state in the region 1, the linewidths (imaginary
parts) of their hybridised modes change accordingly, and at A,,= 0, the imaginary parts of the two
hybridised modes are equal Im(wzg,) = Im(wzz-).

This Z2U-point is the boundary point of the dark mode, and at the same time is the anti-node
of the dark mode, At this juncture, it signifies the peak coherence in the coupling between the
magnon and the dark mode (Fig. S5(b)), when leaving the Z2U -point and entering the 2 region, the
magnon has no interaction with the D-mode due to the absence of spatial overlap, which also
corresponds to the mutation of J5. (Fig. S5(d)) Thus the presence of Z2U point can serve as a good

position sensor.
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Fig. 3 | Experimental S-spectra with scanning the M detuning and the eigenvalues of the scattering
Hamiltonians in three coupling regions.

a-f Mappings of |S;4/|(a-b),| S12/(c), and |S,1|(d-f) as functions of w and A,, in the three cases: the
magnon in region 1(a, d), region 2(b, e), and region 3(e, f). In panels (a) and (b), the white line represents
real zero reflection (ZR) eigenvalues. In panels (c) to (f), the white line indicates the real eigenvalues of
the UT, while the black line represents the real eigenvalues of ZT. In panel (¢) and (f), the arrows indicate
the three respective PZT points in | S;,| and |S,4]. h-i The image part of the UT(black solid line for |S;,|=
|IS21/=1), ZT(red solid line for |S;,=0, blue dash line for |S,;|=0),and ZR(solid purple line for |S;;|=

|IS22/=0 ). PZTs emerges when the imaginary part of the transmission eigenvalues become zero.

The non-reciprocal phase transition point

Next, we set out to characterise non-reciprocal behaviour, which requires the system to have
both coherent and dissipative coupling. A non-reciprocal phase transition phenomenon occurs when
the YIG blob moves from the Y waveguide into contact with the X TML (Fig. 2b). Introducing
dissipative coupling not only leads to non-reciprocal phenomena, but also results in the emergence
of peculiar resonant states in the transmission spectra, characterized by extremely narrow linewidths.
In theory, under ideal conditions, these linewidths can be suppressed to zero, a state referred to as
perfect zero transmission (PZT). In Figs. 3c and 3f, three PZT states are observed, each
corresponding to narrow linewidths in both |S;,| and |S,1| occurring at distinct frequencies.
Theoretically, this configuration offers optimal isolation. Similarly, almost zero linewidth states are



observed in the reflection spectra, referred to as perfect zero reflection (PZR), as shown in
Supplementary Text S2.2. The theoretical calculations reveal that these states correspond to zeros
of the imaginary parts of the eigenvalues. Two PZR states can intersect with the middle PZR in the
ZT spectrum, enabling unidirectional perfect absorption and reverse high transmittance (Fig. 31). At
the middle PZR frenquence, the transmission spectrum |S;,| switches to zero in the external A,,=
—5MHz, while |S,4]| still maintains the full transmission behaviour. If switched to A,,,= 5MHz the
reciprocity is reversed. We call this the ideal isolation point which occurs when A,,= +5MHz, A=
w—w, =12.5MHz.

Therefore the phase transition point is a non-reciprocal phase transition point, at this time the
magnon is in direct contact with the TML, so the value of its x,,, dissipative coupling to the TML
starts to be non-negligible. The difference between the forward (|S,1]) and backward (|S;;|)
transmission amplitudes is extracted in the decibel scale, we define its isolation ratio as
Iso=log(]|S21//IS12])- By solving the eigenequations of ZT, we can obtain that the imaginary part of
this isolation point is zero. (Fig. 31)

Next we fix the A,, to be in the red detuned state that enables the ideal isolation case, i.e.,
A,,= —5MHz. Then we used a motor displacement table to move the YIG sphere from x=-15mm
to x=15mm through the intersection y=36.5mm. According to Fig. S7, we find that the isolation is
maximised when the magnon is at in the intersection x=0, meanwhile, |S;|=|S,,|, indicating that it
is a non-reciprocal symmetric network at this point. Deviating from this point, |S;1|#|S22], it
becomes an asymmetric network.

Figures 4a and 4b show, respectively, the mapping of |S;4| and|S,,|, which are plotted as a
function of the frequency detuning (A= w — w,) and the position (x) of the YIG sphere on the
TML, when the A,, =5MHz is under the blue detuning. Meanwhile, Figures 4c and 4d
demonstrates the same relation of mapping as the fig.4a and fig.4b when A,, = —5MHz is red
detuned. In the mapping plot, two zero-reflection modes are observed, one characterized by high
dissipation cavity-like mode, indicated by the black dashed lines in Fig. 4a-d. The other corresponds
to a low-dissipation mode. Using the cavity-like mode as a unified reference center frequency, it is
observed that under the same A,,, the frequency difference between the measured |S;1| and [S,5| is
different, indicating asymmetry in the network.

So we define a asymmetric ratio Asy=log(|S111/|S22|) in the low-dissipation mode frenquence.
When the YIG sphere is moved to x=-12mm, the Asy reaches its maximum Asy=-80dB, as shown
in Fig. 4e. When moved to x=+12mm, its Asy is minus max. It is noteworthy that when the YIG
crystal sphere is positioned at x=0mm, the network exhibits symmetry, yet its non-reciprocity
reaches a maximum (maximum Iso value showed as Figs. S7(b) and S7(e)). This can be explained
by examining the imaginary part of the eigenvalues of the zero-reflection states. Figure 4f presents
the theoretical calculations of the imaginary parts of the low-loss mode corresponding to |S;1| (w11)
and |S,,| (w1) spectra (when the A,,, = —5MHz and A,,, = —5MHz, the Im(w;;) = Im(w;;)). The
theoretical calculations are detailed in Supplementary Text S4. The black dashed box in Fig. 4f is
the range of positions in Figs. 4a-d, where theoretical calculations show that the imaginary part of
their eigenvalues is equal to zero at x =-12 and 12 mm, respectively, corresponding to the maximum
Asy. It is shown that there is a certain symmetry here, and when the sign reversal of the A, at the
same time as the magnon mode position does the reflection operation, the spectrograms are inter-

convertible between Fig. 4a and Fig. 4d (and at the same time Fig. 4b and Fig. 4c).
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Fig. 4 | Near phase transition point II: adjustment of asymmetric network
a-b The |S;4] (a) and |S,,| (b) mapping as a function of w and x at the magnon blue-detuned isolation
point (A,, = 5MHz).Two resonances appear, with the higher frequency having a smaller linewidth,
indicating a low-loss mode that causes a split in |S;4| and |S,,|. ¢-d The |S;1] (c) and |S,,| (d) mapping as
a function of w and x at the red-detuned isolation point (A,, = —5MHz). The black dashed lines
represent the cavity-like modes, serving as reference frequencies. The red detuning of |S;;| equals the
blue detuning of |S,,| ((2) vs (d) or (c) vs (b)). e The Asy and Iso varies with the x-coordinate at the blue
(red) A,, detuning. The Iso (Asy) is symmetrical (antisymmetrical) with respect to the X-coordinate. f
The imaginary part of the low-loss mode of ZR|S;;|=0 (ZR|S,,|=0) versus position x calculated by Eq.

(S21). At x=-Smm (x=5mm), the appearance of PZR corresponds to the maximum value of the Asy.

conclusion
We have designed a three-mode cavity-magnetic coupling system and discovered two special types
of waveguide turning point with sensitive modulation of microwave transmission.

In mode coupling, we find that the dark modes interacting with the magnon modes can affect the



level repulsive behaviour of the reflection spectrum. At the same time due to the drastic changes in
the scattering spectrum leaving the overlapping region of the dark modes, at the same time both can
be characterised by spectral characterisation of the spatial distribution of the dark modes. It is also
expected to be used as a position detector sensor, etc. Due to the Markov approximation®, it can be
assumed that the coherent coupling has a longer lifetime. The combined effect of dissipative
coupling and coherent coupling leads to the phenomenon of non-reciprocal transmission. It is also
shown that the field strength distribution on the patch antenna at the crossing point may have some
special distribution. This work reveals that not only can the value of the transmission and reflection
be sensitively regulated, but also the non-reciprocity as well as the asymmetry of the microwave
network can be adjusted. The coupling parameters can be adjusted to a large extent over small
distances, which provides a rather convenient experimental scheme for experiments on multi-

resonator coupling.

Materials and Methods

The Device description. The specimen is crafted on a 0.762 mm thick RO4350B substrate,
which forms a square with a side length of 60 mm. The Y waveguide has a width of 1.686 mm and
a length of 36 mm. The X waveguide has the same width but a length of 12mm, corresponding to
a quarter of the wavelength of the uncoupled cavity mode. The X waveguide is connected at the
upper quarter resonant wavelength of the Y waveguide. The complete cavity is enveloped by a
0.035 mm thick copper layer, ensuring impedance matching to 50 ohms. Two coaxial twin cables,
affixed with MSW connectors at both ends, are employed for convenient input and output of
microwave power to and from the sample. The resonant frequencies of the uncoupled bright and
dark modes of the cavity are both 3.857 GHz, the diameter of the YIG single-crystal sphere is 0.5
mm, and the theoretical saturation magnetization intensity is below 0.2 T.

Measurement setup. An external magnetic field applied perpendicular to the cavity plane is
utilized to precisely tune the detuning of magnon (A,,= w,, — w}) by finely adjusting the
ferromagnetic resonance frequency. Two ports are employed for obtaining S-spectra,
encompassing both reflection and transmission coefficients. The reflection and transmission
spectra are measured utilizing a vector network analyzer (VNA) operating with an input power
level set at -5 dBm.
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