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Modified mean field ansatz for charged polarons in a Bose-Einstein condensate
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Tonic Bose polarons are quantum entities emerging from the interaction between an ion and a Bose-Einstein
condensate (BEC), featuring long-ranged interactions that can compete with the gas healing length. This can
result in strong interparticle correlations and enhancement of gas density around the ion. One possible approach
to describe this complex system with high accuracy relies on numerical treatment such as the quantum Monte
Carlo (QMC) techniques. Nevertheless, it is computationally very expensive and does not easily allow to study
the system dynamics. On the other hand, a mean-field based variational ansatz in the co-moving frame can
capture a sizeable change in the gas density. We apply it to the case of regularized ion-atom potential and find
that it qualitatively reproduces the full numerical results. In addition, we also study the system of two pinned
ions, focusing on their effective interaction induced by the bath. This approach seems to be promising for
studying transport and nonequilibrium dynamics of charged (bi)polarons in condensed media.

Introduction —. The quantum impurity problem lies at the
heart of condensed matter theory. Quasiparticles arising from
the impurity-medium interactions, called polarons, can be
considered as a building block for many-body physics [1, 2],
and have been studied since the early days of quantum me-
chanics [3-6]. Nowadays, controllable quantum impurities
also offer a wide scope of applications, especially in the con-
text of precision measurements [7].

Ultracold matter is a unique platform allowing for real-
ization of idealized systems with many remarkable experi-
mental results, especially in the context of quantum simula-
tions [8, 9]. Polarons have been observed and intensely stud-
ied in both degenerate Bose and Fermi gases, in the regime of
weak as well as strong interactions [10-20]. Even though the
system consists of only a single particle and typically weakly
interacting gas, calculation of static polaronic properties such
as the energy, residue and spectral function is a nontrivial task.
Out of equilibrium dynamics such as polaron formation and
transport phenomena [21, 22] are particularly appealing in this
context, but also much more challenging to study. Another
interesting aspect is the consideration of long-ranged poten-
tials for which the gas can become strongly perturbed and
the quasiparticle picture may break down, replaced by for-
mation of a many-body bound state. In particular, ion-atom
systems are a prototypical example in which strong and long-
ranged interactions among their constituents may occur [23—
29]. Large size of the corresponding potential well can in this
case enables bound state occupation by many bosons, leading
to a cluster-like many—body bound state [30-34]. Ionic po-
larons can thus have vastly different properties from their neu-
tral counterparts and theoretical tools should be applied with
care. Specifically, Bogoliubov theory, although it holds in the
weak coupling regime, is typically based on the assumption
of a homogeneous condensate and cannot properly capture the
strongly inhomogeneous atomic density profile. Instead, one
should take a step back and recalculate the bosonic vacuum
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state over which the Bogoliubov expansion is performed. The
applicability of this approach has been shown to work as long
as the local gas parameter in the vicinity of the impurity re-
mains small [35, 36]. For mobile impurities, a modified mean-
field ansatz can be applied in a co-moving frame, which has
been shown to yield consistent results. In particular, increased
gas density provides a self-stabilization mechanism of the gas
with finite-range interactions [37], preventing it from collapse.
This method has also revealed universal properties of neutral
polarons, as the polaron size and the correlation functions in
this approach turn out to depend only on the scattering length
and effective range related to the two-body interaction poten-
tial.

In this work, we apply this approach to the case of ionic
polarons, where the interactions have long-ranged character.
Based on earlier numerical results [31], one can expect that
in this case the atoms should be drawn into the potential well,
resulting in density increase at length scales comparable to
the range of the potential as illustrated in Fig. 1. This means
that the gas will probe the details of the potential surface and
general features such as the screening effect described for
short-range potentials can display nonuniversal features.

Mean field ansatz — We start by recalling the derivation
of the energy functional that captures the physical properties
of our system, following closely [6], and later [37]. We are
interested in the characterization of a mobile charged impurity
surrounded by a weakly interacting Bose-Einstein condensate.
The Hamiltonian reads
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where the impurity is described by its mass mj, position &
and momentum p, while the mass of identical bosonic atoms
is denoted in terms of the two-boson scattering length app as
mp with &g ; and pp; being the bosonic position and mo-
mentum operators. A commonly used simplification may be
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FIG. 1. The bare (solid lines) interaction given by eq. (10) and the
effective potential (dashed lines) resulting from eq. (6) for several
atom-ion scattering length values with ¢ = 0.0023R*, n 13 = p*
and ag = 0.0269R*. The cartoon illustrates how the buildup of the
density of repulsive bosons leads to the dressing of the potential.

achieved through a Lee-Low-Pines transformation [4] which
applies the total momentum conservation to remove the im-
purity degrees of freedom, and can be thought of as working
in a frame co-moving with the impurity. Consequently, using

the generator S = exp (wﬁ DY ﬁai), one obtains the new

Hamiltonian, Hy1p = SHS™!, written as
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Here py is the total momentum of the system. Note now that
the impurity coordinates have been removed and the Hamil-
tonian describes a Bose gas in an external potential Vig with
an additional term coupling the momenta, which has a com-
plicated structure and only disappears for a static impurity. In
this work we will restrict the analysis to the case of vanish-
ing pg, for which the system has spherical symmetry. Here-
after, we also consider contact interaction among the bosons
described by a pseudopotential Vg (z) = ¢ (r) and its
strength using atomic units (i.e. 7 = 1) is denoted by
g = 4wapp/mp. We assume that the ground state is a product
of identical symmetric single-particle wave functions

N
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where  ¢(x)
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satisfies the normalization condition

= N. With this product wave function

one can calculate the energy of the system, taking into ac-
count the normalization constraint, which leads to a modified
mean field (MMF) functional
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This energy functional is described by the chemical potential
= gno with an unperturbed condensate density ng, the re-
duced mass m;e}tl = mgl +my ! and the distance from the
impurity » = |x|. One can now introduce the healing length
¢ = 1/+/8mwappny or, recalling the definition of the coupling
constant g, £ = 1/1/2mpp. Due to the form of the kinetic en-
ergy term in (4), it is also useful to define & = 1/+/2Myeq,1 -
We aim to compute ¢(a) which minimizes the energy func-
tional (4), fulfilling the boundary conditions |¢(z — 0)| < co
and |¢(|x| — o0)| = \/ng. The exercise may be simplified
if the potential Vig(x) has radial symmetry. As a result, the
ground state of the wave function is real and spherically sym-
metric. Likewise, it is natural to propose an auxiliary radial
function u(r) = r¢(r)/\/no whose corresponding Dirichlet
boundary conditions are u(0) = 0 and u(r — o) = r, and a
dimensionless energy functional (4) may be rewritten as [37]
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Note that this problem is equivalent to finding a function
which satisfies the following differential equation:

2

1 (u? —1r?)
[§%W+MVIB(7’)+T2]UU~ 4)

Having the condensate wave function, one can define an ef-
fective interaction modified by the gas density as

Vo(r) = Vis(r) + glo(r)|* — u. 6)

This effective potential is more repulsive than the bare one
due to the mean-field correction, which can prevent the Bose
gas from collapsing in the vicinity of the impurity [37].

Bipolaron formation — Due to the local deformation of
the gas density, impurities are prompted to attract each other
which can lead to formation of bipolarons. We therefore ne-
glect the direct interaction between the two particles to focus
on the bath-induced properties. This can be justified by as-
suming that the ions are placed in an external trap, which fixes
the distance between them and balances out the Coulomb in-
teraction [38]. Their motion is then conveniently represented
by the center of mass 7 and relative position among the im-
purities R and their corresponding momenta p and P, respec-
tively. Once more, we start in the laboratory frame and per-
form a Lee-Low-Pines transformation, removing the center of



mass coordinate. Consequently, the Hamiltonian is [16, 17],
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where xp; = r; and the relative distance between the im-
purities and bosons xp;+ = r; £ R/2. Analogously to

the single-impurity case, a product state ansatz is adopted
and we consider a cylindrically symmetric potential. Using
symmetry arguments and fixing the relative distance between
the ions, treating it as a parameter in the spirit of the Born-
Oppenheimer approximation and taking py = 0, the terms
involving the kinetic energy are negligible. As a result, one
finds the following energy functional:
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Notice that here we have used &, = 1// 2Myeq, 2+ Which cor-
responds to a reduced mass m._} , = mg' + (2m1) !, The
minimizer of Eq. (8) satisfies a boundary value problem de-
scribed by the partial differential equation
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with Dirichlet boundary conditions ¢(r — oo, z) = ¢(r, z —

—00) = ¢(r,z = 00) = y/ng. One can then extract the
induced interaction between the impurities mediated by the
condensate by subtracting the contribution to the system
energy from single polarons Vp(R) = E3(R) — 2E; + Ej,
where L is the energy of the unperturbed Bose gas that we
set to zero here.

Ion-atom interactions — Let us now briefly discuss the
properties of the ion-boson interaction mediated by the poten-
tial Vip(r). The leading contribution at large distances comes
from the charge-induced dipole interaction [23] Vig(r —
o0) = —%4, where the induction coefficient C; = aq?/2,
« being the static electric dipole polarizability of the atom
and ¢ the ion charge. It leads to a characteristic length
R* = {/2myca1Cy and energy E* = 1/[2myeq.1(R*)?]. In
order to stabilize its short-range behavior, we use the regular-
ized potential [39]:
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The parameter b controls the potential depth, while ¢
provides a bound for the distance at which the interaction be-
comes repulsive. This parametrization allows for controlling

the scattering length as well as the number of bound states
mediated by the potential. At b = 0.58 the potential is so
shallow that it does not have a bound state, and as a result the
scattering length is small and negative.

Results — Throughout this section, we present the static
properties of the polaron and bipolaron described above. In
order to obtain these results, we have numerically solved the
differential equations for the condensate wave function (5)
and (9) using FEniCS software [40]. For comparison, we
have also calculated the polaronic properties solving the full
3D Gross-Pitaevskii equation with a mobile as well as pinned
impurity. We choose to work with equal boson and impurity
masses, having in mind e.g. the experimental realization using
87Rb/Rb ™ system [28]. For infinitely large m; the impurity
becomes pinned and the reduced mass is just the boson mass,
making the Lee-Low-Pines transformation obsolete.

The single impurity case is essentially one-dimensional.
Under such circumstances we use the simplest arrangement
for a 1D mesh, i.e. a linear rod, with 100 grid points. The fi-
nite element scheme implemented in FEniCS that we utilize
consists of a uniformly partitioned mesh, followed by space
discretization using second order Lagrange polynomials. In

the ultradilute limit §; > R*,n, 13 we expect no significant
effect of the 7% interaction. Therefore, we work at the values
of condensate density ny comparable to £; 3, and assume the
competing length scenario in which also £&; ~ R*. In order
to vary between different regimes of the interaction, we set
the parameter ¢ = 0.0023 R*, crucial for a repulsive potential
at r < ag [31]. Then by changing the b parameter, we can
achieve a shallow or deep potential with or without a bound
state with tunable scattering length.

The minimization of the MMF functional (4) yields the
ground state energy of the system which we show in Fig. 2
and compare to the ladder approximation result of [32]. The
two approaches agree well in the limit of very weak interac-
tions b > 1 as expected. For deeper potentials, the MMF
curve bends towards lower energies due to the buildup of
atomic density around the ion which increases the integrated
interaction energy. The standard mean field formula F; =
47na/m [41] with a being the ion-atom scattering length lies
very closely to the ladder approximation result as it also as-
sumes a homogeneous gas. We also include a comparison
with a QMC calculation for 192 bosons at a lower density
no = 0.1458 (R*)~3. The MMF and QMC agree very well
in the whole range of b considered, while standard mean field
theory leads to a higher estimation of energy. Also the solu-
tion of standard GPE equation for two coupled fields repre-
senting the ion and the atoms, shown as yellow dots, can only
reproduce the QMC and MMF results for large values of b
where essentially all approaches agree with each other.

The formation of the cloud in the vicinity of the ion mod-
ifies the effective potential (6) as a result of the mean field
boson repulsion, as illustrated in Fig. 1. In addition to be-
coming more shallow, we note that the potential loses its
power-law decay and even becomes weakly repulsive at in-
termediate distances, but retains a similar range. Further-
more, the gas density profile is given by w(r), which can
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FIG. 2. Left: energy of a single polaron in units of E* = 1/[mp(R*)?] as a function of the regularization parameter b, with ny =

0.1458 (R*) 3. Results of the modified mean field theory in the co-moving frame (straight red line) are compared with QMC calculation
(green dots) as well as standard mean-field theory where £ = —m2n /b (light blue dashed) and the GPE calculation (yellow dots). Right:
results for higher density ng = (R*)’3 with the T-matrix results of [32] (green dashed) and the mean-field prediction (light blue dashed) for

comparison.
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FIG. 3. Upper: the gas density as a function of the distance from
the impurity r for several values of b. The dots indicate the results
of solving the functional in full three-dimensional space. Lower: the
number of bosons in the polaronic cloud as a function of the potential
regularization parameter b for one ion (light blue) and two pinned
ions at two different distances R (straight and dashed red line). The
other parameters are the same as in Fig. 1.

also be interpreted as the impurity-boson correlation function
91(123) (r) = |¢(r)|* /no. It exhibits a smooth shape which peaks
close to the impurity and asymptotically flattens to an unper-
turbed BEC for distances far away from the ion. In Fig. 3,

the behavior of the gas density is depicted for various b val-
ues in the weak interaction regime. The peak density value
can be an order of magnitude larger than the background den-
sity. We have checked that for a short-ranged potential with
the same scattering length a much lower enhancement of the
density around the impurity is obtained. The large range of
the interactions can thus lead to new effects even at the mean
field level. This feature also manifests itself as clustering of
particles in a cloud, which can be quantified as [42]

Nojoud = /d3r [161° = no] - an

The lower panel of Fig. 3 shows the number of bosons trapped
by the ion as a function of the regularization parameter b.
With increasing b the potential becomes more shallow, such
that less atoms can fit in the potential well. We observe that
this number turns out to be of the order of few tens of atoms,
qualitatively similar to the Gaussian potential predictions [37].
Furthermore, within the semiclassical approximation [42] one
obtains Nojoug = —2a/app which is of the order of a hundred
of atoms, again in qualitative agreement. On the other hand,
perturbative mean field result for the number of bound parti-
cles [41] AN ~ —a/app —4v/2a? /m€app renders a negative
value as a /€ is not a small parameter here.

In the case of two impurities we set up a 2D rectangu-
lar mesh, composed of 100 elements in each dimension, and
second-order Lagrange polynomials for space discretization
as well. Note that if we assumed &; = R*, the corresponding
value for the healing length is now & = (v/3/2)R* for the
same condensate density ng. The impurity-impurity-boson
correlation density profiles, depicted in Fig. 4, reach a max-
imum value where the impurities are located. We further ob-
serve that the number of bound bosons is roughly twice the
single-impurity case for both potentials, as presented by the
red curve in the lower panel of Fig. 3. This would be expected
if the induced interactions are relatively weak such that the
system can be regarded as two almost independent polarons.
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FIG. 4. Left: Cut of the gas density profile along z for » = 0 for two pinned ions. Here &2 = R*, ¢ = 0.0023R*, b = 0.572R*, and
no = 1.9531(R*) ™. The red dots indicate the results of a full three-dimensional calculation. Middle: absolute value of the system energy in
units of E* for two ions as a function of their separation for the same parameters and several b values, right: the resulting induced effective

interaction potentials. Dotted line indicates the power law derived within the ladder approximation [18] described by eq. (12).

Indeed, inspecting the density profile shows that the gas den-
sity is quite well approximated by a sum of two polaron peaks.
We also show in Fig. 4 the energy of the system as well as the
effective interaction induced by the medium. We observe that
the effective interaction follows a power law at long range and
levels off at distances < R*. The magnitude of the effective
potential of the order of E* is in qualitative agreement with
the numerical results [34] for the weakly interacting polaron
regime. Note that within the ladder approximation, the in-
duced interaction at large distance is given by [18]

T 1 b2+2bc—02i
(b+c)2 rt’
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This formula displays a weak dependence on the value of the
b parameter and agrees with our results best for the largest b
values corresponding to the most shallow potential.

The adopted approach relies on a modified mean field
ansatz which takes into account the boson repulsion. How-
ever, this approximation neglects higher order bosonic corre-
lations and cannot fully reproduce the phenomenon of many-
body bound state formation [31]. In order to test the method
outside of its expected validity range, we applied it for inter-
action potential parameters ¢ = 0.225 R* and b = 0.02 R* for
which there appears a strong repulsive barrier at 7 < 0.1 R*.
The resulting density profiles are shown in Fig. 5. As ex-
pected, the gas density vanishes close to the ion(s) and the
correlation peak is located at a finite distance. However, its
maximum value is of the order of five, while the Monte Carlo
results give an order of magnitude larger result [31]. This is
due to macroscopic occupation of the few-body bound states
which is not present in our model as the mean field approach
does not resolve individual particles. For the bipolaron case
we observe a similar behavior of the peaks in the correla-
tion function being typically much lower than the QMC re-
sults [34]. However, in the weakly interacting regime the two
approaches provide qualitatively similar results. Indeed, for
the b = R* case studied in [34] an enhancement in density by
about a factor of two has been observed, in agreement with
the present results.

Conclusions. In conclusion, we have studied the ground
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FIG. 5. Cut through the atomic density profile for a single impurity
for the interaction potential with large short-range repulsive barrier
with &, = R*, b = 0.02R*, ¢ = 0.225R* and no = (0.8R*)™3.
Inset: the density for two impurities separated by R = 1.3R* for the
same parameters. Results were normalized by the asymptotic atomic
density such that gig (1) = n(r)/no.

state properties of charged polarons within the mean field ap-
proximation which in the weak coupling limit corresponding
to the regularization parameter b 2> R* agree qualitatively
with more elaborate numerical treatment. For two pinned
ions, the method also provides reasonable cloud density pro-
files and induced interactions. This makes it promising for
several future extensions. For instance, switching from static
to the dynamical scenario [43], as well as including exter-
nal traps and nonzero total momentum will enable the study
of the impurity effective mass and other transport proper-
ties, while Monte Carlo-based methods require a lot more
intense numerical effort to probe nonequilibrium situations.
Finally, it would be valuable to enrich the current ansatz to
include bosonic correlations explicitly by means of Jastrow
wave function [44], which may extend the validity of the
method to larger coupling strength and resonant interactions



within the bath.
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