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Abstract—This study explores implementing a digital twin
network (DTN) for efficient 6G wireless network management,
aligning with the fault, configuration, accounting, performance,
and security (FCAPS) model. The DTN architecture comprises
the Physical Twin Layer, implemented using NS-3, and the
Service Layer, featuring machine learning and reinforcement
learning for optimizing carrier sensitivity threshold and transmit
power control in wireless networks. We introduce a robust
“What-if Analysis” module, utilizing conditional tabular gen-
erative adversarial network for synthetic data generation to
mimic various network scenarios. These scenarios assess four
network performance metrics: throughput, latency, packet loss,
and coverage. Our findings demonstrate the efficiency of the pro-
posed what-if analysis framework in managing complex network
conditions, highlighting the importance of the scenario-maker
and the impact of twinning intervals on network performance.

I. INTRODUCTION

In the ever-evolving domain of network technology and
communication infrastructure, network management is a piv-
otal and continuously advancing area of research. Despite the
ongoing advancements, the ISO Telecommunications Man-
agement Network’s broader, well-known model for network
management, namely fault, configuration, accounting, per-
formance, and security (FCAPS), remains a foundational
framework in this realm [1].

One of the primary challenges in 6G wireless network
management is the ability to proactively identify and mitigate
issues before they impact the network’s performance or user
experience. While effective in reactive scenarios, traditional
network management approaches often fall short in predictive
capabilities and dealing with the complexities of modern
wireless, backbone or datacenter networks. This limitation
becomes particularly evident in the context of the FCAPS-
aided 6G networks [2], where each area demands real-time
monitoring and response, foresight, and preemptive planning.

Digital twin networks (DTNs), with their capability to
create a virtual mirror of physical network infrastructures,
align closely with the principles of the FCAPS 6G network
management. They offer an interactive platform that signifi-
cantly enhances network management across all five facets by
allowing real-time monitoring, management, and optimization

of network functions. However, the DTN approach does
not have the capabilities to meet all five FCAPS criteria
as is and must be carefully deployed across the network.
According to insights from Autodesk Inc.1, a front-runner
in DTN research, digital twins can be classified into five
levels based on their autonomy and sophistication. The fourth
level, known as the Comprehensive Twin, is notable for
its integration of “what-if” analysis capabilities. This level
leverages advanced modelling, simulation of potential future
scenarios, and prescriptive analytics, making it a critical point
in aligning with the FCAPS model.

In this context, our study introduces a “what-if” analysis
approach, utilizing a conditional tabular generative adversarial
network (CTGAN) to address critical aspects of the FCAPS
model — specifically, Fault, Configuration, and Performance.
While current DTN research underscores the importance of
“what-if” analysis in network management, comprehensive
frameworks supporting the FCAPS model are inadequate [3].
Therefore, our framework aims to bridge the existing gaps
in DTN applications, tailoring them to meet the requirements
of contemporary network management. This approach, ini-
tially developed and tested in a Wi-Fi 6 environment, holds
significant potential for the emerging 6G ecosystem. The
Wireless Local Area Networks (WLANs) use case, though
specific to Wi-Fi 6, provides a solid foundation for 6G
network management strategies. The main contributions of
the proposed approach are as follows:

• Implementing a DTN architecture for wireless network
management that aligns with the FCAPS 6G networks.

• Introducing a what-if analysis framework using CTGAN
for generating synthetic data across various scenarios.

• Employing scenario-maker module in digital twin layer
to assess key network performance metrics and demon-
strate the impact of intelligent configuration decisions.

• Exploring the effect of twinning intervals on overall
network performance by emphasizing the significance of
DTN on network management.

1https://www.autodesk.com/ [Last Accessed: November 2023]
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Fig. 1: Three-Layered Architecture: What-if Analysis Framework for Digital Twins in 6G Wireless Network Management.

II. RELATED WORKS

Recent advancements in network management have seen
a growing focus on DTNs [4], recognized for their potential
to enhance network performance and align with the FCAPS
model [5]. Prior studies have explored the integration of
machine learning and reinforcement learning techniques for
network optimization, particularly in the context of adjusting
network parameters [6], like transmit power and sensitivity
thresholds in WLANs.

In the realm of 6G network management, digital twins
have been explored across various facets, such as network
slicing [7], improving real-time data processing [8], reducing
offloading latency [9], and open 6G radio access networks
[10]. These studies collectively demonstrate that the DTN
approach significantly enhances performance across diverse
6G network metrics. However, as highlighted in a recent
comprehensive survey [11], all 6G DTN proposals, including
resource allocation and network slicing methods, need to
undergo thorough testing via what-if scenarios. This step
is crucial to prevent any adverse impacts on the physical
network. In other words, the role of what-if analysis in DTNs
is crucial for envisioning future scenarios based on predicted
configurations [6]. While some research has explored the
behaviour of networks using different degrees of freedom to
define KPIs and configurations, these often lead to increased
computational time due to sequential testing of all possible
configurations [12]. Other works have proposed case studies
in backbone networks, assessing load balancing in protocols
like BGP, but have not extensively covered the long-term
impact of new configurations [13].

Several studies have focused on using synthetic data for
digital twin networks in 6G, emphasizing the transfer learning
capabilities and addressing the challenges in various network-
ing scenarios without synthetic data [14]. The current liter-
ature highlights the importance of data-intensive simulations
in what-if analysis [5], [12]. Models such as the Conditional
Tabular Generative Adversarial Network (CTGAN) [15] are
particularly promising for generating synthetic data to predict

future network behaviours, including mobility patterns and
data traffic dynamics.

Although existing literature extensively explores the poten-
tial of DTNs in network management, there is a noticeable
gap in effectively combining What-if analysis with the Service
Layer of DTNs for more dynamic and efficient optimization
of network parameters. Our contributions specifically address
this gap by integrating CTGANs for predictive scenario
generation and applying optimization strategies.

III. WHAT-IF ANALYSIS FRAMEWORK FOR DIGITAL
TWINS

Our proposed What-if Analysis Framework for Digital
Twins in 6G wireless network management presents a so-
phisticated, three-layered architecture designed to optimize
network management in dense wireless environments. This
framework comprises the Physical Twin Layer, the Digital
Twin Layer, and the Service Layer, each playing a distinct
yet interconnected role as shown in Fig. 1.

A. Physical Twin Layer

Our focus is on densely deployed wireless scenarios char-
acterized by overlapping coverage areas of multiple Base
Stations (BSs), forming what is known as Overlapping Basic
Service Sets (OBSS). In our model, all BSs are configured
to operate on the same channel within the 2.4 GHz band.
This choice intentionally models overlapped scenarios and
emphasizes the study of Carrier Sensitivity Threshold (CST)
and Transmit Power Control (TPC) configurations on the
same channel rather than balancing across different channels.
The DT-Connect Source module in each BS collects load
metrics through the agent program. These agent programs
are crucial for gathering comprehensive data, including BS
configurations, client details, traffic information, and packet
logs. The collected data is then sent to the DT-Connect Sink
module to be processed in the Digital Twin Layer.

The Physical Twin Layer of our DTN is conceptualized
using a network simulation environment, specifically through
the NS-3 simulation. This simulation is a practical replica of a



physical network, enabling us to analyze and manage network
configurations in a controlled yet realistic setting. It mimics
the complexities of a dense 6G wireless network and provides
the necessary data infrastructure to support advanced “what-
if” analyses in the subsequent Service Layer of the DTN.

B. Digital Twin Layer

In developing the Digital Twin Layer for the network man-
agement framework, we have integrated Microsoft Azure’s
Digital Twin cloud services. This integration effectively simu-
lates and analyzes the network scenarios, particularly focusing
on the CST and TPC in our wireless model. There are four
parts in this layer, as explained in detail below.

1) DT-Connect Source and Sink Flow: Microsoft Azure
IoT Hub serves as the gateway connecting our Physical
Twin Layer, simulated through NS-3, to the Digital Twin
Layer. Agent programs installed on the simulated BSs relay
information to their corresponding IoT Hub instances. This
setup ensures a seamless flow of data from the physical
network layer to the digital twin.

2) Digital Twins: The Digital Twin module, within the
Digital Twin Layer, consists of three distinct and inter-
connected sub-modules: The Real-time Twin, Retrospective
Twins, and Prospective Twins as follows:

• The Real-time Twin is developed using Microsoft Azure
Digital Twins (ADT), providing a live, real-time digital
representation of the physical network. It mirrors the
current state of the network, including the configurations,
performance, and interactions within the network, using
models coded in Digital Twins Definition Language
(DTDL). It includes key parameters of CST and TPC,
such as bandwidth usage, signal strength, and node con-
nectivity. In our ADT implementation, we have defined
two primary interfaces for BSs and User Equipments
(UEs), separately. These interfaces encapsulate essential
aspects of the wireless network. Property Fields of
DTDL represents the status of physical objects. For
BS interfaces, we store information such as SSID and
Channel. In the case of UEs, received and transmitted
packet counts are recorded through the connected BS
of the UEs. Telemetry Data of DTDL includes real-
time measurements that are crucial for dynamic network
analysis but are not stored as a permanent part of the
digital twin. For instance, BS telemetry includes CPU
utilization, while UE telemetry encompasses received
signal strength and associated BSs’ MAC addresses. We
have established relationships between BS and client
models, directly correlating to the packet logs sensed
by BSs. These relationships include data like the last
timestamp of signals detected by the BSs.

• Retrospective Twins are also modeled using Microsoft
ADT. They represent the historical states of the network,
providing insights into past performance, configurations
and network status. The graph-based historical represen-

tation also allows relations between network nodes to be
maintained naturally.

• Prospective Twins are generated from the scenario-
maker module and represent potential future states of
the network. They are modelled using NS-3 logs, offer-
ing a forward-looking perspective by simulating various
“what-if” scenarios. These twins allow us to experiment
with different network configurations and settings, i.e.
varying CST and TPC, to predict their potential impact.

3) Scenario-maker: This module, an integral component
of our Digital Twin Layer design, plays a pivotal role in
testing various “what-if” network scenarios, each designed
to test different aspects of network behaviour and resilience.
This module is adeptly configured to generate and assess four
distinct scenarios, leveraging both real-time data and synthetic
data generation techniques as follows.

• Scenario-A: Existing Behavior continues to replicate
the current behaviour of the network. It utilizes live-
stream data sourced directly from The Real-time Twin,
providing an up-to-date and accurate representation of
the existing network status. This scenario serves as a
baseline, assessing the near-future or short-term impacts
of current network configurations and user interactions
within the DTN framework. In other words, Scenario-
A carried out in this paper is the scenario presented in
the Experimental Setup (Section IV-A) section, which
follows the initial setup during the experiment, that is,
maintaining the same topology array with exactly the
same number of BSs and the same number of UEs.

• Scenario-B: High User Density modelling addresses the
challenges of simulating the network’s response to a
continuous increase in user numbers, progressively rising
to 50% (number of users grows steadily one by one
from the beginning of the scenario until it reaches a
50% increase). This scenario mimics the future case to
understand the network’s capability to handle peak usage
times and increased user demand, testing the scalability
and adaptability of the network infrastructure.

• Scenario-C: Traffic Rate Variations contains three sub-
scenarios (C-1, C-2, and C-3) to simulate varying levels
of network traffic increases — 20%, 40%, and variable
loads according to time-of-day patterns, respectively.
These sub-scenarios assess how the network copes with
different degrees of traffic load, especially during varying
time periods, such as low usage during late-night hours
versus high usage during the day.

• Scenario-D: Unforeseen Circumstances tests the net-
work’s robustness under unforeseen or extreme condi-
tions, including sudden traffic spikes and a massive influx
of new connections. The difference between Scenario-D
from Scenario-B and Scenario-C is that it focuses on
the network’s preparedness for unexpected events with
sudden increases (instead of gradually), ensuring that it
remains resilient and functional under stress.



Scenarios B, C, and D employ a CTGAN model to create re-
alistic yet hypothetical data sets that mimic new mobile users,
connections, and varied traffic patterns. CTGAN is adept at
handling heterogeneous tabular data comprising both numeric
and categorical features using a combination of mode-specific
normalization for numeric features and a conditional genera-
tor for categorical features. This methodology allows CTGAN
to effectively mimic real-world data distributions, making it
possible to generate realistic synthetic data that reflects the
future behaviour of new mobile users, connections, and varied
traffic patterns.

This includes a generator network G that learns to generate
synthetic data samples from a noise distribution, while the
discriminator D learns to differentiate between real and
generated samples. The objective function, Eq. 1 [15], is as
follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))] (1)

In this formula, x represents real data samples, and
z represents points in the generator’s input noise space.
The expectation E is taken over the real data distribution
pdata(x) and the generator’s noise distribution pz(z). And,
Ex∼pdata(x)[logD(x)] calculates the expectation of the dis-
criminator’s output (probability of real data being classified
as real) over the real data distribution. Ez∼pz(z)[log(1 −
D(G(z)))] calculates the expectation of the discriminator’s
output (probability of generated data being classified as fake)
over the generated data.

4) What-if Analysis: This module utilizes four key perfor-
mance indicators (KPIs): throughput, t, latency, l, packet loss,
pl, and coverage, c. For each simulated scenario, these KPIs
are calculated and normalized (M̃t, M̃l, M̃pl and M̃c) to
ensure consistency in measurement scales. We assign specific
weights to each KPI based on their relative importance (wt,
wl, wpl, wc), which allows us to derive a composite score for
each scenario (CSA, CSB , CSC , CSD) as seen in the Eq. 2.

CS{A,B,C,D} = wtM̃t + wlM̃l + wplM̃pl + wcM̃c (2)

Furthermore, each scenario is also weighted (wA, wB , wC

and wD) to reflect its significance in the overall network
assessment, called Effectiveness score, ξ, as follows:

ξ = wACSA + wBCSB + wCCSC + wDCSD (3)

In this way, it enables a comprehensive evaluation of the
selected network configurations of TPC and CST proposed by
the Service Layer, providing insights into their effectiveness
under different conditions and scenarios.

C. Service Layer

The Service Layer in the DTN framework begins with
the Network Flow Preprocessing module, which prepares
and cleans data for analysis. We then selected two specific

services for our wireless case study based on our previous
two studies [16], [17], focusing on configurations that could
potentially conflict. These configurations are chosen with care
to avoid packet loss while increasing the coverage. Due to
the wide range of possible configurations, intelligent decision-
making is crucial. “Service-1” utilizes Neural Networks (NN)
to optimize the CST [17], improving network sensitivity
and efficiency. “Service-2” employs reinforcement learning
for adaptive control of TPC [16], balancing optimal signal
strength and coverage against interference and power con-
sumption. After determining new configurations using current
and historical data, these are simulated in the DTN using the
“What-if Analysis” module, as previously explained.

IV. PERFORMANCE EVALUATION

The simulation parameters used in that study can be found
in Table I. As explained in the experiments and results, the
number of BSs is changed to 3,9,27,81, and 243 to change the
size of the wireless topology. Also, each wireless topology is
tested 100 times with a random number of UEs in each BS,
changing from 10 to 15. Other details used in the experiments
are explained below.

TABLE I: Simulation parameters

Parameter Value
Scenario Outdoor [18]

Channel Band / Bandwidth 2.4Ghz / 20Mhz
BS/UE Tx Power 20/15 dBm

Traffic CBR, HTTP, Video
Traffic per BSS (Mbps) 100

RTS/CTS Disabled
Packet 1464 bytes

Beacon Interval 102.4 ms
Guard Interval Duration 1.6 us

Modulation 256-QAM

Topology size effect on running time of what-if analysis:
In the initial stage of our experiments, we expanded the
size of the wireless topology within the Physical Twin Layer
exponentially. This was done to evaluate the runtime of
the “What-if Analysis” and “Scenario-Maker” modules. In
the Service Layer, we examined six different approaches
to understand how decision-making impacts the duration of
what-if analysis as the topology size increases.

The first approach, termed “without (w/o) Service Layer
(brute force)”, involved testing every possible configuration
for TPC and CST. The next two approaches focused sepa-
rately on Service-1 (CST) and Service-2 (TPC), referred to as
“with (w/) only Service-1” and “with (w/) only Service-2” in
Fig. 2a. Additionally, we conducted cross-evaluations: using
Service-1 for intelligent CST configuration while sequentially
testing each TPC choice, labelled as “with Service-1, crossly
evaluated with Service-2”, and the reverse for “Service-2,
crossly evaluated with Service-1”. Lastly, we included an
approach where Service-1 and Service-2 run their trained
models independently to determine specific CST and TPC
values, shown as “w/Service-1 & Service-2”.



(a) Total running time with changing topology sizes.

(b) Performance of service layers through scenarios.

Fig. 2: Comparison of different Service Layer decisions.

As expected, sequentially evaluating all potential configu-
rations for a given wireless status becomes increasingly time-
consuming, especially as the topology size and the range of
CST and TPC possibilities grow. The approach with the short-
est runtime was where Service-1 and Service-2 independently
ran machine learning and reinforcement learning models to
determine TPC and CST values. This result, along with others,
is depicted in Fig. 2a. These findings also underscore that,
without a DT framework, conducting what-if analysis on all
possible wireless configuration parameters is impractical in
network management.

Performance of service layer through what-if scenarios:
We then evaluate the output of the Scenario-maker module
to understand the performance of the above six Service
Layer approaches. These assessments were performed across
various wireless topology sizes, each executed 100 times and
displayed with minimum, maximum and mean values as a
box plot chart in Fig. 2b. We evaluated the performance
through Effectiveness score, ξ, on each of the four scenarios.
This measurement, ξ, is derived from the “What-if Analysis”
module in the Digital Twin Layer, rather than being a direct
output from the actual wireless topology in the Physical
Twin Layer. The goal here was to evaluate the performance
of the Service Layer approaches prior to implementing the
selected configurations in the Physical Twin Layer. Here, the

findings reveal that although running Service-1 and Service-
2 independently in Digital Twin might minimize runtime,
it leads to lower performance across all scenarios (causing
63% less ξ score), shown as a purple line with a star (⋆)
symbol in Fig. 2b. This outcome is primarily attributed to
potential conflicts when these services (Service-1 and Service-
2 in our case) are run independently and simultaneously. The
most consistent performance was achieved by intelligently
calculating one service’s output (either Service-1 or Service-
2) and then sequentially cross-evaluating all possible con-
figurations for the other service (lines in which light blue
with an empty box symbol and dark blue with a filled box
symbol, respectively). This approach aligns with the inherent
challenges of using two potentially conflicting services in the
Service Layer of DTNs for wireless network management.

Twinning interval and performance implications: In our
final experiment, we assessed the performance of the DTN
by varying the twinning intervals via Fig. 3. This interval
determines the frequency at which data is transferred from
the physical network to the digital twin. For this part of
the experiment, we applied CST and TPC configurations that
achieved an ξ score greater than 0.8, as determined in the
What-if Analysis and Scenario-Maker modules within our
proposed three-layered architecture. In the Service Layer, we
focused on two approaches: “with only Service-1” and “with
Service-1, crossly evaluated with Service-2”. This choice
was based on previous findings, as discussed in Fig. 2b,
which demonstrated that using one service or combining two
services (one calculated with ML and the other evaluated
sequentially) resulted in similar average ξ scores, yet with
different confidence intervals across 100 experiments.

Initially, we observed the ξ score in the Physical Twin
Layer using only Scenario-A in the Scenario-Maker module,
as seen in Fig. 3a. Subsequently, we also incorporated all
scenarios to measure the ξ score from the real wireless
topology, selecting configurations that achieved an ξ score
greater than 0.8 across all four scenarios. The outcomes,
depicted in Fig. 3a, compare the performance when only
Scenario-A (Existing Behavior) is used against including all
scenarios in the what-if analysis. The results, as shown in
Fig. (3b), indicate that a diverse range of scenarios in the
analysis improves the chances of selecting optimal network
configurations, aligning with FCAPS objectives in 5G/6G
networks.

Furthermore, using just one service in the Service Layer for
new configuration settings resulted in a narrower confidence
interval but a lower mean ξ score in the real wireless topology.
Conversely, considering two different services led to higher
mean ξ scores but a larger confidence interval. Quantitatively,
the comprehensive integration of all scenarios through our
CTGAN-based Digital Twin methodology facilitates a 43%
enhancement in ξ score, but at the expense of a 12% expan-
sion in the confidence interval. Additionally, a longer twinning
interval was found to reduce performance, as it can lead to



(a) Scenario-A

(b) Scenario-All

Fig. 3: Twinning interval and performance implications.

missed transient peaks and loss of crucial network traffic
details by averaging data over extended periods. Thus, the
twinning interval is a critical parameter that must be tuned
according to the specific network topology.

V. CONCLUSION

This work highlights the potential of digital twin net-
works in enhancing 6G wireless management. By integrat-
ing advanced simulation techniques and analytical models,
digital twin networks effectively address key FCAPS areas.
The utilization of CTGAN for synthetic data generation in
“What-if Analysis” significantly contributes to understanding
network behaviour under various hypothetical scenarios. The
study underscores the critical role of twinning intervals and
scenario diversity in achieving optimal network configura-
tions. Overall, this approach offers a promising direction for
future developments in 5G/6G management, leveraging digital
twins for more resilient, efficient, and adaptable network
infrastructures.
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