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The sublattice symmetry on a bipartite lattice is commonly regarded as the chiral symmetry in
the AIII class of the tenfold Altland–Zirnbauer classification. Here, we reveal the spatial nature of
sublattice symmetry, and show that this assertion holds only if the periodicity of primitive unit cells
agrees with that of the sublattice labeling. In cases where the periodicity does not agree, sublattice
symmetry is represented as a glide reflection in energy–momentum space, which inverts energy and
simultaneously translates some k by π, leading to substantially different physics. Particularly, it
introduces novel constraints on zero modes in semimetals and completely alters the classification
table of topological insulators compared to class AIII. Notably, the dimensions corresponding to
trivial and nontrivial classifications are switched, and the nontrivial classification becomes Z2 instead
of Z. We have applied these results to several models, including the Hofstadter model both with
and without dimerization.

INTRODUCTION
Symmetry-protected topological band theory has been
one of the main focuses of condensed matter research
for around two decades1–3. For the tenfold Altland–
Zirnbauer symmetry classes involving time reversal sym-
metry (T ), particle–hole symmetry (C), and chiral sym-
metry (Π), various periodic topological classification ta-
bles have been produced4–14, which played a seminal role
in organizing and discovering novel topological phases.

The original paper by Altland and Zirnbauer con-
cerned the Bogoliubov–de Gennes (BdG) Hamiltonians
for superconductors4. In this context, Π was natu-
rally introduced as a combination of T and C, namely
Π = CT for the algebraic completeness. More strictly,
Π = isCT , where s = 0, 1 and the front coefficient is is
assigned to ensure the convention (Π)2 = 1. For the one-
particle Hamiltonian H, the particle–hole symmetry C
anti-commutes withH, so the chiral symmetry Π is a uni-
tary operator that anti-commutes with the one-particle
Hamiltonian H,

{H,Π} = 0. (1)

Meanwhile, on a bipartite lattice consisting of two equal
sublattices A and B, the sublattice symmetry assigns ±1
for A-sites and B-sites, respectively, and therefore can
be represented as S = diag(1A,−1B) (see Fig. 1). If
hopping occurs only from one sublattice to the other,
the sublattice symmetry S anti-commutes with the one-
particle Hamiltonian H as well

{H,S} = 0. (2)

Hence, the sublattice symmetry S and chiral symmetry
Π usually are not distinguished in the literature3–5,7–14,
and the two terms, ‘sublattice’ and ‘chiral’, have been
used interchangeably. Furthermore, the topological clas-
sification for sublattice symmetry is commonly believed
as a completely solved problem, since it is understood
that the topological classification tables of chiral sym-
metry can be directly applied to crystals with sublattice
symmetry.

In this work, we reveal an essential difference between
chiral symmetry Π and sublattice symmetry S. In the
BdG Hamiltonian, Π as the combination of T and C is
an internal symmetry, since T and C are both internal
symmetries. However, generically A and B sublattices
are spatially separate on a bipartite lattice (see the two
simple examples in Fig. 1), and therefore the sublattice
symmetry S has an inherent spatial nature.
Considering the spatial nature, we can classify sublat-

tice symmetries into two categories. If the periodicity
of the primitive unit cells agrees with that of the A-
B labeling of lattice sites, the sublattice symmetry falls
into class I, as demonstrated by the Su–Schrieffer–Heeger
(SSH) model in Fig. 1a15. Otherwise, it falls into class
II, where the 1D model with uniform nearest neighbor
hoppings in Fig. 1b serves as a simple example.
Only class-I sublattice symmetry adheres to the theory

of chiral symmetry, while class-II sublattice symmetry
is represented as a glide reflection in energy–momentum
space, leading to completely different topological physics.
There are two scenarios to consider for class-II sub-

lattice symmetry. In the first scenario, each primi-
tive unit cell comprises an odd number of states. The
symmetry constraint results in 4n + 2 zero modes with
n = 0, 1, 2, · · · , meaning that the minimum number of
zero modes is two. Therefore, to achieve an insulator, we
need to examine the second scenario where each primi-
tive unit cell contains an even number of states. In this
case, the number of zero modes is 4n with n = 0, 1, 2, · · · .

Consequently, the topological classification table dif-
fers significantly from that of chiral symmetry. It be-
comes nontrivial in even dimensions and trivial in odd
dimensions, whereas the table for chiral symmetry is non-
trivial in odd dimensions and trivial in even dimensions.
The nontrivial classification is now given as Z2 rather
than Z for chiral symmetry.

Sublattice symmetry is a pervasive feature observed
in various quantum materials16–21, as well as in ap-
propriately designed artificial crystals such as pho-
tonic and acoustic crystals, periodic mechanical systems,

ar
X

iv
:2

40
4.

11
39

8v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
8 

A
pr

 2
02

4



2

Lx

a

b

FIG. 1. Models for two classes of sublattice symme-
tries. A and B sublattice sites are denoted by solid and hol-
low circles, respectively, and the signs ± at lattice sites are
assigned by the sublattice symmetry. The primitive unit cells
are indicated by the dashed loops. a The SSH model. The
sublattice labeling and the unit cells have the same periodic-
ity. b The 1D lattice with uniform nearest neighbor hopping
amplitudes. The period of unit cells is a half of that of the
sublattice labeling. The unit-cell translation Lx exchanges
two sublattices and therefore inverts ± signs.

cold atoms in optical lattices, and periodic-electric ar-
rays22–35. Thus, our work not only enhances our under-
standing of a fundamental aspect of sublattice symmetry-
protected topology but also holds significant potential for
wide applications in topological physics.

RESULTS
Two classes of sublattice symmetries. Let us start
with enunciating the two classes of sublattice symmetries.

For a lattice model, once the primitive unit cell is
chosen, the translation symmetry is described by unit
translation operators Li, which maps each unit cell to its
neighbors. If the translation symmetry is also preserved
by the sublattice bipartition, translation operators com-
mute with the sublattice operator [Li, S] = 0. Then, the
sublattice symmetry is in class I with each unit cell hav-
ing the same A-B labeling of states (see Fig. 1a). Class-I
S can be effectively regarded as an internal symmetry in
the k space due to [Li, S] = 0, and therefore adheres to
all topological classifications for chiral symmetry Π.

Meanwhile, it is also ubiquitous that some translation
operators exchange A and B sublattices. Then, a unit
cell and its neighbor related by such a translation oper-
ator have opposite A-B labeling (see Fig. 1b), and the
sublattice symmetry is in class II. For class-II S, at least
one translation operator, say Lx, anti-commutes with S,

{Lx, S} = 0. (3)

This is because Lx inverts the sign assigned by S on each
state, i.e., LxSL

−1
x = −S (see Fig. 1b).

If more than one translation operators anti-commute
with S, one can always recombine these translation op-
erators Li to form translation operators L′

i, where only
one of L′

i anti-commutes with S. Importantly, the two
sets of translation operators, Li and L′

i, correspond to

the same primitive unit cells. For instance, if {Lx, S} =
{Ly, S} = 0, we can make the recombination Ld = LxLy

with [Ld, S] = 0. Then, Lx and Ld form another set of
translation operators for the same primitive unit cells.
Thus, without loss of generality, to analyze the bulk

topology, we assume Lx as the only translation operator
that anti-commutes with S hereafter.

Two representations of symmetry algebra. To an-
alyze the implications of Eq. (3) on band structures, we
introduce two natural conventions to define the k space,
primitive unit cells and doubled unit cells, which corre-
spond to two equivalent representations of the symmetry
algebra in Eq. (3).
In the first convention, the k space is defined from the

primitive unit cells, i.e., the primitive translation oper-
ator Lx is represented by Lx = eikxa with a the lattice
constant. As Eq. (3) can be written as SLxS

−1 = −Lx,
we obtain SeikaS−1 = −eika = ei(k+π/a)a. This leads to
a significant consequence: S translates kx to kx + π/a
with π/a an half reciprocal lattice constant. Hereafter,
we set a = 1 for simplicity, and accordingly

S : kx 7→ kx + π. (4)

Let US be the k-space unitary operator of S. The sym-
metry identity {H,S} = 0 is represented in the k space
by

USH(p)(kx, k̄)U
†
S = −H(p)(kx + π, k̄), (5)

where k̄ denotes the remaining components of k except
for kx. One may formally write S = USLx

π in k space with
Lx
π the translation operator of kx by π. Then, {H,S} = 0

is manifestly equivalent to Eq. (5).
The consequence of Eq. (5) in band structure is that

for each eigenstate |u(kx, k̄)⟩ with energy E(k), the trans-
formed state US |u(kx, k̄)⟩ satisfies

H(p)(kx + π, k̄)US |u(kx, k̄)⟩ = −E(k)US |u(kx, k̄)⟩. (6)

Hence, the band structure represented in the (E ,k) space
features a glide reflection symmetry, i.e., it is invariant
under the coordinate transformation,

(E , kx, k̄) 7→ (−E , kx + π, k̄). (7)

The energy–momentum glide reflection symmetry is
demonstrated by the single band illustrated in Fig. 2a.
In the second convention, we double the unit cells, i.e.,

each unit cell consists of two neighboring primitive unit
cells along the x direction. The translation operator that
transforms each doubled unit cell to its nearest neighbor
is the square L2

x, and therefore the kx coordinate is de-
fined by L2

x = eikx·2a. To simplify the notation, we set
2a = 1. Since [S,L2

x] = 0, S can be represented in the
usual way as

US = τz ⊗ 1N , (8)
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where N is the number of states in a primitive unit cell
and τ ’s are the Pauli matrices acting in the sublattice
space. As usual, {H(d)(k), US} = 0 leads to

H(d)(k) =

[
0 Q(k)

Q†(k) 0

]

τ

, (9)

with Q(k) an N ×N matrix.
It is significant to note that for the doubled unit cells

the primitive translation operator Lx acts as a nontrivial
unitary operator in the k space36, and takes the general
form,

L(d)
x =

[
0 R(kx)

eikxR†(kx) 0

]

τ

, (10)

where R(kx) is a unitary operator and the concrete ex-
pression can be found in Supplementary Note 1. The

commutation relation [L(d)
x ,H(k)] = 0 leads to

Q†(k) = eikxR†(kx)Q(k)R†(kx). (11)

Then the Hamiltonian can be transformed to be
UH(d)(k)U† = τx ⊗ h(k) with h(k) = eikx/2R†(kx)Q(k)
being hermitian. More details are given in the section of
reduced Hamiltonian in the doubled unit cell convention
in Methods.

Two conventions correspond to two equivalent repre-
sentations of the symmetry algebra in Eq. (3). The en-
ergy band structure ofH(d)(k) can be obtained from fold-
ing that ofH(p)(k). A general description of band folding
can be found in Ref. [36]. Below, let us proceed to derive
the physical consequences for both gapless and gapped
cases using the two representations, respectively.

Zero-mode numbers. For the implications of class-II
sublattice symmetry on metals or semimetals, it is suf-
ficient to consider 1D systems without loss of general-
ity, and it is convenient to work under the convention
with primitive unit cells. Here, we adopt the terminol-
ogy ‘zero mode’, which refers to a crossing point of the
energy bands at zero energy. For dD systems, a zero
mode will extend into a (d − 1)D Fermi surface across
the Brillouin zone.

The symmetry algebra in Eq. (3) can lead to strong
constraints on zero modes because of the resultant glide
reflection symmetry in band structure [see Eqs. (6) and
(7)]. There are two elementary scenarios to consider.

In the first, a single band E0(k) preserves the glide
reflection symmetry, i.e.,

E0(k + π) = −E0(k). (12)

If E0(k0) > 0, then E0(k0 + π) = −E0(k0) < 0. Then,
generically there are 2n + 1 zero modes in the interval
[k0, k0+π) with n = 0, 1, 2, · · · . Furthermore, the energy
curve in the interval [k0+π, k0+2π) is determined by that
in [k0, k0 + π) through the glide reflection symmetry [see
Fig. 2a]. Consequently, in each 2π period, generically
there exist 4n+ 2 zero modes.

a

b c

FIG. 2. Two elementary scenarios for zero modes. a A
single band preserving the glide reflection in the (E , k) space
with two zero modes. The band is plotted in the left panel. Its
energy-inverted image is plotted in the right panel and marked
in light blue in the left panel for reference. The energy-
inverted image is related to the original band by k 7→ k + π.
b A pair of gapped bands preserving the glide reflection. c
A pair of bands preserving the glide reflection with four zero
modes.

In the second, a pair of bands Ea(k) and Eā(k) together
preserve the glide reflection symmetry, i.e.,

Ea(k + π) = −Eā(k). (13)

If the two bands do not cross, then the band structure
has a gap and there is no zero mode [see Fig. 2b]. But,
if the two bands have one crossing point at k0 ∈ [0, π),
there exists another crossing point at k0 + π ∈ [π, 2π)
because of Eq. (13) [see Fig. 2c]. As each crossing point
corresponds to two zero modes, the number of zero modes
is a multiple of four, namely 4n.
From the two elementary scenarios, we can conclude

the following results for the aforementioned two cases of
class-II sublattice symmetry. i) Each primitive unit cell
contains an odd number of states. Since there exist odd
unpaired single bands, the number of zero modes is equal
to 4n + 2. ii) Each primitive unit cell contains an even
number of states. Since there exist even unpaired single
bands, the number of zero modes is equal to 4n.
This can be explicitly verified for two 1D lattice mod-

els in Fig. 3a and b. In Fig. 3c and d, we plot the en-
ergy spectrum of two models. For the model in Fig. 3a,
each unit cell consists of three sites, and therefore, it
should have 4n + 2 zero modes according to our theory.
This is verified by the band structure plotted in Fig. 3c,
where we observe six zero modes, namely, n = 1. For
the model in Fig. 3b, the unit cell contains two sites. In-
deed, we observe eight zero modes in the band structure
in Fig. 3d, consistent with the symmetry constraint of
4n zero modes.
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FIG. 3. Two lattice models of semimetals. a A chain
with three sites in each unit cell and a flux of π threading each
plaquette. b A chain with two sites in each unit cell and with-
out flux. t and J stand for the nearest-neighbor hopping am-
plitudes along the x and y directions, respectively. λ denotes
the long-range hopping amplitude. All hopping amplitudes
are real, and positive and negative ones are marked in blue
and red, respectively. The primitive unit cells are surrounded
by the dashed loops. c and d plot the band structures of the
models with t = J = λ = 1.0 in a and b, respectively. There
are six and eight zero modes in c and d, respectively.

Moreover, the constraints on zero modes can be ap-
plied to understand zero modes in the famous Hofstadter
model with Φ = 2πp/q flux per plaquette37,38. Here,
p and q are coprime integers. The two cases of q being
even and odd correspond precisely to the presence of even
and odd sites in each unit cell, respectively. Hence, odd
(even) q leads to 4n + 2 (4n) zero modes. More details
about the Hofstadter model are given in the Supplemen-
tary Note 2.

Topological classification and invariants for insu-
lators. Let us proceed to consider the topological classi-
fication of the insulators with class-II sublattice symme-
try. As previously emphasized, an insulator exists only
if each unit cell contains even states.

To derive the topological classifications, it is more con-
venient to work with the doubled unit cell convention. In
this convention, the symmetry algebra can be encapsu-
lated as

{L(d), S} = 0, [L(d)]2 = eikx , S2 = 1,

{S,H(d)(k)} = 0, [L(d),H(d)(k)] = 0.
(14)

Based on the algebraic relations, the derivation of the
topological classification table, namely Tab. I, has been
provided in the section of topological classifications in
Methods.

Compared to the topological classifications for class
AIII or class-I sublattice symmetry, we observe from
Tab. I two significant differences: i) The classification for

Class
Alg

Dim
1 2 3 4 5 6 7 8

I [S,Lx] = 0 Z 0 Z 0 Z 0 Z 0

II {S,Lx} = 0 0 Z2 0 Z2 0 Z2 0 Z2

TABLE I. Topological classification table of insulators
for two classes of sublattice symmetries. ‘Dim’ and
‘Alg’ stand for spatial dimensionality and algebraic relation,
respectively. The class-I sublattice S is equivalent to the chi-
ral symmetry in class AIII in the tenfold Altland–Zirnbauer
symmetry classes.

class-II sublattice symmetry is nontrivial in even dimen-
sions, while it is nontrivial in odd dimensions for class
AIII; ii) The nontrivial classification for class-II sublat-
tice symmetry corresponds to Z2 rather than Z for class
AIII.
To understand why the classification is trivial in odd

dimensions for class-II sublattice symmetry, it is note-
worthy that under the doubled unit cell convention the
winding numbers of Q(k) in Eq. (9) vanish for all odd
dimensions as a consequence of the algebraic relations
(14). The derivation details are provided in the section
of vanishing winding numbers in Methods.
The Z2 topological invariants in even dimensions origi-

nate from the symmetry constraint (5), namely the glide
reflection symmetry in the (E ,k) space. The topologi-
cal invariants can be formulated under both conventions.
Here, we demonstrate the formulation under the primi-
tive unit cell convention. The essential idea of formulat-
ing these topological invariants can be illustrated in two
dimensions.
For H(p)(kx, ky), let us consider the Berry phases

γy±(kx) of conduction and valence bands for a 1D ky-

subsystem H1D
kx

(ky) := H(p)(kx, ky) with given kx.

Here, the Berry phases are defined as γy±(kx) =∮
dky a

y
±(kx, ky) with a

µ
± := iTrAµ

±, and the Berry con-
nections Aµ

± are defined as [Aµ
±]ab = ⟨±, a,k|∂µ|±, b,k⟩

from the conduction and valence states |±, a,k⟩, respec-
tively.
We consider the half Brillouin zone (BZ) τ1/2 with kx ∈

[−π, 0) as illustrated in Fig. 4a. For the boundary 1D sys-

tems H1D
0 and H1D

−π, we have USH1D
0 U†

S = −H1D
−π from

Eq. (5). Hence, the valence states of H1D
−π and the con-

duction states of H1D
0 are related by the unitary trans-

formation US , and therefore γy−(−π) = γy+(0) mod 2π.
It is well known that the sum of γ± for a 1D insulator is
equal to zero modulo 2π, i.e., γy+(0)+γ

y
−(0) = 0 mod 2π.

Hence, we can get γy−(−π)+γy−(0) = 0 mod 2π. Further
considering the general identity

∫
τ1/2

d2k f−(kx, ky) +

γy−(−π) − γy−(π) ∈ 2πZ from Stokes’ theorem39, we can
formulate the Z2 topological invariant as

ν =
1

2π

∫

τ1/2

d2k f−(kx, ky) +
1

π
γy−(−π) mod 2. (15)

Here, f−(kx, ky) := ∂kxay− − ∂kyax− is the Abelian Berry
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curvature of valence bands of H(p)(kx, ky). The above
reasoning has justified that the formula is valued in
integers. In fact, its integer value is gauge invariant
only modulo 2, since a gauge transformation transforms
γy−(−π) to γy−(−π) + 2πn with n the winding number
of the gauge transformation. We note that topologi-
cal invariants of analogous form appeared previously but
with completely different symmetry origins for quantiza-
tion39,40.

If we can derive the Berry phase γy−(kx) as a smooth
function of kx, the topological invariant is nontrivial if
and only if γy−(kx) crosses π odd times40–42. Therefore,
for an insulator with nontrivial ν = 1, there must be
in-gap edge states located at each edge parallel to the
x direction. A geometric interpretation of the Z2 topo-
logical invariant (15) and its implications to the bulk-
boundary correspondence have been presented in the sec-
tion of bulk-boundary correspondence in Methods.

The 2D topological insulators can be demonstrated
by dimerized Hofstadter models. Specifically, we con-
sider the dimerized Hofstadter model with Φ = π/2 (see
Fig. 4c). The topological invariant (15) can be read off
from the flow of the Berry phase γy−(kx) (see Fig. 4b).
Since it crosses π once in kx ∈ [−π, 0), the Z2 topological
invariant (15) is nontrivial. The band structure of the
model on a slab geometry with the finite y dimension is
plotted in Fig. 4d. We observe a pair of topological edge
states appear appearing on the two edges, respectively.
Notably, the spectrum of each edge preserves the sub-
lattice symmetry, since it is invariant under the energy–
momentum glide reflection symmetry in Eq. (7). Addi-
tionally, the edge band may be detached from the bulk
bands, depending on the parameter values and boundary
termination of the model.

Alternatively, the Z2 topological invariants (15) can
equally well be formulated in the doubled unit cell con-
vention, where a reduced Hamiltonian h(k) naturally
arises with ‘twisted’ boundary conditions h(kx+2π, k̄) =
−h(kx, k̄) (see the section of reduced Hamiltonian in the
doubled unit cell convention in Methods). Instead of the
half BZ, we just apply all the rationale on the whole BZ
for h(k).
The 2D topological invariant (15) can be readily gener-

alized to any higher even dimensions 2n by replacing the
Berry curvature and Berry phase by their higher dimen-
sional counterparts, namely the nth Chern character and
Chern–Simons form, respectively43. For more details, see
the section of topological invariants in Methods.

DISCUSSION
In conclusion, by revealing the intrinsic spatial nature of
sublattice symmetry, we discovered the class-II sublat-
tice symmetry. Unlike the class-I sublattice symmetry,
the class-II sublattice symmetry cannot be regarded as
chiral symmetry in the tenfold symmetry classes. It is
represented as the glide reflection symmetry of the energy
band structure, which reverses the energy and translates
one momentum coordinate by half of the reciprocal lat-

......

...
...

t
J1

J2
teiΦ

te2iΦ

te3iΦ

Φ Φ

Φ

ΦΦ

Φ

Φ

Φ

Φ

τ1/2

a b

c d

FIG. 4. Topological invariant and topological edge
states. a The Berry flux through one half of the BZ and
the Zak phases of the 1D subsystems with kx = ±π and 0.
b The Berry phase γ(kx) as a function of kx, which crosses
π once in one half of the BZ. c Schematic of the dimerized
Hofstadter model with Φ = π/2. J1 and J2 stand for the
two alternatively distributed hopping amplitudes along the y
direction. t denotes the hopping amplitude along the x direc-
tion, and Φ denotes the magnetic flux per plaquette. d The
band structure of the model in c with the slab geometry. The
edge states at two boundaries are marked in blue and red, re-
spectively. The parameter values are chosen as t = J1 = 1.0
and J2 = 2.0.

tice constant. As a result, it introduces novel constraints
on zero modes and leads to a different topological classi-
fication table.

Class-I and class-II sublattice symmetries are distin-
guished by whether the spatial period of the hopping
amplitudes is the same as that of the bipartition of sub-
lattices. Just like class-I sublattice symmetry, class-II
sublattice symmetry ubiquitously exists in crystals as
long as the hopping within the same sublattice is ignor-
able. Therefore, our work has wide applicability for the
analysis of crystalline condensed matter and the design
of artificial crystals, considering the distinct properties
of class-II sublattice symmetry. For instance, the dimer-
ized Hofstadter models studied in our work are important
models in condensed matter physics, but their symme-
try structure revealed here has long been unrecognized.
Various metamaterials have rapidly expanded with their
high tunability to simulate crystalline topological phases.
Our revealing of the spatial nature of sublattice symme-
try provides a structuring principle for metamaterials and
paves the way for realizing these novel topological phases.

Based on the fundamentals established here, one can
further explore how the class-II sublattice symmetry can
greatly enrich symmetry-protected topological phases. It
can diversify symmetry classes by including time reversal
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symmetry, particle–hole symmetry, and crystal symme-
tries. Therefore, it provides an extended framework for
exploring topological phases, similar to what has been
done with class-I sublattice symmetry. Moreover, since
sublattice symmetry has played a significant role in the
development of non-Hermitian topological physics44–48,
it is interesting to explore the implications of our theory
for non-Hermitian topological phases.

METHODS
Reduced Hamiltonian in the doubled unit cell
convention In this section, we show that the symmetry
algebra in Eq. (14) leads to essentially the same symme-
try constraint as Eq. (5).

Due to the translation symmetry in Eq. (10), the
Hamiltonian can always be transformed to be

UH(d)(k)U† = τx ⊗ h(k). (16)

Here, U(kx) = diag(ei
kx
2 R†(kx), 1N ) and

h(k) = eikx/2R†(kx)Q(k), (17)

where Eq. (11) has been used. It is significant to no-
tice that h(k) is Hermitian, h†(k) = h(k), and hence
can be regarded as a ‘reduced Hamiltonian’. However,
the reduced Hamiltonian h(k) is not periodic for kx, but
satisfies the ‘twisted’ boundary conditions

h(kx + 2π, k̄) = −h(kx, k̄). (18)

Thus, comparing the two equations (18) and (5), we ar-
rive at essentially the same symmetry constraint in both
conventions: Translating the (reduced) Hamiltonian by
a certain length along kx inverts it. It is this symmetry
constraint that naturally gives rise to the Z2 topological
invariants in even dimensions (see Tab. I).

Vanishing winding numbers In one dimension, for
the Hamiltonian in Eq. (9) with doubled unit cells, one
might still try to calculate the winding number of class
AIII following the conventional prescription

ν =
1

2πi

∮
dk [D(k)]−1∂kD(k), (19)

with D(k) = detQ(k). It is straightforward to derive
from Eq. (17) that detQ(k) = deth(k) det[e−ik/2R(k)].
detQ(k) is completely determined by the translation op-
erator rather than the concrete form of the Hamilto-
nian, which already indicates that Q(k) is topologically
trivial. By using the concrete form of R(k), we have
detR(k) = eiMk and detQ(k) = deth(k), which is a
real-valued function since h(k) is hermitian and hence
gives a zero winding number.

In higher odd dimensions 2n + 1 with n ≥ 1, the Z-
invariant in class AIII is given by

W [Q̃] = Cn

∫

BZ

tr(Q̃dQ̃†)2n+1, (20)

with Cn = −n!/[(2n+ 1)!(2πi)n+1]. Here, Q̃ is given by

the usual definition of flattened Hamiltonian as Q̃(k) =

R†(kx)h̃(k)eikx/2 where h̃ is Hermitian unitary with h̃2 =
1. Using the well-known identity W [UV ] = W [U ] +
W [V ], we have

W [Q̃(k)] =W [R†(kx)] +W [h̃(k)eikx/2]. (21)

The first term on the right-hand side vanishes because R
only depends on kx. Recalling that W [h̃] vanishes for h̃

is Hermitian unitary, the vanishing of W [h̃(k)eikx/2] can
be understood.
Under the convention with primitive unit cells, the

Hamiltonian H(p) cannot be converted into an anti-
diagonal form, and therefore the definition of winding
number for class AIII does not hold anymore. One might
still intend to calculate the Zak phase γ of valence bands,
which turns out still be trivial.
With the doubled unit cells, the winding number ν

is well defined as above and γ = πν mod 2π. The Zak
phase is invariant under doubling the unit cells or folding
the BZ. Since ν = 0, γ must be trivial. Alternatively, one
can directly prove γ = 0 mod 2π with primitive unit
cells.
When in the presence of energy gap at half-filling,

among the 2M bands, there are M conduction bands
and M valence bands, which form M pairs according to
the sublattice symmetry [see Eq. (6)]. Hence, we may la-
bel the M pairs by (n,−n) with n = 1, 2, · · · ,M . Then,
Eq. (6) implies the following identity for the Berry con-
nection of each energy band

an(k + π) = a−n(k), (22)

with an(k) = ⟨un(k)|i∂k|un(k)⟩. The Berry phase of the
half-filling gap is

γ =

M∑

n=1

∮
dk a−n(k) =

M∑

n=−M

∫ π

0

dk an(k), (23)

which can be determined by

γ = ln
det[U(π)]

det[U(0)]
. (24)

where U(k) = (|u−M (k)⟩, · · · , |u+M (k)). Moreover,
class-II sublattice symmetry ensures det[U(k + π)] =
det[U(k)], indicating a trivial Berry phase, γ = 0.

Topological classifications The topological classifica-
tion table in Tab. I exhibits strong topological classifica-
tions in the sense of strong topology in the tenfold topo-
logical classifications. That is, the Brillouin torus T d

is reduced to the Brillouin sphere Sd as the base space
of the topological classification. The standard spheri-
cal coordinates are (ϕ, θ1, · · · , θd−1) with ϕ ∈ [0, 2π) and
θi ∈ [0, π].
We now consider a general scenario, namely the topo-

logical classification of gapped Hamiltonians Hd(k) with
k ∈ Sd under the symmetry constraints,

{Hd(k),Γd
i (k)} = 0. (25)
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Here, {Γd
i (k),Γ

d
j (k)} = 2δijλi(k) with λi(k) being func-

tions from Sd to C, and i = 1, 2, · · · ,M labels the set of
symmetries.

The dD Hamiltonian can be mapped to the (d + 1)D
Hamiltonian,

Hd+1(k, θd) = sin θdτ1 ⊗Hd(k) + cos θdτ2 ⊗ 1 (26)

with θd ∈ [0, π]. Since Hd+1(k, θd) is constant at θd =
0 and θd = π, Hd+1 is based on Sd+1. The (d + 1)D
Hamiltonian satisfies the symmetry constraints

{Hd+1(k),Γd+1
µ (k)} = 0. (27)

Here, µ = 0, 1, · · · ,M , and

Γd+1
0 = τ3 ⊗ 1, Γd+1

i = τ1 ⊗ Γd
i (k). (28)

For the previous N symmetry operators, we still have
{Γd+1

i (k),Γd+1
j (k)} = 2δijλi(k). More importantly, the

emergent chiral symmetry Γd+1
0 is required, which anti-

commutes with all Γd+1
i , namely {Γd+1

0 ,Γd+1
i (k)} = 0,

and satisfies (Γd+1
0 )2 = 1.

Furthermore, given any (d+1)D Hamiltonian Hd+1(k)
with the above symmetry constraints, we can map it to
the (d+ 2)D Hamiltonian,

Hd+2(k, θd+1) = sin θd+1Hd+1(k) + cos θd+1Γ
d+1
0 , (29)

where k ∈ Sd+1. The Hamiltonian is based on Sd+2 be-
cause it is constant at θd+1 = 0 and π. Now, Γd+1

0 is bro-

ken, and the others are preserved with Γd+2
i = Γd+1

i . The
symmetry algebra is restored to the case of dD Hamilto-
nian.

Notably, the two maps (26) and (29) are invertible for
homotopy equivalence classes. Recall that two Hamil-
tonians are in the same homotopy class if and only if
one can be deformed to the other with all symmetries
preserved and the energy gap never closed. Thus, recur-
sively applying the two maps leads to a sequence with
the same topological classifications. Moreover, all even
(odd) dimensions correspond to the same symmetry alge-
bra, and therefore are in the same symmetry class. This
underlies the so-called twofold Bott periodicity for class
A and AIII in the tenfold topological classifications, and
also for the class-II sublattice symmetry in Tab. I.

Let us return to a detailed elucidation of our problem.
To fit the above construction, we recombine the symme-
try operators as

Γd(kx) = iSL(d), S, (30)

both of which anti-commute with the Hamiltonian. Here,
the superscript ‘d’ denotes the space dimensionality and
‘(d)’ indicates the doubled unit cell convention. Below,
we explicitly present the two maps for our classification
problem.
d = 1 Let us start with considering the 1D Hamilto-

nian H1D(kx). It satisfies the symmetry constraint,

{H1D(kx),Γ
1D(kx)} = 0, (31)

with [Γ1D(kx)]
2 = eikx .

d = 2 Then, the 1D Hamiltonian H1D(kx) can be
mapped to the 2D Hamiltonian,

H2D(kx, θ1) = sin θ1τ1 ⊗H1D(kx) + cos θ1τ2 ⊗ 1 (32)

under the symmetry constraints

{H2D(kx),Γ
2D(kx)} = 0, {H2D(kx), S} = 0. (33)

Here, Γ2D(kx) = τ1 ⊗ Γ1D(kx) and S = τ3 ⊗ 1, with
[Γ1D(kx)]

2 = eikx and S2 = 1. Importantly, the two
symmetry operators anti-commute with each other,

{Γ2D(kx), S} = 0. (34)

d = 3 With the constant chiral symmetry operator S,
the 2D Hamiltonian can be mapped to the 3D Hamilto-
nian,

H3D(kx, θ1, θ2) = sin θ2H2D(kx, θ1) + cos θ2S. (35)

With Γ3D(kx) = Γ2D(kx), the symmetry constraint is
given by

{H3D(kx),Γ
3D(kx)} = 0. (36)

Recursively applying the two maps, we observe that all
even dimensions correspond to class-II sublattice symme-
try. The topological classifications are equal to that of
d = 1. Without loss of generality, we assume the concrete
symmetry operator,

Γ1D(kx) =

[
0 1N

eikx1N 0

]
. (37)

The flattened Hamiltonian is restricted to the general
form by the symmetry,

H̃1D(kx) =

[
A(kx) −ie−ikx/2B(kx)

ieikx/2B(kx) −A(kx)

]
, (38)

where A and B are Hermitian matrices with

A(kx + 2π) = A(kx), B(kx + 2π) = −B(kx). (39)

Moreover, the condition [H̃1D(kx)]
2 = 1 is equivalent to

A2 +B2 = 1, [A,B] = 0, (40)

which in turn just means the matrix U(kx) = A(kx) +
iB(kx) is unitary. Then, the topological classification
of the 1D system is equivalent to the classification of
unitary-matrix valued functions under the twisted peri-
odic condition,

U(kx + 2π) = U†(kx). (41)

It is well known that such functions have a Z2 classifica-
tion, corresponding to the parity of the winding number
in a 4π period. Thus, class-II sublattice corresponds to
the Z2 classification in even dimensions.
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To see the trivial classification in odd dimensions, we
can construct another sequence by the two maps. Then,
the corresponding 1D system is just the Hamiltonian with
an additional chiral symmetry S = τ3⊗1N to the Hamil-
tonian (38). The consequence of S simply corresponds
to the elimination of A. Then, the Hamiltonian is fully
characterized by the Hermitian unitary matrix distribu-
tionB(kx) withB(kx+2π) = −B(kx), which corresponds
to trivial classification.

Topological invariants In this section, we present the
general form of the Z2 topological invariants for class-II
sublattice symmetry. Recall that the Berry connection
of valence bands is defined as

[Aµ(k)]ab = ⟨−, a,k|∂µ|−, b,k⟩, (42)

which gives the Berry curvature,

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. (43)

To formulate the general form of topological invariants we
introduce the differential forms of the Berry connection
and curvature,

A = Aµdkµ, F =
1

2
Fµνdkµ ∧ dkν . (44)

Note that F = dA+AA, where the product of two forms
is implicitly assumed as the wedge product. Then, the
nth Chern character is given by

Chn(F) =
1

n!
Tr

(
iF
2π

)n

(45)

which is a 2n form. The Chern-Simons form is given by

Q2n−1(A,F) =
1

(n− 1)!

(
i

2π

)n ∫ 1

0

dt TrAF (n−1)
t (46)

where Ft = tdA + t2AA. Note that Q2n−1(A,F) is a
2n − 1 form43. Locally, the Chern character is the total
derivative of the Chern–Simons form43, i.e.,

Chn(F) = dQ2n−1(A,F) (47)

Accordingly, the Z2 invariant in 2n dimensions is formu-
lated as

ν2n =

∫

τ1/2

Chn(F)− 2

∫

∂τ+
1/2

Q2n−1(A,F) mod 2. (48)

Here, τ1/2 is the half BZ, namely τ1/2 = [−π, 0]× T 2n−1

and ∂τ+1/2 is the boundary T 2n−1 with kx = −π. Note

that the two boundaries ∂τ±1/2 have opposite Chern–

Simons integrals modulo 2 as they are related by the
class-II sublattice symmetry.
We note that the previously used identity W [UV ] =

W [U ]+W [V ] can be understood as a consequence of the

gauge transformation of the Chern–Simons integral. The
Chern–Simons integral,

CS2n+1[A] =

∫

T 2n+1

Q2n+1(A,F), (49)

transforms as

CS2n+1(AU )− CS2n+1(A) =W [U ] (50)

under the gauge transformation43,

AU = UAU† + UdU†. (51)

Then, we consider the gauge transformation UV . It can
be implemented directly as

CS2n+1(AUV )− CS2n+1(A) =W [UV ]. (52)

Alternatively, we first implement the gauge transforma-
tion V on AU , which leads to

CS2n+1(AUV )− CS2n+1(AU ) =W [V ], (53)

and then successively implement U according to Eq. (50).
Thus, we observe that W [UV ] =W [U ] +W [V ].

Bulk-boundary correspondence It is important to
elucidate the bulk-boundary correspondence of topologi-
cal invariants as has been done for the tenfold topological
classifications49. Here, we present a geometric picture for
the Z2 topological invariant (15) in two dimensions. This
pump interpretation connects the bulk topological invari-
ant to the edge states.

The BZ of H(p)(k) can be partitioned into two parts,
τ1/2∪ τ̄1/2, with τ1/2 = [−π, 0)× [−π, π). Due to the sub-
lattice symmetry constraint (5), only one half of the BZ
is independent. Specifically, knowing the band structure
over τ1/2, we can map out the band structure over τ1/2
by the sublattice symmetry. Therefore, it is sufficient to
focus on τ1/2.

Since ky is periodic, we can write τ1/2 = [−π, 0) ×
S1 as a cylinder. Over the fundamental domain τ1/2 =

[−π, 0) × S1, we can always choose a complete set of
continuous states |un(k)⟩, which are periodic along ky.
Then, the corresponding Abelian Berry connection aµ−(k)
is also periodic along ky. Accordingly, we can compute
the Berry phase γy−(kx) that is continuous from kx = −π
to 0. From Stokes’ theorem, we have

∫

τ1/2

d2k f− =

∫ 0

−π

dkx∂kx
γy−(kx)

= γy−(0)− γy−(−π).
(54)

Hence, the Z2 topological invariant can be rewritten as

ν =
1

2π
[γy−(−π) + γy−(0)] mod 2. (55)

The path of γy−(kx) must cross 0 or π when varying kx
from −π to 0. Then Z2 topological invariant can inter-
preted as

ν =Wπ mod 2, (56)
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whereWπ denotes the number of times that γ(kx) crosses
π. Therefore, we obtain a geometric interpretation of ν,
that is, ν is nontrivial if and only if γy−(kx) crosses π odd
times (see Fig. 4b).

Hence, it is significant to observe that the nontrivial
topological invariant ν = 1 mod 2 ensures that there
exists at least one k0x ∈ [−π, 0) with γy−(k0x) = π mod 2π.
But, the quantized Berry phase π of the 1D ky-subsystem
with kx = k0x implies the existence of an in-gap mode
at each end. Hence, as reflected in the boundary BZ
parametrized by kx together with the continuity of the
band structure, the nontrivial topological invariant leads
to a band that contains edge states in the band gap.

Two remarks are ready for the edge states. First, from
the argument above, we see that the topological edge
band does not necessarily connect valence and conduc-
tion bands in the bulk as in the case of the Chern insula-
tor. It is also possible that the edge band is completely
detached from the bulk bands. Second, the argument
of above accounts for the topological edge band in the
half of the BZ with kx ∈ [−π, 0). The topological edge
band in the other half of the BZ with kx ∈ [−π, 0) can
be mapped out from this by using the class-II sublattice
symmetry. Moreover, by the continuity of band struc-
ture, generically the band for kx ∈ [−π, 0) crosses the
zero energy, because kx = −π and kx = 0 are related
by the sublattice symmetry and therefore are of opposite
energies.

Above we discussed the bulk-boundary correspondence
for two dimensions. The arguments and generic features
of the topological boundary states can be readily gener-
alized to any even dimensions, where we use the pump
of the Chern-Simons integral in a half of the BZ. Note
that the specialization of the Chern-Simons integral in
one dimension is just the Berry phase, and it is well-
known that a half quantized Chern-Simons integral leads
to boundary states.

Detailed information for lattice models We now
present more information for lattice models that demon-
strate our theory. Further details can be found in Sup-
plementary Note 2.

For the gapless phase, we consider two 1D lattice mod-
els, as illustrated in Fig. 3a and b. For both models,
the translation symmetry exchanges A and B sublat-
tices, and therefore their sublattice symmetries fall into
class II. In Fig. 3a and b, all hopping amplitudes are
real, with positive and negative ones marked in blue
and red, respectively. Each plaquette of the model in
Fig. 3a carries π flux. We set the values of parameters
as t = J = λ = 1.0 in Fig. 3c and d.
For the topological insulator phase, we consider dimer-

ized Hofstadter models, in which dimerization opens a
gap at zero energy50. We choose to work in the special
gauge configurations so that only the hoppings along x-
direction pick up a nontrivial phase factor, as illustrated
in Fig. 4c. We set the values of parameters as Φ = π/2,
t = J1 = 1.0, and J2 = 2.0 in Fig. 4b and d. The energy
dispersion of these in-gap edge states can be easily ob-

tained by the boundary effective theory, as demonstrated
in Supplementary Note 3.

DATA AVAILABILITY
The data generated and analyzed during this study are
available from the corresponding author upon reasonable
request.

CODE AVAILABILITY
All code used to generate the plotted band structures is
available from the corresponding author upon request.
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Supplementary Note 1. Relations of band structures under different conventions

In this section, we will derive the relations between the band structures of H(p)(k), H(d)(k), and h(k).
Firstly, doubling the unit cell corresponds to folding the BZ in the momentum space [1], in which the points at kx/2

and kx/2 + π are mapped to the same point at kx. Thus, we can obtain the band structures of H(d)(k) by folding
that of H(p)(k).
Since the Hamiltonian H(d)(k) can be transformed as Eq. (16) in the Methods, the relation between the band

structures of h(k) and that of H(d)(k) is given by

h : {En(k)} 7→ H(d) : {|En(k)|,−|En(k)|}. (S1)

That is, each eigen energy En(k) of h(k) corresponds to a pair of opposite eigen energies ±|En(k)| of H(d)(k) [2].
Next, we will show that the band structures of h(k) are the same as that of H(p)(kx/2, k̄). Without loss of generality,

we consider the case where the primitive unit cell contains an equal number of A and B sublattices, i.e., N is even
(= 2M). In the eigenbasis of US = σz ⊗ 1M , |u⟩ = (|uA⟩, |uB⟩)T , the Hamiltonian in primitive unit cells cannot be
off-block diagonalized but still has a generic block structure

H(p)(k) =

(
g(k) r(k)
r†(k) f(k)

)
, (S2)

where g(k) and f(k) areM×M Hermitian matrices satisfying g(kx+π, k̄) = −g(kx, k̄) and f(kx+π, k̄) = −f(kx, k̄),
while r(k) is a M ×M matrix with π-periodicity in kx, r(kx + π, k̄) = r(kx, k̄). Here, g(k) and f(k) describe the
hoppings between two unit cells separated by an odd-length distance along x, while r(k) describes the intra-cell
hoppings and the hoppings between two unit cells separated by an even-length distance along x. Therefore, the
matrices g(k) and f(k) contain e±i(2j+1)kx terms, while r(k) contains e±i(2j)kx terms, with j ∈ Z.

In doubled unit cells, we label the sublattice A and B in two adjacent primitive unit cells 1 and 2 as |uA1
⟩, |uB1

⟩,
|uA2

⟩, and |uB2
⟩, respectively. We choose the special basis |u⟩ = (|uA1

⟩, |uA2
⟩, |uB2

⟩, |uB1
⟩)T and the sublattice

∗yuxinphy@hku.hk
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Supplementary Fig. 1: Relations of band structures. a, b, and c plot the band structures for H(p)(k), H(d)(k), and h(k),
respectively.

symmetry is S = US = τz ⊗ 12M . Then the off-diagonal block of Lx reads

R(kx) =

(
1 0
0 eikx

)
⊗ 1M . (S3)

Thus, we have detR(kx) = eiMkx . Moreover, doubling the unit cell leads to kx 7→ kx/2 but with matrices g(k) and
f(k) associated a factor e±ikx/2, namely, the off-diagonal block of the Hamiltonian H(d)(k) becomes

Q(k) =

(
e−ikx/2g(kx/2, k̄) r(kx/2, k̄)

r†(kx/2, k̄) eikx/2f(kx/2, k̄)

)
. (S4)

Then the reduced Hamiltonian is

h(k) = eikx/2R†(kx)Q(k) =

(
g(kx/2, k̄) eikx/2r(kx/2, k̄)

e−ikx/2r†(kx/2, k̄) f(kx/2, k̄)

)
. (S5)

It is significant to notice that the reduced Hamiltonian (S5) can be transformed as

U ′h(k)U ′† = H(p)(kx/2, k̄), (S6)

where U ′(kx) = diag(e−ikx/2, 1M ) and H(p)(kx/2, k̄) is the Hamiltonian in primitive unit cells by substituting kx 7→
kx/2. Therefore, h(k) is equivalent toH(p)(kx/2, k̄) up to a unitary transformation, indicating that their eigen energies
are the same.
As shown in Supplementary Fig. 1a, b, and c, we plot the energy spectrum of H(p)(k), H(d)(k), and h(k),

respectively.

Supplementary Note 2. Detailed information about lattice models

In this section, we will give some detailed information about several lattice models mentioned in the main text.

a. Two 1D lattice models

For the gapless phase, we consider two 1D lattice models, as shown in Fig. 3a and b of the main text. Each
plaquette of the former carries π flux while the latter does not.
In the momentum space, the Bloch Hamiltonian of two models in Fig. 3a and b of the main text read

H(p)(k) =




2t cos(k) J J
J −2t cos(k) 2λ cos(k)
J 2λ cos(k) 2t cos(k)


 , (S7)

and

H(p)(k) =

(
2t cos(k) J + 2λ cos(2k)

J + 2λ cos(2k) 2t cos(k)

)
, (S8)

respectively. When we set the parameters as t = J = λ = 1.0, as shown in Fig. 3c and d of the main text, the band
structures of these two models possess six zero modes and eight zero modes, respectively.
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Supplementary Fig. 2: Zero modes of the Hofstadter model. a Schematic the Hofstadter model with Φ = 2π/3. The
lattice vectors are indicated by red arrows. t and J stand for the nearest-neighbor hopping amplitudes along x and y directions,
respectively. Φ describes the magnetic flux per plaquette. b The band structures of the Hofstadter model with Φ = 2π/3,
t = J = 1.0, and kd = 0. c The band structures of the Hofstadter model with Φ = π/2, t = J = 1.0, and ky = 0. There are six
zero modes in (b) and eight zero modes in (c).

b. The Hofstadter model

A typical 2D example of the gapless phase is the famous Hofstadter model [3], which describes particles on the
2D square lattice under a uniform magnetic field. We consider that each plaquette of the square lattice carries a
rational magnetic flux, Φ = 2πp/q, where p and q are coprime integers. The Hofstadter model preserves the sublattice
symmetry and is gapless at half filling. There are two magnetic translation operators Lx,y, which anti-commute with
the sublattice symmetry, {Lx,y, S} = 0. Thus, Lq

y anti-commutes with S for odd q, but commutes with S for even q.

When q is odd, we specify the unit cell by Lx = eikx and Ld = LxL
q
y = eikd [see Supplementary Fig. 2a], so that

Ld commutes with S. Then the Bloch Hamiltonian reads

H(p)(k) =




c0 Je−ikx 0 · · · 0 Je−ikd

Jeikx c1 J · · · 0 0
0 J c2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cN−2 J

Jeikd 0 0 · · · J cN−1



, (S9)

where cα = 2t cos(αΦ + kx) with α = 0, 1, · · · , q − 1. For each 1D subsystem with fixed kD, H(p)(kx, kd), the center
band is partially filled and possesses 4n + 2 zero modes. We plot the band structures of the Hofstadter model with
Φ = 2π/3, t = J = 1.0, and kd = 0 in Supplementary Fig. 2b. There are six zero modes in total.
When q is even, the unit cell is specified by Lx = eikx and Lq

y = eiky . Then the Bloch Hamiltonian is

H(p)(k) =




c0 J · · · 0 Je−iky

J c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · cN−2 J
Jeiky 0 · · · J cN−1



, (S10)

where cα = 2t cos(αΦ+kx) with α = 0, 1, · · · , q−1. There is a Dirac semimetal phase at half filling [4], where q Dirac
points located at ky = 0 for even q/2 but at ky = π for odd q/2, indicating 2q = 4n zero modes in total. As shown in
Supplementary Fig. 2c, we plot the band structures of the Hofstadter model with Φ = π/2, t = J = 1.0, and ky = 0.
There are four Dirac points with zero energy, which contributes eight zero modes in total.
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c. The dimerized Hofstadter model

Introducing dimerization in the Hofstadter model breaks one primitive magnetic translation and can open a gap at
zero energy [5]. The dimerization pattern has a two-site periodicity, resulting in unit cells containing N = lcm(2, q)
lattice sites, where lcm denotes the least common multiple. Therefore, the existence of dimerization preserves the
primitive unit cell when q is even, but doubles the unit cell when q is odd. The sublattice symmetry ensures that the
Chern number in this half-filling gap is zero. However, there may be novel topological edge states in the half-filling
gap, which can be characterized by a Z2 topological invariant.
We take the dimerized Hofstadter model with Φ = π/2 as an example [see Fig. 4c of the main text]. The Bloch

Hamiltonian of model is

H(p)(k) =




2t cos(kx) J1 0 J2e
−iky

J1 2t cos(kx +Φ) J2 0
0 J2 2t cos(kx + 2Φ) J1

J2e
iky 0 J1 2t cos(kx + 3Φ)


 . (S11)

When we set t = J1 = 1.0 and J2 = 2.0, the path of the Berry phase γ(kx) crosses π once in kx ∈ [−π, 0), as shown
in Fig. 4b of the main text. Correspondingly, when we put the system in a slab geometry, there are a pair of in-gap
edge states in the half-filling gap [see Fig. 4d of the main text].

Supplementary Note 3. Boundary effective theory

The energy dispersion of in-gap edge states in the dimerized Hofstadter model can be exactly obtained by the
boundary effective theory. We take the dimerized Hofstadter model with Φ = π/2 as an example.
Firstly, the Bloch Hamiltonian (S11) can be written as

H(p)(k) = H0(kx) +H1(ky), (S12)

which means that kx and ky are separable. We can get the Hamiltonian in real space by applying an inverse Fourier
transformation in y direction, namely, replacing the eiky (e−iky ) by the shift operator Sy (S†

y).

Consider a semi-infinite system (y > 0) with an edge at y = 0, then we have S†
y|0⟩ = 0. Taking the ansatz

|ψ⟩ = ∑∞
j=0 ρ

j |j⟩ ⊗ |ξ⟩ with |ρ| < 1. Then the Schrödinder equation in the bulk (j ≥ 1) is

[
H0(kx) +H1(Sy → ρ, S†

y → ρ−1)
]
|ξ⟩ = E|ξ⟩ (S13)

and at the boundary (j = 0)
[
H0(kx) +H1(Sy → ρ, S†

y → 0)
]
|ξ⟩ = E|ξ⟩. (S14)

The difference between the two equations(S13) and (S14) is the boundary condition

T |ξ⟩ = 0, (S15)

where

T =

(
0 1
03 0

)
(S16)

is called a boundary term and is non-hermitian. Let us conisder two invertible matrices

A =

(
02 τx
τx 02

)
, B =

(
02 −iτy
τx τ0

)
, (S17)

with A−B = 2T . Then the boundary condition (S15) becomes

(A−1B)|ξ⟩ = |ξ⟩, (S18)

which implies the boundary states is the eigenstates of (A−1B) with the eigenvalue 1. More explicitly, the operator
A−1B = τ0 ⊕ τz has eigenvalues 1, 1, 1, and −1. Then the projector for the edge states on the bottom boundary is
given by

PB =
14 + (A−1B)

2
=

(
13 0
0 0

)
. (S19)
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The effective Hamiltonian for the edge states on the bottom boundary is

HB
eff(kx) = PBH(p)(k)PB . (S20)

Similarly, we can obtain the projector for the upper boundary

PU =

(
0 0
0 13

)
. (S21)

Then the effective Hamiltonian is

HU
eff(kx) = PUH(p)(k)PU . (S22)

The effective Hamiltonian for a boundary is obtained by simply eliminating all couplings in contact with the opposite

boundary. The middle band of HB,U
eff (kx) corresponds to the topological edge states in the half-filling gap that are

located at the bottom/upper boundary.
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