
In situ sound absorption estimation with the discrete complex

image source method

Eric Brandãoa,b,∗, William D’Andrea Fonsecaa,c, Paulo Henrique Marezea,d, Carlos
Resendea,

Gabriel Azzuza,b, João Pontaltia, Efren Fernandez-Grandee

aAcoustical Engineering Program, Federal University of Santa Maria (UFSM), Santa
Maria, 97105-900, RS, Brazil

bGraduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa
Maria, 97105-900, RS, Brazil

cGraduate Program in Architecture, Urbanism, and Landscaping, Federal University of Santa Maria
(UFSM), Santa Maria, 97105-900, RS, Brazil

dGraduate Program in Mechanical Engineering, Federal University of Santa Maria (UFSM), Santa
Maria, 97105-900, RS, Brazil

eDepartment of Electrical Engineering, Technical University of Denmark (DTU), Kgs.
Lyngby, 2800, Denmark

Abstract

Estimating the sound absorption in situ relies on accurately describing the measured

sound field. Evidence suggests that modeling the reflection of impinging spherical waves is

important, especially for compact measurement systems. This article proposes a method

for estimating the sound absorption coefficient of a material sample by mapping the sound

pressure, measured by a microphone array, to a distribution of monopoles along a line in the

complex plane. The proposed method is compared to modeling the sound field as a superpo-

sition of two sources (a monopole and an image source). The obtained inverse problems are

solved with Tikhonov regularization, with automatic choice of the regularization parameter

by the L-curve criterion. The sound absorption measurement is tested with simulations of

the sound field above infinite and finite porous absorbers. The approaches are compared

to the plane-wave absorption coefficient and the one obtained by spherical wave incidence.

Experimental analysis of two porous samples and one resonant absorber is also carried out

in situ. Four arrays were tested with an increasing aperture and number of sensors. It was

demonstrated that measurements are feasible even with an array with only a few micro-

phones. The discretization of the integral equation led to a more accurate reconstruction
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of the sound pressure and particle velocity at the sample’s surface. The resulting absorp-

tion coefficient agrees with the one obtained for spherical wave incidence, indicating that

including more monopoles along the complex line is an essential feature of the sound field.

Keywords: Discrete complex image sources, Absorption coefficient, In situ, Microphone

array

1. Introduction

The sound absorption coefficient is one of the most important properties of materials used

in noise and reverberation control. The procedures of random- and normal-incidence absorp-

tion coefficient measurements are described in the standards ISO 354 [1] and ISO 105342 [2],

respectively. The in situ or free-field sound absorption measurement is also of considerable

interest since it is a non-destructive technique for which it is possible to measure under

realistic mounting conditions. Several in situ measurement methods exist, and a review

of methods based on a small number of sensors is detailed by Brandão et al. [3]. Most of

these techniques are formulated as an inverse problem since the sound pressure and/or par-

ticle velocity are measured close to the sample, and the surface impedance and absorption

coefficient are estimated from the measurements with a sound field physical model. The

complexity and assumptions of such models are known to have an impact on the estimated

results. For instance, the impact on the assumption of how spherical waves reflect on in-

finite locally reacting planar surfaces was investigated by Brandão et al. [4]. In contrast,

the effect of local vs. non-local reaction assumption is investigated in Refs. [5, 6, 7]. The

quantification of measurement uncertainty in in situexperiments was also addressed either

by Monte-Carlo simulations [8] or, more recently, by a Bayesian approach introduced by

Eser et al.[9]. The effects of measuring finite locally-reacting samples were thoroughly docu-

mented in relevant research studies [10, 11, 12]. Nevertheless, it is more difficult to find work

investigating the measurement of finite and non-locally reacting samples, but experimental

reports exist [13, 14].
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The use of microphone arrays to measure sound absorption gained some attention in

recent years, following the work of Tamura [15, 16] in the 1990’s. In this case, a microphone

array samples the sound pressure at several positions, and an ill-posed inverse problem is

formulated by describing the sound field as a sum of elementary waves. For instance, there

are basis functions such as propagating plane-waves [17, 18], propagating and evanescent

plane-waves [12, 19, 20], spatially distributed monopoles [21], and spherical harmonics [22].

In addition, different types of arrays can be used, such as spherical [21, 22], double-layered

with regular spacing [12, 19, 20], and randomized arrays [18]. Solving the proposed inverse

problem requires regularization, typically carried out with Tikhonov regularization or sparse

processing [21]. The absorption coefficient can be estimated by reconstructing the surface

impedance [12, 21] or using the acoustic power of the estimated wave-number spectrum [18].

Also, an array of loudspeakers combined with sound field synthesis was proposed by Dupont

et al. [23] to measure the diffuse-field absorption coefficient. The use of artificial intelligence

in this context was introduced by Zea et al. [24] to measure finite and locally reacting samples

as if they were infinite.

Alkmin et al. [25] investigated the angle-dependent sound absorption estimation using

a compact microphone array. One of the proposed inverse problems was formulated con-

sidering that the sound field comprised of a monopole (associated with the original sound

source) and an image source, similar to the two-microphone method of Li and Hodgson [26].

The authors stated that their main goal was to improve the estimated absorption coefficient

by modifying the classical two-microphone set-up while keeping the measurement apparatus

compact. For the more realistic case of spherical wave incidence, the sound field model with

a source and an image source is known to be simplistic. For instance, Di and Gilbert [27]

modeled the same problem with an integral equation mapping the complex amplitude of the

reflected sound pressure to a distribution of image sources along a complex line. Incorpo-

rating this model led to more accurate estimations of sound absorption measured at a single

point in situ using a PU probe [4].

This article proposes the incorporation of Di and Gilbert’s model [27] in an inverse

problem setting, used to estimate the absorption coefficient from distributed sound pressure
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measurements. The main contribution is the presentation of the formulation herein called

the Discrete Complex Image Source Method (DCISM). It is compared to the Image Source

Method (ISM) proposed by Alkmin et al. [25]. To the best of the author’s knowledge, this

is the first time that the DCISM has been presented in the literature. The DCISM and

the ISM are evaluated experimentally and by simulations of the measurement above infinite

and finite non-locally reacting samples. Another contribution of the article is demonstrat-

ing that the DCISM can accurately retrieve the absorption coefficient under spherical wave

incidence. This is in connection with the work of Dragonetti and Romano [6, 7]. Even

though the analysis of finite non-locally reacting absorbers is not intended to be extensive,

it is rarely explored in the literature, and the aim here is to provide practical guidelines for

measurements and future research. Three absorbers were measured: a Polyethylene Tereph-

thalate fibrous absorber (PET), a Melamine foam, and a Helmholtz resonant absorber. The

presentation and discussion of the sound absorption of the latter sample is one of the con-

tributions of this article since the in situ measurements of resonant absorbers are rarely

found in the literature. Finally, measurements were conducted in situ with the aid of a

cost-effective sound field scanner built by the research team. The brief description of such

instrumentation is also regarded as a contribution of this research to this field.

The article is structured as follows: in Sec. 2, the methodology for the experimental

validation and simulation of the measurements above infinite and finite non-locally reacting

samples is described. The instrumentation built and used, the measured samples, and the

post-processing strategy are reported for the experiments. An analytical model was used for

the simulation of the infinite sample, and a multi-physics Finite/Boundary Element Method

was used for the finite sample. Section 3 presents the mathematical model inherited in the

proposed DCISM and the ISM, the inverse problem estimation strategy, and the sound field

reconstruction equations. Section 4 presents the results and discussions about the simulated

and actual experiments, followed by the conclusions in Sec. 5.
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2. Materials and methods

This section describes the simulations and experimental validation conducted for this

research. When testing a novel approach to extract the absorption coefficient from measured

data, it is common practice to use forward models to simulate the experiment. Herein,

this is accomplished both by an analytical and a numerical model, described in Secs. 2.2

and 2.3, respectively. The experiments are described in Sec. 2.1. Common elements between

simulations and experiments are discussed in the following.

First, the absorption coefficient of an infinite planar absorber under plane-wave inci-

dence with an elevation angle θ is considered. In this scenario, the absorption coefficient is

calculated by

α(θ) = 1 −
∣∣∣∣ Zs cos (θ)− 1

Zs cos (θ) + 1

∣∣∣∣2 , (1)

where ρ0, kg/m
3, and c0, m/s, are the air density and speed of sound, respectively, and Zs

is the surface impedance of the sample. Note that Zs is constant across the sample’s surface

for this case. For a layer of thickness d over a rigid backing (considered in this research),

the plane-wave surface impedance is given by

Zs = − jZp
kp
kpz

cot (kpz d) , (2)

where j =
√
−1, and kp and kpz are the porous layer complex wave-number and its component

on the z-axis, respectively; Zp is the characteristic impedance of the porous layer. The

Johnson-Champoux-Allard (JCA) [28, 29] model, as in Appendix A, was used to compute

kp and Zp. Note that Eq. (2) represents a surface impedance with non-locally reacting

behavior, which is also relevant for spherical wave incidence.

Figure 1 shows a schematic drawing of how a typical in situ measurement is conducted.

A monopole sound source at coordinate rs = (xs, ys, zs) creates the sound field above the

absorber. In this article, the analysis is restricted to normal incidence, which means that

rs = (0, 0, zs). An absorber of thickness d (m) and side lengths Lx×Ly is placed over a rigid
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baffle (e.g., the floor of the room where measurements were conducted). The coordinate

system’s origin lies at the sample’s center and top.

Source

Sample

Array 0
Array 1
Array 2
Array 3

d

rs = (xs , ys , zs)

rm = (xm , ym , zm)

Baffle

LxLy

x  y

z

Figure 1: Schematic of the sound scene. The point source (red) at rs excites the sound field. The absorber

of dimensions Lx × Ly × d (light blue) is baffled at z = −d. The Arrays 0–3 are also shown. Note that

Array 0 contains Arrays 1–3, Array 1 contains Arrays 2–3, and Array 2 contains Array 3.

The forward models in Secs. 2.2 and 2.3 were used to compute the sound field at the

receiver points, each at coordinate rm = (xm, ym, zm). The receivers can be either above

the surface of the sample, z > 0 (e.g., an array of microphones used in the experiments,

represented by the colored dots in Fig. 1), or directly at the surface of the absorber, z = 0

(e.g., receivers used only in the simulations to establish benchmark results — see Fig. 2a).

For the receivers above the sample’s surface, z > 0, the sound pressure is measured or

computed with the forward models at M points. This data serves as input to the proposed

inverse problems in Sec. 3. Arrays of different aperture sizes and number of microphones were

tested (see Tab. (1)), which is relevant because the inherited models in the inverse problems

do not account for the edge diffraction on the finite absorbers. This edge diffraction effect is
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also the reason for conducting the simulations of infinite and finite absorbers. Array 0 (all

dots in Fig. 1) has microphones arranged in a double layer of 0.57 × 0.65 m2 and 11 × 12

equally spaced microphones in each layer. The separation between the layers is 2.9 cm, and

the distance between the surface of the sample and the closest layer is 1.3 cm. The other

arrays consist of subsets of Array 0, with smaller apertures and fewer microphones. Thus,

Array 0 contains Arrays 1–3, Array 1 contains the receivers in Arrays 2–3, and Array 2

contains Array 3 (a double-layer line array with six receivers). Gaussian noise, with a

signal-to-noise ratio (SNR) of 30 dB, was added to all the computed sound pressures in the

simulations to emulate noise in the measured scenarios.

Table 1: The Arrays 0–3 apertures, x and y spans and number of microphones.

Name Aperture cm2 x span cm y span cm M microphones

Array 0 57.00× 65.0 ±57.0/2 ±65.0/2 11× 12× 2 = 264

Array 1 11.00× 30.0 ±5.5 ±15.0 3× 6× 2 = 36

Array 2 5.50× 15.0 0.0 to 5.50 0.0 to 15.0 2× 3× 2 = 12

Array 3 0.00× 15.0 0.0 0.0 to 15.0 1× 3× 2 = 6

For the receivers at the sample’s surface, z = 0, both the sound pressure (p) and the

ẑ component of the particle velocity (uz) were computed. The reason for such simulations

is to establish benchmark results to compare with the inverse problem reconstructions of

these acoustic quantities (Secs. 3.1 and 3.2). The sound pressure and particle velocity

were calculated for a point at the center of the sample, (0, 0, 0) m, which was used to

obtain a point-wise surface impedance for spherical wave incidence (herein referred to as

Zs @ (0, 0, 0)). It should be noted that this differs from the plane-wave surface impedance

as defined in Eq. (2). Additionally, p and uz were computed at a small patch area of

10× 10 cm2 centered at the surface of the sample; the area contains 21× 21 equally spaced

points (see Fig. 2a). Using such a grid in the in situsurface impedance measurements is

customary [12, 17, 21], and it allows the computation of the Normalized Mean Square Error
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(NMSE) of the reconstructed sound field quantities as a function of frequency, which is given

by

NMSE (f) =
∥xre − xtrue∥22

∥xtrue∥22
, (3)

where ∥·∥2 stands for the the ℓ2-norm of a vector, xtrue is the vector containing the true

sound pressure or particle velocity computed by the forward model (Sec. 2.2 or Sec. 2.3) at

a given frequency f , and xre is the vector containing either the reconstructed sound pressure

or particle velocity.

2.1. Experiments (specification, hardware, and software)

The array measurements reported in this research were performed sequentially. A mea-

surement microphone was moved by a 3D scanner (see Fig. 2b) built by the Acoustical

Engineering research team from the Federal University of Santa Maria (UFSM, Brazil).

Two identical step motors (M1 and M2) operate together to move the base along the x

axis. The motor M3 moves the base along the y axis, and the motor M4 moves it along

the z axis. Thus, the rod holding the microphone can be moved with three degrees of free-

dom. The step motors are controlled by an Arduino, with movement and measurement fully

automated using a Python code built by the research team.

Once the system placed the microphone at the first coordinate of the array, there was

a pause of about 8–10 s before measuring the impulse response. This pause allows the

vibrations of the rod holding the microphone to cease. After that, a measurement was taken

and saved, the microphone was moved to the next coordinate in the array, and the pause

and measurement process was repeated until the intended array was fully measured.

The acoustical signals were acquired with a measurement microphone Behringer ECM 8000,

which was connected to a sound card, M-Audio Fast Track Pro (ASIO driver). A full-range

loudspeaker mounted on a spherical baffle with a diameter of 9 cm radiated the sound of

a logarithmically swept sine. The signal generation, acquisition, and deconvolution were

accomplished using the PyTTa package [30, 31], which is a Python implementation of the

ITA Toolbox [32] for Matlab®.
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Sample (FEM)

Baffle (BEM)

External field
(BEM)

BEM/FEM
coupling

BEM/FEM
coupling

BEM/FEM
coupling

BEM/FEM
coupling

Reconstruction grid

(a)

M1

M2

M3

M4

Microphone

rod

x 

y

z

(b)

Figure 2: (a) The schematics of the FEM/BEM multiphysics simulation used to model finite absorbers

and the reconstruction grid of receivers; and (b) schematics of the sound field 3D scanner used in the

measurements to position the microphone automatically.

The measurements were conducted inside a large reverberant room of 207 m3 of the

Acoustical Engineering Laboratory. The sample under measurement was placed at the

center of the scanning area, directly on the floor, and in the middle of the room. The sound

source was placed at a height of 1.1 m relative to the floor and, as reported in Sec. 2, the

array scans the near field of the absorbers. Since the room is acoustically insulated, it allows

for relatively silent measurements. In addition, the reflections in the room emulate a realistic

in situ measurement. As the room is relatively large, the distance between the sound source

and microphones/sample is significantly shorter than the distance traveled by the reflections

on the ceiling and side walls. After the impulse response was acquired, an Adrienne time-

window [33] was used to remove the undesired parasitic reflections of the room. The principle

is to keep the incident sound field and the scattered sound field by the sample while rejecting

the undesired room reflections. Figure 3a shows two measured normalized impulse responses

and the Adrienne time-window to illustrate the procedure. The measurements correspond

to one receiver near the center of the aperture area of Array 0 and the other receiver on

its edge. The spectra of the windowed impulse responses were used as input data for the

inverse problem estimation.
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Three absorbers were measured in this research: a Polyethylene Terephthalate (PET)

fibrous absorber with 60.0×60.0 cm2, a Melamine foam with 62.5×62.5 cm2, and a Helmholtz

resonant absorber with 65.0 × 65.0 cm2. The porous absorbers were placed directly on

the floor of the measurement room (considered rigid), not enclosed by a frame during the

measurements. The PET wool and the slotted panel were provided Wave Consultoria, a

room acoustics consulting company in Florianópolis/Brazil. The Melamine and the PET had

its flow resistivity (σ), the porosity (ϕ), the tortuosity (α∞), the viscous characteristic length

(Λ), and the thermal characteristic length (Λ
′
) measured or estimated. For the PET, the

macroscopic parameters were estimated using the inverse method described by Barbosa et

al. [34]. For the Melamine foam, the macroscopic parameter measurements were performed

at the Acoustical Engineering Laboratory of the Federal University of Santa Maria (UFSM),

with the values also reported by Pereira et al. [35]. The macroscopic parameter values of

both samples are given in Tab. (2).

Table 2: The thickness and the macroscopic parameters of the porous materials measured in the research.

Sample Thickness (d) σ (Ns/m−4) ϕ (–) α∞ (–) Λ (µm) Λ
′
(µm)

PET 5.00 cm 4683 0.90 1.00 362.1 362.2

Melamine 3.37 cm 12200 0.98 1.01 115.0 116.0

The Helmholtz resonant absorber consists of a closed cavity filled with the PET porous

absorber (d = 0.050 m). On the top of the cavity sits a slotted panel with grooves, as

shown in Fig. 3b. The slotted panel has a thickness t = 0.006 m, hence the total thickness

of the absorber is 0.056 m. The width of each slot is w = 0.008 m, the length, l, varies,

and the total perforated ratio of the panel is Θ = 0.126. The resonant absorber was fully

described and modeled by Barbosa et al. [34]. The authors kindly provided modeling data

of the normal incidence absorption coefficient computed with the Transfer Matrix Method

(TMM). The equations describing the surface impedance of the Helmholtz absorber were

repeated in the Appendix B for completeness. These data were used for comparison with

the in situ measurements. The presentation and discussion of the in situ sound absorption
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of such a sample is one of this article’s contributions since in situmeasurements of such

resonant absorbers are difficult to find in the literature.
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(a)

l

w

(b)

Figure 3: (a) The illustration of the windowing process used to separate the incident and scattered sound

field components from the room’s reflections; and (b) schematics of the Helmholtz resonant absorber with a

slit width, w, and length, l, indicated.

In all the experiments, the source coordinates were measured relative to the room’s floor

and left fixed. Therefore, the distance of the source relative to the absorber’s center changes

with the thickness, d, of the absorber and is rs = (0.0, 0.0, 1.1 − d). Since that was done

for all the carried measurements, the models described in Secs. 2.2 and 2.3 reproduce the

experimental set-up.

2.2. Infinite sample simulation

For the first model of the experiment, it is considered that a monopole sound source

at the coordinate rs = (xs, ys, zs) creates the sound field above an infinite absorber (Lx =

Ly = ∞). Herein, the time dependence is ejωt, with ω being the angular frequency and t

the independent time variable. This term is omitted throughout the article for the sake of

brevity.
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The derivation of the mathematical expression that governs the sound field created by a

monopole near an infinite non-locally reacting absorber was obtained by the Spatial Fourier

Transform technique, which, after manipulation, leads to the well-known Sommerfeld Inte-

gral [36]. Further manipulation of the Sommerfeld Integral allows for numerical evaluation

of the sound field at a receiver rm = (xm, ym, zm), for zm ≥ 0. This model has been addressed

in detail in Refs. [5, 37], and the resulting sound pressure is

p(rm) = s̃

[
e− jk0|r⃗1|

|r⃗1|
− e− jk0|r⃗2|

|r⃗2|
+

∫ ∞

0

2 ρp e
−ν0z |zs+zm|

ν0z ρp + ν1z ρ0 tanh(ν1z d)
k J0(kr) dk

]
. (4)

Equation (4) is valid for a layer of porous material with thickness d over a rigid back-

ing. The complex wave-number, kp, and the complex density, ρp, were computed with the

Johnson, Champoux, Allard (JCA) [28, 29] model; k0 and ρ0 are the magnitude of the wave-

number and the density in air, respectively; ν0z =
√

k2 − k2
0, and ν1z =

√
k2 − k2

p. The term

s̃, in kg/s2, accounts for the source strength. The distance from the original source to the re-

ceiver is |r⃗1| = |rs − rm|; the distance from the image source to the receiver is |r⃗2| =
∣∣r′

s − rm
∣∣,

with r
′
s = (xs, ys,−zs); r is the horizontal distance given by r =

√
(xs − xm)2 + (ys − ym)2;

J0 is the zero-order Bessel function of the first kind. The particle velocity is computed by

Euler’s relation, uz(rm) = − 1
jk0ρ0c0

∂p(rm)
∂z

.

The integrals in Eq. (4) and the resulting particle velocity still have poles, requiring a

special numerical integration routine. The strategy used in this research was to pass a fine

grid of possible singularity points to the scipy.integrate.quad (Python) routine [38]. If

the user supplies enough possible pole positions along the integration path, the numerical

calculation of the integral can be done with precision. For k > k0, the integrand decays,

and the integral can be truncated at the upper limit of 10 — a similar approach was used

by Brandão et al. [5]. It is worth noting that this numerical procedure provides an exact

solution to the physical problem at hand, allowing the computation of the sound field at the

coordinates of the desired receivers (arrays, center of sample, and the reconstruction grid on

the surface). However, numerical computation of this problem is expensive and impractical

for inverse problems. Alternative approaches exist, for instance, the one proposed by Eser
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et al. [39]. In contrast, this study proposes a novel inverse problem formulation (Sec. 3.2)

based upon discretizing a more suitable integral equation.

2.3. Finite sample simulation

In order to simulate the diffraction effects on a finite absorber, the Acoustics module of

Comsol Multiphysics 6.1 software [40] was used. The coupled model built used the Finite

Element Method (FEM) interface to account for the sound propagation inside a porous layer

of thickness d. As in the infinite sample simulation, the JCA [28, 29] model was used to

compute the complex wave-number kp and ρp of the porous sample. The sound field outside

of the sample and its diffraction were computed by the Boundary Element Method (BEM)

interface coupled to the FEM interface. The coupling between the two physics interfaces was

achieved by the continuity of sound pressure at the top and laterals of the porous sample.

The BEM interface also contains an infinite baffle at z = −d and a monopole sound source

at rs (see Fig. 2a). The highest simulated frequency was 4 kHz, with at least six elements

per wavelength and three elements across the sample thickness. The coordinates of the

desired receivers (arrays, center of sample, and the reconstruction grid on the surface) were

imported into Comsol as evaluation points. Upon completion of the model execution and the

computation of total sound pressures at all evaluation points, the data were subsequently

exported and subjected to further processing.

3. Theory of the inverse problems

For the formulation of the inverse problems, one must consider the sound field sampled at

M receiver points at rm, representing the arrays in Fig. 1 and Tab. (1). The measured data

at each microphone position can be projected into a basis of Q monopoles with unknown

complex amplitudes. Herein, the estimation of these complex amplitudes was achieved by

two inverse problems: (i) the Image Source Model (ISM), as proposed by Alkmim et al. [25];

and (ii) the Discrete Complex Image Source Model (DCISM), proposed in this work.
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3.1. The Image Source Model (ISM)

The inherited assumption in this model is used in many in situ impedance estima-

tion methods, with measurements performed either with the two-microphone method [26],

pressure-velocity probes [3, 4], or with a microphone array [25]. The model contains the

monopole source at rs, and an image source at r′s = (xs, ys,−zs). Thus, the number of

sources in the model is Q = 2. For a given receiver, the complex amplitude of the sound

pressure is given by

p(rm) = s̃s G(rs, rm) + s̃is G(r′s, rm) , (5)

where G(rs, rm) = e− jk0|rs−rm|

|rs−rm| is the free-space Green’s Function for the monopole source

and the receiver, and G(r′s, rm) is the corresponding Green’s Function for the image source

and the receiver. The terms s̃s and s̃is are the complex amplitudes of the source and image

source in kg/s2, respectively. If several receivers measure the sound field, a matrix equation

can be written as 
p1

p2
...

pM

 =


G(rs, r1) G(r′s, r1)

G(rs, r2) G(r′s, r2)
...

...

G(rs, rM) G(r′s, rM)


 s̃s
s̃is

 , (6)

or p = Gs in matrix form, with p = [p1, p2, · · · , pM]T ∈ CM×1 being the measured

vector of complex sound pressures at a given frequency, s ∈ C2×1 is the complex amplitude

vector (to be determined in an inverse problem — see Sec. 3.3), andG ∈ CM×2 is the kernel

matrix containing the Green’s Functions of the source and image-source to each receiver.

3.2. The Discrete Complex Image Source Method (DCISM)

Inherited by the ISM is the assumption that spherical waves reflect on a planar ab-

sorber specularly, which is not the case for low frequencies or short source-receiver-sample

separations [3, 25]. On the other hand, Di and Gilbert [27] provided an integral equation

with an exact solution for the problem by representing the plane-wave reflection coefficient

as the Laplace Transform of an image source distribution along a complex line. Thus, a
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well-behaved integral was obtained (instead of the hard-to-compute Sommerfeld Integral of

Sec. 2.2). With that formulation, the sound pressure is

p(rm) = s̃s
e− jk0|rs−rm|

|rs − rm|
+

∫ ∞

0

s̃(q) G(rq, rm) dq , (7)

with

G(rq, rm) =
e− j

√
r2+(zs+zm−jq)2√

r2 + (zs + zm − jq)2
, (8)

where r is the horizontal distance between the sound source and the mth receiver, as in

Sec. 2.2. The integral in Eq. (7) represents a distribution of image sources along a complex

line due to the jq term in the integrand’s Green’s Function. This term will render a decaying

exponential integrand as q → ∞. Therefore, the integral is well-behaved and suitable for

numerical computation if one knows s(q).

The task proposed in this article is to form an inverse problem suitable to compute a

discretized version of the complex amplitudes of the monopoles. The first step towards this

goal is modifying Eq. (7) to deliberately include an image source term associated with the

zero at the bottom limit of the integral. That helps to stabilize the inverse problem’s solution

and is a key aspect in the formulation. The evidence in Ref. [27] suggests that the forward

models for locally and non-locally reacting absorbers have the structure s(q) = s̃is δ(q)+s̃′(q).

Therefore, Eq. (7) can be rewritten as

p(rm) = s̃s G(rs, rm) + s̃is G(r′s, rm) +

∫ ∞

0

s̃′(q) G(rq, rm) dq · (9)

To form an inverse problem, the integral equation in Eq. (9) can be discretized by a

suitable integration rule. In this research, three discretization schemes are investigated:

the mid-point rule (MP), the Gauss-Legendre (GLE) quadrature, and the Gauss-Laguerre

(GLA) quadrature. For MP and GLE, a general quadrature rule can be written as∫ b

0

f(q) dq =
b

2

N∑
i=1

wi f(ξi) . (10)

Usually the weights, wi, and roots, ξ′i, are computed for the integration interval from −1

to +1 [41]. Since the integrand goes from 0 to b, ξi = b
2
ξ′i +

b
2
, with b being a suitable
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truncation value for the integral in Eq. (10), and N being the number of integration points

in the domain. With the MP rule, the ξ′i mid-points are evenly sampled from {−1 + 2/N}

to {+1 − 2/N}, and the weights are constant, wi = b/N . For the GLE quadrature, the wi

and ξ′i are computed from Legendre polynomials (see Abramowitz & Stegun, Ch. 25 [41]).

In this case, the weights are not constant and the sampling points are not equally spaced

along the integration domain.

The Gauss-Laguerre (GLA) quadrature is useful for integrals of the following kind:∫ ∞

0

f(q) e−q dq =
N∑
i=1

wi f(ξi) , (11)

which has the advantage of automatically dealing with the integration interval. However,

since the integrand must be of type f(q) e−q, the integrand in Eq. (9) must be multiplied

by e+q. The increasing exponential is supposed to be compensated by the decreasing term

caused by jq in the integrand’s Green’s Function, as long as the order N is kept in check.

Now, one can substitute the integral in Eq. (9) by the sum in Eq. (10), which yields

p(rm) = s̃s G(rs, rm) + s̃is G(r′s, rm) +
b

2

N∑
i=1

wi s̃(ξi) G (rq(ξi), rm) , (12)

with rq(ξi) being the sampled coordinate of the complex image source. If all M receivers

are taken into account, the following system of equations follows


p1

p2
...

pM

 =


G(rs, r1) G(r′s, r1)

b
2
w1G (rq(ξ1), r1) · · · b

2
wNG (rq(ξN), r1)

G(rs, r2) G(r′s, r2)
b
2
w1G (rq(ξ1), r2) · · · b

2
wN G (rq(ξN), r2)

...
...

...
. . .

...

G(rs, rM) G(r′s, rM) b
2
w1G (rq(ξ1), rM) · · · b

2
wN G (rq(ξN), rM)





s̃s

s̃is

s̃ξ1

s̃ξ2
...

s̃ξN


,

(13)

where s ∈ C(2+N)×1 is the vector to be determined by the inverse problem, containing the

complex amplitude of the sound source, the image source, and the discrete distribution of the

complex image sources (thus Q = 2 +N). G is the kernel matrix ∈ CM×(2+N), containing
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the Green’s Functions of the source, the image source, and the complex image sources. The

same rationale can be applied to GLA discretization by substituting the integral in Eq. (9)

by the sum in Eq. (11). Note that in this case, b/2 = 1 in Eqs. (12) and (13).

3.3. Inverse problem estimation

The system of equations p = Gs can be either overdetermined or underdetermined.

In the case of the ISM, Q = 2 and usually M ≥ 2 (for array measurements). For the

DCISM, Q = N + 2 and the number of receivers M (number of equations) can be either

larger or lower than Q (number of unknowns). However, the condition M > Q does not

guarantee that p = Gs is overdetermined, and this can be the case even if Q = 2, as

pointed in Ref. [25]. The reasons for the system of equations to become ill-posed are noise

in the measurement and errors in the model representation. Note also that the matrix G

is a function of the array geometry and the Green’s Function structure. Thus, symmetrical

arrays (e.g., Arrays 0 and 1) can create redundancies in matrix G. At first sight, this can

be regarded as a negative aspect, but as the measured data is somewhat corrupted by noise,

the redundancies can carry useful information, leading to less over-fitting of the data.

The least-squares solution to the system of equations is s = (GHG)−1GHp, with GH

being the Hermitian of the matrix G. Tests were carried out with such a solution when

M > Q and the ISM and the DCISM results usually lead to solutions, s, with a high

ℓ2 norm. Eventually, the least-squares solution can lead to pressure and particle velocity

reconstructions with a low NMSE, but they seem non-physical. The results are not reported

here for the sake of brevity. Instead, a Tikhonov regularized solution is used, given by

s̃ = argmin
s

(
∥Gs− p̃∥22 + λ2 ∥s∥22

)
, (14)

where s̃ is the estimative of the complex amplitudes of the Q monopoles and λ > 0 is the

regularization parameter, which is estimated herein by the L-curve criterion [42]. Other

automatic selection strategies for λ exist, such as the generalized cross-validation used in

Ref. [17]. Both the solution, s̃ and the regularization parameter, λ, are found with the aid
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of the Singular Value Decomposition (SVD) of matrix G, which for M > Q is given by

G = UΣVH , (15)

whereU andV are the matrices with the left and the right singular vectors, respectively; and

Σ = diag(σ1, σ2, · · · , σQ) is the diagonal matrix containing the singular values in decreasing

magnitude, so that σ1 ≥ σ2 ≥ · · · ≥ σQ. Therefore, the regularized solution is

s̃ = V
(
Σ2 + λ2I

)−1
ΣUHp, (16)

so that (Σ2 + λ2I)
−1

Σ is a diagonal matrix with elements σi

σ2
i +λ2 . Thus, the low-magnitude

singular values are filtered out by the regularization parameter. The L-curve parameter

tries to find the the value of λ that leads to the maximum of the curvature of the function

log(∥s̃∥2)× log(∥Gs̃− p∥2) (solution ℓ2 norm vs. residual ℓ2 norm). Instead of doing this by

trial and error, the SVD of matrix G and the measured data p are used for the computation

of a suitable value of λ (see Hansen, Chs. 4–5 [42]).

3.4. Sound field reconstruction

Once s̃ is estimated, one can reconstruct the sound field elsewhere in the vicinity of the

absorbing sample. The reconstructed sound pressure is given by [43]

p̃re = Gre s̃ , (17)

where p̃re ∈ CK is the reconstructed sound pressure vector estimated at a set of K positions

and Gre ∈ CK×L is the reconstruction matrix containing the Green’s Functions evaluated

at the reconstruction points. The particle velocity at z direction can be calculated from

Euler’s equation of motion as

ũz-re =
−1

j k0 ρ0 c0

∂Gre

∂z
s̃ , (18)

where ∂Gre

∂z
∈ CK×L contains the partial derivative of the reconstruction matrix with respect

to z. For in situ measurements, it is interesting to reconstruct the sound pressure and the

z component of the particle velocity at a grid of points at the surface of the sample. Thus,
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the reconstructed surface impedance can be estimated as the spatial average of several

reconstructed surface impedances. Typically, the grid is small enough to ensure that the

spatial variation of Zs in the frequency range of interest is not too significant. The grid used

in this research, defined in Sec. 2, is the same one used in Refs. [12, 21].

4. Results and discussion

This section presents the results and analysis of the in situ experiments and the simu-

lations. The simulations were conducted in the frequency domain, utilizing discrete central

frequencies corresponding to the 1/6th octave bands. The experimental results are shown

with a 5 Hz frequency resolution and the frequency range is limited from 100 Hz to 4 kHz.

The ISM (Sec. 3.1) and the DCISM (Sec. 3.2) are compared for Arrays 0–3 (see Tab. (1) and

Fig. 1). For the DCISM, the discretization schemes are also investigated (Gauss-Legendre

- GLE, Gauss-Laguerre - GLA, and Mid-Point - MP samplings); the hyper-parameters are

b = 30 (upper limit of integration) and N = 25 (number of Gauss points) unless stated

otherwise. For the simulations, the NMSE in Eq. (3) is used to assess the errors in the

reconstructed pressure and the ẑ component of particle velocity. The absorption coefficient

is also evaluated for the in situ experiments and compared to the absorption coefficients ob-

tained from plane-wave incidence (theoretical, Eqs. (1) and (2)) and spherical wave incidence

(simulations with Zs obtained at the sample’s surface center).

4.1. Infinite sample simulation

The simulation of the experiment of the infinite and non-locally reacting sample was

described in Sec. 2.2. Figure 4 presents the NMSE vs. frequency obtained for the PET

porous absorber with measurement performed with Array 0. The discretization schemes of

the DCISM are compared to the ISM. For the sound pressure (Fig. 4a), the NMSE of all

DCISM discretization schemes is below 0.01 for all frequencies. At very low frequencies, the

NMSE of the DCISM with MP sampling can be slightly higher, and there are no significant

differences between the DCISM with GLE and the GLA sampling schemes. The NMSE

obtained from the ISM method is significantly higher than for all DCISM cases, reaching a
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maximum of ≈ 0.42 and being higher than 0.1 above 900 Hz. These high NMSE values are

attributed to the simplicity of the underlying assumption of the ISM, which considers only

the source and an image source.
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Figure 4: The NMSE of the reconstructions for the DCISM (GLE, GLA, and MP discretizations) and the

ISM for the simulation of the measurement above an infinite PET porous absorber: (a) NMSE for the sound

pressure reconstruction; and (b) NMSE for the ẑ component of the particle velocity reconstruction.

The NMSE for particle velocity, shown in Fig. 4b, is generally higher than for sound

pressure. For the ISM, it is above 0.3 below 1 kHz, leading to an inaccurate particle velocity

prediction. It is significantly lower for all the DCISM sampling schemes, below 0.01 between

225 Hz and 2.5 kHz. However, the NMSE of particle velocity increases as the frequency

decreases, which happens because the actual value of the particle velocity at the surface

tends to be small for porous absorbers in the low-frequency range as a porous absorber

tends to be more reflective. Additionally, deviations arise when reconstructing the particle

velocity from pressure data [44].

Figure 5a displays the predicted absorption coefficient of the PET sample for several

cases. The plane-wave absorption coefficient is underestimated relative to the one obtained

from the surface impedance, Zs measured at (0, 0, 0). The reason for this is the non-local

reaction behavior of the PET sample, with a low flow resistivity of σ = 4683 Ns/m4. The ab-

sorption coefficient obtained with the GLE, GLA, and MP discretization schemes of DCISM

matches the one obtained from Zs measured at (0, 0, 0) above 225 Hz. The agreement in-
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dicates that the DCISM can predict the absorption caused by the spherical wave sound

field.

For completeness, the absorption coefficient of the ISM prediction is computed in two

ways for this case. First by reconstruction of the sound field (Recon.), as with the DCISM,

and also from the reflection coefficient, as done in Ref. [25] with α = 1 − |s̃is/s̃s|2 (Ref.

Coeff.). Note in Fig. 5a that the absorption coefficient predicted with the ISM by both

methods is very similar but does not match any reference curve, being underestimated at

lower frequencies. Such errors tend to decrease if the source-sample distance increases, as

discussed in Ref. [25]. It is also noteworthy that if the ISM curves were presented without

a reference, they could be considered plausible absorption coefficients for a porous sample.

Nonetheless, they are not accurate, which is attributed to the simplicity of the underlying

assumption built into the model.

Figure 5b shows the magnitude of the source and image sources for the DCISM (GLE,

GLA, and MP) at 500 Hz (top) and 1 kHz (bottom). The estimations made by the GLE

and GLA agree relatively well. Note also that for such discretization schemes, there are

at least six active sources (|s̃| > 10−7 — source, image source, and 4 complex sources).

That indicates the importance of including a distribution of monopoles in the sound field

model and further highlights the simplicity of the ISM. For the MP discretization scheme,

the estimated source magnitudes decay more abruptly with source order, indicating less

active sources. A word of caution about the GLA discretization is necessary. One should

note that the upper limit of integration is chosen automatically and that the integrand is

pre-multiplied by e+q. Thus, as the number of integration points increases, the upper limit

of integration also increases and, consequently, the maximum value of e+q. Suppose the

integration order is set too high. In that case, the integrand’s decaying term can no longer

compensate for the increase in e+q, and the integrand diverges, leading to a non-convergent

inverse problem. For such reasons, only the GLE discretization scheme will be used for the

DCISM from this point onward.

Figure 6 presents the NMSE vs. frequency obtained for the infinite Melamine porous

absorber with measurements performed with Arrays 0–3 and the DCISM. For the sound
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Figure 5: Simulation of the measurement of an infinite PET porous absorber: (a) sound absorption co-

efficient obtained from Array 0 with the DCISM (GLE, GLA, and MP discretizations) and with the ISM

(reconstruction and reflection coefficient) — for reference, the plane-wave absorption coefficient and the one

from spherical wave incidence; and (b) magnitude, |s̃|, of the sources for the DCISM (GLE, GLA, and MP

discretizations) for 500 Hz (top) and 1 kHz (bottom).

pressure (Fig. 6a), the NMSE for Arrays 0, 1, and 3 are below 0.001 for almost all frequencies,

increasing slightly above 1.5 kHz. For the particle velocity (Fig. 6b), the NMSE shows higher

values at lower frequencies, also attributed to the low value of the actual particle velocity.

For both quantities, the lower NMSE is generally found for Arrays 0 and 1, which correspond

to the larger aperture areas and number of sensors, indicating that the more data gathered,

the better (at least for the infinite sample). For Array 2, there is a sudden increase in

the NMSE above 2 kHz, a feature also found for the simulation of the finite sample (see

Sec. 4.2) and in the experimental absorption coefficient data (see Sec. 4.3). The reason for

that remains unknown, but the hypothesis is that it has to do with the array geometry,

which impacts the conditioning of the matrix G. That indicates the need for more research

on the influence of the array geometry on measurement accuracy.

Figure 7 displays the absorption coefficient of the Melamine foam, obtained with the

DCISM for Arrays 0–3. The estimated data is compared to the absorption coefficient for
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Figure 6: The NMSE of the reconstructions for Arrays 0–3 for the DCISM (GLE discretization) for the

simulation of the measurement above an infinite Melamine porous absorber: (a) NMSE for the sound

pressure reconstruction; and (b) NMSE for the ẑ component of the particle velocity reconstruction.

plane-wave incidence and spherical wave incidence measured at the sample’s center. For the

Melamine, with a higher flow resistivity than the PET, the difference between plane and

spherical wave incidence is less significant for the investigated source distance (≈ 1.10 m).

For Array 0, the DCISM estimation agrees well with the spherical wave incidence above

225 Hz. For the other arrays, the agreement is better above ≈ 500 Hz, with poorer agreement

at lower frequencies. Furthermore, the smaller the number of sensors in the array, the more

the sound absorption estimation seems to be corrupted by noise. Note also the disagreement

with the reference data for Array 2 above 2 kHz, which is linked to the sudden increase in

the NMSE for such array (see Fig. 6).

4.2. Finite sample simulation

The simulation of the experiment of the finite and non-locally reacting sample was de-

scribed in Sec. 2.3. Figure 8 presents the NMSE vs. frequency obtained for the finite

Melamine porous absorber for measurements performed with Arrays 0–3, with the DCISM

(Figs. 8a and 8b), and with the ISM (Figs. 8c and 8d). Comparing the DCISM and the

ISM, it is noteworthy that the NMSE of both pressure and particle velocity is lower for the

DCISM in all array configurations, even more above 1 kHz. Therefore, the DCISM is more

accurate in reconstructing the sound field on the surface of this finite absorber. With the
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Figure 7: The sound absorption coefficient for the simulation of the measurement of an infinite Melamine

porous absorber obtained from the DCISM (GLE discretization) with Arrays 0–3; for reference, the plane-

wave absorption coefficient and the one from spherical wave incidence.

simulation of the experiment as it is, Array 0 is the one with the worst performance, with

errors below 0.1, only above 630 Hz for the DCISM, which is attributed to the size of Array 0

(0.57× 0.65 m2), relative to the size of the sample (0.625× 0.625 m2). Thus, Array 0 has a

significant part of its aperture near the edges of the sample and captures the edge diffraction

effects that the underlying assumptions in the inverse problems cannot handle. Arrays 1–3

have lower NMSE than Array 0 (see Tab. (1) for their size), with Array 3 performing slightly

worse due to the limited number of microphones and Array 2 exhibiting the sudden increase

in the NMSE near 2 kHz (a feature also observed in the simulations of the experiment near

the infinite absorbers — see Fig. 6).

Figure 9 shows the absorption coefficient of the finite Melamine foam, obtained with the

DCISM and ISM for Arrays 0–3. The estimated data is compared to the absorption coeffi-

cient for plane-wave incidence (theoretical infinite sample) and for spherical wave incidence

measured at the finite sample’s center. Here, the sample size effect is evident through the

oscillations of the green curve (Zs @ (0, 0, 0)). This effect was described in Refs. [10, 11]. It
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Figure 8: NMSE of the reconstructions for Arrays 0–3 for the simulation of the measurement above a finite

Melamine porous absorber: (a) and (b) NMSE for the sound pressure and the ẑ component of the particle

velocity reconstructions for the DCISM (GLE discretization), respectively; and (c) and (d) NMSE for the

sound pressure and the ẑ component of the particle velocity reconstructions for the ISM, respectively.

should be observed that for DCISM (as shown in Fig. 9a), the absorption coefficient esti-

mated using Arrays 1–3 aligns with the value derived from Zs at the center of the sample

for frequencies above 500 Hz — this includes the oscillations attributable to the effect of

sample size. For Array 0, the agreement is poorer, especially below 500 Hz. Note also the

disagreement with the reference data for Array 2 above 2 kHz, which is linked to the sudden

increase in the NMSE for such an array. The same discussion applies to the ISM, but note

that the disagreement with the reference curves is more exaggerated, caused by the under-

lying model’s relative simplicity. Similar trends were observed for the PET sample but are

not reported here for brevity.
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Figure 9: Sound absorption coefficient for the simulation of the measurement of an infinite Melamine porous

absorber obtained with Arrays 0–3 — for reference, the plane-wave absorption coefficient and the one from

spherical wave incidence; (a) processed with the DCISM (GLE discretization); and (b) processed with the

ISM.

The fact that the DCISM reconstructions can match the data from Zs at the sample’s

center is worth noting. Since the actual value of Zs is different for the infinite and the

finite samples, one can conclude that the method can reconstruct the particular sound field

quantity with adequate precision. Note also that the surface impedance can vary in space for

a finite and non-locally reacting sample, which is not the case for a locally reacting absorber,

as investigated by Brandão et al. [12, 10].

Here, a brief discussion and anticipation of the experimental results are necessary. The

simulated sample size effects above porous absorbers are somewhat exaggerated relative to

the experimental results in Sec. 4.3. At this point in the research, it is not fully understood

to which extent the BEM/FEM multiphysics simulation deviates from the experimental con-

ditions. For instance, in the simulations, the sound source is omnidirectional, whereas some

directivity exists in a realistic loudspeaker sound source. Additionally, in the simulations,

the sample has sharp edges and is considered isotropic, which might not correspond to real-

ity. Time-windowing also plays a role in the post-processing of the experimental data, which
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requires better understanding. In the literature, it has also been reported that the lateral

boundary conditions of the sample play a role in the edge diffraction effect observed in the

in situ measurement of the sound absorption coefficient [14].

Furthermore, the effects of adding Gaussian noise to the simulations also seem exag-

gerated relative to the experiments (which shows less variation across the arrays). That is

a positive aspect since experiments are expected to be less noise-sensitive than what was

simulated. The fact is that more research is necessary both on the simulation and on the

experimental fronts, particularly for finite absorbers, which are tasks to pursue in the near

future.

4.3. Measurements

This section presents the results of the experiments described in Sec. 2.1. Figure 10 dis-

plays the predicted absorption coefficient for the PET and the Melamine porous absorber.

The theoretical plane-wave absorption coefficient (black curve) and the one estimated from

the surface impedance, Zs, measured at (0, 0, 0) at the infinite sample (green curve - spheri-

cal wave incidence) are plotted for comparison. Recall that for the PET, the flow resistivity

is σ = 4683 Ns/m4 and for the Melamine σ = 12200 Ns/m4. Therefore, the differences

between the plane-wave and spherical wave absorption coefficients are more significant for

the PET sample. The experimental curves were obtained from data collected by Array 0 and

processed with the DCISM (GLE discretization, blue curve) and the ISM (brown curve).

The absorption coefficient obtained with the DCISM matches the one from Zs measured at

(0, 0, 0) above 300 Hz, which is more overestimated relative to the plane-wave absorption

coefficient for the PET sample, with a lower flow resistivity (Fig. 10a). Thus, the DCISM

can predict the absorption caused by the spherical wave incidence with accuracy. The agree-

ment for the Melamine (Fig. 10b) is also satisfactory, but the difference between plane and

spherical wave incidence is less critical. For the PET, the absorption coefficient estimated

with the ISM has a similar trend to the one in Fig. 5a, confirming that its simplicity leads

to an absorption coefficient that is plausible but that does not match any theoretical value.

Such an effect seems less critical for the Melamine, but it still exists.
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Figure 10: Sound absorption coefficient for the measurement of two finite porous absorbers obtained from

Array 0 with the DCISM (GLE discretization and the ISM) — for reference, the plane-wave absorption

coefficient and the one from spherical wave incidence on the infinite sample; (a) PET porous absorber; and

(b) Melamine porous absorber.

The sample size effect is less prominent for both porous absorbers than in the simulations

shown in Sec. 4.2. Note that the experimental curves obtained from the DCISM tend towards

the infinite sample simulation in both Figs. 10a and 10b (for spherical wave incidence). As

discussed before, more research is necessary on this topic, but the fact that the DCISM can

render a reliable absorption coefficient on such experimental data is regarded as a positive

aspect of the proposed method.

Figure 11 shows the predicted absorption coefficient for the PET and the Melamine

porous absorbers computed with the DCISM (GLE discretization) for the data collected

with Arrays 0–3. Notably, the variation across the arrays from 225 Hz to 1 kHz is relatively

small compared to the simulations of Secs. 4.1 and 4.2. Again, one can observe the sudden

variation in the absorption coefficient obtained from Array 2 near 2 kHz for both samples,

consistent with the simulated data (see Figs. 7 and 9a and attributed to the impact of the

geometry of the array on the conditioning of matrix G.
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It is also interesting to note that reliable estimations of the sound absorption coefficient

are attainable with Array 3. This is attributed to exaggerating the effects of added noise

in the simulations, which can be seen as a worst-case scenario. Thus, smaller datasets can

render reliable results, a feature of practical importance. For example, when performing an

extensive scan for an array such as Array 0, a smaller dataset can be scanned first and used

to check if the measurements are accurate enough. Of course, this study did not aim to

exhaust all possibilities of failure, and collecting more data is regarded as more secure.
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Figure 11: Sound absorption coefficient for the measurement of two finite porous absorbers obtained from

Arrays 0–3 with the DCISM (GLE discretization); (a) PET porous absorber; and (b) Melamine porous

absorber.

Figure 12 displays the experimental absorption coefficient obtained from the DCISM for

data collected by Arrays 0–3 for the Helmholtz absorber. The experimental data is compared

to the TMM simulation in Ref. [34]. For this absorber, it was necessary to increase the

number of Gauss points, N , in the GLE discretization to N = 70 while keeping the upper

limit of integration the same as for the porous sample (b = 20). Thus, the sampling of the

integration interval is discretized at a higher resolution. The increase of N was necessary

for the convergence of the results, and the value N = 70 was chosen after trial and error. A

more formal analysis of the DCISM convergence is outside the scope of this research, but it
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can be pursued in the future. It is easy to note that the DCISM for Arrays 1, 2, and 3 render

similar absorption coefficients. One can note the main absorption peak between 500–800 Hz,

a dip in the absorption around 2 kHz, and another peak near 4 kHz. Overall, the measured

absorption coefficient (Arrays 1–3) and the bandwidth of the main peak are overestimated

relative to the TMM, which may be too simplistic for such a complex absorber.

The absorption coefficient estimated with the DCISM for Array 0 does not agree with

estimates made with the data of Arrays 1–3, being underestimated even relative to the

TMM data up to the main peak of absorption. While the PET and the Melamine porous

absorbers are placed directly on the floor of the measurement space, the Helmholtz absorber

is made of a hard-wooden frame (see Fig. 3a). In contrast, there is experimental evidence

that the in situ measurement of porous materials with a hard frame around it render more

edge diffraction effects than non-framed porous absorbers [14]. Thus, the edge diffraction

effect may play a more important role for such a Helmholtz absorber, especially for a large

aperture array, such as Array 0. The impact of edge diffraction on the in situ measurement

tends to be sample-dependent, which justifies the need for more research on the topic.

125 250 500 1k 2k 4k

Frequency [Hz]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 [-
]

TMM
DCISM (Array 0)
DCISM (Array 1)
DCISM (Array 2)
DCISM (Array 3)

Figure 12: Sound absorption coefficient for the measurement of a finite slotted panel absorber obtained from

Array 0–3 with the DCISM (GLE discretization); for reference, TMM simulation from Barbosa et al. [34].
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5. Conclusions

The research within this article proposes an inverse problem to measure the sound ab-

sorption coefficient of acoustical materials via in situ measurements. The underlying math-

ematical model is based on discretizing an integral equation, mapping the measured sound

pressure to a monopole source, an image source, and distributed monopoles along a line

in the complex plane (DCISM). The proposed method underwent comparison with an in-

verse problem approach utilizing the source/image-source method (ISM). Incorporating ad-

ditional monopoles into the sound field was advantageous, as it activated more than just

the source/image source within the DCISM framework. That led the proposed method to a

significantly lower reconstruction error than the ISM. The research also demonstrates that

the Gauss-Legendre quadrature discretization scheme favors the DCISM. The estimated ab-

sorption coefficient by the DCISM agrees with the one obtained by measuring the surface

impedance at the sample’s center for infinite and finite porous materials. The difference

between spherical and plane-wave incidence absorption coefficients is more significant for

low-flow resistivity materials. The same is expected for smaller source-to-sample distances,

which will be explored in future research. The article also demonstrates that practical mea-

surements are possible even with cost-effective instrumentation and arrays containing just

a few microphones. However, the measurement error increases at lower frequencies when

small datasets are collected. Measurement errors may increase in the high-frequency range,

depending on the geometry of a particular array. The experiments showed that the proposed

technique is robust and that the effect of sample size is less prominent when compared to the

simulations. More research on that aspect is necessary, as this feature is sample-dependent.

For instance, consistent estimations of the absorption coefficient were possible for the mea-

surement of the porous absorber with arrays of relatively large apertures, but for the resonant

panel only if the array aperture was smaller than the sample. Thus, optimizing the array

for constraints such as measurement apparatus compactness, the influence of noise, and the

sample size effect on the reconstruction error are interesting topics for future research.
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Appendix A. The Johnson-Champoux-Allard model

The Johnson-Champoux-Allard (JCA) model states that the characteristic density and

the bulk modulus are given, respectively, by

ρp = ρ0 α∞

(
1 +

σϕ

jωρ0 α∞

√
1 +

4 jα2
∞ηρ0ω

σ2
rΛ

2ϕ2

)
(A.1)

and

κ =
γP0

γ − (γ − 1)

(
1 + 8η

jωPrρ0Λ
′2

√
1 + jωρ0PrΛ

′2

16η

)−1 , (A.2)

where α∞, σ, ϕ, Λ, and Λ
′
are given in Tab. (2). The specific heat ratio is γ = 1.41,

P0 = 101325 Pa is the atmospheric pressure, Pr = 0.71 is the Prandtl number, q0 = η/σ

and q′0 = q0 α∞ are the viscous and thermal permeability, respectively. The air’s dynamic

viscosity is η = 1.81 × 10−5 Pa·s. Then, the complex wave-number is computed by kp =

ω
√

ρp/κ, and the characteristic impedance of the porous layer is Zp =
√
κρp.

Appendix B. Helmholtz absorber model

The surface impedance of the Helmholtz absorber model is computed using the Transfer

Matrix Method (TMM). The absorber comprises two layers: the slotted panel layer lies over

a layer of porous material applied directly over rigid backing. Therefore, the total acoustic

surface impedance of the absorber is given by

Zs = ZH − jZp
kp
kpz

cot (kpz d) , (B.1)

with ZH representing the acoustic surface impedance of the panel and the second term on

the right-hand side of Eq. (B.1) representing the surface impedance of the porous material

layer. The term ZH is computed (as in Barbosa et al. [34]) by

ZH =
jωρ0t

Θ

1− tanh
(
w
√

ρ0ω
4η

√
j
)

w
√

ρ0ω
4η

√
j


−1

+
4
√
2ρ0ηω

Θ
−Ψ(Θ) , (B.2)
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where t = 6 mm is the panel thickness, and w = 8 mm is the panel width. Moreover,

Θ = (S/Sp) = 0.126 is the perforated ratio, with S being the sum of the cross-sectional area

of all slits, and Sp = 0.6×0.6 m2 being the total active area of the panel (borders excluded).

In this research

Ψ(Θ) = j 0.936ω ρ0
wF (Θ)

2

ln(sin(πΘ))

Θ
(B.3)

and F (Θ) = 1− 1.25Θ.
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