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The hypersonic flow stability over a two-dimensional compression corner is studied using resolvent
analysis, linear stability theory (LST) and parabolised stability equation (PSE) analysis. We find
that the interaction between upstream convective-type disturbances and the laminar separation bub-
ble can be divided into two regimes, whose behaviour can be well explained by comparative research.
First, two-dimensional (2-D) high-frequency Mack (second, third, ...) modes neutrally oscillate with
the presence of alternating stable and unstable regions inside the separation bubble. These discon-
tinuous unstable regions are generated by repeated synchronisations between discrete modes with
evolving branches. Through a modal sychronisation analysis, we report that the second modes
upstream and downstream of the separation bubble can be essentially different from each other,
since they originate from different branches of discrete modes due to flow separation. Favourable
agreement between LST, PSE and resolvent analysis is reached. Second, the 2-D low-frequency
‘shear-layer mode’ is found to be stable in the separation bubble by LST, whereas multiple unstable
three-dimensional (3-D) eigenmodes are identified by LST. In general, three significant modes are
dominant successively near the separation point, in the separation bubble and near the reattach-
ment point. These modes are found to be sensitive to the streamline curvature effect. The locally
dominant modes agree with the resolvent response in terms of the disturbance shape and the growth
rate of energy. The preferential spanwise wavenumber in the resolvent analysis, i.e., the wavenumber
of the most amplified oblique wave, falls well in the unstable wavenumber range of LST. Thus, a
combination of global and local analyses demonstrates that the separation bubble tends to selec-
tively amplify low-frequency 3-D disturbances and ‘freeze’ high-frequency Mack-mode disturbances
in an explainable manner. These findings facilitate the understanding of the early evolution of low-
and high-frequency instabilities in hypersonic separated flows.

I. INTRODUCTION

The shock-wave/boundary-layer interaction (SWBLI) is of both fundamental and engineering importance, which
can induce boundary-layer separation and significant unsteadiness. Over simple two-dimensional (2-D) configurations
such as a compression corner, the laminar separation bubble can support an absolute or convective instability de-
pending on the flow and geometric conditions, where the separation bubble is called an oscillator or a noise amplifier,
respectively. Experimental and numerical efforts have demonstrated that these instabilities can trigger the laminar-
turbulent transition and severe aerodynamic heating [1–4]. Therefore, it is of interest to investigate how instability
waves interact with the separation bubble.

With regard to the convective mechanism, the recently popular resolvent analysis provides a framework to evaluate
responses (outputs) of absolutely stable dynamical systems to time-periodic external forcings (inputs). In general,
by solving an optimisation problem transformed from the linearised Navier–Stokes equation (LNSE), the resolvent
analysis seeks the small-amplitude harmonic response which undergoes the strongest energy growth. The identified
harmonic response is also called the optimal disturbance. For configurations such as the 2-D compression ramp
[5, 6] and the double wedge [2], a stationary streak may be the optimal disturbance and closely related to the
reattachment streak observed under certain experimental conditions. However, recent experiments on hypersonic
SWBLI flows [7, 8] reported the significance of travelling waves by measurements such as surface pressure sensors
and high-speed schlieren. Coexistence of high-frequency instability waves with hundreds of kilohertz as well as low-
frequency disturbances with tens of kilohertz was detected. The two dominant types of travelling instability waves were
believed to be associated with Mack modes and the ‘shear-layer’ mode, respectively. Combinations of computational
and experimental studies on hypersonic flows over a cone-cylinder-flare configuration also reported that there were
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at least two fundamental convective-type instability mechanisms in the recirculation bubble [4, 9]. The detected
dominant signals of two different natures were found to have resonant-type structures similar to the higher-order
Mack modes and the shear-induced first mode, respectively. It is inferred that the travelling wave may overtake the
stationary streak in experimental conditions for the sake of a larger upstream amplitude considering the incoming
disturbance spectrum, surface roughness and receptivity. It merits an in-depth exploration on how these two different
types of instabilities are affected by a sudden presence of flow separation and selected by the separation bubble in the
SWBLI problem.

In terms of the nature of Mack modes, it is more extensively investigated and better understood in a hypersonic
boundary layer without flow separation. The classical Tollmien–Schlichting mode appear in low-speed boundary layers,
and extend to be the first mode in supersonic boundary layers. As Mach number is further increased, a generalised
inflection point appears for a supersonic flat-plate boundary layer, which establishes the sufficient condition for the
occurrence of inviscid instabilities [10]. As a consequence, Mack found by local analysis that multiple unstable modes
appear in hypersonic boundary layers, among which the 2-D second mode mostly has the largest growth rate [11].
The second mode was subsequently understood as trapped acoustic waves between the wall and the relative sonic
line [12]. Kuehl [13] and the authors [14, 15] provided further insights into how the second mode is amplified from
the energy analysis and the resonant phase analysis, respectively. In hypersonic boundary layers, Mack modes with
different frequencies can be successively amplified in different streamwise locations due to the feature of the unstable
region. However, the observation that Mack modes with a broad range of frequency nearly encounter a neutral
state in a separation bubble remains poorly understood. Although the second mode was reported to be nearly
neutral in the separation bubble by the stability analysis of Balakumar et al. [16], the stability diagram and modal
synchronisation were not detailed, and the reason for the neutral state remained unclear. With regard to the ‘shear-
layer mode’, a comprehensive eigenmodal analysis and a comparison with other theoretical tools are currently lacked
and needed. Most existing studies ascribed the growth of the ‘shear-layer mode’ to the Kelvin–Helmholtz (K–H)
instability mechanism, since energy growth is mainly concentrated along the separated shear layer. However, it must
be careful before making a judgment on the relevance between the ‘shear-layer mode’ and the conventional K–H mode.
This is partly because the compressibility in a hypersonic separated flow can significantly suppress the classical 2-D
K–H mode which is active in incompressible free shear layers [17]. In high-speed flows, the shear-induced unstable
modes may tend to appear in the form of three-dimensional (3-D) travelling waves [17]. Caillaud et al. [9] utilised an
energy budget analysis to show that the ‘shear-layer mode’ is pronounced along the shear layer and behaves similarly
to the first mode. An in-depth comparative research is required to clarify the growth mechanism of the ‘shear-layer
mode’.

Currently, it is not yet well understood how the hypersonic compression ramp flow selects the upstream low-
frequency or high-frequency disturbances from a stability analysis perspective. There are two questions which merit
considerations: 1) what is the eigenmodal interpretation of the neutral Mack modes in the separation bubble? 2)
what is the growth mechanism of the observed ‘shear-layer mode’? To address the concerns above, this paper
uses the resolvent analysis to seek the most amplified response of the compression ramp flow to external forcings.
Furthermore, linear stability theory (LST) and parabolised stability equation (PSE) are employed to clarify the
eigenmodal mechanism. A combination of global and local analyses would facilitate a more solid investigation on the
proposed fundamental problem.

II. PROBLEM DESCRIPTIONS

A compression corner configuration is considered in this work, which has a flat plate of length L∗ = 100 mm with
a sharp leading edge and an adjacent ramp of length 80 mm. The asterisk denotes dimensional quantities. The ramp
angle is set to 12◦, where no global instability exists in the laminar base flow under the investigated conditions [5].
The freestream conditions of the hypersonic Aachen Shock Tunnel TH2 [1] are considered and given as follows: Mach
number M∞ = 7.7, static temperature T ∗

∞ = 125 K and unit Reynolds number Re∗∞ = 4.2 × 106 m−1. It should
be noted that this work does not intend to reproduce the results and interpret the flow mechanisms under the same
experimental configuration. The instability and transition of the experimental flow with a ramp angle of 15◦, proved
to support the onset of absolute instabilities, have been explained by some of our previous studies [6, 18]. In the
present work, instead, another ramp angle is selected to avoid the presence of absolute instabilities. The purpose is
to examine the interaction behavior between the separation bubble and upstream convective-type instability waves
from fundamental viewpoints. The scope of this paper is to address the questions raised in the introduction, i.e., the
selectivity mechanism of instability waves.

A Cartesian coordinate system (x, y) is constructed with the origin at the leading edge, corresponding to the
streamwise and wall-normal velocities (u, v). An orthogonal body-fitted coordinate system (ξ, η) is also defined,
which is along the wall-tangent and normal directions, respectively. The surface temperature is assumed to be room
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FIG. 1. Streamline and contour of the base pressure for cases (a) without corner rounding and (b) with rounding, and
(c) distribution of local curvature magnitude |K| above the dividing line without rounding. Arrows in (a), separation and
reattachment points.

temperature T ∗
w = 293 K. In this paper, the primitive variables are nondimensionalised by the corresponding freestream

quantities except that the pressure p is by the freestream ρ∗∞u∗2
∞, where ρ represents density. The reference length

scale for nondimensionalisation is L∗. The two-dimensional laminar base flow, obtained by our in-house Navier–Stokes
(N–S) solver [5, 19, 20], is used for stability analyses.

The laminar flow field will be used for the present stability analysis. It should be noted that a transitional SWBLI
subject to incoming disturbances may encounter the base flow distortion and the change of the bubble topology
[3, 21]. As a result, a stability analysis of the laminar SWBLI flow is aimed to provide insights into how instability
waves interact with the bubble at a low Reynolds number or in an early linear stage of the instability. However,
the result will not be sufficient to account for the complete transition mechanism of the SWBLI problem. Fig. 1(a)
shows the streamline and the pressure field of the converged base flow. Based on the skin friction, the separation and
reattachment points are located at xs = 0.805 and xr = 1.17, respectively. Between them, a recirculation separation
bubble is formed. To isolate the effect of the separation bubble on instability waves, corner rounding with a radius
of r = 1.9 is also employed [5, 6]. As shown in Fig. 1(b), the separation is eliminated by corner rounding, while the
effects of curvature and adverse pressure gradient are maintained as much as possible.

III. STABILITY ANALYSIS TOOLS

A. Resolvent analysis

The present resolvent analysis seeks the strongest response to an external forcing, which addresses the linear
dynamics of the noise amplifier. The shapes of the forcing and the response are assumed to be on the x–y plane.
Starting from the LNSE for compressible flows, the resolvent analysis gives evolutions of optimal disturbances as
accurately as direct numerical simulation (DNS) in the linear stage [19]. In detail, the disturbance vectors of both
the conservative variable Q = (ρ, ρu, ρv, ρw, ρe)T and the forcing f = (f1, f2, f3, f4, f5)

T are assumed to be in the

form of Q′ (x, y, z, t) = Q̂ (x, y) exp (iβz − iωt) + c.c. Here, w, e and the superscript ‘T’ denote the spanwise velocity,
the total energy per unit mass and the matrix transpose, respectively. The symbols ω, β, z, t and c.c. represent
the circular frequency, the spanwise wavenumber, the spanwise coordinate, time and complex conjugate, respectively.
The governing equation can be written as

∂Q′/∂t = AQ′ + Bf ′, (1)

where matrix A is the Jacobian matrix. The matrix B is introduced to constrain f ′ at a streamwise station x = xi,
which performs as a Dirac delta function in the streamwise direction. One may also impose the forcing in the whole
computational domain. In this work, we consider a constrained optimalisation problem without modifying the non-
modality of the matrix A. The employment of a localized forcing near the leading edge may be considered as an
analogy to the situations frequently considered in high-fidelity numerical simulations and convective-type stability
analyses. In these situations, the convective instability waves are excited upstream locally via external perturbations
and then convected in the flow direction. This setup, previously applied in our other works [5, 6, 19], also makes
it convenient for comparative studies between numerical simulations and other theoretical tools. For convective
instabilities, connections between ‘global’ stability analysis of the entire flow field and ‘local’ analysis of the local flow
profile can be thereby observed [22]. The evolution of upstream instability waves in the streamwise direction will be
the main concerned point.
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Substituting the form of Q′ and f ′ into (1) yields

Q̂ = RBf̂ , (2)

where

R = (−iωI − A)
−1

. (3)

Here, I is the identity matrix. To seek the forcing and the response that maximise the energy amplification, an
optimal gain G is defined by

G2 (β, ω) = max
f̂

{∥∥∥Q̂∥∥∥
E

/∥∥∥Bf̂∥∥∥
E

}
. (4)

Here, ∥·∥E represents the Chu’s energy norm defined in Refs. [5] and [19]. Subsequently, Eq. (2) is transformed into
an eigenvalue problem with respect to G2. The eigenvalue problem is solved by ARPACK for a given β and ω, and the

resulting eigenfunction gives the shape of the optimal forcing f̂ . The shape of the optimal response is then calculated
by Eq. (2). In terms of the discretisation of A, the modified Steger-–Warming scheme [23] is used for inviscid fluxes
near discontinuities detected by a modified Ducros shock sensor [24], and the second-order central scheme is used for
inviscid fluxes in smooth regions as well as viscous fluxes. Two grid resolutions 1000× 300 and 1200× 350 are tested
for the compression ramp flow, which shows convergence of instability evolutions. The coarse mesh has been priorly
verified by Ref. [5] for the considered flow, and the finer mesh is finally adopted in this paper.

B. LST and PSE

In addition to the ‘global’ stability analysis, a parallel-flow LST starts from the ‘local’ perspective to examine the
local amplification of disturbances, which may constitute the global amplification in the global analysis [22]. Although
the separation bubble seems to be nonparallel, the rationale for a locally parallel analysis has been clarified by Diwan
& Ramesh [25]. To further consider the nonparallelism, PSE is also included and provided here first [26]. Assume the
disturbance form to be

ϕ′ = ψ(ξ, η) exp

[
i

(∫ ξ

ξ0

α(ξ̌)dξ̌ + βz − ωt

)]
+ c.c. (5)

Here, α is the complex wavenumber, ξ0 corresponds to the initial point of marching, and ψ = (ρ̂, û, v̂, ŵ, T̂ )T is the
modal shape. The symbol T represents temperature. The PSE can be expressed by

(L0 + L1)ψ + L2
∂ψ

∂ξ
+

dα

dξ
L3ψ = 0, (6)

where L0 is the operator for parallel flows, and L1–L3 represent the operators arising from nonparallel effects. The
forms of L0–L3 for a Cartesian coordinate system have been given by Paredes [27], and the transformation method
into an orthogonal body-fitted coordinate system has been detailed by Chang et al. [28]. Solution is obtained via
streamwise marching from a local profile that will be introduced later. With the assumption that the modal shape is
streamwise slowly varying, an iterative scheme to update the wavenumber is given by

αnew = αold − i
1

E

∫ ∞

0

ρ̄

(
û† ∂û

∂ξ
+ v̂†

∂v̂

∂ξ
+ ŵ† ∂ŵ

∂ξ

)
dη, (7)

where the overbar indicates the base-flow quantity, the superscript ‘†’ denotes complex conjugate, and E is given by

E =

∫ ∞

0

ρ̄
(
|û|2 + |v̂|2 + |ŵ|2

)
dη. (8)

By dropping L1–L3, the nonparallel effect is neglected and ψ becomes a local solution with respect to η. The
remaining equation L0ψ = 0 can be also written in the form of

Hyy
∂2ψ

∂η2
+Hy

∂ψ

∂η
+H0ψ = 0, (9)
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FIG. 2. Pressure fluctuation of the optimal disturbance ω = 100 for cases (a) without and (b) with corner rounding. Arrows
in (a), separation and reattachment points. Gray line in (a), the isoline p̄ = 0.018. Coloured line in (a), dividing streamline.

FIG. 3. Pressure fluctuation of the optimal disturbance ω = 140 for cases (a) without and (b) with corner rounding. Arrows
in (a), separation and reattachment points. Gray line in (a), the isoline p̄ = 0.018. Coloured line in (a), dividing streamline.

where the boundary condition is given by {
û = v̂ = ŵ = T̂ = 0, η = 0

û = v̂ = ŵ = T̂ = 0, η → ∞.
(10)

The local equation is finally transformed to a complex eigenvalue problem of LST with respect to α [29]. The operators
of Eq. (9), detailed in Ref. [30], are related to α, β, the local base flow and the metric factor h1(η), where h1 = 1+Kη
and K is the curvature. The streamline curvature K(ξ, η) in the whole domain is calculated to obtain the local h1.
Contour of |K| for the case without rounding is shown in Fig. 1(c). By setting K equal to zero or the actual
value, one can observe the effect of streamline curvature. For LST, the local growth rate σ = −αi is positive if the
mode is unstable. The LST and PSE analyses are performed by our in-house code, which has been well validated by
benchmark cases compared to theoretical, simulation and experimental results [6, 15, 19, 31–33]. In the LST analysis,
a global numerical method is employed to obtain the global spectrum and a local method is to improve the results of
eigenmodes [29]. The mesh for resolvent analysis is also used for LST and PSE. Convergence of each eigenvalue and
eigenvector is confirmed by comparing calculation results of different mesh resolutions.

IV. RESULTS

A. Optimal travelling waves

Unless otherwise stated, the results of planar waves (β = 0) are depicted to highlight the frequency selection of
the separation bubble. Firstly, the input forcing of the resolvent analysis is placed at xi = 0.2, which is far upstream
of the separation point xs. As an example, the optimal disturbance ω = 100 is displayed, which corresponds to a
dimensional frequency of f∗ ≈ 274.7 kHz. The real parts of p̂ for the two cases without and with corner rounding are
shown in Fig. 2. The isoline p̄ = 0.018 which intersects the wall at the separation point is also displayed in Fig. 2(a)
to visualise the separation shock. With corner rounding in Fig. 2(b), the typical double-cell structure of Mack second
mode is maintained over the curved compression ramp. By contrast, in Fig. 2(a), complicated structures of pressure
fluctuations are observed in the separation bubble. Clearly, flow separation alters the disturbance shape significantly.
For a further comparison, the optimal disturbance with ω = 140 is displayed in Fig. 3. As the frequency grows, the
maximal cell number of the pressure fluctuation structure in the separation bubble is further increased. Possibly, the
existence of modes beyond the third mode is indicated.

To quantify the instability evolution, an N -factor is defined by

N0 = 0.5 ln(EChu/EChu,0), (11)
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FIG. 4. N -factor based on x0 = 0.2 of optimal disturbances for (a) higher and (b) lower frequencies. Solid lines, without corner
rounding. Dashed dotted lines, with rounding. Vertical dashed lines, locations of separation and reattachment.

FIG. 5. Contour of σ on the x–ω plane for the most unstable mode via LST: (a) K = 0 (without rounding), (b) K ̸= 0 (without
rounding) and (c) K ̸= 0 (with rounding). Vertical dashed lines, locations of separation and reattachment.

where EChu is Chu’s energy density [34] locally integrated from the wall to infinity with respect to η, and EChu,0 is the
value at a reference position x = x0. The Chu’s energy density consists of the kinetic energy and a positive definite
thermodynamic energy, which has been extensively applied in stability analyses. Fig. 4 shows the N -factor curves
corresponding to x0 = 0.2, whose performance can be categorised into two regimes. For high frequencies with hundreds
of kilohertz in Fig. 4(a), the travelling waves (solid lines) appear to be nearly neutral in the separation bubble between
the two vertical dashed lines. This Mack-mode behaviour reported by [16] seems to be independent of the upstream
state whether the disturbance is amplified or decayed. Downstream of reattachment, the energy amplification rates
dN0/dx with flow separation (solid lines) reduce to those without separation (dashed dotted lines). For low frequencies
with tens of kilohertz in Fig. 4(b), however, the energy tends to be constantly amplified by the separation bubble.
Therefore, the separation bubble presents a certain process of frequency selection. It should be noted that no unstable
first mode is found in this state due to wall cooling and high Mach number [5]. The resolvent analysis shows that
such low-frequency disturbances can be amplified in separated flows even though it is stable upstream.

B. Eigenmodal features of Mack modes

To interpret the eigenmodal behaviour, the contour of the local growth rate σ by LST is plotted versus x and ω.
In Fig. 5, a comparison between (a) and (b) reflects the effect of the streamline curvature, and a comparison between
(b) and (c) mainly highlights the role of the separation bubble. With the occurrence of separation, unstable Mack
modes up to the fifth mode are identified. The order of higher Mack modes is based on the relative magnitude of the
frequency at a fixed x. A fixed-frequency disturbance may go through higher Mack-mode regions. For example, in Fig.
5(a), the disturbance ω = 100 undergoes the second-mode instability once, the third-mode instability twice and then
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FIG. 6. Modal sychronisation with ω = 80 for a rampless boundary layer flow without pressure gradient: (a) c̃r–x and (b) σ–x.

the second-mode instability again in the separation bubble. The alternating unstable and stable regions for a fixed ω
agrees with the neutrally oscillating behaviour of the N -factor qualitatively. By contrast, only second-mode instability
is identified in Fig. 5(c) when separation is eliminated. Thus, flow separation is able to generate higher-order Mack
modes. Moreover, increasing the frequency may give rise to higher-order Mack modes in the separation bubble in Fig.
5(a). This tendency is consistent with the pressure fluctuation structure in the resolvent analysis shown in Figs. 2
and 3. In Fig. 5(b), the centrifugal force effect induced by the curved streamline is to promote the instability in the
vicinity of separation and reattachment points, where |K| is large (see Fig. 1c).

To further the understanding of Mack-mode instabilities in the separation bubble, multiple discrete modes including
stable ones are identified by LST corresponding to ω = 80. Before proceeding to the LST analysis of the ramp flow,
a brief analysis of a rampless flat-plate boundary layer flow without pressure gradient is first performed under the
same flow condition. The purpose is to establish a reference of the existing modes and the associated nomenclature
for such a canonical problem. The base flow over the flat plate is also simulated by our N–S solver. The real part of
the complex phase velocity c̃, i.e., the real part c̃r = ℜ(ω/α) and the growth rate σ are given versus x in Fig. 6. Note
that occasionally the difference between the real phase velocity cr = ω/αr and the real part of the complex phase
velocity c̃r is not ignorable if |αr| ≫ |αi| is not satisfied. For a hypersonic boundary layer without separation, the
modal synchronisation between slow and fast discrete modes, originating from the slow and fast acoustic waves near
the leading edge, gives rise to new branches related to unstable Mack modes [35, 36]. As shown in Fig. 6(a), near the
leading edge, the phase-velocity limits of the fast mode F−

1 and the slow mode S−1 are identical to those of the fast and
slow acoustic waves, i.e., c̃r = 1+1/M∞ and c̃r = 1− 1/M∞, respectively. Here, the superscripts ‘−’ and ‘+’ indicate
that the mode is the branch on the left and right sides, respectively, of the first synchronisation point with other
discrete or continuous spectra. The subscript ‘1, 2, ...’ means that the mode is the first, second, etc. discrete mode
originated from fast/slow acoustic waves. The superscript ‘1, 2, ...’ indicates that the mode is the first, second, etc.
new significant branch of the same family of the discrete mode, which arise from synchronisation with other spectra.
As x is increased, mode F−

1 synchronises with the entropy/vorticity continuous spectrum with c̃r = 1 at x = 0.73

and then with mode S−1 at x = 0.98. The former synchronisation generates a new branch F+,1
1 accompanying with

a jump of the phase velocity and the growth rate, and the latter synchronisation generates branches F+,2
1 and S+1 .

The synchronisation between the families of modes F and S is associated with the unstable peak of σ in Fig. 6(b)
through an intermodal energy exchange mechanism [36]. In the terminology framework of Mack, this unstable peak
is related to the instability of Mack second mode. A low-frequency (or low-Reynolds-number) unstable limit belongs
to the first-mode instability. In the considered flat-plate case, no unstable first mode is identified.

For the ramp flow, the main synchronisation process is depicted in Fig. 7. Not all of the new branches of discrete
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FIG. 7. LST results (K ̸= 0) of modal sychronisation at ω = 80 without rounding: (a) c̃r–x and (b) σ–x. Greed dashed line,
one of the newly generated modes merging with the continuous spectrum. Vertical dashed lines, locations of separation and
reattachment.

FIG. 8. LST results (K ̸= 0) of eigenvalue trajectories on the complex plane (c̃r, c̃i) with an increasing x coordinate at ω = 80
without rounding: (a) families of mode Snew (black line) and mode F1 upstream of separation (green line), and (b) families of
mode S1 (red line) and mode F2 (blue line).

modes generated by synchronisations are marked (which are associated with the jump of the phase velocity), and only
significant modes are displayed. All the discrete modes are tracked with a small grid spacing ∆x as the x coordinate
is increased, such that the displacement of the complex phase velocity c̃ is minor during each step of tracking. As
a result, the mode can be continuously tracked and easily distinguished from other evolving discrete modes via the
global and local numerical methods by Malik [29]. To facilitate the understanding, the eigenvalue trajectories of the
main modes on the complex plane (c̃r, c̃i) are displayed as x is increased in Fig. 8. Note that a mode is unstable if
c̃i > 0.

Fig. 7 demonstrates that the synchronisation regime becomes evidently different when separation occurs. As shown
in the growth rate contour of Fig. 5(b), the first peak of σ near the separation point for ω = 80 in Fig. 7(b) is
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a continuation of the upstream second-mode instability. This growth rate peak is associated with mode S1 in Fig.
7, which normally evolves from the leading-edge slow acoustic wave continuous spectrum. The continuation role of
mode S1 can be also concluded from the rampless results in Fig. 6(b), where an unstable peak of the growth rate
emerges at around x = 0.8 for mode S1. When penetrating the separation bubble, mode S1 eventually merges with
the entropy/vorticity continuous spectrum whose dimensionless c̃r is unity. This merge at around x = 0.88 is also
recorded by the eigenvalue trajectory (red line) in Fig. 8(b). Near the separation point xs = 0.805, another slow
mode is newly identified at x = 0.82, which is named mode S−new. This new mode has a phase velocity lower than the
freestream velocity. The subscript ‘new’ is used to distinguish this new slow mode from the conventional slow mode
which evolve from the leading edge receptivity. One may wonder if this new mode is a consequence of the upstream
mode crossing the continuous spectrum. However, according to Fig. 8(a), the upstream fast mode originated from
the fast acoustic wave synchronises with the continuous spectrum at x = 0.73, which is evidently upstream of the
separation point xs = 0.805. No other fast mode (c̃r > 1) is observed in the global spectrum between x = 0.73
and the location x = 0.82 where mode S−new first emerges. In fact, Fig. 8(a) illustrates that mode S−new departs
from the entropy/vorticity continuous spectrum possibly due to flow separation at x = 0.82, which is initially very
stable. Meanwhile, in addition to mode F1 evolving from the leading edge, a new branch of fast mode F−

2 emerges
in the separation bubble, which is originated from the fast acoustic wave (c̃r = 1 + 1/M∞). Subsequently, mode F−

2

synchronises with the entropy/vorticity continuous spectrum, which gives rise to mode F+,1
2 with a more negative

σ, i.e., more stable. Following that, twice synchronisations between the families of modes F2 and Snew occur, which
generate the second and third peaks of the growth rate in Fig. 7(b). The twice synchronisations are achieved by

the non-monotonic evolution of c̃r of mode F+,2
2 from decreasing on the plate (x < 1) and increasing on the ramp

(x > 1). Fig. 8(b) also shows that the family of mode F1 (denoted by the blue line) first appears at around x = 0.84
from the fast acoustic wave continuous spectrum, then undergoes a decrease and increase of the phase velocity, and
finally merges with the fast acoustic wave spectrum at around x = 1.07. Further downstream, after a synchronisation
between mode S+,2

new and the slow acoustic wave (c̃r = 1 − 1/M∞) near reattachment, the fourth peak of the growth
rate is generated in Fig. 7(b). Indicated by Fig. 5(b), the first and fourth peaks approaching the separation and
reattachment points in Fig. 7(b) for ω = 80 belong to the second-mode instability, while the second and third peaks
belong to the third-mode instability. However, the upstream second mode (first peak) is different from the downstream
second mode (fourth peak). The upstream one is normally originated from mode S1, whereas the downstream one
originated from the family mode Snew is a complicated product due to flow separation.

The depicted complicated synchronisation regime gives rise to discontinuous regions of unstable modes in the
separation bubble. In other places, the travelling wave is stable. The alternating unstable and stable regions are
associated with the oscillating N -factor curves of high-frequency disturbances in the separation bubble. To evaluate
how well LST can describe the eigenmodal mechanism, a comparison of the N -factor among resolvent analysis,
PSE and LST is shown in Fig. 9. Note that by imposing appropriate initial conditions, the LNSE system with
non-normality can exhibit a large transient amplification of energy [37]. Meanwhile, PSE, marching from an initial
condition, is found to be a good approximation of the (harmonic) LNSE in terms of the accuracy [38]. Accordingly,
PSE results initialised by the resolvent response are expected to achieve an approximate optimal amplification, which
contains both nonmodal transient growth and possible modal growth [19]. By contrast, the PSE result initialised
by the LST solution is closely related to the normal-modal instability, which includes the nonparallel effect. The
initialisation location for PSE is set to upstream at x = 0.25. The initial streamwise wavenumber α is simply taken
from the LST result. In fact, a different initial value of α has no effect on the downstream spatial marching of
PSE, since the iterative procedure will quickly adjust the converged shape function ψ and wavenumber α closely
downstream of the initialisation position.

It should be mentioned that the magnitude of the N -factor in Fig. 9 is not large since the reference position is
moved downstream to x0 = 0.75. The far upstream region is not shown because we expect to highlight the instability
evolution in the separation bubble. For ω = 80 in Fig. 9, the resolvent analysis mainly shows four energy growths
(G1–G4) in the separation bubble. The approximate amplification rate dN0/dx is marked by the inclined thin dashed
line. Compared to the resolvent analysis, the N -factor is underestimated by LST, which shows streamwise shorter
growths of energy. However, the amplification rate (slope of curve) of G1–G4 as well as the oscillation behaviour
of the N -factor curve is well captured by LST. Further considering the effect of streamline curvature (K ̸= 0), LST
gives a closer amplification rate to the resolvent analysis near the separation point xs = 0.805. In general, the neutral
oscillation of the high-frequency optimal disturbance is explainable by the local eigenmodal mechanism. Recall in Fig.
7(b) that the first unstable peak (red line) is originated from another different family of the discrete mode compared
to the remaining three peaks (black line). Therefore, PSE marching from upstream profiles can only capture the
first growth G1 in Fig. 9(a). However, an excellent agreement of the N -factor is reached between resolvent analysis
and PSE with two initialisation methods. Therefore, the underestimation in the N -factor by LST is caused by the
nonparallel effect, and the modal amplification is dominant for the high frequency ω = 80. Fig. 10 further shows
the comparison of the wall-normal shape between the resolvent response and the LST eigenfunction of the most
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FIG. 9. N -factor based on x0 = 0.75 of cases without corner rounding for planar waves with β = 0 at ω = 80. Inclined dashed
lines, approximate slopes of energy growth G1–G4.
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FIG. 10. Comparison of the disturbance shape for ω = 80 between the resolvent response and the eigenfunction of the most
unstable local mode. Four stations corresponding to the four peaks of σ in Fig. 7(b) are shown: (a) x = 0.8, (b) x = 0.934, (c)
x = 1.025 and (d) x = 1.125. Horizontal dashed line, location of the separation shock. All the results are normalised by |p′| at
the wall.

unstable mode. Four stations corresponding to the four peaks of σ in Fig. 7(b) are chosen. The discrepancy in the
disturbance shape is minor in the near-wall region, while it becomes larger in the outer region partly due to additional
effects, such as the effects of the separation shock and nonparallelism. In general, the discontinuous energy growth of
high-frequency Mack modes in the separation bubble is confirmed by both global and local analyses.

C. Eigenmodal features of shear-layer modes

In this section, we mainly focus on the low circular frequency ω = 20, whose 2-D local mode is almost stable in
the separation bubble indicated by Fig. 5. Representative results of the N -factor and the density fluctuation for
the low-frequency disturbance ω = 20 are shown in Figs. 11 and 12, respectively. The density fluctuation of the
‘shear-layer mode’ is concentrated on the separated shear layer in Fig. 12. Consistent with Fig. 5(b), the LST
result in Fig. 11(a) also shows that Chu’s energy of the 2-D local mode is not considerably amplified corresponding
to ω = 20. By contrast, PSE initialised by the resolvent response nearly reproduces the optimal energy growth of
the resolvent analysis in Fig. 11(a) and the disturbance shape in Fig. 12(b). Acceptable difference exists possibly
because of dropping higher-order terms in the PSE. As a result, the non-modality nature of the operator may further
participate in determining whether the response is amplified or attenuated in the separation bubble. The difference
in the parallel LST operator and the full LNSE operator contributes to the fact that the 2-D mode is damped in a
local analysis, whereas a maximal energy growth is achieved in the optimisation problem of the resolvent analysis.
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FIG. 11. N -factor based on x0 = 0.75 of cases without corner rounding for ω = 20 with (a) β = 0 and (b) β = 260.

FIG. 12. Comparison of ρ′ for the planar shear-layer mode ω = 20 between (a) resolvent analysis and (b) PSE initialised by
resolvent response, all normalised by the maximum at x = 0.7.

As shown by resolvent analysis of Hao et al. under the same flow condition [5], stationary streaks and low-frequency
oblique waves tend to be the most amplified disturbances by the compression ramp flow. Low-frequency oblique waves
can also trigger the three-dimensionality of flows and the transition to turbulence [3, 9]. Therefore, in addition to
planar waves, 3-D oblique waves are necessary to be considered for the ω = 20 case. With a fixed frequency ω = 20,
resolvent analysis for different spanwise wavenumbers reports that the optimal gain G peaks at around β = 260,
i.e., the preferential wavenumber. The gain curve against the spanwise wavenumber is provided in Fig. 20 in the
Appendix. Corresponding to this wavenumber β = 260, the N -factor results are shown in Fig. 11(b). For this oblique
wave, the iterative scheme Eq. (7) of PSE does not converge on the ramp (x > 1) numerically. Nevertheless, the
optimal growth on the plate region is still captured by PSE. The energy of the low-frequency 3-D wave is constantly
amplified by the separation bubble. With regard to the local analysis, we find multiple unstable 3-D modes in the
separation bubble, among which three modes are dominant in different streamwise locations. These three modes are
named in the order of appearance, including mode I, mode II and mode III. The three modes possess the largest local
growth rate near the separation point, in the separation region and near the reattachment point, respectively. Note
that there is an equivalence between the local growth rate in LST and that of the defined N -factor, i.e., σ = dN0/dx.
As a consequence, the slope of the N -factor can be directly given by LST, which is marked by the dashed line in Fig.
11(b). Good agreement in the growth rate between the resolvent analysis and LST is reached near the separation and
reattachment points. In the separation region (x = 0.9), the growth rate of the resolvent analysis is slightly larger
than that of LST. This is probably because mode II is not the only unstable mode with considerable dominance at
x = 0.9, while mode I and mode III are predominant unstable modes near the separation and reattachment points,
respectively. The corresponding arguments will be shown later in Fig. 14(a).

Before discussing the multi-modal feature of the 3-D low-frequency mode, we first show the parametric dependence
of the mode on the spanwise wavenumber. Taking the streamwise location x = 0.9 for example, we provide the growth
rate and the phase velocity of the two unstable modes identified by LST in Fig. 13. The eigenvalues of the two modes
are tracked with a varying spanwise wavenumber and a constant ω = 20. The phase velocities of modes I and II are
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FIG. 13. (a) Local growth rate σ and (b) c̃r versus spanwise wavenumber β for the unstable modes identified by LST (K ̸= 0)
with ω = 20 at x = 0.9 in the separation bubble. β = 260 refers to the globally most amplified spanwise wavenumber with
ω = 20 by resolvent analysis.

FIG. 14. (a) Local growth rate σ and (b) eigenvalue trajectories with an increasing x coordinate identified by LST (K ̸= 0)
with ω = 20 and β = 260. Solid trajectory lines in (b) correspond to those in (a) with the same line colour. Vertical dashed
lines in (a), locations of separation and reattachment. Gray lines in (a), other lesser unstable modes near reattachment.

generally larger and smaller than unity, respectively. Both local modes possess a wide unstable range with respect to
the spanwise wavenumber. Clearly, the globally most amplified wavenumber β = 260 falls well in the unstable region of
the oblique modes I and II. The value β = 260 is also close to the most unstable wavenumber of the two local modes. It
should be noticed that the oblique angle of such a wave with, say cr = 1, is θ = tan−1(β/αr) = tan−1(260/20) ≈ 85.6◦,

and therefore the Mach number in the wave propagation direction is M̃ = M∞ cos θ ≈ 0.6. This low equivalent Mach
number may account for why the high compressibility in this hypersonic state does not significantly suppress the shear-
induced oblique mode, which is consistent with the conclusion of the compressibility study on the K–H instability
[17]. By contrast, the 2-D mode (β = 0) with the same frequency is stable with a non-positive growth rate in Fig.
13(a).

With a fixed β = 260, Fig. 14 further depicts the growth rate evolution along the streamwise direction and the
eigenvalue trajectory of the three dominant modes. Modes I, II and III successively have the largest growth rate near
the separation point, in the separation region and near the reattachment point. Near the separation point, another
unstable mode IV is found, which is less important than mode I. In the vicinity of the reattachment point, three
additional unstable modes are identified, whose growth rates are evidently smaller than that of mode III. Further
based on the eigenvalue trajectories, modes I, II and III independently evolve from very stable discrete modes, which
appear successively on the stable half plane of the complex phase velocity. At the station x = 0.9, the growth rate of
mode II reaches its peak, while mode I is also unstable with a lower growth rate. In other words, unstable modes I and
II coexist at x = 0.9 in the separation bubble. It should also be noted that all these identified unstable modes almost
become stable if the streamline curvature K is set to zero everywhere. This observation suggests that these unstable
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FIG. 15. Comparison of the disturbance shape for ω = 20 and β = 260 between the resolvent response and the LST eigenfunction
at (a) x = 0.83 near the separation point, (b) x = 0.9 in the separation region, and (c) x = 1.15 near the reattachment point.
Horizontal dashed line, location of the separation shock. All the results are normalised by the maximum |T ′|.

FIG. 16. Local growth rate versus the varying curvature ratio K/Kbaseline for modes I and II with ω = 20 and β = 260 at
x = 0.9, where Kbaseline refers to the actual local curvature.

low-frequency 3-D modes are sensitive to the curvature effect, which seemingly behave as unsteady Görtler vortices.
The feature that several unstable modes emerge in the high-curvature region (near the separation and reattachment
points) also appears to be similar to the multi-modal property of unstable stationary Görtler modes reported by Ren
& Fu [30].

To further clarify the multi-modal finding, the disturbance shape is compared at three representation locations
between resolvent analysis and LST. In Fig. 15(a), mode I is predominant near the separation point at x = 0.83,
while mode IV is lesser. The shape of the resolvent response seems to be jointly affected by the eigenfunctions of mode
I and IV. The resolvent response is generally more similar to mode I, because both of their profiles have only one peak
of |T ′|. In Fig. 15(b), mode II evolves to be the dominant one at x = 0.9, and the |u′| and |T ′| of the resolvent response
become more similar to the eigenfunction of mode II rather than the less unstable mode I. Nevertheless, at x = 0.9,
the second peak of |T ′| of the unstable mode I near the separation shock (denoted by the horizontal dashed line)
seems to affect the shape of the resolvent response there, and thus |T ′| of the resolvent response near the separation
shock becomes visible in Fig. 15(b). Meanwhile, the peaks of the eigenfunction modulus of both modes I and II are
not very far away from the separation shock, where the streamline curvature is large in Fig. 1(c). This observation
may account for why the unstable mode II, not located at the separation and reattachment points, is still sensitive to
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FIG. 17. Complex phase velocity of the unstable discrete modes for the case with corner rounding: (a) 0.01 ≤ ω ≤ 1 and (b)
2 ≤ ω ≤ 20. Other settings include β = 260 and x = 1.1.

the curvature effect. In Fig. 15(c), mode III has an evidently larger growth rate than the remaining unstable modes
near the reattachment point. An excellent agreement in the |u′| and |T ′| is reached between the resolvent response
and the locally dominant mode III.

To reveal the effect of the curvature on the multiple unstable modes, the value of K is artificially reduced, starting
from the actual value Kbaseline for the baseline separated flow without corner rounding. Fig. 16 illustrates that the
originally unstable modes I and II at x = 0.9 gradually become stable when the curvature parameter K is changed
from Kbaseline to zero. Therefore, the streamline curvature is necessary for the appearance of multiple unstable low-
frequency 3-D modes in the separation region. The sensitivity to the curvature might be analogous to the stationary
or unsteady Görtler instabilities in a boundary layer over a concave wall. We further calculate the case with corner
rounding under the settings x = 1.1, ω = 0 and β = 260, where the actual value of K is used. Without flow separation,
several unstable eigenmodes with αr = 0 are identified, which is consistent with the observation of multiple stationary
Görtler modes by Ren & Fu [30]. As ω is increased from 0.01 to 20, Fig. 17 shows the evolution of c̃ for the identified
unstable discrete modes. For the small value ω = 0.01, the real parts of the complex phase velocity c̃r of unstable
modes are almost zero, which implies a stationary behaviour. As the angular frequency gradually grows, most of the
unstable eigenmodes are moved away from the vertical axis c̃r = 0. The nonzero phase velocity indicates that the
disturbance can be convected by the base flow. In this case, the unstable eigenmode with a small yet unignorable
angular frequency may be regarded as unsteady Görtler modes.

To conclude, the growth of the optimal low-frequency 3-D wave can be well explained by the parallel-flow eigenmodal
analysis. Under the considered conditions, the separation bubble tends to select 3-D unstable low-frequency waves
while freezing the 2-D high-frequency Mack modes.

V. CONCLUSIONS

In the present paper, the linear dynamics of the separation bubble as a noise amplifier in a compression ramp flow
is investigated. The main contribution is that an explanation for the neutral Mack mode and the possibly amplified
low-frequency ‘shear-layer’ mode in the separation region is provided. The high-frequency components related to Mack
modes are nearly neutral due to several modal synchronisations, which generate discontinuous unstable regions in the
separation bubble. Based on a local analysis, the stability diagram of multiple Mack modes is clearly presented, and
multiple newly generated discrete modes are identified and discussed. The eigenfunctions in the local analysis agree
well with the disturbance shapes in the resolvent analysis. Furthermore, the upstream and downstream Mack second
modes originate from different branches of discrete modes due to flow separation. Although local analysis reports
several discontinuous instabilities with high frequencies, it fails for the 2-D low-frequency ‘shear-layer mode’. However,
several unstable 3-D eigenmodes are identified by LST, which are sensitive to the curvature effect. Among them,
three dominant unstable modes (I, II and III) successively appear near the separation point, in the separation bubble
and near the reattachment point. Good agreement is reached between the local mode and the resolvent response
regarding the disturbance shape and the growth rate of energy. The globally preferential spanwise wavenumber falls
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FIG. 18. Amplitudes of the input forcing at x = 0.2 and optimal response at x = 0.25 with ω = 80 and β = 0. Here, δ0.99
refers to the local boundary layer thickness.
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FIG. 19. Amplitudes of the input forcing at x = 0.2 and optimal response at x = 0.25 with ω = 20 and β = 260. Here, δ0.99
refers to the local boundary layer thickness.

in the unstable range of the local unstable modes. At a fixed streamwise location, multiple unstable 3-D low-frequency
modes may coexist, which is not observed in the calculation of high-frequency Mack modes. These multiple unstable
modes constitute a continuous unstable region for the 3-D low-frequency disturbance in the bubble, which supports
the constant amplification of energy as shown by resolvent analysis. By constrast, Mack modes do not provide the
eigenmodal foundation for a constantly amplification of high-frequency disturbances in the bubble. The present study
indicates that the parallel-flow eigenmodal analysis is able to provide new insights into the convective-instability
mechanism of separated flows.
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Appendix A: Other results of resolvent analysis

Typical results of the optimal planar wave corresponding to 2-D Mack modes (ω = 80 and β = 0) and of the
optimal oblique wave corresponding to 3-D ‘shear-layer modes’ (ω = 20 and β = 260) are shown in this section. No
corner rounding is applied here. Figs. 18 and 19 give the amplitudes of the input forcing and the closely downstream
output response for the optimal planar wave and oblique wave, respectively. While the forcing in the w- momentum
equation and the response w′ are zero for the planar wave, they are nonzero for the oblique wave. Meanwhile, although



16

× 10
2

×

FIG. 20. Optimal gain versus the spanwise wavenumber β of the compression ramp flow for ω = 20.

the input forcing has a pronounced amplitude outside the boundary layer, the energy of the downstream response is
mainly concentrated inside the boundary layer. To reveal the preferential spanwise wavenumber of the 3-D ‘shear-layer
mode’, the optimal gain is plotted against β in Fig. 20 for the studied low frequency ω = 20. The most amplified
wavenumber is found to be around β = 260.
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