
1

SERENE: A Collusion Resilient Replication-based
Verification Framework

Amir Esmaeili, Abderrahmen Mtibaa
University of Missouri–St Louis
Computer Science Department
{ae3wc, amtibaa}@umsl.edu

Abstract—
The rapid advancement of autonomous driving technology is

accompanied by substantial challenges, particularly the reliance
on remote task execution without ensuring a reliable and accurate
returned results. This reliance on external compute servers, which
may be malicious or rogue, represents a major security threat.
While researchers have been exploring verifiable computing,
and replication-based task verification as a simple, fast, and
dependable method to assess the correctness of results. However,
colluding malicious workers can easily defeat this method.
Existing collusion detection and mitigation solutions often require
the use of a trusted third party server or verified tasks which may
be hard to guarantee, or solutions that assume the presence of a
minority of colluding servers. We propose SERENE, a collusion
resilient replication-based verification framework that detects,
and mitigates colluding workers. Unlike state-of-the-art solutions,
SERENE uses a lightweight detection algorithm that detects
collusion based on a single verification task. Mitigation requires a
two stage process to group the workers and identifying colluding
from honest workers. We implement and compare SERENE’s
performance to Staab et. al, resulting in an average of 50% and
60% accuracy improvement in detection and mitigation accuracy
respectively.

Index Terms—Collusion Detection, Volunteer Computing,
Sabotage Detection, Replication-based Task Verification, Au-
tonomous Driving.

I. INTRODUCTION

Autonomous driving systems, which has been transforming
the automotive industry and paving the way for safer and more
efficient transportation, is characterized by the volume and
heterogeneity of sensory data that needs increasing complexity
of algorithms, real-time processing demands, and a lot of on-
board and remote processing power. In additions, tasks such as
image processing for real-time self driving directions can be
very critical and must be accurate. Verifiable computing [1],
which aims at verifying the accuracy of the results returned by
on-board or remote servers becomes very important especially
for these tasks.

Verifiable computing solutions fall into one the following
three main categories: (i) attaching probabilistically checkable
proofs to each offloaded task to identify incorrect results
with high probability [2], (ii) using Trusted Execution En-
vironments (TEEs), such as Intel Software Guard executions

A version of this paper is currently submitted and under review in the IEEE
Internet of Things Journal Special Issue on Augmented Intelligence of Things
for Vehicle Road Cooperation Systems.

(SGX) to ensure the integrity of computation execution and re-
sults [3], and (iii) redundantly requesting the execution of tasks
from multiple external servers, and applying majority voting
to find the correct result [4]. While proof-based, and TEE-
based solutions are limited to some specific applications, and
hardware dependability, replication-based methods are generic,
easy to implement, and effective [5]. However, replication-
based task verification is prune to main security attack which
can be executed by two or more colluding workers submit the
same incorrect results, and defeat the majority voting scheme
of the replication-based mechanism (i.e., collusion attack) [6].

Most collusion resilient replication-based solutions rely on:
(1) enlarging the voting pool [7], (2) spot checking using a set
of pre-defined trusted tasks [8], or trusted third party server to
re-execute the task [6], and (3) incentivizing rational servers
to betray collusion [9] to decrease the chance of collusion
attack. While most of these existing solutions rely on trusted
third parties or may prevent and not protect against collusion,
recently similarity-based clustering solutions have emerged to
probe the workers and identify clusters of workers to infer
colluding from honest workers [4], [6], [10]. These solutions,
howver, fail to detect and mitigate collusion when colluding
nodes represent the majority in the network. To the best of
our knowledge, this problem remains unexplored.

We propose SERENE, a Collusion Resilient Replication-
based Verification Framework. SERENE is implemented on
top of any task replication-based framework to continuously
monitor the list of workers and detect the presence of col-
lusion, which triggers its mitigation process to identify and
isolate colluding workers in the network. SERENE’s detection
relies on identifying two clusters of workers consistently
disagreeing with each others. While this identification guar-
antees the presence of colluding workers however, without
assumptions of the size of colluding workers or the presence of
trusted third party servers (used by state-of-the-art solutions),
SERENE uses a three-step mitigation algorithm to partition the
group of workers and identify the colluding ones.

The three main contribution of our paper are summarized
as follows:

• We propose SERENE to detect and mitigate the collu-
sion attack. SERENE can accurately identify and isolate
colluding nodes even when they represent 90% of the
worker population (we assume that there is a least two
honest workers in the network), without relying on any
trusted servers or pre-checked tasks.

ar
X

iv
:2

40
4.

11
41

0v
2

 [
cs

.C
R

]
 1

8
A

pr
 2

02
4

2

• SERENE decouples detection, and mitigation phases to
run the mitigation approach once the presence of collud-
ing workers in the network is detected. While SERENE’s
detection algorithm is periodic and consciously monitor
the workers behavior, it is designed to be lightweight and
does not require costly lookups.

• We evaluate the SERENE performance with state of art
Staab & Angel, which we refer to as SnE [11], and the
results show that mitigation accuracy of SERENE is more
than double that of SnE. Furthermore, SERENE detects
collusion 15% faster than SnE and 30% to 60% more
accurate detection. Finally, we perform a set of bench-
marking tests to assess the run time of SERENE and show
that it performs faster that SnE in three tested platform
while incurring slightly more resource utilization.

The rest of this paper categorized as follows: Section II
presents the literature review of verifiable computing solu-
tions and compares state-of-the-art collusion defense methods.
In the Section III, we briefly present our system model,
threat model, and the assumptions we used in this paper.
SERENE’s detection and mitigation algorithms are discussed
in Section IV. We evaluate SERENE’s performance and present
our simulation results in Section V. Challenges/discussions
and concluding remarks are presented in Section VI and
Section VII respectively.

II. RELATED WORK

Verifying the correctness of remote workers execution has
been recently investigated, and the proposed research solutions
can be categorized into three main categories: (i) Proof-based
approaches using probabilistically checkable proofs (PCPs)
produced by workers, and attached to the results [2], [12],
[13], (ii) TEE-based solutions that at the hardware level
guarantees codes and data integrity for task offloaders. The
Intel SGX [14], and ARM TrustZone [15] are two main TEE-
based technologies, and (iii) replication-based methods that
are very generic. In this approach, clients assign tasks to
multiple workers, and final results are specified by a quorum
(e.g., majority voting). A research has reduced the overhead of
redundant communication by limiting task replicas [4], [16].

Although replication-based solutions are simple, and easy
to use, it is still vulnerable to colluding workers that can
change majority voting. While most of researches on collu-
sion detection mechanism are focused on replication-based
methods, there are a few number of papers that have worked
on collusion of TEE-based, and proof-based solutions. Proof-
based collusion is limited to the risk of delegating verification
or proof setup to a colluding third party [17], whereas the
collusion for TEE-based solutions is mainly due to a rogue
remote attestation [18].

However, replication-based collusion defense mechanisms
mainly divided into two different areas: Prevention [19], [7],
[8], [20], [9], [21], or detection and mitigation [6], [11], [10],
[22], [23]. While in prevention solutions the main target is to
incentivize colluding workers to betray the collusion [9] (by
givng higher rewards in a game), or enlarging the voting pool
to decrease the probability of winning of colluders in majority

voting [7], nevertheless, the main weakness of prevention is it
works like a vaccine for diseases and it can not guarantee to
prevent from collusions.

On the other hand, detection, and mitigation is an approach
to find the colluding workers, and makes them isolated from
the workers population. Silaghi et al. [6] used two-step algo-
rithms to identify a majority pool of servers which will be
considered benign and used for detecting colluding servers,
while Staab et al. [11] applied a one-step graph clustering
algorithm to identify both benign and colluding servers. Both
of these approaches need time to complete set of works, and
then applied detection algorithm, also percentage of colluding
servers should be less than 50%. Moreover, algorithms to cut
the worker’s graph has additional overhead.

Zhao et al. [8], proposed spot checking solution to evaluate
workers by sending tasks with already known results, and
finding colluding servers. Spot checking tasks should be
unpredictable, and it is hard to find these tasks. Some of
solutions in this area assume a trust third party [24] for result
verification, and some of them suppose there are multiple pre-
arranged spot tasks [5]. All of two assumption can be rarely
used in the real world.

Unlike most of these proposed solutions, SERENE does
not use trusted parties (e.g., workers), or trusted pre-approved
tasks, and can accurately detect and mitigate collusion even
when the percentage of colluding workers exceeds 50% of the
workers in the network.

III. SYSTEM MODEL, THREAT MODEL, AND ASSUMPTION

A. System Model

We consider an untrustworthy edge computing network con-
sisting of N workers nodes1, S1 . . . SN (e.g., edge computing
servers) scattered in an area where clients can choose one or
many workers at a time to outsource their computation tasks.
We assume that clients perform replication-based verification
by selecting a voting pool consisting of k random workers2.
Users send tasks to a voting pool at any given time, and collect
the majority vote to ensure task execution correctness.

B. Threat Model

The system threat model includes three types of workers
which submit results to a given offloaded task:

• honest workers: A worker is called honest if it executes
and returns correct results to any given task. We assume
that honest workers can, rarely, return incorrect results
with probability ϵ, due to hardware failure, or incompat-
ibility. The list of honest workers is denoted by H.

• naive malicious workers: This type of workers are mali-
cious and always submit a random incorrect result (e.g.,
do not execute the task and return any random result
to same energy, or resources) for a given task. These
workers work independently without any coordination
with other malicious workers. The list of naive malicious
workers is denoted by M.

1In this paper, we use workers, servers, and edge nodes interchangeably
2Without loss of generality, we use k = 3 throughout the paper

3

• colluding workers: Colluding workers perform sophisti-
cated attacks; they coordinate (e.g., exchange command
and control messages) and collude only if they count
for the majority of the verification pool. In addition,
they coordinate and decide to collude randomly to avoid
verification detection. We denote the list of colluding
workers by C. A colluding worker w ∈ C colludes if
and only if (1) it ensure there exists enough workers in
the pool to form a majority, and (2) all colluding workers
in the pool decide to collude with a fixed probability Pc.
We also assume that colluding workers follow an evasive
strategy, consisting of storing a list of previously seen
tasks and if they a receive a task twice they assume it’s
a verification task and act as an honest worker for that
task by returning the correct result.

C. Assumptions

We assume the followings:
• Clients have insufficient resources and are incapable to

execute the task themselves, thus incapable of verifying
the correctness of the results,

• Routers, switches, and clients are not malicious. The
integrity of all messages exchanges is not compromised
(e.g., no man in the middle attack).

• All colluding workers at the network edge implement the
same strategy–they coordinate and agree on returning the
same incorrect results with the same fixed probability of
collusion Pc.

IV. SERENE: COLLUSION DETECTION AND MITIGATION

Our Collusion Resilient Replication-based Verification
Framework, SERENE, implements two main modules; (i) a
module to detect the presence of servers’ colluding behavior,
and (ii) a collusion mitigation module.

A. SERENE’s Detection Module

We design SERENE’s collusion detection to be lightweight
and fast in detecting any potential collusion of edge servers a
user is communicating with.

Users store a set of collusion verification tasks (CVT) se-
lected randomly from their genuine tasks–i.e., tasks previously
sent for compute verification. Once a task Ti is stored in CVT,
SERENE keeps track of all results received for Ti and the
corresponding server nodes returning these results.

CV T = {T1, . . . , TL}, (1)

Ti = [V i, Ri
1, R

i
2, . . . , R

i
N], (2)

where V i is the majority result for task Ti or NULL when
there is no majority recorded yet for task Ti, and Ri

j is the
returned results received by server Sj when performed task
Ti, or Ø when Sj did not receive task Ti.

SERENE runs the collusion detection module periodically,
every period ∆t. It selects a collusion detection task Ti ∈
CV T randomly and sends it to collusion detection pool,

Ti

R
RR

R

R*

R
RR R R'

R''

t: Result List t+Δt: Tk receives R, R-, R'

R'R+ R"

R' R+

R"

No Collusion
Vi=R

Collusion Detected
Vi=R, Second Group= R'

RR-

time

Fig. 1: In time t, there is just a group of majority (V i = R),
but in t+∆t, the received result R′ makes the second majority
group, and collusion detected.

CP = {Si
j |Ri

j = Ø}, consisting of a set of servers that
have never received the same task previously (i.e., no results
returned/recorded by the servers). When SERENE fails to find
to select k servers that have never received task Ti, i.e.,
|CP | ≤ k, it removes Ti from CVT and replaces it with the
most recent genuine task.

The collusion detection algorithm runs as soon as SERENE
receives rij , a result from server Si

j ∈ CP . Collusion is
triggered if and only if: (i) the result received does not agree
with the recorded majority result, and (ii) there exist another
same result returned by a different server (i.e., servers agreeing
on the same result which is different from the majority result),
Alg. 1 Line 5. If collusion is not detected, i.e.,Detection
function returns -1, the majority result value is updated if
V i == NULL and the rij is inserted into the CVT, i.e.,
Ri

j ← rij . However, if collusion is detected, SERENE wipes
the CVT, and immediately initiates the mitigation module to
detect and isolate colluding servers.

Figure 1 depicts an example, where a user sends a task Ti

at time t+∆t, where the received results R and R′′ did not
trigger a collusion detection, however received result R′ did,
because SERENE found another R′ ∈ CV T and V i = R ̸=
R′, which resulted in finding two separate group of server
agreeing on two different set of results, resulting a detection
of the presence of colluding servers in the network.

Algorithm 1 SERENE’s Detection Function, after receiving
rij from server Sj

Require: Ti, r
i
j

1: if rij == V iORV i == NULL then
2: return (-1) {No Collusion}
3: end if
4: if ResultInCV T (rij) AND V i ̸= rij then
5: return (1) {Collusion Detected}
6: end if
7: return (-1)

B. SERENE’s Mitigation Module

As soon as collusion is detected, the mitigation module is
triggered to proactively probe a subset of servers in order to
accurately classify them into honest or colluding workers.

SERENE’s detection algorithm implies that there is at least
two colluding nodes in the network, based on one verification

4

task. The mitigation module consists of (i) clustering the nodes
into two groups of servers that have similar behavior, which
we refer to as similarity-based grouping, and (ii) identifying
which group includes honest and which one includes colluding
servers, we refer to this step as identifying colluders.

1) Similarity-based Partitioning into Two Unnamed
Groups: While detection has found that there may exist two
groups of servers, these groups are not exhaustive because
they are formed based on a single task and a subset of probed
nodes. Therefore, the mitigation module is designed to probe
all the nodes in the network and construct an exhaustive
undirected weighted similarity graph (SG), based on how
often pairs of workers agreed on the same result for the same
task (i.e., agree on voting outcomes).

Therefore, SERENE collects new votes based on current
tasks until each pair of workers have been selected in 83

separate voting pools. Tasks are sent to only one pool of
workers and the task, its k votes, and the k worker nodes
returning the vote results are stored into a new task repository,
TR = {Ti, i = 1 . . . L | Ti = {(Ri

1, S1), (R
i
2, S2), (R

i
3, S3)}}

(assuming that the pool size is k = 3).
Then SG is constructed as a complete graph with N vertices,

and N×(N+1)
2 weighted edges, where weights are calculated

as the ratio between how often two workers’, Si’s and Sj’s,
votes agreed with each others by the number of times they
appeared on the same voting pools: i.e., the weighted edge
connecting two worker Si and Sj , ei,j is:

ei,j =

∑
k 1Rk

i =Rk
j∑

k 1∃(Rk
i ∩Rk

j)

The Similarity-based Grouping starts by isolating the naive
malicious workers which will return results/votes while consis-
tently disagreeing with all other nodes. Isolating these workers
is simple; we apply the EigenTrust algorithm proposed by
Kamvar et al. [25] to isolate naive malicious workers, which
we will save into a list of malicious workers M. After
removing M from the SG graph, the resulting graph consists
only of honest and colluding workers.

We use a graph partitioning algorithm to cut the graph
into two sub-graphs forming two disjoint groups. Graph
partitioning algorithms such as Markov Cluster Algorithm
(MCL) [26], Mininmum Cut Tree Clustering (MinCTC) [27],
or Spectral Clustering (SP) [28], can be used. We use one of
these algorithm attractively and stop as soon as the graph is
portioned into two sub-graphs.

However, if the graph portioning algorithm fails to portions
the SG graph, while we have detected the presence of col-
luding workers in the network (i.e., based on the collusion
detection module), SERENE uses a greedy heuristic to con-
struct two groups of nodes based the outcome of the detection
module. Assume the collusion detection module has detected
collusion based on task Ti after receiving a voting results Ri

j

from worker Sj .
Therefore, we construct the two groups as follows; worker

node Sj will form a group G1 with the other server worker

3It has been shown that 8 is sufficient to have an accurate similarity
graph [11]

Sk such that Ri
j = Ri

k (e.g., from the example of Figure 1,
G1 will be formed by the two worker nodes returning the red
R’ result), The other group G2 is formed by all worker nodes
returning the majority vote result and the remaining worker
nodes which did not return any voting result yet (e.g., from
the example of Figure 1, G2 will be formed by the all worker
nodes returning the green R result as well as all other worker
nodes which where not probed yet). G2 will then be updated
by removing all naive malicious workers M computed prior
to the group partitioning.

2) Group Identification: Identify and Isolate Colluding
Workers: At this step, the main goal is to identify which group
includes honest and which one includes colluding workers.
Unlike other state-of-the-art research, we do not assume the
presence of a trusted third party servers or trusted tasks (i.e.,
with guaranteed results) to guarantee efficient identification of
these two groups.

SERENE constructs a subset of trusted tasks (TT) from the
original task repository, TR. A task Tk ∈ TR is called a
trusted task if and only if ∃i ∈ G1 and j ∈ G2|Rk

i = Rk
j ,

where G1 and G2 are the two unnamed groups identified in
the previous step. In other words, trusted tasks are the ones
where workers from the two disjoints groups have agreed
upon–colluding workers did not collude for these trusted tasks,
thus the result returned for this task can be trusted. Note that
colluding workers may not decide to collude if they did not
form a majority of the pool or with a probability of 1− Pc.

The list TT of trusted tasks will therefore be used to classify
the workers into honest and colluding workers. However, since
colluding nodes may not collude all the time, SERENE sends
multiple tasks for each worker of one of the two unnamed
groups to classify the group, say G1, then the remaining group,
G2, will constitute the other class of workers. We show, in
sec. V-D, that this idea may not be sufficient and we may need
to check the two groups instead of relying only on classifying
only one and infer the other.

SERENE’s group identification uses fewer trusted tasks
and resources, if it starts the identification of the honest
group, rather than the colluding workers group (details will
be presented later in this section as we present the algorithm).
In other words, if we start identification of G1 and G1 was
classified as an honest group, verifying G2, consisting of
colluding nodes is less complex and requires less trusted task.
Otherwise, if G1 was classified as a colluding group, then
verifying the honest group, G2 requires more trusted tasks.

SERENE uses the size of the group to predict the group
class, using the assumption that honest workers are most
probably more than colluding workers in the network. Note
that SERENE is also able to correctly classify the worker even
when this assumption is not accurate–i.e., colluding workers
represent the majority of the workers as we will explain in the
algorithm and show results in the evaluation section V-D.

Say G1 is the bigger group, SERENE selects a pool of
k workers P ⊆ G1 such that Sj ∈ P have the minimum
number of verification within G1, then for the selected pool
P , SERENE finds the first task Ti ∈ TT such all workers
Sj ∈ P have never received task Ti, i.e., find Ti such that
∀Sj ∈ P, (Sj , ∗) /∈ TT . The verification algorithm stops when

5

the minimum number of verification for all nodes is equal to
e or when all tasks in TT have been utilized. The parameter
e is the maximum number of trusted tasks verification used to
tune the algorithm for accuracy.

SERENE assigns a reputation score Rsi for each worker
node Si based on worker node Si’s votes after comparing
these votes with the trusted tasks majority vote result. We
assign a voting score of 1 if the vote agrees with majority and
-1 otherwise. Let Vi = {v1 . . . ve′} where e′ ≤ e be the list
of voting scores (i.e., a list of 1 or -1). Rsi is computed as
follows:

Rsi =

∑e′

j=1 vj

e′

If ∀Si ∈ G1Rsi = 1 then SERENE identify G1 as
an honest group–all workers in G1 are honest. Otherwise,
SERENE runs a k-mean clustering algorithm, with K = 2
to classify G1 into two subgroups, G1.1 and G1.2. Assume
that we name G1.1 such that the average reputation score of
G1.1, Ri∈G1.1 is the highest — Ri∈G1.1 > Ri∈G1.2. If (I)
|G1.1| ≥ |G1.2|, then, G2 ← G2 ∪ G1.2, and G1 ← G1.1;
G1 consists of honest workers and G2 consists primarily of
colluding workers. Otherwise (II), i.e., |G1.1| < |G1.2|, then,
G2← G2∪G1.1, and G1← G1.2; G1 consists of colluding
workers and G2 consists primarily of honest workers.

However, SERENE needs to verify that all workers Sj ∈ G2
are colluding (in case I or honest in case II) workers.
Case (I): The unverified unnamed group G2 consists primarily
of colluding worker nodes. In this case, SERENE selects
a pool of k workers from the unnamed group G2, i.e.,
P ′ = {Si, i = 1 . . . k | Si ∈ G2}. SERENE selects tasks
Ti ∈ TT to verify the new pool P ′, similar to the selection for
pool P . Any worker node Si returning a vote which disagrees
with the majority will be placed in the honest group, i.e.,
G1← G1 ∪ Si, because Si did not collude with the majority
of colluding nodes, thus Si is honest. We repeat this process
until we exhaust all tasks Ti ∈ TT , because colluding nodes
may not always collude and must be tested multiple times.
Case (II): The unverified unnamed group G2 consists primarily
of honest worker nodes. In this case, SERENE iterates over all
worker nodes Si ∈ G2 and selects a pool of k workers formed
with Si and the remaining are colluding nodes, i.e., P ′ =
S1, S2, . . . , Sk such that ∃i | Si ∈ G2 AND ∀j ̸= i, Sj ∈ G1.
SERENE selects up to e tasks Ti ∈ TT to verify the new
pool P ′, similar to the selection for pool P . In this case, if
worker node Si ∈ G2 ∩ P ′ returns a vote which disagrees
with the majority, then Si is verified as honest and remains
in G2, SERENE then selects/verifies another worker Sj until
all nodes are verified. However, if after e task verification,
all worker nodes in P ′ return the same vote then they are all
colluding workers and SERENE will place Si in the colluding
group, i.e., G1← G1 ∪ Si.

Figure 2 depicts two examples of case (I) and (II); in the first
example G1 was named as H thus G2 is unnamed and consists
mainly of colluding nodes, however the clustering algorithm
may have misclassified few honest workers as clouding. In this
case, SERENE selects its pool of workers for verification from

Case I

G1 G2
P'

G1: Honest; G2: unnamed mostly colluding
Case II

G1 G2

P'

G1: Colluding; G2: unnamed mostly honest

Fig. 2: Group identification example: In Case (I), where G1
consists of honest workers, SERENE selects pools P’ entirely
from G2; nodes disagreeing with majority are honest and
added to G1; In Case (II), where G1 consists of colluding
workers, P’ is formed with two nodes from G1 and one from
G2, until we verify all G2 members (i.e., G2 members agreeing
with majority are colluding and added to G1).

G2 and look for any inconsistency in the votes which result
in classifying the node as honest and adding it to G1. In case
(II) (the sub-figure from the right in Figure 2), G2 consists
primarily of honest workers, thus SERENE verifies worker
by worker from G2 with a pool P’ formed with colluding
workers from G1. A pool showing zero inconsistencies, results
in classifying the verified worker as colluding.

Finally, SERENE has identified all worker groups (i) naive
malicious (M), honest workers (H), and colluding workers
(C). SERENE then frees all task sets, TR and TT and runs
the detection module again periodically to find new potentially
colluding nodes.

V. EVALUATION

In this section, we compare SERENE’s performance to the
closest state-of-the-art algorithm, Staab & Angel, which we
refer to as SnE [11], one of the existing collusion mitigation
approaches that uses comparable set of assumptions. Note
that none of the existing research has claimed or developed
a method to detect and mitigate collusion when colluding
workers exceeds 50% of the nodes in the network.

A. Simulation Setup

We implement SERENE and simulate different workload
and network scenario using a python simulator we have
developed. We consider a network of N = 20 workers. While
we have considered naive malicious workers in our design,
we do set M = ̸ 0 because identifying M is very trivial and
has been solved by many state-of-the-art algorithms including
SnE [11]. We simulate a 20 to 25 milliseconds random round
trip time communication delay between all nodes at the edge.
We implement two variations of SnE, SnE 8 and SnE 12
using using e = 8 (recommended value in [11]) and e = 12
observations per edge. We have tested other implementations
using different clustering algorithm such as SP and MinCTC,
however in this paper we show only results for SnE using
MCL clustering which achieved the best results.

We vary the percentage of colluding workers C from 10%, to
%90 from the set of N workers. Colluding nodes can collude
with a probability Pc ranging from 10% (i.e., rarely collude),
to 90% (i.e., mostly collude).

6

Each node generates a set of tasks at a rate of 1000 tasks per
second. Each task is sent to k = 3 workers for task verification.
We run the simulation for 100 seconds and we set the collusion
to start randomly following a uniform distribution between 3
seconds and 90 seconds. We repeat each simulation 100 times
and measure the average or the distribution of SERENE’s and
SnE’s results.

Parameters Acronym Values
Number of worker nodes N 20
% colluding workers |C| 10%, . . . , 90%
Probability of collusion Pc 10, 50, 90 %
Error rate for honest workers ϵ 0.3%
Simulation end time – 100s
Maximum observation per edge e 12 obs/edge
Users task generation rate – 1000 task/sec
Communication round trip delay RTT {20 . . . 25}ms

TABLE I: Simulation parameter for evaluation of SERENE

B. Evaluation Metrics

In our experiments, we evaluate SERENE’s and SnE’s
performances using the following metrics:

• Collusion detection delay: Measured as the difference
between the time when SERENE detects the presence of a
collusion and the start time of the collusion. The start time
of collusion is simulated (i.e., known) in our evaluation.
We also measure the number of epochs or iterations in
addition to the detection delay in seconds.

• Collusion detection accuracy: We use the f1-score ratio of
the accurate detection and the falsely detected collusion
(i.e., either collusion not detected, or falsely detected).

• Collusion mitigation accuracy: We measure the accuracy
of SERENE’s mitigation algorithm as an f1-score ratio
between the number of accurately detected and falsely
detected (i.e., colluding workers classified as honest or
honest classified as colluding workers) colluding workers.

• Collusion mitigation latency: Measured as the difference
in time between completing the mitigation (e.g., for
SERENE, this time is the end of the identification of both
groups G1 and G2) and the start of collusion.

C. SERENE’s Collusion Detection Performance

SERENE’s collusion detection is measured using two main
metrics; collusion detection delay and collusion detection
accuracy.

Figure 3 compares the performance of SERENE’s and SnE’s
collusion detection performance with regards to collusion
latency (sub-figures a and b) or collusion detection accuracy
(sub-figure c). Figure 3-(a) and (b) we measure the detection
latency in seconds and in number of iterations respectively and
we plot the cumulative distribution function CDF (Inf denotes
infinite delays resulting from inability to detect collusion when
collusion exists). Note that the CDFs include results with
different simulation runs and different Pc and C values.

In Figure 3a, SERENE outperforms SnE and detects col-
lusion faster by up to 10 ×. For half of the delays (50%
percentile), SERENE detects collusion at 0.85 seconds or less

however, SnE12 detects collusion at 50% longer delays, at 1.2
seconds when e = 12, and mostly unsuccessful delays when
e = 8, SnE8. Moreover, while SERENE accurately detects
collusion with more than 98%, SnE fails more than 30% and
80% of the time when using e = 12 and e = 8 respectively.

We also plot the CDF of the detection delay in algorithm
epochs in Figure 3b. Note that the epochs of both SERENE
and SnE are incomparable–i.e.,SnE operates periodically and
waits to gather e observation per edge to perform its clustering,
while SERENE’s epoch is one task at the time and detection
occurs when a given task detects two groups. We show that
SERENE detects collusion accurately in 90 or less tasks with
half of the collusion scenario detected within 35 tasks.

The accuracy of both algorithms is further compared in
Figure 3c. While all algorithms perform better as the probabil-
ity of colluding increases among the workers, SERENE outp
erforms SnE and achieves a 98% accuracy or more in detecting
collusion. However, SnE, and especially SnE8, show major
variation in accuracy performance and fail to detect collusion
from 6% to 27% of the time for SnE12 and 43% to 83% of the
time for SnE8, when Pc =50%. In fact, SnE relies on periodic
data gathering and triggers a clustering algorithm to find two
groups of workers, however most of the time it clusters the
network into two group of workers even when there is no
collusion in the network. It is worth mentioning that authors
did not test SnE algorithm in absence of collusion in their
original paper [11].

In addition to SERENE’s high accuracy performance in de-
tecting colluding workers, the detection algorithm, consisting
of zero lookup and simple mathematics operations, is very fast
and efficient. We perform a set of bench-marking analysis and
show results in section V-E.
Impact of CVT size on SERENE detection performance:

We vary the percentage of collusion Pc to analyze the impact
of the size of the CVT table (consists of tasks used to detect
the presence of two groups in the network). SERENE detects
collusion faster as the probability of collusion increases, since
the more collusion instances amongst workers the faster we
detect two inconsistent groups, thus SERENE detects collusion
faster.

In addition, we show in Figure 4 that there may exist
an optimal value of L (L ≈ .25 × N) and very large
(L = .7 × N) and very small (L = .1 × N) values perform
poorly. Large L values are discouraged because the larger
the table size the longer to gather multiple votes for any
given task (because SERENE chooses tasks randomly), thus
the slower the detection. On the other hand, very small table
sizes results of replacing the tasks that have been used to
verify all workers, then SERENE replaces them which slows
the detection. The CDF of all collusion detection delays ∀ Pc,
C (Figure 4b) shows that L = .25×N can achieve more than
10× improvement in latency, making it an important tuning
parameter for SERENE’s collusion detection.

D. SERENE Collusion Mitigation Performance

Collusion detection is the first step towards fixing the
collusion problem, efficient mitigation is also important. We

7

10 3 10 2 10 1 100 101 INF
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
SnE12
SnE8
SERENE

(a) CDF of detection delays in seconds
(x-axis in logscale)

100 101 102 INF
Verification epochs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SnE12
SnE8
SERENE

(b) CDF of detection delays in epochs
(x-axis in logscale)

SnE8
SnE12
SERENE0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

Pc = 10 Pc = 50 Pc = 90

(c) Collusion detection accuracy

Fig. 3: Comparing SERENE’s and SnE’s collusion detection delay (a) and (b) and accuracy (c); INF denotes infinite delay
values due to unsuccessful collusion detection

SERENE L = 0.1N
SERENE L = 0.25N
SERENE L = 0.5N
SERENE L = 0.7N

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

f1
-s

co
re

Pc = 10 Pc = 50 Pc = 90

(a) Collusion detection delay as
a function on Pc

10 2 10 1 100 101 INF
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SERENE L = 0.1N
SERENE L = 0.25N
SERENE L = 0.5N
SERENE L = 0.7N

(b) CDF of detection delay ∀
Pc, C (x-axis in logscale)

Fig. 4: Collusion detection delay as a function of task repos-
itory size, L

evaluate, in Figure 5, SERENE’s mitigation performance by
measuring both mitigation accuracy and latency and compare
these performance to those of SnE. We compare SERENE only
to SnE12 which exhibits the best performance compared to
SnE8 and for better readability. We also compare multiple im-
plementations of SERENE namely: (i) SERENE-Partitioning:
an implementation of SERENE up to the similarity-based
partitioning phase where SERENE identifies two unnamed
clusters G1 and G2 (i.e., section IV-B2), (ii) SERENE-
Partitioning+G1): an implementation of SERENE up to the
identification of G1 and removal of misclassified G1 members
(i.e., section IV-B2), and (iii) SERENE: the full implementa-
tion of SERENE design.

We show, in Figure 5a, that all SERENE versions outperform
SnE by up to 10% when the population of colluding workers
is low and more than 95% more when the percentage of
colluding workers exceed 50%. Note that SnE works only
when colluding workers represents the minority group and
it uses this assumption to identify C. However, SERENE
performs best when C is large because it detects the two groups
and gather more observations per edge faster. In addition,
while SERENE-Partitioning performance is almost identical to
SnE’s performance for lower C values, the G1 identification
phase only helps improve SERENE’s performance by up to 5%
while maintaining more than 85% accuracy when colluding
workers are the majority in the network. SERENE achieves
up to 95% accuracy when Pc =0.5, however Figure 5b shows
similar performance when the distribution of delays for all Pc

values in included–SERENE outperforms SnE12 and achieves
consistent accuracy above 80% ∀ Pc and C.

This major accuracy gain comes with a minor latency
cost shown in Figure 5c. While SnE have almost constant
mitigation delay which constitute the time needed to gather
enough observation per edge to cluster the graph, SERENE
uses the identification phase to identify both groups G1 and G2
(SERENE does not assume that colluding workers represent
the majority in the network) and further verify the correctness
of the clustering (e.g., misclassified workers). These steps
help achieve the accuracy gains highlighted in Figure 5a.
SERENE’s mitigation latency are 500ms to 1.5s more than
SnE12 mitigation delays. We argue that accurate identification
of colluding workers in the network is essential, thus the
additional delay cost introduced by SERENE is justified; in
fact, SnE with inaccurate identification of colluding nodes
may use another detection and mitigation phased to identify
the misclassified workers which will result in much larger
latencies.
Effect of e on collusion mitigation accuracy: We have
discussed the impact of e on SnE performance. SERENE
can also be tuned with different values of e to increase its
mitigation accuracy (detection accuracy does not seem to
be impacted by e). We compare, in Figure 6, the collusion
mitigation accuracy of SERENE when e = 5, 10, 20, 40. We
show that the impact of e is highlighted more for lower
probability of collusion, Pc (more 30% accuracy gain when
comparing e = 5 and e = 10). Lower Pc requires more
observations for colluding nodes to consistently collude with
each others. However, we also observe that SERENE-e=10
seems to achieve a good trade-off and there is not much
improvement recorded as we increase e (less than 1.5% for
higher Pc values). Note that we choose e = 12 for all other
experiments which achieves good trade off between accuracy
and delay.

E. Prototyping and Benchmarking Tests

We perform a set of benchmarking tests using different
machines/platforms including: (i) a Raspberry Pi v3b with
Quad Core 1.2GHz 64bit CPU, and 1GB RAM (Pi3), (ii)
Raspberry Pi v4 with Quad-core 1.8Ghz CPU, and 4GB of
RAM (Pi4), and (iii) an old laptop with Intel dual core 2.0Ghz
64bit CPU, and 2GB RAM (Laptop).

We implement both SERENE and SnE on these three
platforms and perform a set of benchmarking tests to measure

8

10 20 30 40 50 60 70 80 90
% of Colluding Nodes

0

20

40

60

80

100

f1
-s

co
re

SnE12
SERENE-Prt
SERENE-Prt+G1
SERENE

(a) Comparing mitigation accuracy for
Pc = 50%

SnE12 SERENE-Prt+G1 SERENE

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

(b) Collusion mitigation accuracy ∀ Pc

45 50 55 60
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SnE12
SERENE

(c) CDF of mitigation latency for all C and
Pc values

Fig. 5: Comparing mitigation accuracy (a, b) and latency (c) for SnE, SERENE implementation up to the grouping phase
(SERENE-Prt), SERENE implementation up to the identification of G1 (SERENE-Prt+G1), and SERENE (i.e., the full design).

PC=10 PC=50 PC=9050
60
70
80
90

100

f1
-s

co
re SERENE-e = 5

SERENE-e = 10
SERENE-e = 20
SERENE-e = 40

Fig. 6: Comparing the collusion mitigation accuracy for dif-
ferent observation per edge values (e).

SERENE_memory
SnE12_memory

SERENE_CPU
SnE12_CPU

Pi3 Pi4 Laptop
10

20

30

40

50

60

f1
-s

co
re

(a) Memory and CPU utilization
Pi3 Pi4 Laptop0

20

40

60

80

100

Ru
nt

im
e

(m
s)

SERENE Detection
SERENE Mitigation
SnE12 Detection
SnE12 Mitigation

(b) Run times

Fig. 7: The benchmarking tests for memory and cpu utilization
(a) as well as run times (b) using a Raspberry Pi3, Raspberry
Pi4, and a Laptop machine.

the CPU usage, memory usage and run times of the proposed
schemes. We repeat the experiments 50 times and plots the
distribution of all gathered result data in Figure 7.

While SERENE consumes 9% more memory to load its
tables and runs the detection and mitigation algorithms (Fig-
ure 7a), it uses more than half the CPU when compared to
SnE’s CPU usage–SERENE uses on average 10% CPU while
SnE uses 33%. Note that none of the tested platform shows
over-utilization of the resources, thus the very small differ-
ences when we compare results across the three platforms.

However, we can show in Figure 7b, that SERENE runs two
times faster than SnE across the three tested platforms. This
gain is mainly due to the fast detection algorithm which runs
10× faster than SnE’s collusion detection– SERENE detects in
5 milliseconds, while SnE detects collusion in 54 milliseconds.
Note that the two algorithm were implemented in the same
fashion–i.e., no parallel computing for SERENE or SnE.

VI. DISCUSSION, LIMITATIONS, AND FUTURE
DIRECTIONS

In this section, we discuss about some limitations of
SERENE, and challenges that can be addressed.

• We have assumed a fixed graph of nodes representing
a list of workers that do not change over time. With
mobility, for instance vehicles, must construct dynamic
graphs and remove nodes that has not been probed in a
period of time. This temporal graph can be more complex
to analyze, store, and manage. Note than none of the
state-of-the-art solutions have studied this challenging
problem. We plan to extend SERENE with a smart
dynamic temporal graph partitioning algorithm to detect
and mitigate the collusion in a mobile environment.

• We have studied the threat model where all colluding
nodes at the edge coordinate and return the same incor-
rect result. In reality, there maybe different clusters of
colluding workers operating simultaneously. While this
helps detect collusion faster as SERENE will be able to
detect multiple groups of workers, the mitigation process
needs tuning to accommodate this scenario.

• While we argue that replication-based task verification are
more generic and can be applied to any edge computing
application, comparing SERENE to non-replication based
solutions such in TEE or crypto-based solution can be
further investigated. We can run a set of benchmarking
tests using real-world workloads and investigate the ac-
curacy, delay, and overhead across all these categories of
solutions.

VII. CONCLUDING REMARKS

We have presented a new worker collusion resilient repli-
cation based task verification scheme called SERENE. Un-
like state-of-the-art collusion resilient solutions, SERENE is
lightweight and is able to efficiently and quickly detect the
presence of colluding workers in the network, then isolate
them.

SERENE’s detection relies on identifying two cluster of
workers consistently disagreeing with each others. While this
identification guarantees the presence of colluding workers
however, without assumptions of the size of colluding workers

9

or the presence of trusted third party servers (used by state-
of-the-art solutions), SERENE uses a three step mitigation
to partition the group of workers and identify the colluding
ones. Our results show that SERENE detects the existence
of collusion more accurately (with more than 98% success
ratio, which represent 30% improvement compared to SnE),
and 5× faster than SnE’s detection delay. Moreover the
SERENE’s mitigation accuracy is 10% better that state-of-the-
art and when the number of colluding workers exceeds 50%
of the total worker population SERENE’s maintains a 90-95%
accuracy why SnE fails and achieves 0% success in identifying
colluding workers.

In the future, we plan to improve SERENE’s implementation
to optimize its resource utilization (storage, and lookup time),
as well as the number of messages sent (overhead) in the
mitigation process. In addition, we would like to test a real-
world prototype and deployment of SERENE in an edge
computing setting with real-world workloads.

ACKNOWLEDGMENTS
This work was partially supported by US NSF award

#2148358, and an UMSL Research Award.

REFERENCES

[1] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” Communications of the ACM, vol. 58, no. 2, pp. 74–
84, 2015.

[2] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference, pp. 465–482, Springer, 2010.

[3] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: properties, applications, and challenges,” IEEE Security &
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[4] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proceedings of the 18th ACM
conference on Computer and communications security, pp. 445–454,
2011.

[5] G. Levitin, L. Xing, and Y. Dai, “Optimal spot-checking for collusion
tolerance in computer grids,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 2, pp. 301–312, 2017.

[6] G. C. Silaghi, F. Araujo, L. M. Silva, P. Domingues, and A. E. Arenas,
“Defeating colluding nodes in desktop grid computing platforms,”
Journal of Grid Computing, vol. 7, no. 4, pp. 555–573, 2009.

[7] A. Küpçü, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE Transactions on Dependable and Secure Computing,
vol. 14, no. 6, pp. 633–649, 2015.

[8] S. Zhao, V. Lo, and C. G. Dickey, “Result verification and trust-based
scheduling in peer-to-peer grids,” in Fifth IEEE International Conference
on Peer-to-Peer Computing (P2P’05), pp. 31–38, IEEE, 2005.

[9] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 211–227,
2017.

[10] L.-C. Canon, E. Jeannot, and J. Weissman, “A dynamic approach for
characterizing collusion in desktop grids,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12,
IEEE, 2010.

[11] E. Staab and T. Engel, “Collusion detection for grid computing,” in 2009
9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 412–419, IEEE, 2009.

[12] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp. 863–
874, 2013.

[13] K. Elkhiyaoui, M. Önen, M. Azraoui, and R. Molva, “Efficient tech-
niques for publicly verifiable delegation of computation,” in Proceedings
of the 11th ACM on Asia Conference on Computer and Communications
Security, pp. 119–128, 2016.

[14] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE symposium on security and privacy, pp. 38–54,
IEEE, 2015.

[15] N. O. Duarte, S. D. Yalew, N. Santos, and M. Correia, “Leveraging
arm trustzone and verifiable computing to provide auditable mobile
functions,” in Proceedings of the 15th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
pp. 302–311, 2018.

[16] Z. Chen, Y. Tian, J. Xiong, C. Peng, and J. Ma, “Towards reducing
delegation overhead in replication-based verification: An incentive-
compatible rational delegation computing scheme,” Information Sci-
ences, vol. 568, pp. 286–316, 2021.

[17] L. Wang, Y. Tian, and J. Xiong, “Achieving reliable and anti-collusive
outsourcing computation and verification based on blockchain in 5g-
enabled iot,” Digital Communications and Networks, 2022.

[18] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An
exploratory study of attestation mechanisms for trusted execution en-
vironments,” arXiv preprint arXiv:2204.06790, 2022.

[19] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and
A. Lysyanskaya, “Incentivizing outsourced computation,” in Proceedings
of the 3rd international workshop on Economics of networked systems,
pp. 85–90, 2008.

[20] K. Watanabe, M. Fukushi, and S. Horiguchi, “Collusion-resistant
sabotage-tolerance mechanisms for volunteer computing systems,”
in 2009 IEEE International Conference on e-Business Engineering,
pp. 213–218, IEEE, 2009.

[21] Y. Kong, C. Peikert, G. Schoenebeck, and B. Tao, “Outsourcing com-
putation: the minimal refereed mechanism,” in International Conference
on Web and Internet Economics, pp. 256–270, Springer, 2019.

[22] F. Araujo, J. Farinha, P. Domingues, G. C. Silaghi, and D. Kondo, “A
maximum independent set approach for collusion detection in voting
pools,” Journal of Parallel and Distributed Computing, vol. 71, no. 10,
pp. 1356–1366, 2011.

[23] A. Bendahmane, M. Essaaidi, A. El Moussaoui, and A. Younes, “The
effectiveness of reputation-based voting for collusion tolerance in large-
scale grids,” IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 6, pp. 665–674, 2014.

[24] A. M. Sauber, A. Awad, A. F. Shawish, and P. M. El-Kafrawy, “A novel
hadoop security model for addressing malicious collusive workers,”
Computational Intelligence and Neuroscience, vol. 2021, 2021.

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in Proceedings
of the 12th international conference on World Wide Web, pp. 640–651,
2003.

[26] Markov Clustering Documentation, “Markov Clustering Documenta-
tion.” https://markov-clustering.readthedocs.io/en/latest/. [Online; ac-
cessed March 15, 2024].

[27] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph
clustering algorithms,” in European symposium on algorithms, pp. 568–
579, Springer, 2003.

[28] Markov Clustering Documentation, “Markov Clustering Documen-
tation.” https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html. [Online; accessed March 15, 2024].

https://markov-clustering.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html

	Introduction
	Related Work
	System Model, Threat Model, and Assumption
	System Model
	Threat Model
	Assumptions

	SERENE: Collusion Detection and Mitigation
	SERENE's Detection Module
	SERENE's Mitigation Module
	Similarity-based Partitioning into Two Unnamed Groups
	Group Identification: Identify and Isolate Colluding Workers

	Evaluation
	Simulation Setup
	Evaluation Metrics
	SERENE's Collusion Detection Performance
	SERENE Collusion Mitigation Performance
	Prototyping and Benchmarking Tests

	Discussion, Limitations, and Future Directions
	Concluding Remarks
	References

