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Abstract

The matrix pencil method (MPM) is a well-known technique for estimat-

ing the parameters of exponentially damped sinusoids in noise by solving

a generalized eigenvalue problem. However, in several cases, this is an ill-

conditioned problem whose solution is highly biased under small pertur-

bations. When the estimation is performed to classify the observed signal

into two categories, the estimation errors induce several misclassifications.

In this work we propose a novel signal classification criteria by exploiting

the relationship between the generalized eigenvalue problem posed in the

MPM and the numerical range of a pair of rectangular matrices. In partic-

ular, the classification test is formulated as a set inclusion problem, and no

spectrum estimation is required. The technique is applied to a problem of

electromagnetic scattering to classify dielectric materials using the scatter-

ing signal observed when a target is illuminated by an ultra-wideband signal.

The performance of the classification scheme is assessed in terms of error

rate and it is compared to another classification technique, the generalized
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likelihood rate test (GLRT).

Keywords: Target classification, matrix pencil method, numerical range,

singularity expansion method

1. Introduction

Problems dealing with a mixture of closely spaced sinusoidal signals in

a noisy environment are regularly observed in engineering. This is the case

of the scattering collected from a dielectric target illuminated by an Ultra-

WideBand (UWB) signal, where the particular mixture is a feature that

characterizes the target. Identification of the complex frequencies embed-

ded in the scattered signal becomes relevant for target identification and

classification. Motivated by this problem, we have designed a novel strategy

for classifying mixtures of sinusoidal signals. In particular, this procedure

exploits the underlying structure among the complex frequencies of the ob-

served signal without actually identifying their values.

1.1. Related Work

Traditional approaches to this problem include the matrix pencil method

(MPM)[1]. This is a spectrum estimation technique that constructs a gen-

eralized eigenvalue problem from a partition of the Hankel matrix of the

observed signal. In this setup, the matrix pencil is non-square and the eigen-

value computation can become unstable or the solutions may fail to exist.

This problem is particularly acute when the number of sinusoids in the origi-

nal mixture is very large and the complex frequencies are close to each other

in the complex plane. These facts make very difficult to accurately identify

the parameters of the exponentially damped sinusoidal signals.
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An alternative was studied in [2, 3], where a generalized likelihood test

was posed to classify perfectly conducting objects using scattered signals.

Nevertheless, GLRT is sensitive to unmodelled dynamics, which could be

the case when a large number of sinusoids form the observed mixture.

On the other hand, research on eigenvalue computation for a matrix leads

to the analysis of its numerical range, which is a set in the complex plane

that contains the spectrum of the matrix [4, 5]. Analysis of the numerical

range of matrices has been an active field of research in the past. Some of

those results have set the ground for the classification criteria that we present

in this paper. In particular, we return to the definition for the numerical

range of rectangular matrices introduced in [6]. The authors of this paper

defined the numerical range of a pair of rectangular matrices that resulted

in a compact and convex set of the complex plane.

1.2. Contributions

Making a hinge on the MPM, in particular on the associated generalized

eigenvalue problem, we formulate a signal classification criteria using the

numerical range for the matrices of the matrix pencil. In particular, the

classification is formulated as a set inclusion problem, hence avoiding the

need to compute eigenvalues of probably large ill-conditioned matrices.

We start our paper with a review of the MPM in section 2. In particular,

we discuss how the MPM poses a generalized eigenvalue problem that may

be complicated to solve accurately. In section 3, we reproduce the defini-

tion for the numerical range of a pair of rectangular matrices and we show

the properties that are relevant to our development. Along these lines, we

show that the rectangular numerical range of a pair of matrices contains the

corresponding generalized eigenvalues. Making ground on this observation,
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in section 4 we propose a new classification technique that is solved as a

set inclusion problem. To check the validity of our approach, we analyze in

section 5 the behavior of the rectangular numerical range related to noisy

signals for different values of the signal to noise ratio (SNR). Finally, in

section 6 we show numerical results when classifying sums of exponentially

damped sinusoids. Also, we apply the new procedure to scattering signals

from different dielectric materials and compare its performance to an al-

ready known classification technique, the Generalized Likelihood Ratio Test

(GLRT).

2. Matrix Pencil Method

The Matrix Pencil Method (MPM) has been used as a high-resolution

spectrum estimation technique on different applications for several years now

[7, 8]. In this section, we review briefly the main aspects of this technique.

Suppose that we want to analyze a signal that is composed by a sum of

damped complex exponentials perturbed by noise. We assume that different

looks of a single experiment are acquired. For example, in the case of the

electromagnetic scattering, an array of antennas spatially distributed may

be collecting the scattered signals from different observation angles. On a

general framework, we consider the signal vector yt with K components

yt =
M∑
i=1

ciz
t
i +wt, t = 0, 1, . . . (1)

where K is the number of looks, M is the number of exponentials, zi ∈ C is a

complex resonant frequency, and ci ∈ CK is the vector of residues associated

to zi.
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Now, for two integers s and n, s > n, consider s + n − 1 samples of yt.

Let m = sK and define Hy as the following (m × (n + 1))-block Hankel

matrix

Hy =



y0 y1 · · · yn

y1 y2 · · · yn+1

...
...

. . .
...

ys−1 ys · · · ys+n−1


∈ Cm×(n+1). (2)

The integer n is known as the pencil parameter and it is a resource to

mitigate the effect of wt on yt
1, provided that M ≤ n ≤ s−M .

A well-known result states that in the noiseless case, the rank of Hy

is M [9]. To show that, recall that the entries of Hy satisfy the following

recurrence relation of order M

yt =

M∑
k=1

akyt−k, t = M,M + 1, . . . , (3)

and M is the least integer number satisfying (3) for all t. Hence, every

column of H is a linear combination of the first M columns, and H has

indeed rank equal to M .

Define now two (m×n)-block matrices, Ay and By, where the first one is

obtained by deleting the first column of Hy, and the second one is obtained

from Hy by deleting its last column. A matrix pencil is then defined as

Ay − λBy. (4)

When the signal yt is noiseless, the rank of the pencil (4) is M as long

as λ ̸= zi , i = 1, . . . ,M . When λ = zi, the rank of the pencil is reduced

1It has been shown that when using the MPM for estimating zi, its variance is minimum

for values of n between s/2 and 2s [1].
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by one. Furthermore, zi, i = 1, . . . ,M can be computed as the generalized

eigenvalues of (Ay, By). Alternatively, when By is full rank, zi solves the

eigenvalue problem

B†
yAy − λIn, (5)

where B†
y is the pseudoinverse and In is the identity matrix of order n. This

is the principle for using the MPM for estimating the values of zi.

However, when considering noisy signals, the pencil (4) has usually full

rank for any complex scalar λ. To overcome this problem, several proce-

dures have been proposed in the past. All of them obtain an approximation

for the original Hankel matrix before computing the pencil. A first simple

approach was followed in [10], where the singular value decomposition of the

original Hankel matrix was computed and only the directions corresponding

to the dominant singular values were kept. The authors in [7, 8] noticed

that this procedure did not guarantee a Hankel structure for the resulting

approximation of Hy. Following [11], they proposed an iterative procedure

that kept the Hankel structure in the approximated matrix. Alternatively,

in [12, 13], the problem was tackled by solving a total least-squares problem.

In both procedures, knowledge of M was key, and it had to be estimated

when not known a priori.

Nevertheless, even when the value of M is known, the computation of

generalized eigenvalues may be a delicate problem. For a better understand-

ing of this issue, and following [14], we define the function g : C → R≥0

g(λ) = σmin{Ay − λBy} (6)

where σmin is the smallest singular value. For a pencil Ay − λBy that has

a rank-reducing solution at λ = z, g(z) = 0. Therefore, the generalized
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eigenvalues of (Ay, By) are the local minima of this function.

Consider now a signal as in (1) with K = 1 and M = 4, under two

scenarios: one without noise (wt = 0), and one with noise (wt ̸= 0). Using

n = M , we build gnoiseless(λ) from the noiseless signal and gnoisy(λ) from the

noisy one. Fig. 1 shows the level curves of function gnoiseless(λ). Observe

that in this case, its minima coincide with the location of zi, i = 1, . . . 4.
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Figure 1: Function gnoiseless(λ), and z1, . . . z4 (’×’).

Now in Fig. 2, we have plotted the level curves for gnoisy(λ) for a signal

to noise ratio 30 dB. Notice that in this case, the local minima move away

from the actual values of z1 through z4. It is clear from this very simple

example that there are major difficulties that we may face when identifying

the oscillation modes from noisy signals. These difficulties are even more

serious when the value of M is unknown and the order of the model needs

to be identified beforehand [15, 16].
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Figure 2: Function gnoisy(λ), and z1, . . . z4 (’×’).

3. The numerical range of a matrix pencil

As shown previously, solving (1) may be difficult when dealing with

perturbed matrices. Nevertheless, it is interesting to define a region on

the complex plane where the solutions would be. A candidate for that is

the numerical range associated to (Ay, By). In this section, we present

background material necessary to present the main result of the paper. It

is not our intention to provide a thorough analysis of the properties and

problems related to the numerical range of a matrix. For an in-depth tutorial

on this matter, we refer the reader to [4].

Let A be a complex n× n-matrix. Its numerical range or field of values

is defined as

W (A) :=
{
xHAx : x ∈ Cn,xHx = 1

}
⊂ C. (7)

Properties of W (A)

1. All the eigenvalues of A lie in W (A).
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2. W (A) is a closed convex set.

3. It has the form [5]

W (A) =
{
θ ∈ C : ∥A− λIn∥2 ≥ |θ − λ|,∀λ ∈ C

}
. (8)

where ∥ · ∥2 is the spectral norm. The set W (A) appears naturally when

recursively computing the eigenvalues of A. For instance, the Arnoldi recur-

rence, which is the universally used algorithm for this matter2, approximates

the sought eigenvalues with elements of W (A).

The concept of eigenvalues is generalized when dealing with two rectan-

gular matrices. Let A,B ∈ Cm×n. A scalar β is a generalized eigenvalue of

(A,B) if there exists x ∈ Cn such that

Ax = βBx, x ̸= 0. (9)

Following (8), we introduce the definition for the numerical range of the

pencil (A;B) as

W∥·∥2(A;B) =
{
θ ∈ C : ∥A− λB∥ ≥ |θ − λ|, ∀λ ∈ C

}
=

⋂
λ∈C

D(λ, ∥A− λB∥). (10)

This definition was first proposed in [6]. We state, without proofs, some

properties of W∥·∥2(A;B).

Proposition 1. W∥·∥2(A;B) is non-empty if and only if ∥B∥ ≥ 1.

Notice that from (10), we have that ∀θ ∈ W∥·∥2(A;B), |θ| ≤ ∥A∥2.

Moreover, for λ such that |θ| < |λ|, the following is true

|λ| − |θ| ≤ ∥A− λB∥2 ≤ ∥A∥2 + |λ|∥B∥2.

2A variant of the Arnoldi algorithm has been implemented in ARPACK.
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Hence |λ|(1−∥B∥2) ≤ 2∥A∥2. If ∥B∥2 < 1, this is satisfied by λ on a bounded

set only, and not on C. Therefore, θ /∈ W∥·∥2(A;B). Then if ∥B∥2 < 1, for

any θ ∈ W∥·∥2(A;B) it is possible to find λ that does not satisfy (10). We

conclude that W∥·∥2(A;B) = ∅. It can be proved that ∥B∥2 > 1 is also a

necessary condition for non-emptiness.

Proposition 2. Any generalized eigenvalue β of (A,B) with associated

eigenvector x ∈ Cn such that ∥Bx∥ ≥ 1, lies in W∥·∥2(A;B).

Here, the condition ∥Bx∥ ≥ 1 is only sufficient but not necessary. Ex-

perimentally, it has been verified that the generalized eigenvalues lied in

W∥·∥2(A;B) although ∥Bx∥ < 1.

Proposition 3. Let α ∈ C such that |α| ≥ 1. Then for any A,B ∈ Cm×n,

W∥.∥2(A,B) ⊂ W∥.∥2(αA,αB).

Proposition 4. When the Frobenious norm is used in (10), and ∥B∥F ≥ 1,

W∥·∥F (A;B) = D
(
⟨A,B⟩
∥B∥2F

,

∥∥∥∥A− ⟨A,B⟩
∥B∥2F

B

∥∥∥∥
F

√
∥B∥2F − 1

∥B∥F

)
. (11)

In this case, the numerical range is characterized by a closed disc centered at

⟨A,B⟩
∥B∥2 , which is a superset that contains W∥·∥2(A,B), because of the equiva-

lence between ∥.∥2 and ∥.∥F .

Lemma 1. For any A,B ∈ Cm×n (m ≥ n), ∥B∥2 = 1, it holds that

W∥·∥2(A;B) ⊆ W (B†A).

Proof. When m > n and using the definition of the Moore-Penrose pseu-

doinverse B†, we have that

W∥·∥2(A;B) =
{
θ ∈ C : ∥(B†A− λIn)B∥2 ≥ |θ − λ|, ∀λC

}
⊆ {θ ∈ C : ∥B†A− λIn∥2 ≥ |θ − λ|, ∀λ ∈ C}

= W (B†A),
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where the last equality follows from (8).

Recall that Eq. (5) formulates the generalized eigenvalue problem as a

regular one usingB†A. As a consequence, if β in (9) exists, it lies inW (B†A).

In the particular case of Lemma 1, we have that W∥·∥2(A;B) ⊆ W (B†A).

4. Main Result

4.1. A Classification Problem

Our quest is for a criterion to classify pairs of rectangular matrices (A,B)

according to their generalized eigenvalues. A direct approach to this prob-

lem would compute the generalized eigenvalues. However, this would require

lengthy computations when considering large size matrices, and the overall

approach might fail to obtain a valid solution when using noisy experimen-

tal data. To construct a more robust strategy, we propose to use the set

W∥·∥2(A;B) to characterize the behavior of (A;B), rather than the actual

values of the eigenvalues. Resorting to a minor abuse of notation, we will

say that a matrix class Θ is defined by a finite set of complex numbers that

would also be called Θ.

Definition 1. Let Θ = {θ1, θ2, . . . , θp} ⊂ C. Consider two matrices A,B ∈

Cm×n, with ∥B∥2 ≥ 1. We say that (A,B) is of class Θ if and only if

θi ∈ W∥·∥2(A;B) for all i = 1, . . . , p.

The set {θ1, θ2, . . . , θp} is the candidate set, Θ is the candidate class, and

(A;B) is the observed pair.

The classification procedure requires verifying whether θi is a member

of W∥·∥2(A;B) or not. Next theorem shows how to answer this question by

solving a minimization problem.
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Theorem 1. Given θ ∈ C, define the function fθ : C → R

fθ(λ) = ∥A− λB∥2 − |θ − λ|.

Then, θ ∈ W∥·∥2(A;B) if and only if

inf
λ∈C

fθ(λ) ≥ 0

Proof. Using (10), we have that the following statements are equivalent:

θ ∈ W∥·∥2(A;B) ⇔

∥A− λB∥2 ≥ |θ − λ|, ∀λ ∈ C ⇔

∥A− λB∥2 − |θ − λ| ≥ 0, ∀λ ∈ C ⇔

fθ(λ) ≥ 0, ∀λ ∈ C.

The result follows from here.

4.2. Classification of exponentially damped sinusoids

Suppose now that the measured outcome of an experiment is modeled as

in (1). In particular, consider that the set of complex resonant frequencies,

{zi, i = 1, . . . ,M} , is a feature that characterizes the experimental obser-

vation. As such, we associate a class of observed signals to a set of complex

frequencies. For instance, when observing a scattering phenomenon, the

class of signals represents the material from which the illuminated target is

made of. Then, given a finite sample collection of yt, the question at hand

is whether this observation lies within the class defined a priori.

To proceed along this path, we assume that we know a priori all or a

subset of the complex resonant frequencies present in the signals of interest.

That will be, we know Z = {zi, i = 1, . . . p}, where p ≤ M . Consider now

that we collect s+ n− 1 samples of the observed signal yt and we use them
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to build the Hankel matrix Hy and the associated matrices Ay ∈ Cm×n and

By ∈ Cm×n as in section 2. A straightforward extension of Definition 1

leads to the following definition

Definition 2. Let Z = {z1, z2, . . . , zp} ⊂ C. Consider the matrices Ay, By

built from yt, t = 0, . . . s+ n− 1. We say that yt is of class Z if and only if

zi ∈ W∥·∥2(Ay;By) for all i = 1, . . . , p.

The set Z is the candidate set that characterizes the candidate class, yt

is the observed signal, and (Ay, By) is the observed pair.

Definition 2 allows us to classify the observed signal without explicitly

solving the generalized eigenvalue problem formulated in the MPM. We call

this procedure the Classification by Rectangular Numerical Range (CRNR).

Algorithm 1 shows an implementation of this classification criteria.

When considering a single candidate class, we commit a classification

error if Z ⊂ W∥·∥2(Ay;By) given that yt is not from class Z. When c

candidate classes are considered, we deal with c sets Zk, k = 1, . . . , c. The

construction of each one depends on the signals being classified. On the other

hand, when we observe yt of class Zj , and consider the candidate class Zk,

with k ̸= j, we commit a classification error when Zk ⊂ W∥·∥2(Ay;By). This

observarion will be used to characterize the performance of the classification

criteria.

In the general case, the condition ∥By∥2 ≥ 1 for having a non-empty

rectangular numerical range for the pair (Ay, By) cannot be guaranteed.

However, an adequate scaling of yt may solve this problem. On the other

hand, since any complex frequency zi of yt is also a complex frequency of

αyt for any complex scalar α, scaling is a suitable resource for applying the

results of subsection 4.1 to the classification of a sum of complex exponen-
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Algorithm 1

1: Given yt, Z = {z1, z2, . . . , zp}, and a scalar D > 1

2: Obtain a reduced-rank approximation for Hy

3: Compute (Ay, By) from Hy .

4: if ∥B∥2 < 1 then

5: Ay = D
∥By∥2Ay

6: By = D
∥By∥2By

7: end if

8: for k = 1, . . . , p do

9: if r(Ay, By) < |zk − c(Ay, By)| then

10: yt is not of class Z. return

11: else

12: δk = infλ∈C ∥Ay − λBy∥2 − |zk − λ|

13: if δk < 0 then

14: yt is not of class Z. return

15: end if

16: end if

17: end for

18: yt is of class Z.
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tials. The appropriate scaling factor depends on the set Z. One may think

that α is selected during a setup process and kept fixed afterward.

A sensible step when dealing with noisy data is to obtain a reduced-rank

approximation for Hy. In this paper, we follow the ideas from [11]. For

completeness, we have included the procedure in Appendix A. We will

analyze the relevance of this step in the following section.

As mentioned in Proposition 4, W∥.∥2 is a subset of W∥.∥F , which is a

disk as in (11). Let c(Ay, By) and r(Ay, By) be the center and radius of

that disk. Exploiting the structure of Ay and By we obtain the following

closed-form expressions:

c(Ay, By) =

∑m+n−2
i=0 ηiy

∗
i+1yi∑m+n−2

i=0 ηi|yi|2
(12)

r(Ay, By) =

[m+n−2∑
i=0

ηi|yi+1|2 −
|
∑m+n−2

i=0 ηiy
∗
i+1yi|2∑m+n−2

i=0 ηi|yi|2

] 1
2

×

√∑m+n−2
i=0 ηi|yi|2 − 1∑m+n−2

i=0 ηi|yi|2
, (13)

where ηi is the number of elements in the i−th anti-diagonal of Ay (or

By). Any z such that |z − c(Ay, By)| > r(Ay, By), does not lie within

W∥.∥F (Ay, By). Hence z /∈ W∥.∥2(Ay, By). In Algorithm 1 we include this

simple check to quickly reject the candidate frequencies outsideW∥.∥F (Ay, By).

Following Th. 1, for any other candidate frequency, we compute

δ = inf
λ∈C

∥Ay − λBy∥2 − |z − λ|.

If δ < 0, then z /∈ W∥.∥2(Ay, By).

5. Numerical range for noisy signals

The observed signal yt has a noise component that will alter the bound-

aries of W∥.∥2(Ay, By). In general, large noise terms tend to expand the
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boundaries of the numerical range. To mitigate this problem, we perform a

reduced-rank approximation of Hy as in step 2 in Algorithm 1. In this sec-

tion, we analyze a particular example to show the relevance of this procedure

by studing the behavior of W∥.∥F (Ay, By) for different noise levels.

We build a signal as in (1), using K = 1, M = 10, and zi ∈ Z1 defined

as

Z1 =
{
0.4474± 0.5822j; 0.4447± 0.5782j; 0.4236± 0.5874j;

0.4166± 0.5959j; 0.3871± 0.5858j
}
.

(14)

The noise term wt is a white Gaussian process with known variance. The

signal to noise ratio (SNR) is defined as usual as the ratio between the

signal power to the noise power. For each SNR, we perform a Montecarlo

experiment with 10000 realizations. For each record of {yt, t = 0, . . . , s +

n− 1}, we compute (12) and (13).

Figures 3 and 4 show the ensemble averages of c(Ay, By) and r(Ay, By),

for each SNR, before and after performing the reduced-rank approximation.

-5 0 5 10 15 20 25 30 35

SNR [dB]

0

0.1

0.2

0.3355

0.4

Figure 3: c(Ay, By) vs. SNR with and without reduced-rank Hankel approximation.

We observe from Fig. 3 and 4 that W∥.∥F (Ay, By) gets enlarged as
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the SNR deteriorates. For instance, the expected value of r(Ay, By) grows

as the noise power increases. However, the effect is dramatically reduced

when we perform the reduced-rank approximation of Hy. Also, the center

c(Ay, By) remains close to its noiseless value when the Hankel approxima-

tion is performed. In general, the rank reduction procedure contributes to

mitigate the effect of noise on the boundaries of the numerical range. Since

W∥.∥2(Ay, By) is a subset of W∥.∥F (Ay, By), similar conclusions hold for the

numerical range defined with the 2-norm. This is an important feature, since

the classification process is defined by the boundaries of W∥.∥2(Ay, By) and

its ability to enclose the complex frequencies from one class and to leave

aside the complex frequencies from other classes.

Although we are showing these results on a particular example, the same

conclusions were observed elsewhere. An important note to make is that

this was the case when the approximated Hy kept the Hankel structure.

Simple truncation of the singular value decomposition of Hy did not perform

adequately.

-5 0 5 10 15 20 25 30 35

SNR [dB]

0.5677

1

2

3

Figure 4: r(Ay, By) vs. SNR with and without reduced-rank Hankel approximation.
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6. Numerical results

6.1. Generalized likelihood test

Using the statistical description of yt, we can formulate a hypothesis

testing problem and solve it by using a likelihood ratio test. We will use the

GLRT procedure to assess the performance of the classification methodology

proposed above. In this section, we succinctly describe the application of

the GLRT in the context described so far.

Let the observed signal yt be from class Z1 as before, and consider a

second class of signals, Z2 as the candidate class. Each signal in each class

has its own vector of residues in (1). As such, ci,1 is related to signals

of class Z1, and ci,2 to signals of class Z2. In general, ci,1 and ci,2 are

unknown vectors. To robustify the classification, a generalized likelihood

test (GLRT) is formulated as in [2]. Given Z1 = {zi,1, i = 1, . . . p} and

Z2 = {zi,2, i = 1, . . . p}, and the observed signal y0, . . . ,yl, l = s+ n− 1, we

define the hypothesis H1 and H2 as follows

Hi :


yt
0

...

yt
l

 = Fi


ct1,i
...

ctp,i

 , where Fi =


z01,i · · · z0p,i

. . .

zl1,i · · · zlp,i

 ,

is a matrix formed from the complex frequencies associated with Z1 and Z2

respectively. Notice that zk,i, k = 1, . . . , p, i = 1, 2, are known frequencies.

Then, the GLRT is posed as

maxci,1 p(y0, . . . ,yl|H1)

maxci,2 p(y0, . . . ,yl|H2)

H1

⋛

H2

1.
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6.2. Known model order

In this section, we test the classification procedure when the model order

is known a priori. For that, we build the observed signal yt from class Z1 as

before for different SNRs. For each SNR, the algorithm selects an appropri-

ate scaling factor as stated in Algorithm 1. We consider the candidate class

Z2

Z2 =
{
0.0429± 0.0825j;−0.4130± 0.1176j;−0.3118± 0.2127j;

− 0.1951± 0.3642j;−0.3385± 0.1249j
}
.

(15)

Fig. 5 shows a particular realization of W∥.∥2(Ay, By) for different SNRs.

We have also incorporated on this figure the sets Z1 and Z2. Notice that

Z1 is always within the boundaries of W∥.∥2(Ay, By). In this case, the set

Z2 is close to the boundaries of W∥·∥2(Ay;By) but it is not included on it.

This may not be the case on all the realizations. Erroneous classifications

are expected on those realizations.

(a) SNR = 0dB. (b) SNR = 10dB. (c) SNR = 20dB. (d) SNR = 30dB.

Figure 5: Numerical Range W∥·∥2(Ay, By) for different SNR. Sets Z1(blue ×), Z2(red +).

We compare the performances of CRNR and GLRT by computing the

error rates. Fig. 6 shows the results. For low SNRs, from -5dB to 0dB,

GLRT and CRNR have similar performances. However, when the SNR

increases, there is approximately 2 dB difference between both methods.
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Figure 6: Error rates for observed signal yt ∈ Z1 and classification set Z2.

6.3. An unknown number of components

In this section, we compare the performance of the CRNR with the

GLRT when p ̸= M . The observed signal is as before built from Z1. How-

ever, in this case, we estimate the order of the model using [16] and with this

order we consider the number of complex frequencies for the classification

test. As before, we run a Montecarlo experiment with 10000 realizations.

Both methods are applied to each realization. The results are shown in Fig.

7. We observe that the CRNR outperforms the GLRT, which suffers when

a wrong model order is considered.

6.4. Scattering problem

A scattering phenomenon occurs when an electromagnetic wave strikes

a small object and the propagation continues over new directions, different

from the incident one. Accurate mathematical models are very complex as

they require the solution of Maxwell’s equations for appropriate boundary

conditions. The author in [17] introduced an approximation known as the
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Figure 7: Error rates for observed signal yt and candidate set Z2.

singularity expansion method (SEM) to describe the scattered field arriving

at a given point in space as the combination of two components: a first

one dominated by direct reflexions from the object, called the early-time

component; a second one, which is due to induced surface currents on the

object or cavity waves, called the late-time component. The SEM models

the signal scattered from a target and observed from different angles as

follows:

yt =

M∑
i=1

ciz
(t−τi)
i + ŷt, t = 0, 1, . . . (16)

where zi and ci are the complex natural resonances of the scattering ob-

ject and the associated vectors of residues, τi is a constant delay, usually

unknown, and ŷt is an entire function that represents the early-time com-

ponent.

Notice that the residues associated with each resonant modes are aspect

dependent. This implies that some natural mode may not be significantly

observed when its associated residue has very low energy or even zero along
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(a) ε1 = 2.12− 0.053j.
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(b) ε2 = 7.0− 5.25j.

Figure 8: Scattered electric field obtained from spheres made of different materials.

certain observation angle. Having multiple observation angles will be bene-

ficial to overcome this difficulty.

Internal resonances are associated with the composition of the particu-

lar object being illuminated. For example, Fig. 8 shows the backscattered

signals for two different spheres of the same radius and different material.

In the past, it has been proposed to use internal resonances to classify ob-

jects using scattering fields [18, 19, 20]. All of these methods work in the

resonance region, namely the late-time component of the signal. However, a

clear separation between the early-time and the late-time components is not

possible [21]. Usually, involved frequency-time techniques are implemented

to achieve the signal separation in these two portions [3].

To perform our study, we will consider spherical objects made of a homo-

geneous material and illuminated by a plane wave. In this case, the solution

to Maxwell’s equations is known as the Mie series [22]. We use this result to

simulate the scattered field from a sphere with radius, a = 0.07 meters made

of dielectric material with dielectric constant ε. We observe the response to

a Gaussian pulse in the frequency range 1GHz to 5.9GHz for K = 3 differ-
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Figure 9: Natural modes for Sphere 1 and 2

ent observation angles, ϕ = [0◦, 45◦, 180◦]. To set the classification problem,

we consider two different materials, Class 1 with ε1 = 2.12 − 0.053j, and

Class 2 with ε2 = 7.0− 5.25j.

Fig. 9 shows some of the natural frequencies of Class 1 and Class 2.

Both classes have a very large number of natural frequencies. However, it is

possible to select disjoint subsets to characterize each class. The appropriate

selection of the candidate modes is a delicate problem that determines the

performance of the selection technique. In this paper, we choose a subset of

p = 10 modes to make the candidate class Zε2 as shown in Fig. 9b.

Using the observed signal from Sphere 1 and the classification set Zε2 , we

follow Algorithm 1. We compare the performance of CRNR with the GLRT

approach. In this case, we have used p = 10 known resonances to build the

test. Fig. 10 shows the classification error rates obtained for these methods.

The CRNR outperforms the GLRT, which shows a poor performance when

a reduced order model is considered.
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Figure 10: Error rate for observation pair (Aε1 , Bε1) and candidate set Zε2

7. Conclusion

In this work, we have proposed a novel classification algorithm for signals

composed of sums of exponentially damped sinusoids. Instead of estimating

the frequencies and compared them to theoretical frequencies in a database,

we have formulated an inverse problem. That is, given a set of frequencies,

we evaluate if they correspond to the signal that we are observing. For

that, we test the boundaries of the rectangular numerical range of the ma-

trix pencil associated with the observed signal. With this proposition, we

overcome some drawbacks observed in the matrix pencil method, just like

the instability of the computation of the eigenvalues and the estimation of

the model order.

We have applied this new scheme to the classification of dielectric mate-

rial using the backscattered response of spherical objects when illuminated

with ultra-wideband pulses. We have shown that the CRNR shows a good

performance. As we mentioned, the resonant frequencies are independent
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of the aspect angle and polarization but their associated residues are not.

So, theoretically we will have a unique set of infinite resonant frequencies

associated with an object but when we measure the scattering signals we

will observe only a subset of resonant frequencies. This makes the choice of

candidate frequencies a critical step for the classification scheme. Neverthe-

less, the proposed scheme allows reducing by at least an order of magnitude

the classification error compare to other existing techniques.

Appendix A. Reduced rank Hankel matrix approximation

In this section, we summarize the procedure presented in [10, 7]. Con-

sider H as in section 2, and define its singular value decomposition

H =

n+1∑
i=1

σiuiv
H
i , (A.1)

where ui ∈ Cm, vi ∈ Cn+1, and σ1 ≥ σ2 ≥ · · · ≥ σn+1 ≥ 0.

Under the presence of noise, H is full rank and has Hankel structure. The

idea is to obtain a reduced-rank approximation that preserves the Hankel

structure. This is important since it has been noticed that there is a one-

to-one correspondence between data sequences consisting of superimposed

damped sinusoids and rank-deficient Hankel matrices [7].

Let us define two matrix operators. The first one, performs an M -order

rank reduction, i.e., L : Cm×(n+1) → Cm×(n+1),

L{H} =
M∑
i=1

σiuiv
H
i . (A.2)

The second operator, obtains a Hankel approximation, i.e., T : Cm×(n+1) →

Cm×(n+1), Y = T {X}, where the (k, l)−th element of Y (k = 1, . . . ,m,
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l = 1, . . . , n+ 1) is obtained by averaging the elements of the anti-diagonal

of X as

yk,l =
1

|Λk+l|
∑

(k′,l′)∈Λk+l

xk′l′ . (A.3)

Here, Λk+l is the set of indices corresponding to the (k+ l)-th anti-diagonal

of X, and |Λk+l| is the cardinality of this set.

To obtain a rank-deficient Hankel matrix we use an iterative approach

by applying alternately these two operators. First, we make a low-rank

approximation and then we apply the Hankel approximation procedure. The

procedure is repeated until the following stopping criterion is met

∥(T L)r{X} − L(T L)r−1{X}∥F < ϵ, (A.4)

where r is the number of iterations performed and ϵ is a constant previously

defined.
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