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Abstract 

While high-throughput (HT) computations have streamlined the discovery of promising new materials, 

experimental characterization remains challenging and time-consuming. One significant bottleneck is the lack of 

an HT thermal characterization technique capable of analyzing advanced materials exhibiting varying surface 

roughness and in-plane anisotropy. To tackle these challenges, we introduce spatially resolved lock-in micro-

thermography (SR-LIT), an innovative technique enhanced by tensor analysis for optical thermal characterization. 

Our comprehensive analysis and experimental findings showcase notable advancements: We present a novel tensor-

based methodology that surpasses the limitations of vector-based analysis prevalent in existing techniques, 

significantly enhancing the characterization of arbitrary in-plane anisotropic thermal conductivity tensors. On the 

instrumental side, we introduce a straightforward camera-based detection system that, when combined with the 

tensor-based methodology, enables HT thermal measurements. This technique requires minimal sample preparation 

and enables the determination of the entire in-plane thermal conductivity tensor with a single data acquisition lasting 

under 40 seconds, demonstrating a time efficiency over 90 times superior to state-of-the-art HT thermology. 

Additionally, our method accommodates millimeter-sized samples with poor surface finish, tolerating surface 

roughness up to 3.5 μm. These features highlight an innovative approach to realizing HT and accurate thermal 

characterization across various research areas and real-world applications. 
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1. INTRODUCTION 

The rapid progress in uncovering advanced materials has captured significant attention for its potential 

to overcome constraints in emerging technologies1–3. To achieve this goal, researchers have extensively 

pursued three primary approaches: combinatorial synthesis, computation, and property characterization. 

The rapid development of initiatives such as the Material Project and Google DeepMind has facilitated 

high-throughput (HT) methods to predict, screen, and optimize materials at an unprecedented scale and 

pace4–7. However, the effectiveness of these data-driven algorithms heavily relies on large and accurate 

datasets of material properties8–10. Consequently, HT characterization becomes a crucial step in this 

integrated cycle.  

However, the characterization of thermal transport properties, notably thermal conductivity (k), faces 

challenges due to the lack of HT characterization techniques11,12. To date, only a few hundred out of 

approximately 100,000 laboratory-synthesized materials listed in the Inorganic Crystal Structure Database 

have experimentally measured 𝑘  values13–15, highlighting a significant bottleneck. This challenge is 

further exacerbated by the increasing number of anisotropic materials, especially those exhibiting in-plane 

anisotropy, which offer direction-dependent properties16 crucial for various applications such as 

electronics17–21, thermal management22,23, and photonics24,25. Limited knowledge of thermal transport 

properties not only restricts the optimized use of existing materials but also impedes data-driven material 

discovery efforts11,12.  

An ideal HT thermal characterization method should feature simple sample preparation, rapid data 

acquisition, and accurate measurements, even for challenging arbitrary in-plane anisotropic thermal 

conductivity tensors. However, current techniques fall short of meeting all three criteria. Contact methods 

like modified 3𝜔 methods, though employed for anisotropic thermal conductivity tensor measurement 

26–31, suffer from delicate sample preparation and lack spatial resolution, limiting their efficiency and 

applicability. Non-contact methods, on the other hand, offer simpler sample preparation and spatially 

resolvable thermal property measurements32–34, making them attractive for integration into autonomous 

platforms such as addictive manufacturing for in-situ monitoring35 and autonomous labs for HT 

characterization10,36.  

The pump-probe method, a common non-contact measurement technique, has witnessed various 

advancements such as elliptical-beam time-domain thermoreflectance (TDTR)37,38, beam-offset 

frequency-domain thermoreflectance (BO-FDTR)39, and spatial-domain thermoreflectance (SDTR)40–42, 



for measuring anisotropic in-plane thermal conductivities. However, these pump-probe techniques face 

limitations when measuring in-plane anisotropic thermal conductivity tensors. They rely on a sequential 

probing system, which is inherently time-consuming due to repetitive data acquisition. Moreover, they 

operate at high modulation frequencies (>10 kHz) 43–46, making measurements highly sensitive to cross-

plane rather than in-plane thermal conductivity47,48. Additionally, spectral reflection requirements for the 

probe beam typically demand mirror-smooth sample surfaces49, limiting real-world applications.  

Camera-detection-based thermal characterization techniques, like transient infrared thermography with 

an IR camera50–53 or thermoreflectance imaging with a CMOS camera13, offer HT data acquisition through 

thermal imaging. Unlike sequential probing, these systems record two-dimensional (2D) surface 

temperature responses, allowing simultaneous temperature acquisition across a large area of the sample 

surface55–61. Nevertheless, the fundamental limitation of all existing techniques for characterizing in-plane 

thermal conductivity tensors lies not in the instrumentation but in the methodology, namely the reliance 

on vector-based analysis.  

Vector-based analysis assumes that the signal in one direction (represented as a vector) depends solely 

on the thermal conductivity vector along that specific direction. However, for materials with in-plane 

anisotropy, a temperature gradient in one direction can result in heat conduction in another direction. 

Ignoring these intricate interplays can lead to an incomplete or misleading interpretation of the anisotropic 

thermal conductivity tensor. To enhance the precision of vector-based methods, an iterative process that 

includes data in multiple directions has been developed37,38,40. However, this process compromises 

efficiency and still struggles to accurately measure materials with unknown crystalline orientation39,40,62. 

An ideal methodology would employ a tensor-based analysis, utilizing 2D data maps instead of selected 

directional 1D data lines to accurately capture the inherent 2D nature of in-plane anisotropic thermal 

conductivity tensors. Integrating tensor-based methodology with a camera-based experimental system 

could pave the way for next-generation thermology. 

Here, we propose spatially-resolved lock-in IR micro-thermography (SR-LIT), a tensor analysis-

enhanced thermal characterization method. This method features straightforward, all-optical 

instrumentation, utilizing an electronically modulated, fiber-coupled laser as the heat source and an IR 

micro-thermography system to map surface temperature at micron-scale resolution. Integrated with the 

novel tensor-based methodology, SR-LIT achieves HT measurement of the in-plane anisotropic thermal 

conductivity tensor, with a total data acquisition time of under 40 seconds. For comparison, state-of-the-



art thermology methods require an hour to conduct measurements in four directions, making SR-LIT over 

90 times more efficient. Through detailed analysis and demonstrative measurements, we show that the 

tensor-based analysis addresses the fundamental limitation of vector-based analysis by fully exploiting 

the spatially resolved thermal response. This method yields substantially improved measurement quality 

over current vector-based methods for the in-plane anisotropic thermal conductivity tensor. Furthermore, 

we demonstrate that SR-LIT tolerates samples with poor surface finish (up to 𝑟𝑎 = 3 μm), exhibiting 

superior versatility compared to thermoreflectance and 3ω techniques. Given these attributes, both the 

experiment setup of SR-LIT and the tensor methodology offer new avenues for HT thermal 

characterization across manufacturing facilities and research laboratories.  

2. INSTRUMENTATION  

Figure 1 (a) depicts the schematic diagram of SR-LIT. A continuous wave (CW) TEM00 fiber-coupled 

laser at 785 nm wavelength (Thorlabs S4FC785) is directly modulated by a function generator to provide 

an intensity-modulated heating source at a frequency 𝑓0. The output of the fiber-coupled laser is first 

collimated and then focused through a plano-convex lens onto the sample surface at an incident angle of 

approximately 30° . This non-zero incident angle arises due to the short working distance of the IR 

microscope objective lens, resulting in a slightly elliptical laser spot on the sample surface. Nonetheless, 

this elliptical laser spot can be accurately characterized and does not impact the measurements, as detailed 

in Supplementary Material. Sec. S1.  

On the detection side, the mid-wavelength IR (MWIR) radiation ranging from 2.4 to 5 μm emitted 

from the surface is collected by an IR micro-thermography system (QFI InfraScope MWIR Temperature 

Mapping Microscope). This system is equipped with a liquid nitrogen-cooled InSb focal plane array (FPA) 

and operates at a framerate of 𝑓sampling = 53.4 Hz, allowing the capture of up to 2000 frames in each 

measurement. The field of view (FOV) of the microscope system depends on both the pixel size of the 

FPA and the chosen objective lens. With a pixel size of 24 μm and a resolution of 500 × 500, and 

employing a typically used 4× objective lens, the pixel resolution (pixel size in FPA/magnification) is 

6 μm, yielding a corresponding FOV of 3000 × 3000 μm2. To ensure consistent absorption of the laser 

beam and detection of the IR emission, all samples are coated with a standardized 100 nm Ti transducer 

using an E-beam evaporation system (Plassys Electron Beam Evaporator MEB550S). Exemplary 



temperature maps are provided in Figure 1 (b), wherein the temperature is depicted as a function of spatial 

coordinates and time 𝑇𝑠(𝑥, 𝑦, 𝑡) (Figure 1 (c)).  

3. METHODOLOGY 

3.1 Experiment procedure 

The experimental procedure and the tensor-based methodology are illustrated through the measurement 

of a standard isotropic sample, fused silica. For sample preparation, the sample surface undergoes cleaning 

via ion etching and is then coated with a 100-nm-thick Ti transducer. The thickness of the Ti transducer 

is verified using a surface profilometer (Bruker DektaXT). The thermal conductivity of the Ti layer is 

determined to be approximately 15 Wm−1K−1 by applying the Wiedemann-Franz law, derived from its 

electrical resistivity measured by a four-point probe.  

The sample is subjected to heating by a sinusoidally modulated pump beam with a frequency of 𝑓0 =

5 Hz. Several critical considerations affect the choice of 𝑓0. Firstly, the in-plane thermal diffusion length 

induced by the heating, denoted as 𝑑𝑟 = √𝑘𝑟/𝜋𝑓0𝐶, must be at least three times the 1/𝑒2 radius of the 

Figure 1. (a) Schematic of SR-LIT: A fiber-coupled laser is modulated to periodically heat the sample, while the surface-

emitted IR radiation 𝑃𝑠(𝑥, 𝑦, 𝑡) is collected by an IR micro-thermography system. (b) Exemplary surface temperature map 

𝑇𝑠(𝑥, 𝑦, 𝑡) showing an elliptical heating pattern at 3 different time steps. (c) For each pixel, the temperature is recorded as a 

function of time, where the open circles represent the measured data, and the solid lines depict the sinusoidal wave fitted by 

FFT.  



laser spot, thus enhancing sensitivity to in-plane thermal transport40. Secondly, 𝑓0 should be less than the 

Nyquist frequency of 27 Hz (half of the camera’s sampling rate) to prevent any distortion or leakage in 

the signal. Lastly, the frequency must be high enough to circumvent the predominance of pink noise (1/f 

noise). 

The IR micro-thermography system monitors the surface temperature map 𝑇𝑠(𝑥, 𝑦, 𝑡) for thermal 

analysis. Temperature determination is facilitated by a pre-calibrated surface emissivity map 𝜀𝑠(𝑥, 𝑦) 

(see the measured emissivity map in Supplementary Material. Sec. S2). To streamline mathematical 

representations, the long and short radii of the elliptical heating spot are aligned with the x- and y-axes of 

the coordinate system. This alignment obviates the need to account for a tilted ellipse as the heating source 

(see the calibration of alignment in Supplementary Material. Sec. S3). 

3.2 Tensor-based analysis 

The tensor-based analysis commences with an examination of the spatially resolved temperature 

response. The initial step involves transforming the measured time-domain surface temperature 

map  𝑇𝑠(𝑥, 𝑦, 𝑡) into a frequency-domain map 𝛩𝑠(𝑥, 𝑦, 𝜔0) using Fast Fourier Transform (FFT). To 

minimize spectral leakage and scalloping loss, careful consideration is given to the choice of total 

sampling time 63,64, which we found to be optimal at 𝑡samp = 37 s for our camera system (see detailed 

FFT procedure in Supplementary Material. Sec. S4).  

The FFT process yields four frequency-domain maps: the AC amplitude map, DC amplitude map, 

phase map, and SNR map (see Figure 2). Each map serves a distinct purpose in the fitting process. The 

AC amplitude map (Figure 2 (a)) is used for the spot size fitting, thereby simplifying measurements by 

eliminating the need for separate spot size measurements and enhancing reliability by mitigating 

unintentional spot size variations between different measurement sets. The capability to measure the 

Figure 2. (a) Exemplary data maps after FFT processing: (a) modulated (AC) amplitude map, (b) steady-state (DC) amplitude 

map, (c) phase map, and (d) Signal-to-Noise Ratio (SNR) map. This dataset is obtained from fused silica coated with a 100-nm-

thick Ti transducer. 



steady-state (DC) amplitude map (Figure 2 (b)) offers a more comprehensive understanding of the 

modulated heating event than most lock-in methods that neglect the DC response. Overlooking the DC 

amplitude can lead to a significant underestimation of the overall temperature rise65. Subsequently, the 

phase map (Figure 2 (c)) constitutes critical data, which is then compared with a 3D multi-layer heat 

diffusion model for thermal analysis (refer to the mathematical model in Appendix. S1). Lastly, the signal-

to-noise ratio (SNR) map allows for a visual representation of the spatially resolved SNR (Figure 2 (d)), 

with pixels exhibiting a low SNR (<10) filtered out to enhance the fitting quality. 

3.2.1 1D sensitivity analysis 

Sensitivity analysis along the x- and y-axes serves as the initial guide for utilizing 𝐴norm and Δ𝜙 

maps for property fitting (see the definition of sensitivity coefficient in Appendix. S2). 𝐴norm represents 

the amplitude normalized by the maximum amplitude at the heating center, while Δ𝜙 is the differential 

phase, Δ𝜙 = 𝜙 − 𝜙𝑐 , with 𝜙𝑐  being the phase measured at the heating center. Normalizing the 

amplitude eliminates the need for calibrating the laser power and the optical absorptivity of the metallic 

transducer. Meanwhile, differencing the phase removes any phase shift introduced by the electronic 

components of the system40. Moreover, the original phase 𝜙 tends to exhibit high sensitivity to cross-

plane heat transport32,53, which can be significantly suppressed by focusing on the differential phase Δ𝜙.  

The determination of laser spot size is facilitated by analyzing 𝐴norm. Figure 3 (a) and (b) reveal that 

in the near-center region (𝑥𝑐 < 2𝑤, where 𝑤 is the 1/e2 radius), 𝐴norm along the x- and y-directions 

is dominantly sensitive to 𝑤𝑥 and 𝑤𝑦, respectively. This observation holds true across various tested 

property combinations (nominal values of input parameters can be found in Supplementary Material. Sec. 

S5). As mentioned earlier, this feature enables the fitting of spot radii for each measurement, thus 

Figure 3. Sensitivities of 𝐴norm and 𝛥𝜙 as a function of normalized offset distance (the offset distance 𝑥𝑐  divided by the 

spot size 𝑤 along the offset direction) in (a, c) x-direction and (b, d) y-direction, respectively. This sensitivity analysis is based 

on fused silica. Parameters with near-zero sensitivities, such as thermal boundary conductance and metallic transducer 

properties, are omitted from the plots for the sake of clarity. 



enhancing measurement reliability by mitigating unintentional spot size variations between different 

measurement sets.  

The determination of the in-plane thermal conductivity tensor is facilitated by analyzing Δ𝜙. Figure 

3 (c) and (d) show that in the peripheral region (𝑥𝑐 > 4𝑤), Δ𝜙 is predominantly sensitive to 𝑘∥ (the in-

plane thermal conductivity along the offset direction, which is 𝑘𝑥𝑥 for x-direction scan and 𝑘𝑦𝑦 for y-

direction scan). Therefore, the in-plane thermal conductivity of the sample can be accurately determined 

by fitting the Δ𝜙 signals at large 𝑥𝑐. However, the SNR decreases as the offset distance increases. To 

better utilize the Δ𝜙 signals at large 𝑥𝑐, it is essential to minimize random noise. This can be achieved 

by employing a 5 × 5 average filter (details regarding the average filter and noise reduction can be found 

in Supplementary Material. Sec. S6). 

3.2.2 2D sensitivity map 

To visualize how the 2D data map enhances the measurement of the in-plane thermal conductivity 

tensor, we progress from analyzing the 1D sensitivity line to a 2D sensitivity map. Interestingly, our 

observations indicate that Δ𝜙 is highly sensitive to 𝑘𝑥𝑥 not only along the x-axis but also within an 

angular range 𝛼𝑥, as depicted in Figure 4 (a). Similarly, Δ𝜙 exhibits high sensitivity to 𝑘𝑦𝑦 along the 

y-axis direction within an angle of 𝛼𝑦 (Figure 4 (b)). These findings suggest that utilizing data beyond 

just the x- and y-axes, as is common in vector-based methods, is advantageous for determining the in-

plane thermal conductivity tensor, even for isotropic materials.  

For optimal fitting quality, the Δ𝜙 map requires filtering. Data points in the near-center region, where 

𝑥𝑐 < 4𝑤(𝜃), are excluded due to their low sensitivity to the in-plane thermal conductivity. The radius 

Figure 4. Sensitivity map for (a) 𝑘𝑥𝑥  and (b) 𝑘𝑦𝑦  of fused silica with high sensitivity region 𝛼𝑥  and 𝛼𝑥  respectively. 

Demonstrative data map collected on a fused silica sample. (c) Top view of the filtered data (green dots) and original 

measurement data (blue dots) map.  



𝑤(𝜃) =
𝑤𝑥𝑤𝑦

√𝑤𝑥
2 sin2 𝜃+𝑤𝑦

2 cos2 𝜃
 is angle-dependent, reflecting the elliptical shape of the heating pattern. 

Additionally, data points with an SNR of less than 10 are removed. After the filtering process, the resulting 

data map appears as a ring shape, consisting of 629 data points (Figure 4 (c)). In comparison, data lines 

along the x- and y-axes consist of a total of 21 data points. Therefore, the resulting map spans 

approximately 30 directions. This broad coverage provides a substantially more comprehensive depiction 

of in-plane heat transport than conventional vector-based methods. Finally, the filtered 2D data map is 

used to fit the in-plane thermal conductivity tensor, 𝒌 = [
𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦
]. Since 𝑘𝑥𝑦 = 𝑘𝑦𝑥  based on the 

Onsager relation66,67, only 𝑘𝑥𝑥 , 𝑘𝑦𝑦 , and 𝑘𝑥𝑦  (𝑘𝑥𝑦 = 0  for isotropic materials) are treated as the 

unknown parameters and are fitted using a nonlinear regression method68–70. 

4. RESULTS 

4.1 Isotropic materials 

The 𝛥𝜙 map obtained for the fused silica sample is presented in Figure 5, alongside the best-fitted 

𝛥𝜙 map derived from the model based on the best-fitted parameters: 𝑘𝑥𝑥 = 1.48 ± 0.06 Wm−1K−1 and 

𝑘𝑦𝑦 = 1.5 ± 0.06 Wm−1K−1 . These results align well with the literature value of 𝑘lit =

1.3~1.5 Wm−1K−140,71. For comparison, conventional vector-based analysis was applied to data along 

the x- and y-directions, yielding 𝑘𝑥𝑥 = 1.45 ± 0.08 Wm−1K−1  and 𝑘𝑦𝑦 = 1.48 ± 0.09 Wm−1K−1 , 

respectively. As expected, the vector-based analysis provides good accuracy for isotropic materials. 

However, the ±2𝜎 uncertainty associated with the vector-based analysis is about 30% higher than that 

of the tensor-based analysis (see Appendix. S3 for the uncertainty propagation formula). This observation 

underscores the superior performance of the tensor-based analysis, even for in-plane isotropic materials. 

We further demonstrate SR-LIT measurements on (0001) sapphire, revealing in-plane thermal 

conductivities of 𝑘𝑥𝑥 = 37.7 ± 2.7 Wm−1K−1  and 𝑘𝑦𝑦 = 37.2 ± 2.6 Wm−1K−1. These results agree 

well with the literature range of 34~38  Wm−1K−172–74. It’s noteworthy that the percentage uncertainty 

of our measurements for sapphire is slightly elevated compared to that of fused silica. This can be 

attributed to increased noise when measuring high thermal conductivity materials with the limited laser 

power of our current system. However, this challenge can be easily overcome by employing a laser with 



higher output power for the measurement and should not be misconstrued as an intrinsic limitation of the 

technique. 

4.2 In-plane anisotropic materials 

In-plane anisotropic materials exhibit varying thermal properties along different crystallographic 

directions within the transverse plane73. To underscore the imperative of tensor-based analysis for in-plane 

anisotropic tensor measurement, we commence with a thorough map-based sensitivity analysis. 

Subsequently, experimental validation follows, encompassing hypothetical samples and x-cut quartz 

under various conditions. Finally, we explore the adaptability of SR-LIT through measurements conducted 

on samples with rough surfaces.  

4.2.1 2D sensitivity map 

We analyze a 2D sensitivity map to discern the sensitivity pattern of the in-plane anisotropic thermal 

conductivity tensor. For instance, we consider a hypothetical tensor 𝒌𝐢𝐧,𝟏 = [
13.3 3
3 9.8

] (Wm−1K−1). 

The positive value of 𝑘𝑥𝑦 suggests that the temperature gradient in the 𝑥-direction would induce heat 

flux in the positive 𝑦-direction, and vice versa. Consistent with observation in isotropic materials, Δ𝜙 

exhibits high sensitivity to 𝑘𝑥𝑥 and 𝑘𝑦𝑦 mainly along the x- and y-directions, within angles 𝛼𝑥 and 𝛼𝑦, 

respectively (Figure 6 (a) and (b)). However, unlike isotropic thermal conductivity tensor, 𝛼𝑥  for 

anisotropic thermal conductivity tensor is narrower, while 𝛼𝑦 is broader. This suggests that the ratio of 

𝑘𝑥𝑥  and 𝑘𝑦𝑦  influences the region of the data map sensitive to 𝑘𝑥𝑥  and 𝑘𝑦𝑦 . Moreover, the off-

diagonal element 𝑘𝑥𝑦 shows high sensitivity mainly in a direction pointing to 135°, within an angle of 

Figure 5. Demonstrative SR-LIT fitting map on a fused silica sample. (a) Measured 𝛥𝜙 map (green dots) alongside the best-

fitted 𝛥𝜙 map (red dots) and the best-fitted curves (red). The measured data, intersected by the x-z plane and the y-z plane, are 

projected on the y- and x-plane, respectively. (b) and (c): measured 𝛥𝜙 data (green dots) intersected by planes at selected 

directions of 0° and 90°, respectively, along with the best-fitted curves (red) and ±30% bounds of the best-fitted thermal 

conductivity values. 



𝛼𝑥𝑦 (Figure 6 (c)). Due to the comparatively high sensitivity levels and the distinct sensitivity patterns 

for each in-plane thermal conductivity tensor element, simultaneously fitting all three elements becomes 

feasible. 

It’s important to note that the sensitivity map pattern for each element is not fixed. Consider a second 

case with 𝒌𝐢𝐧,𝟐 = [
13.3 −3
−3 9.8

]  (Wm−1K−1) . The sensitive region for 𝑘𝑥𝑦  would now be oriented 

towards 45°, distinctly different from case 1 (see detailed sensitivity maps in Supplementary Material. 

Sec. S7). This highlights a critical limitation of current vector-based methods: the selected directions may 

not always capture the most informative directions for all elements in an arbitrary in-plane thermal 

conductivity tensor. In contrast, the tensor-based method, encompassing spatially resolved data along all 

directions, can offer a comprehensive interpretation for arbitrary in-plane anisotropic thermal conductivity 

tensors.  

4.2.2 Validation on simulated experiment 

 We initiate by conducting a simulated experiment to showcase a challenging scenario for the vector-

based method, which can, however, be effectively addressed through the tensor-based approach. Here, we 

provide a hypothetical thermal conductivity tensor 𝒌 = [
20 2 0
2 8 0
0 0 8

] (Wm−1K−1). Notably, the off-

diagonal element of the tensor is intentionally set to a small but non-zero value. To emulate real 

experimental conditions during signal generation, we consider the following factors: (1) the sample 

surface is coated with a 100 nm titanium transducer layer, (2) random noises are introduced at levels 

comparable to those measured for fused silica, and (3) an elliptical heating pattern with 𝑤𝑥 = 50 μm and 

𝑤𝑦 = 30 μm.  

Figure 6. Sensitivity maps for 𝛥𝜙  regarding (a) 𝑘𝑥𝑥 ,  (b) 𝑘𝑦𝑦 , and (c) 𝑘𝑥𝑦 , illustrating the highly sensitive regions 

represented by 𝛼𝑥, 𝛼𝑦 , and 𝛼𝑥𝑦, respectively. 



The simulated 2D data map comprises a total of 1380 data points (refer to Figure 7 (a) and (b)), 

equivalent to approximately 49 directions. Analysis of the data map reveals the in-plane thermal 

conductivity tensor as: 𝒌𝐢𝐧 = [
20.05 ± 1.03 2.1 ± 0.38
2.1 ± 0.38 8.01 ± 0.47

]  (Wm−1K−1) , closely mirroring the 

hypothetical tensor, as depicted in the best-fit map in Figure 7 (c)-(f). For comparative purposes, vector-

based analysis is conducted using data along 4 directions at 0°, 45°, 90°, and 135°, resulting in a tensor 

estimate of 𝒌𝐢𝐧 = [
20.46 ± 2.37 1.67 ± 1.65
1.67 ± 1.65 7.61 ± 0.97

] (Wm−1K−1).  

The tensor-based analysis demonstrates superior accuracy and reduced uncertainty compared to the 

vector-based approach for all tensor elements. Particularly, when using the tensor-based method, the 

uncertainty for diagonal elements is reduced to half, and for off-diagonal elements, it is reduced to one-

fifth of what is observed with the vector-based method. This notable difference arises from the limited 

signal sensitivity inherent in conventional vector-based methods. As depicted in Figure 7 (f), even at the 

optimal direction (135° ) for extracting 𝑘𝑥𝑦 , the sensitivity of Δ𝜙  to 𝑘𝑥𝑦  is significantly lower 

compared to the sensitivity to 𝑘𝑥𝑥. In contrast, the tensor-based analysis integrates the entire 2D map data 

and utilizes higher-order statistics to effectively capture the intricate interplay among different tensor 

Figure 7. Simulated experiment for fitting in-plane anisotropic thermal conductivity. (a, b) Simulated 𝛥𝜙 map (open blue 

circle) and the filtered ring-shape region (open green circle). Panel (b) provides a top view of (a). (c) Best-fitted map 𝛥𝜙 (open 

red circle) overlaid with the simulated data. Panels (d)-(f) depict simulated 𝛥𝜙 along three scan directions (0°, 90°, and 

135°) with their respective best fitting curves (red) and ±30% bounds of the best-fitted thermal conductivity values. 



elements. Consequently, the tensor-based analysis offers accurate measurements of arbitrary in-plane 

anisotropic thermal conductivity tensors.  

4.2.3 Validation on x-cut quartz 

Subsequently, we demonstrate SR-LIT measurements on x-cut ((110)-oriented) quartz. X-cut quartz 

displays in-plane anisotropic thermal conductivity with 𝑘𝑐 > 𝑘𝑎 = 𝑘𝑏 and features orthogonal in-plane 

lattice vectors.  

In the first part of the demonstration, we orient the sample such that its c-axis aligns parallel to the x-

axis of the optical system, effectively setting the target 𝑘𝑥𝑦 to zero. The resulting filtered ring-shaped 

data map comprises a total of 1697 data points, representing approximately 31 directions. The best fit of 

these data yields an in-plane thermal conductivity tensor of 𝒌𝐢𝐧 = [
12.1 ± 0.5 0.03 ± 0.1
0.03 ± 0.1 7.3 ± 0.4

] 

(Wm−1K−1) (refer to the best-fit map in Figure 8 (a)). This result exhibits excellent agreement with the 

literature value 𝒌𝐢𝐧,𝐥𝐢𝐭 = [
12 0
0 6.8

] (Wm−1K−1)75. Notably, we refrain from assuming 𝑘𝑥𝑦 = 0 during 

the fitting process to detect any unintentional rotation of the sample. The fitted result confirms a negligible 

𝑘𝑥𝑦 value.  

Figure 8. Measurements of x-cut quartz under two configurations. (a) The crystalline direction 𝑐Ԧ and 𝑎Ԧ are aligned parallel 

to the x- and y-axes of the optical system, respectively. (b) The sample is intentionally rotated 20° counterclockwise about 

the z-axis. The green open circle represents the experimentally measured 𝛥𝜙, while the red open circles are the modeled 𝛥𝜙 

based on the best-fitted in-plane thermal conductivity tensor. Data measured along the x- and y-axes are projected on the y- 

and x-plane, respectively. Blue dashed curves indicating 30% bounds of the best-fitted tensor element along the offset direction 

(𝑘𝑥𝑥 for x-axis data and 𝑘𝑦𝑦 for y-axis data) are included as guides of sensitivity. 



We proceed to evaluate the measurement accuracy following an intentional rotation of the sample by 

approximately 20°, representing a challenging scenario where determining a small 𝑘𝑥𝑦 becomes crucial.  

The measured phase map is plotted in Figure 8 (b), with the best-fitted 𝒌𝐢𝐧 =

[
11.2 ± 0.5 1.6 ± 0.14
1.6 ± 0.14 7.6 ± 0.4

] (Wm−1K−1). With a known 𝒌𝐢𝐧 , the rotation angle 𝜃  can be deduced as  

𝜃 =
1

2
arctan (

2𝑘𝑥𝑦

𝑘𝑥𝑥−𝑘𝑦𝑦
)76,77, resulting in 𝜃 = 21.5° ± 1.54° . This determination agrees well with the 

designated angle, with the uncertainty falling within a reasonable range. In addition, the crystalline in-

plane thermal conductivity tensor is retrieved as 𝒌𝐢𝐧 = [
11.8 ± 0.5 0

0 7 ± 0.5
] (Wm−1K−1), consistent 

with the previous measurements and the literature values.  

4.3 Measurement of rough samples 

Conventional pump-probe methods encounter challenges when measuring rough samples, a hurdle 

efficiently mitigated by utilizing an IR detector. Two critical factors affect the largest tolerable surface 

roughness: firstly, the depth of field (DoF) of the camera must exceed the surface roughness, and secondly, 

the thermal diffusion length induced by the modulated heating must far surpass the surface roughness to 

ensure a uniformly flat sample during thermal measurement13. The DoF is contingent upon the 

specifications of the objective lens and the detection wavelength 78. Given that IR detection inherently 

utilizes a longer wavelength than visible light, the corresponding DoF is larger than traditional optical 

methods using a probe laser in the visible light spectrum. For our current system, utilizing a 4× objective 

lens and detecting IR radiation with a wavelength of 3.5~5 μm, the estimated DoF is ~5.8 μm. Coupled 

with the thermal diffusion length exceeding hundreds of micrometers at a modulation frequency 5 Hz for 

the tested material, SR-LIT significantly enhances the tolerable surface roughness to a few micrometers. 

It’s worth noting that measuring rougher samples can be achieved by switching to an objective with lower 

magnification, albeit this might sacrifice some level of spatial resolution. 

Both isotropic (soda-lime glass slide) and in-plane anisotropic (x-cut quartz) rough samples are 

prepared. The samples are roughened using sanding abrasives (Zoro Abrasive) with grit numbers of 24, 

36, 60, and 800, where lower grit numbers indicate larger, coarser particles, and vice versa. After grinding, 

the surface roughness of each sample is determined using a surface profiler (Bruker DektaXT surface 

profiler), with images of the rough surface profile provided in Figure 9 (a) and (e).  



With a roughened surface, the uniformity of surface emissivity is compromised. However, IR micro-

thermography can determine the non-uniform emissivity map following the same procedure as detailed in 

Supplementary Material. Sec. S251,79. Examples of the non-uniform emissivity map of some roughened 

samples are shown in Figure 9 (b) and (f). 

Large surface roughness could affect the laser profile on the sample surface, causing deviation from a 

perfect Gaussian distribution (as seen in Figure 9 (c) and (g) for some examples). However, the non-

perfect Gaussian profile does not affect the tensor-based analysis, as only Δ𝜙 in the peripheral region, 

which has negligible sensitivity to the laser spot size, are utilized (e.g., Figure 3 (c) and (d)). In some 

extreme cases documented in literatures80–82, the Gaussian laser beam was even simplified as a point 

source. The error induced by a non-perfect Gaussian laser profile is estimated to be less than 1% in our 

SR-LIT measurements (refer to Supplementary Material Sec. S8).  

Figure 10 summarizes the measured in-plane thermal conductivities for rough samples. Soda-lime 

glass slides, with roughness 𝑟𝑎  ranging from 10 nm to 3.5 μm, exhibit consistent results and good 

agreement with literature values (further details of all measured values are provided in Supplementary 

Material Sec. S8 and S9). Furthermore, the roughened x-cut quartz sample (𝑟𝑎 = 2.8 μm) has been 

Figure 9. Demonstrative plots illustrating SR-LIT measurements of rough samples. (a-d) Measurements of a glass slide with 

a roughness of 𝑟𝑎 = 3.5 μm. (e-h) Measurements of an x-cut quartz with a roughness of 𝑟𝑎 = 1.5 μm. (a, e) Photomicrographs 

of the glass slide and x-cut quartz sample surfaces. (b, f) Non-uniform emissivity maps . (c, g) AC temperature response in the 

near-filed region, with inset plots showing surface profiles measured using a stylus profiler. (d, h) Measured and best-fitted 

phase maps. The red open circles represent the modeled 𝛥𝜙 based on the best-fit in-plane thermal conductivity tensor. Curves 

indicating 30% bounds of the best-fitted tensor elements along the offset direction (𝑘𝑥𝑥 for x-axis data and 𝑘𝑦𝑦 for y-axis 

data) are included as guides of sensitivity. 



accurately measured, with the best-fit in-plane thermal conductivities of 𝑘𝑐 = 12.3 ± 0.5 Wm−1K−1and 

𝑘𝑎 = 7.3 ± 0.3 Wm−1K−1 (refer to Figure 9 (h)). Importantly, the uncertainty levels for both types of 

samples are consistent with those observed for smooth samples. These findings highlight the robustness 

of SR-LIT in accurately measuring samples with rough surfaces. 

5. SUMMARY AND OUTLOOK 

All measured materials are summarized in Figure 11. This study introduces SR-LIT, an innovative 

non-contact thermal characterization method enhanced by tensor analysis. We have developed a 

straightforward experimental setup based on camera detection, primarily consisting of an IR micro-

thermography system and a fiber-coupled laser. The key innovation lies in our unique tensor-based 

methodology, which leverages the spatially resolved thermal response induced by the heating event. 

Through detailed analysis and demonstrative measurements, we show that this approach not only 

substantially improves the quality in determining an arbitrary in-plane thermal conductivity tensor but 

also achieves this with remarkable efficiency—completing the entire data acquisition process in under 40 

seconds, thereby enabling HT data acquisition. Furthermore, our investigation into samples with rough 

surfaces reveals that SR-LIT exhibits extended robustness in characterizing such samples, accommodating 

surface roughness up to 𝑟𝑎 = 3.5 μm. Additional noteworthy features include SR-LIT’s ability to handle 

small samples on the millimeter scale with minimal preparation requirements; a simple surface coating 

with either metallic transducer or graphite spray is sufficient. Moreover, SR-LIT offers the possibility of 

measurement for transducerless samples by selecting appropriate pump laser and detector wavelengths.  

Figure 10. SR-LIT measurements of in-plane thermal conductivity for rough samples 

with varying surface roughness. The dashed black lines are provided as visual guides. 



Looking forward, the versatilities of SR-LIT positions it as an ideal candidate for integration into 

autonomous robotic experimental platforms. Its potential applications span various domains, including 

additive manufacturing for real-time monitoring of build properties83, as well as in autonomous labs10,36, 

where its simple preparation requirements and high-throughput thermal characterization offer distinct 

advantages. Moreover, the tensor-based methodology presents an advanced framework that can 

seamlessly complement a range of thermometry techniques, such diamond quantum thermometry84–86, 

fluorescence thermometry87–89, and photoacoustic thermometry90,91, among others. These features 

collectively render SR-LIT a valuable tool with broad applicability across diverse research areas and real-

world applications. 

 

APPENDIX 

1. Mathematical model 

     The 3D heat diffusion equation in cartesian coordinates with no heat-generation term is given by 

𝐶
𝜕𝑇

𝜕𝑡
= 𝑘𝑥𝑥

𝜕2𝑇

𝜕𝑥2 + 𝑘𝑦𝑦
𝜕2𝑇

𝜕𝑦2 + 𝑘𝑧𝑧
𝜕2𝑇

𝜕𝑧2 + 2𝑘𝑥𝑦
𝜕2𝑇

𝜕𝑥𝜕𝑦
+ 2𝑘𝑥𝑧

𝜕2𝑇

𝜕𝑥𝜕𝑧
+ 2𝑘𝑦𝑧

𝜕2𝑇

𝜕𝑦𝜕𝑧
, (1) 

where 𝐶 is the volumetric heat capacity, and 𝑘𝑖𝑗 with different subscripts are corresponding elements 

in the thermal conductivity tensor 𝒌, 

Figure 11. Comparison of in-plane thermal conductivities measured using SR-LIT (y-axis) with 

literature values (x-axis) for fused silica40, soda-lime glass slide75, quartz75, and sapphire73. Detailed 

values can be found in Supplementary Sec. S9. 



𝒌 = [

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧

𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧

𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧

]. (2) 

Here, 𝑘𝑖𝑗 = 𝑘𝑗𝑖 due to the Onsager reciprocal relation66,67. The solution for solving the multi-layer 3D 

heat diffusion model has been well established in the literature37,92 and can be found in Supplementary 

Material. Sec. S10. Generally, equation (1) can be transformed into an ordinary differential equation 

(ODE) by applying the Fourier transform to time 𝑡 and both in-plane coordinates 𝑥, 𝑦, 𝑇(𝑥, 𝑦, 𝑧, 𝑡) →

Θ(𝑢, 𝑣, 𝑧, 𝜔). The ODE of the multilayered system can then be solved by the thermal quadrupole approach. 

The resulting surface temperature is 

Θtop(𝑥, 𝑦, 𝜔) = ∫ ∫ 𝐺̂(𝑢, 𝑣, 𝜔)𝑄0(𝑢, 𝑣, 𝜔)𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣
∞

−∞

∞

−∞
, (3) 

where 𝑄0(𝑢, 𝑣, 𝜔) is the intensity of absorbed heat flux after the Fourier transform in spatial and time 

domains, and 𝐺̂(𝑢, 𝑣, 𝜔) is the Green’s function. Since the heating spot radius and thermal penetration 

depth are significantly larger than the optical absorption depth, it is reasonable to assume surface 

absorption93. 

The next step is to determine the thermal response at each pixel, where each pixel is considered a ‘probe 

pixel’ with a square shape and constant distribution. Assume the center of the probe pixel is located at 

(𝑥𝑐 , 𝑦𝑐). Then, the weight function of the probe pixel can be written as 

𝐼probe(𝑥𝑐, 𝑦𝑐) = ∫ ∫
1

𝑙𝑝
2 𝑑𝑥𝑑𝑦

𝑦𝑐+
𝑙𝑝

2

𝑦𝑐−
𝑙𝑝

2

𝑥𝑐+
𝑙𝑝

2

𝑥𝑐−
𝑙𝑝

2

, (4) 

where 𝑙𝑝 is the side length of the pixel. Finally, the probed thermal response for a pixel at (𝑥𝑐, 𝑦𝑐) 

is given by the weighted average of 𝑇̃top(𝑥, 𝑦) by 𝐼probe(𝑥𝑐, 𝑦𝑐): 

𝐻(𝑥𝑐, 𝑦𝑐, 𝜔) =
1

𝑙𝑝
2 ∫ ∫ Θ𝑡𝑜𝑝(𝑥, 𝑦, 𝜔)𝑑𝑥𝑑𝑦

𝑦𝑐+
𝑙𝑝

2

𝑦𝑐−
𝑙𝑝

2

𝑥𝑐+
𝑙𝑝

2

𝑥𝑐−
𝑙𝑝

2

. (5) 

The thermal response 𝐻(𝑥𝑐, 𝑦𝑐, 𝜔) has a linear relation with measured data and will be evaluated 

numerically. A simple and computationally efficient interpretation of the thermal response is that each 

probe pixel reads the temperature at its center. Therefore, the temperature response is exactly Equation 3. 



However, this interpretation might not be accurate when the pixel is large compared to the temperature 

gradient. Since experimentally we used a reasonably large heating spot size compared to the pixel 

resolution, it is safe to use this simplification and the accuracy is verified (see Supplementary Material. 

Sec. S11). 

2.  Sensitivity analysis 

Sensitivity analysis is a valuable tool for evaluating the impact of different parameters on the signal 

and can guide the optimized experimental configuration. Here we use the sensitivity coefficient definition 

proposed by Gundrum et al94, 

𝑆𝛾 =
∂ln (γ) 

𝜕ln (𝛼)
    (6) 

where 𝛾 denotes the choice of signal and 𝛼 denotes the parameter of interest. Here all input parameters 

are tested, including metallic transducer properties 𝑘𝑥𝑥,𝑚,  𝑘𝑦𝑦,𝑚, 𝑘𝑧𝑧,𝑚, 𝐶𝑚, and transducer thickness 𝑙𝑚; 

substrate properties 𝑘𝑥𝑥 ,𝑘𝑦𝑦 ,𝑘𝑧𝑧 , and 𝐶𝑠 ; and other inputs including interface thermal conductance 

between the metallic transducer and the substrate 𝐺, beam spot radius 𝑤𝑥, 𝑤𝑦, and pixel side length 𝑙𝑝. 

With a low modulation frequency and small pixel size, we found that all the signals show negligible 

sensitivity to the film thermal property, 𝐺, 𝑙𝑚, and 𝑙𝑝, as such they are omitted in further analysis. The 

detailed sensitivity analysis is conducted for both in-plane isotropic and in-plane anisotropic materials in 

Section 4. 

3. Uncertainty formalism 

Our uncertainty formalism follows the work of Yang et al.95 and Seber96. This full-error propagation 

formalism is based on the framework of regression analysis and can be applied to measurements where a 

known model is fit to one or more observable parameters using a least square algorithm. The loss function 

of the fitting is defined as: 

𝑅 = ∑ [𝑦𝑑𝑜𝑓𝑠,𝑖
− 𝑔(𝑋𝑈, 𝑋𝑝, 𝑑𝑜𝑓𝑠,𝑖)]

𝑁
𝑖=1

2

, 
(7) 

where  𝑦𝑖 is the measured signal at the 𝑖-th offset spot, 𝑔 is the corresponding value evaluated by the 

thermal model, 𝑋𝑈 is the vector of unknown parameters and 𝑋𝑝 is the vector of input parameters. The 



best-fit unknown parameter will have uncertainty from both experimental noise and uncertainty of input 

parameters. For the in-plane thermal conductivity fitting, we consider three unknown parameters: 𝑋𝑈 =

[𝑘𝑥𝑥, 𝑘𝑥𝑦, 𝑘𝑦𝑦]
𝑇

, and ten input parameters: 𝑋𝑝𝑖 = [𝑘𝑥𝑥,𝑚, 𝑘𝑦𝑦,𝑚, 𝑘𝑧𝑧,𝑚, 𝐶𝑚, 𝐶𝑠, ℎ𝑚, 𝑙𝑝, 𝐺𝑠, 𝑤𝑥, 𝑤𝑦]
𝑇

. The 

resulting variances of unknown parameters are given in the format of variance-covariance matrix: 

𝑉𝑎𝑟[𝑋𝑈] =  [

𝜎𝑢1
2 𝑐𝑜𝑣(𝑢1, 𝑢2) …

𝑐𝑜𝑣(𝑢2, 𝑢1) 𝜎𝑢2
2 ⋯

⋮ ⋮ ⋱

], (8) 

where the elements on the principal diagonal are the variance of the unknown parameters, and the value 

of ±2𝜎 (95% confidence interval) is used as the uncertainty of corresponding unknown parameters. 

Detailed derivation can be found in Supplementary Material. Sec. S12. Note that the formula of error-

propagation is based on the Taylor series of loss functions, where the derivatives of the signal to the input 

parameters are computed, and it is similar to the definition of the sensitivity formula. Thus, the sensitivity 

of the unknown parameter is a good indicator of the corresponding uncertainty, and it is possible to reduce 

the uncertainty by following the guidance of the sensitivity analysis. Moreover, when considering the error 

propagation for 2D map-based data, it is interesting to note that the Pearson correlation coefficients 

𝜌𝑘𝑥𝑥,𝑘𝑦𝑦
, 𝜌𝑘𝑥𝑥,𝑘𝑥𝑦

, and 𝜌𝑘𝑦𝑦,𝑘𝑥𝑦
 are all close to 1. This indicates a strong linear relation among the 

unknown parameters95. However, the strong linear relation does not affect fitting the three parameters 

simultaneously, detailed explanation can be found in Supplementary Material. Sec. S13. 
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 Supplementary: Spatial Resolved Infrared micro-thermography method for 

thermal conductivity tensor measurement 

S1. Examination of gaussian distributed heating pattern 

 

 

 

Figure S11 The gaussian beam impinges on the sample with a 30-degree incident angle, creating a slightly 

elliptical-shaped laser spot. we confirmed that the Gaussian distribution remains consistent, and no peak intensity is 

observed following the inclination. Although it is possible to directly measure the intensity distribution of the beam 

by using a beam profiler or adopting knife-edge method, they require additional instruments, and the process is 

cumbersome. Instead, it is more convenient to check the distribution of the heating-induced temperature response on 

a sample with isotropic thermal properties, since the distribution only depends on the beam profile. The measurement 

procedure of the temperature response will be illustrated in main text section 2.3. (a) The normalized temperature 

response (temperature divided by the maximum temperature at the heating center) on a fused-silica sample, and 

selected directions for distribution checking, including 0 degree, 45 degree, 90 degree, and 135 degrees. (d) The top 

view of the temperature response. From the directional plots ((b),(c), (e), and (f)) it can be observed the temperature 

distribution exhibits perfect Gaussian distribution, as such it is safe to conclude no peak intensity shift occurs after the 

inclination.  



S2. Emissivity map  

The calibration of the emissivity map involves sequentially heating the sample to two elevated 

temperatures using a thermal stage 1–3. At each temperature, the corresponding surface IR radiation profile 

is recorded. Subsequently, by analyzing the surface radiation profiles at the two temperatures, the surface 

emissivity map 𝜖𝑠(𝑥, 𝑦) can be retrieved. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 Demonstration of emissivity maps for different samples. (a) Fused silica. (b) x-cut quartz, and (c) z-cut 

sapphire. Since all samples are coated with a thin Ti transducer layer, the measured emissivity is identical (𝜎 = 0.27) 

with deviation smaller than 4%.  



 

S3. Calibration of the tilted angle 

 

 

 

 

  

 

Figure S3 In order to simplify model, the long and the short axis of the heating spot are aligned paralleled to the 

x- and y-axis of the focus plane array, respectively. The tilted angle can be calibrated by directly fitting an ellipse 

function fitting. (a) AC amplitude map with 1/𝑒2 maximum amplitude ellipse (red dot). (b) The two red lines are 

the fitted axes of the 1/𝑒2 maximum amplitude ellipse, where the tilted angle is found to be 0°. For isotropic material, 

the distribution of AC amplitude only depends on the heating source. Therefore, by directly fitting the amplitude 

contour, we can determine the tilted angle of the heating source. However, for transversely anisotropic material, the 

distribution of AC amplitude also depends on the arrangement of the sample. Thus, for measurement of transversely 

anisotropic sample with unknown crystal direction, the tilted angle cannot be determined directly. Nevertheless, the 

tilted angle can be determined by implementing a pre-measurement on an isotropic sample, as such we can guarantee 

a known tilted angle when implementing subsequent measurement on transversely anisotropic sample.  



S4 FFT Spectrum 

 

 

 

Figure S4 FFT spectrum of measurement of Ti/fused silica sample at modulation frequency 5Hz. The first column 

represents the power spectrum and the second column represent the Amplitude (Temperature) spectrum. The first row 

represents the spectrum measured at the heating center and the second row represent the spectrum measured at 𝑑𝑥 =
120 μm. The pump radii are 𝑤𝑥 = 44.1 ± 2.4 μm  and 𝑤𝑦 = 25.8 ± 1.8 μm. The SNR is defined as the ratio of 

the peak amplitude to the averaged amplitude of the noise floor in decibels (dB): 𝑆𝑁𝑅𝑑𝑏 = 20 log10(
𝐴𝑝𝑒𝑎𝑘

𝐴𝑛𝑜𝑖𝑠𝑒
) 15. 

In FFT, the 𝑛 frequency bins are defined as 𝑓𝑛 =
𝑛𝑓frame

𝑁fft
ൗ = 𝑛/𝑡frame, where 𝑛 ranges from 0 to 𝑁fft − 1, 

𝑓frame is the framerate of the camera, 𝑁fft is the total number of sampling points, and 𝑡samp is the total sampling 

time. Given that 𝑓frame is fixed, 𝑡samp has a significant impact on the frequency resolution, determining if the signal 

at the frequency of interest (5 Hz) lands precisely in a frequency bin. We found that for our camera system, the best 

𝑡samp is 37 s, which corresponds to 𝑁fft=1976.  



S5. Table of nominal values of input parameters 

Table S1 Nominal values of input parameters with their uncertainty of 68% confidence 

interval. The uncertainty of spot radii 𝑤𝑥, 𝑤𝑦 are to be determined in the spot radii fitting, 

details are discussed in main text Appendix. S3. 

Input parameters Nominal value Uncertainty (%) 

𝑤𝑥 (Radius of semi-major axis) 45 μm NA 

𝑤𝑦 (Radius of semi-minor axis)  27 μm NA 

𝑘𝑓  (Thermal conductivity of Ti 

film) 
15 Wm−1 K−1 20 

ℎ𝑓 (Thin film thickness) 100 nm 5 

𝑙𝑝 (Pixel size) 6 μm 5 

𝐺𝑓/𝑠 (Thermal boundary 

conductance) 
100 MW m−2K−1 20 

𝐶𝑓 (Heat capacity of Ti film) 2.44 Jcm−3K−1 2 

𝐶𝑠 (Heat capacity of substrate) 1.62 Jcm−3K−1 2 

 

 

 

 



S6 Average Filter 

 

 

 

 

 

 

Figure S5 Exemplar average filter for denoising. (a) FFT spectrum before average filter, where the noise floor is 

9.6𝑒−3 K. (b) FFT spectrum after applying a 5 × 5 filter, the noise floor is reduced to  2.3𝑒−3 K. (c) Phase as a 

function of offset distance 𝑥. The noise in the phase of a single pixel is significantly larger that of the average filter. 

(d) Noise floor as a function of size of average filter, from 1 × 1 (no filter) to 10 × 10. The noise floor decreases 

with the increase in the size of the average filter. Noted that the spatial resolution is compromised with the increasing 

size of the average filter, a balance needs to be found between the filter size and the spatial resolution. A window with 

size 5 × 5 to 7 × 7 reaches the balance. 



S7 Sensitivity map for in-plane anisotropic thermal conductivity tensor 

In this section, a detailed sensitivity analysis is given. In-plane anisotropic materials can be further 

divided into two categories based on the arrangement of their in-plane lattice vectors: material with 

orthogonal in-plane lattice vectors (i.e., 𝑐Ԧ ⊥ 𝑎Ԧ ), such as x- and y-cut quartz; and material with non-

orthogonal in-plane lattice vectors, such as (010) 𝛽 − Ga2O3, where the axial angle between [001] and 

[100] is 103.7°.For materials having orthogonal in-plane lattice vectors, there are two experiment 

conditions to consider: 1. Samples with known crystal direction and 2. Samples with unknown crystal 

direction. In the first case, where the sample has known crystal direction, it is possible to arrange the 

 Figure S6 The 𝛥𝜙  sensitivity map for 𝑘𝑥𝑥 , 𝑘𝑦𝑦 ,  and 𝑘𝑥𝑦 . (a) Schematic for 3 different sample 

configurations. In case 1 (first row), 𝑐Ԧ and 𝑎Ԧ  are aligned parallel to the x- and y-axes of the optical system, 

respectively; In case 2 and case 3 (second and third row), the sample is intentionally rotated 30° counterclockwise 

and clockwise, respectively. Note that since the optical system has positive z direction goes into the paper, the 

counterclockwise rotation about z axis appears to be clockwise from top view. (b), (d) and (g): 𝛥𝜙 Sensitivity map 

for 𝑘𝑥𝑥, where 𝛼𝑥 is the region that 𝑘𝑥𝑥 exhibits high sensitivity; (c), (e) and (h): 𝛥𝜙 Sensitivity map for 𝑘𝑦𝑦, 

with high sensitivity region 𝛼𝑦; And last, (f) and (i): 𝛥𝜙 Sensitivity map for 𝑘𝑥𝑦 with high sensitivity region 

𝛼𝑥𝑦. All input parameters are same as listed in Table.1, and the specific in-plane thermal conductivity tensor used 

for each row is printed on  𝛥𝜙 Sensitivity map. 



sample in such a way that the two in-plane lattice vectors, 𝑐Ԧ and 𝑎Ԧ, align with the x- and y-axes of the 

optical system, respectively (see the configuration sketch in Figure S6 (a)). Subsequently, the in-plane 

thermal conductivity tensor based on the optical coordinate system, often referred to principle in-plane 

thermal conductivity tensor, can be written as  𝒌𝒊𝒏,𝟏 = [
𝑘𝑥1𝑥1

0

0 𝑘𝑦1𝑦1

] = [
𝑘𝑐 0
0 𝑘𝑎

], where 𝑘𝑐 and 𝑘𝑎 

are the lattice thermal conductivity along 𝑐Ԧ and 𝑎Ԧ direction, respectively. 

Figure S6 (b) and (c) present the sensitivity map of Δ𝜙 to 𝑘𝑥𝑥 and 𝑘𝑦𝑦 based on a hypothetical in-

plane thermal conductivity tensor 𝒌𝒊𝒏,𝟏 = [
15 0
0 8

] .  Similar to the sensitivity map for isotropic 

materials, Δ𝜙  exhibits high sensitivity to 𝑘𝑥𝑥  and 𝑘𝑦𝑦  in a region within an offset angle 𝛼𝑥, 𝛼𝑦 . 

However, in contrast to isotropic materials, 𝛼𝑥 for anisotropic thermal conductivity tensor is narrower, 

while 𝛼𝑦 is broader. This indicates the ratio of 𝑘𝑥𝑥 and 𝑘𝑦𝑦 affects the influence region of 𝑘𝑥𝑥 and 

𝑘𝑦𝑦. 

In the second case, 𝑐Ԧ and 𝑎Ԧ cannot be aligned parallel to the x- and y-axes since the crystal direction 

is unknown. Therefore, the principle in-plane thermal conductivity tensor 𝒌𝒊𝒏,𝟐 = [
𝑘𝑥2𝑥2

𝑘𝑥2𝑦2

𝑘𝑦2𝑥2
𝑘𝑦2𝑦2

], has 

non-zero off-diagonal terms, and 𝑘𝑥2𝑥2
≠ 𝑘𝑐 , 𝑘𝑦2𝑦2

≠ 𝑘𝑎 , and 𝑘𝑥1𝑦1
= 𝑘𝑦1𝑥1

≠ 0. Assuming we are 

examining the same hypothetical material as case 1, and the sample is counterclockwise rotated 30° 

about z axis, then the to-be-determined 𝒌𝒊𝒏,𝟐 = 𝑸𝑻𝒌𝒊𝒏,𝟏𝑸 = [
13.3 3
3 9.8

], where 𝑸 is the transformation 

matrix 𝑸 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]4.  The positive thermal conductivity of 𝑘𝑥𝑦 suggest that the temperature 

gradient in the 𝑥 direction would lead to a heat flux in the positive 𝑦 direction, and vice versa. In line 

with the observation in case 1, Δ𝜙  exhibits high sensitivity to 𝑘𝑥𝑥  and 𝑘𝑦𝑦  within 𝛼𝑥  and 𝛼𝑦  , 

respectively, but with a slightly twisted opening orientation (Figure S6 (d) and (e)). Furthermore, the off-

diagonal term 𝑘𝑥𝑦 shows high sensitivity in a direction pointing to 135° and within the offset angle 𝛼𝑥𝑦 

(Figure S6 (f)). Remarkably, the absolute sensitivity value for 𝑘𝑥𝑦 is comparable to that of 𝑘𝑥𝑥 and 

𝑘𝑦𝑦. Given the comparable sensitivity levels and the distinct sensitivity patterns for each in-plane thermal 

conductivity tensor element, simultaneously fitting all the three elements becomes feasible. In addition, 

after fitting 𝒌𝒊𝒏,𝟐, the rotation angle 𝜃 can be deduced. The rotation angle satisfies the relation: 𝑘𝑥1𝑦1
=

0 = 𝑘𝑥2𝑦2
cos(𝜃) −

𝑘𝑥2𝑥2 sin(2𝜃)

2
+

𝑘𝑦2𝑦2 sin(2𝜃)

2
, as such 𝜃 =

1

2
arctan (

2𝑘𝑥2𝑦2

𝑘𝑥2𝑥2−𝑘𝑦2𝑦2

). Finally, for materials 



with non-orthogonal in-plane lattice vectors, the sensitivity pattern is generally the same as this second 

case since they both have the non-zero 𝑘𝑥𝑦. However, for these materials, the rotation angle cannot be 

directly retrieved using the same relation since the crystalline in-plane thermal conductivity tensor itself 

already contains a non-zero 𝑘𝑥𝑦 component. 

Same as mentioned in main text, it is important to recognize that the sensitivity map pattern for each 

element is not fixed. Consider a case 3 where the hypothetical tensor 𝒌𝒊𝒏,𝟏 is rotated clockwise by 30°, 

then the to-be-determined principle in-plane thermal conductivity tensor becomes 𝒌𝒊𝒏,𝟑 = [
13.3 −3
−3 9.8

]. 

In this case the high sensitivity region for 𝑘𝑥𝑦 is now pointing towards 45°, which is distinctly different 

from case 2 (Figure S6 (i)).  

S8. Sample with rough surface 

 S8.1 Far-field phase with different shape of heating spot 

 

Figure S7 Compare far-field 𝛥𝜙 with different shape of heating spot. Blue curve: 𝑟𝑥 = 60 μm, 𝑟𝑦 = 20 μm; 

Orange curve:𝑟𝑥 = 40 μm, 𝑟𝑦 = 20 μm;Yellow curve:𝑟𝑥 = 20 μm, 𝑟𝑦 = 20 μm. (a) plots  𝛥𝜙 starts from heating 

center. (b) plots 𝛥𝜙 starts from the far-field (cut-off position from (a)). The difference among the far-field (𝑥 > 3𝑟𝑥) 

phase for different heating spot shape is smaller than 1%, therefore it is safe to ignore the shape of the heating spot 

when analyzing the far-field data. 



S8.2 Best-fit map for rough samples 

 

 

 

Figure S8 Rough glass slide measurement data maps. (a)-(c) AC amplitude map. (d)-(f) Measured Δ𝜙 map with 

filtered region. (g)-(i) modeled Δ𝜙 map based on best-fit thermal conductivity tensor with measured Δ𝜙 map. (f)-

(i) 1D Δ𝜙 visualization. The roughness 𝑟𝑎 are 3.5 μm, 2.7 μm, and 0.86 μm, from left to right. 



 

S8.3 Rough sample measurement results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.S2 The in-plane thermal conductivities of samples with poor surface finish. The ±uncertainties 

represent 95% confidence interval. 

Sample 𝒌𝒙𝒙(𝐖/𝐦 ∙ 𝐊) 𝒌𝒚𝒚(𝐖/𝐦 ∙ 𝐊) 

Soda-lime glass   

Pristine (𝑹𝒂 = 𝟑 𝐧𝐦) 𝟏. 𝟑𝟏 ± 𝟎. 𝟎𝟕 𝟏. 𝟑𝟒 ± 𝟎. 𝟎𝟔 

𝑹𝒂 = 𝟐𝟐𝟖 𝐧𝐦  𝟏. 𝟑𝟒 ± 𝟎. 𝟎𝟗 𝟏. 𝟑𝟑 ± 𝟎. 𝟎𝟔 

𝑹𝒂 = 𝟎. 𝟖𝟔 𝛍𝐦 𝟏. 𝟑𝟖 ± 𝟎. 𝟎𝟕 𝟏. 𝟑𝟔 ± 𝟎. 𝟎𝟔 

𝑹𝒂 = 𝟐. 𝟕 𝛍𝐦 𝟏. 𝟒𝟏 ± 𝟎. 𝟎𝟓 𝟏. 𝟑𝟒 ± 𝟎. 𝟎𝟔 

𝑹𝒂 = 𝟑. 𝟓 𝛍𝐦 𝟏. 𝟒 ± 𝟎. 𝟎𝟕 𝟏. 𝟑𝟔 ± 𝟎. 𝟎𝟔 

x-cut quartz   

Pristine 𝟏𝟐. 𝟏 ± 𝟎. 𝟓 𝟕. 𝟑 ± 𝟎. 𝟒 

𝑹𝒂 = 𝟏. 𝟓 𝛍𝐦 𝟏𝟐. 𝟑 ± 𝟎. 𝟔 𝟕. 𝟑 ± 𝟎. 𝟑 



S9. Summary of all measurement materials 

 

 

 

 

 

 

 

Table.S3 Summary of in-plane thermal conductivities of transversely isotropic materials 

measured by SR-IRT and the literature values. The ±uncertainties represent 95% confidence 

interval.  

Sample 

Literature Measurement 

𝑘𝑥𝑥 

(W/m ∙ K) 

𝑘𝑦𝑦 

(W/m ∙ K) 

𝑘𝑥𝑦 

(W/m

∙ K) 

𝐶𝑣(J/cm
3 ∙ K) 

𝑘𝑥𝑥 

(W/m ∙ K) 

kyy 

(W/m ∙ K) 

kxy 

(W/m ∙ K) 

Fused silica 

 

1.3~1.55,6 1.3~1.55,6   - 1.625 
1.48

± 0.06 

1.5

± 0.06 
- 

Soda-lime 

glass  
1.35,7,8 1.35,7,8 - 2.179 

1.31

± 0.1 

1.34

± 0.1 
- 

(0001) 

Sapphire  
3510–12 3510–12 - 3.0613 

37.7

± 2.7 

37.2

± 2.6 
- 

x-cut quartz 

(Aligned) 
128   6.88   0 1.988   

12.1

± 0.5 
7.2 ± 0.3 

0.03

± 0.1 

x-cut quartz 

(𝟐𝟎° 

rotation) 

11.4 7.41 1.67 1.98  
11.2

± 0.5 
7.6 ± 0.4 

1.6

± 0.14 



S10. 3D Anisotropic heat transport model  

S10.1 Heat diffusion in a multilayered system with anisotropic thermal conductivities 

Here a general case of a multilayer system is considered in the thermal model, each layer with 

homogeneous but anisotropic thermal conductivities. The governing equation of the heat diffusion is: 

 

2 2 2 2 2 2

2 2 2
2 2 2x y z xy xz yz

T T T T T T T
C k k k k k k

t x y z x y x z y z

      
= + + + + +

         
 .  (S10-1) 

This parabolic partial differential equation can be simplified into ODE by doing Fourier transforms 

with respect to in-plane coordinates and time, (x, y, z, t) (u, v, z, )T   

 
2( ) ( ) i uxF u f x e dx


−

−
=    

 
( )

2 ( )
df x

i uF u
dx


 

= 
 

F   

 ( )
2

2

2

( )
2 ( )

d f x
u F u

dx


 
= − 

 
F   

 ( ) ( ) ( )
2

2 2 2

2
4 2 2 2x xy y xz yz ziC k u k uv k v i k u k v k

z z
  

  
 = − + + + + +

 
,  (S10-2) 

or more compactly, 

 

 

2

2 12
0

z z
 

  
+ −  =

 
.  (S10-3) 

Where  

 
( )2 2 2

1

4 2x xy y

z z

k u k uv k viC

k k




+ +
 + ,  (S10-4) 

 
( )

2 2 2
xz yz

z

k u k v
i

k
 

+
 .  (S10-5) 

The general solution of Eq. (S3-3) is  

 
u z u ze B e B
+ −+ − = + ,  (S10-6) 

where ,u u+ −
 are the roots of the equation

2

2 1 0x x + − = : 



 
( )

2

2 2 14

2
u

  


−  +
= ,  (S10-7) 

and ,B B+ −  are the complex numbers to be determined.  

The heat flux can be obtained from the temperature Eq. (S3-6) and Fourier’s law of heat conduction 

( )zQ k d dz= −   as: 

u z u z

z zQ k u e B k u e B
+ −+ + − −= − − . (S10-8) 

It would be convenient to write Eq. (S3-6) and (S3-8) as matrices as 

 
,

n

n z n

B
N

Q B

+

−

   
=   

   
. (S10-9) 

 
1 1 0

0

u z

n u z
z z

n

e
N

k u k u e

+

−+ −

  
=   

− −     

, (S10-10) 

where n stands for the n-th layer of the multilayer system, and z is the distance from the surface of the n-

th layer.  

The constants ,B B+ −
 for the n-th layer can also be obtained from the surface temperature and heat 

flux of that layer by setting z=0 in Eq. (S3-10) and performing its matrix inversion:  

 
, 0

n

n zn

B
M

QB

+

−

=

   
=   

  
, (S10-11) 

 
( )

11

1

z

n

zz

k u
M

k uk u u

−

++ −

 − −
=  

−  

. (S10-12) 

For heat flow across the interface, an interface conductance G is defined. Therefore, the heat flux 

across an interface can be written as: 

( ), 1, 0 , 1, 0n z L n z n z L n zQ Q G= + = = + == =  − . (S10-13) 

From Eq. (S3-13) we also have: 

1, 0 , ,

1
n z n z L n z LQ

G
+ = = = =  − . (S10-14) 

It is convenient to write Eq. (S3-13) and (S3-14) collectively as a matrix, 



 
1, 0 ,n z n z L

R
Q Q

+ = =

    
=   

   
, (S10-15) 

 
1 1/

0 1

G
R

− 
=  
 

. 
(S10-16) 

    

The surface temperature and heat flux can thus be related to those at the bottom of the substrate as 

         
1 1 1

n, 1, 0 1, 0n

n n

z L z z

A B
N M R N M

Q Q C D Q
= = =

         
= =       

       
. 

(S10-17) 

 

For the modeling of suspended thin films, a semi-infinite substrate composed of air can be added at 

the bottom. The boundary condition of zero heat flux at the bottom of the substrate thus yielding

1, 0 1, 00 z zC DQ= ==  + . The Green’s function Ĝ , which is essentially the detected temperature response due 

to the applied heat flux of unit strength, can thus be solved as  

1, 0

1, 0

ˆ ( , )
z

z

D
G u v

Q C

=

=


= = − . 

(S10-18) 

 

With the Green’s function Ĝ  determined, the detected temperature response is simply the product of 

Ĝ  and the heat source function in the frequency domain. See details in the next sub-section. 

For the case with surface heat loss, the matrix is  

         
1 1 1

n, 1, 01, 0n

n n
lossz L zz

A B
N M R N M

Q QQ C D Q U
= ==

       
= =      − −       

L . 
(S10-19) 

 

Where 𝑄𝑙𝑜𝑠𝑠 = 𝑈Θ , with U [W/m2K] as the heat loss coefficient. Applying the same boundary 

condition of zero heat flux at the bottom of the substrate yields 1, 0 1, 0 1, 00 ( )z z zC D Q U= = ==  + −  . The 

Green’s function Ĝ  can thus be solved as  

1, 0

1, 0

ˆ ( , )
z

z

D
G u v

Q C UD

=

=


= = −

−
. 

(S10-20) 

 

A focused continuous wave laser beam having a Gaussian distribution of intensity over space 𝑝0(𝑥, 𝑦) 

and modulated by a sinusoidal function is used to heat up the sample: 



0

0 0 0 0

2 2

0
0 2 2

2 2 2
( , , ) exp exp

i t

x y x y

A x y
p x y t e



   

   
= − −   

   
   

. 
(S10-21) 

 

Where
0A is the average power of the pump beam; 𝜎𝑥0

 and 𝜎𝑦0
 are the 1/e2 radii of the pump spot in 

the x and y directions, respectively; w 0
 is the modulation frequency. Only the periodic heat input is 

considered here, as the DC component will be removed by the lock-in amplifier. Fourier transform of 

𝑝0(𝑥, 𝑦, 𝑡) over the space and time is 

( )0 0

2 2 2 2 2 2

0 0 0( , , ) exp exp 2
2 2

x yu v
P u v A

   
   

   
= − − −   

   
   

. 
    (S10-22) 

 

Here we have utilized the following relationship 

ℱ{𝑒−𝑎𝑥2
} = ∫ 𝑒−𝑎𝑥2∞

−∞
𝑒−𝑖2𝜋𝑢𝑥𝑑𝑥 = √(

𝜋

𝑎
) 𝑒−𝜋2𝑢2/𝑎. 

(S10-23) 

 

The detected temperature response is the product of the surface heat flux 𝑃0(𝑢, 𝑣, 𝜔) and the Green’s 

function 𝐺̂(𝑢, 𝑣, 𝜔) in the frequency domain. Inverse Fourier transform yields the real space surface 

temperature distribution as  

2 ( )

0
ˆ( , , ) ( , , ) ( , , ) i ux vyx y P u v G u v e dudv   

 
+

− −
=   . 

(S10-24) 

 

  

S10.2 Modeling of signals acquired in the experiments 

The next step is to determine the thermal response at each pixel, where each pixel is considered a ‘probe 

pixel’ with a cube shape and constant distribution. Assume the center of the probe pixel locates at (𝑥𝑐 , 𝑦𝑐) 

Then, the weight function of the probe pixel can be written as 

𝐼𝑝𝑟𝑜𝑏𝑒(𝑥𝑐, 𝑦𝑐) = ∫ ∫
1

𝑙𝑝
2 𝑑𝑥𝑑𝑦

𝑦𝑐+
𝑙𝑝

2

𝑦𝑐−
𝑙𝑝

2

𝑥𝑐+
𝑙𝑝

2

𝑥𝑐−
𝑙𝑝

2

, (S10-25) 

Where 𝑙𝑝 is the side length of the pixel. Finally, the probed thermal response for pixel at (𝑥𝑐, 𝑦𝑐) is 

given by the weighted average of 𝑇̃𝑡𝑜𝑝(𝑥, 𝑦) by 𝐼𝑝𝑟𝑜𝑏𝑒(𝑥𝑐, 𝑦𝑐): 



𝐻(𝑥𝑐, 𝑦𝑐, 𝜔) =
1

𝑙𝑝
2 ∫ ∫ 𝜃(𝑥, 𝑦, 𝜔)𝑑𝑥𝑑𝑦

𝑦𝑐+
𝑙𝑝

2

𝑦𝑐−
𝑙𝑝

2

𝑥𝑐+
𝑙𝑝

2

𝑥𝑐−
𝑙𝑝

2

. (S10-26) 

𝐻(𝑥𝑐, 𝑦𝑐, 𝜔) in Eq. (S22) is a complex number, with the real part as the in-phase output and the 

imaginary part as the out-of-phase output of the lock-in amplifier: 

𝑋 = 𝑅𝑒{𝐻}, 𝑌 = 𝐼𝑚{𝐻}. (S10-27) 

The thermal response 𝐻(𝑥𝑐, 𝑦𝑐, 𝜔) has a linear relation with measured data and will be evaluated 

numerically. The definition of integration grid can be found in our previous work. A simple and 

computationally efficient interpretation of the thermal response is that each probe pixel reads the 

temperature at its center. Therefore, the temperature response is exactly Equation 3. However, this 

interpretation might not be accurate when the pixel is large compared to the temperature gradient. Since 

experimentally we used a reasonably large heating spot size compared to the pixel resolution, it is safe to 

use this simplification and the accuracy is verified in the following section. 

S11. Comparison between exact pixel reading and point simplification 

Computing the exact solution based on Eq. S10-22 can be time-consuming. However, if the pixel is 

small enough compared to the temperature gradient, it is reasonable to adopt a simplification that the pixel 

reads the temperature at its center. Therefore, the temperature response simplifies to Eq.3 in the main text 

and the computational time is two orders of magnitude faster. Here we investigate when the simplification 

is valid. Assume a material with a small thermal conductivity 𝑘 = 1.4 Wm−1K−1  and 𝐶𝑣 =

1.6 W cm−3 K−1, so that the thermal diffusion length is as small as possible. With experiment condition 

of pixel size of 6 μm, and modulation frequency of 5 Hz. The normalized amplitude and relative phase 

under different heating spot size is shown in figure below: 



For cases where the heating spot size is smaller or comparable to the probe pixel (as shown in Figure. 

S8 (a),(b),(e),(f)), the relative phase calculated using a simplified solution shows a slight offset compared 

to the exact solution, and there are more notable differences in the normalized amplitude. However, when 

the spot size is larger than the pixel size (as illustrated in Figure. S8 (c),(d),(g),(h)), the difference between 

the simplified and exact solutions becomes negligible. Given that the smallest heating spot size in actual 

experiment is around 26 μm, which is four times larger than the probe pixel, it is reasonable to utilize the 

simplified model to achieve better computational efficiency without compromising accuracy. 

S12. Uncertainty formalism 

In processing the data, we extract multiple parameters (𝑘𝑥𝑥,𝑘𝑦𝑦 and 𝑘𝑥𝑦) from experimental data 

simultaneously, using the least-squared regression method. This process could be mathematically 

expressed as seeking to minimize the squared difference between the experimental data and the model 

predictions14: 

𝑅(𝑋Ԧ𝑈) = ∑ [𝑦𝑖 − 𝑔(𝑋Ԧ𝑈, 𝑋Ԧ𝑃, 𝑑𝑖)]
𝑁
𝑖=1

2
, (S12-1) 

where  𝑦𝑖 is the 𝑖 𝑡ℎ measured signal at offset spot 𝑑𝑖, 𝑔 is the corresponding value evaluated by 

the thermal model, 𝑋Ԧ𝑈  is the vector of unknown parameters and 𝑋Ԧ𝑃  is the vector of controlled 

parameters. For in-plane thermal conductivity tensor fitting, we consider total three unknown parameters: 

Figure S9 Normalized amplitude and relative phase as a function of offset distance with different spot sizes. Each 

column corresponds to a different heating spot size, ranging from left to right: 3 μm, 6 μm, 12 μm, and 18 μm. The 

first row represents the normalized amplitude, and the second row represents the relative phase. The probe pixel size 

is 6 μm. 



𝑋Ԧ𝑈 = [𝑘𝑥𝑥, 𝑘𝑥𝑦, 𝑘𝑦𝑦]
𝑇

, and ten controlled parameters 𝑋Ԧ𝑃 = [𝑘𝑥𝑥,𝑓 , 𝑘𝑦𝑦,𝑓 , 𝑓, 𝐶𝑓 , 𝐶𝑠, ℎ𝑓 , 𝑙𝑝, 𝐺𝑠, 𝑤𝑥, 𝑤𝑦]
𝑇

. 

Note that since in computation it is safe to assume that the metallic transducer has isotropic thermal 

conductivity, i.e.,  𝑘𝑥𝑥,𝑓 = 𝑘𝑦𝑦,𝑓 = 𝑘𝑧𝑧,𝑓, since the thickness of the transducer is significantly smaller 

than the thermal characteristics length. At the best fit, the gradient of 𝑅 should be zero for every element 

in 𝑋Ԧ𝑈: 

𝜕𝑅(𝑋⃗Ԧ𝑈)

𝜕𝑥𝑢
|
𝑋⃗Ԧ̂𝑼

= ∑ [(𝑦𝑖 − 𝑔(𝑋Ԧ𝑈, 𝑋Ԧ𝑃, 𝑑𝑖))
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑷,𝑑𝑖)

𝜕𝑥𝑢
|
𝑋⃗Ԧ̂𝑼

]𝑁
𝑖=1 =

0, 

(𝑢

= 1,2, … , 𝑛𝑢) 
(S12-2) 

where 𝑋Ԧ̂𝑼 is the least squares estimate of the unknown parameter vector 𝑋Ԧ𝑈. Denote the mean values of 

𝑋Ԧ̂𝑼, 𝑋Ԧ𝑃  as 𝑋Ԧ𝑈
∗ , 𝑋Ԧ𝑃

∗ , near the small neighbor of 𝑋Ԧ𝑈
∗ , 𝑋Ԧ𝑃

∗ , 𝑔(𝑋Ԧ𝑈, 𝑋Ԧ𝑃, 𝑑𝑖) can be rewritten by applying 

Taylor expansion,  

𝑔(𝑋Ԧ𝑈, 𝑋Ԧ𝑃, 𝑑𝑖) ≈ 𝑔(𝑋Ԧ𝑈
∗ , 𝑋Ԧ𝑃

∗ , 𝑑𝑖) + ∑
𝛿𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑖)

𝜕𝑥𝑢
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𝑛𝑢
𝑢=1 (𝑥𝑢 −

𝑥𝑢
∗) + ∑

𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑖)
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|
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𝑝=𝑛𝑢+1 (𝑥𝑝 − 𝑥𝑝

∗). 

𝑖 = 1,2, … ,𝑁 (S12-3) 

Substitute Eq. (S12-3) into Eq. (S12-2), 

∑ [(𝑦𝑖 − 𝑔(𝑋Ԧ𝑈
∗ , 𝑋Ԧ𝑃

∗ , 𝑑𝑖) − ∑
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑖)
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∗) −𝑁
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|
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∗ ,𝑋⃗Ԧ𝑃
∗

𝑛𝑝

𝑝=1 (𝑥𝑝 − 𝑥𝑝
∗))×

𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑖)

𝜕𝑥𝑢
|
𝑋⃗Ԧ𝑈

∗ ,𝑋⃗Ԧ𝑃
∗
] = 0. 

(S12-4) 

Eq. (S12-4) can be re-written into matrix form: 

𝑱𝑼
∗ ′ [𝑦Ԧ − 𝑔Ԧ(𝑋Ԧ𝑈

∗ , 𝑋Ԧ𝑃
∗ , 𝑑𝑖) − 𝑱𝑼

∗ (𝑋Ԧ̂𝑼 − 𝑋Ԧ𝑈
∗ ) − 𝑱𝑷

∗ (𝑋Ԧ𝑃 − 𝑋Ԧ𝑃
∗)] = 0⃗Ԧ𝑝×1, (S12-5) 

where 𝑱𝑼
∗ , 𝑱𝑷

∗   are the Jacobian matrix: 



𝑱𝑼
∗ =

[
 
 
 
 
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑1)
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⋯

𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑1)

𝜕𝑥𝑛𝑢

⋮ ⋱ ⋮
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑁)

𝜕𝑥1
⋯

𝜕𝑓𝑛(𝜃)

𝜕𝑥𝑛𝑢 ]
 
 
 
 

𝑁×𝑛𝑢

, (S12-6) 

𝑱𝑷
∗ =

[
 
 
 
 
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑1)

𝜕𝑥𝑛𝑢+1
⋯

𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑1)

𝜕𝑥𝑀

⋮ ⋱ ⋮
𝜕𝑔(𝑋⃗Ԧ𝑈,𝑋⃗Ԧ𝑃,𝑑𝑁)

𝜕𝑥𝑛𝑢+1
⋯

𝜕𝑓𝑛(𝜃)

𝜕𝑥𝑀 ]
 
 
 
 

𝑁×𝑛𝑝

. (S12-7) 

Here we utilize notation 𝑥𝑖 (𝑖 = 1,2, … , 𝑛𝑢) = 𝑥𝑢 (𝑢 = 1,2, … , 𝑛𝑢),  and 𝑥𝑖  (𝑖 = 𝑛𝑢 + 1, 𝑛𝑢 + 2,

… ,𝑀) = 𝑥𝑝(𝑝 = 1,2, … , 𝑛𝑝), where 𝑛𝑢 is total number of unknown parameters, 𝑛𝑝 is the total number 

of controlled parameters, 𝑀 = 𝑛𝑢+𝑛𝑝 is the total number of parameters. If 𝑱𝑼
∗ ′𝑱𝑼

∗  is an invertible matrix, 

then Eq. (S12-5) can be rearranged to form:  

𝑋Ԧ̂𝑼 = (𝑱𝑼
∗ ′𝑱𝑼

∗ )−1𝑱𝑼
∗ ′[𝑦Ԧ − 𝑔Ԧ(𝑋Ԧ𝑈

∗ , 𝑋Ԧ𝑃
∗ , 𝑑𝑖) − 𝑱𝑷

∗ (𝑋Ԧ𝑃 − 𝑋Ԧ𝑃
∗)] + 𝑋Ԧ𝑈

∗ . (S12-8) 

Assuming the experimental noise at each spot has a normal distribution, and the controlled parameters 

are also normally distributed around their mean values, the variance-covariance matrix of 𝑋Ԧ̂𝑼 then is: 

𝑉𝑎𝑟(𝑋Ԧ̂𝑼) = (𝑱𝑼
∗ ′𝑱𝑼

∗ )−1𝑱𝑼
∗ ′[𝑉𝑎𝑟(𝑦Ԧ) − 𝑔Ԧ(𝑋Ԧ𝑈

∗ , 𝑋Ԧ𝑃
∗ , 𝑑𝑖) − 𝐽𝑃

∗𝑉𝑎𝑟(𝑋Ԧ𝑃)𝐽𝑃
∗ ′]𝑱𝑼

∗ (𝑱𝑼
∗ ′𝑱𝑼

∗ )−1. (S12-9) 

Where 𝑉𝑎𝑟(𝑦Ԧ)  and 𝑉𝑎𝑟(𝑋Ԧ𝑃)  are the variance matrix of the experiment measurement and the 

variance matrix of controlled parameters, respectively: 

𝑉𝑎𝑟(𝑦Ԧ) = [

𝜎𝑦1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑦𝑁

2
]

𝑁×𝑁

 , (S12-10) 

𝑉𝑎𝑟(𝑋Ԧ𝑃) = [

𝜎𝑥𝑐1

2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑥𝑐𝑛𝑝

2
]

𝑛𝑝×𝑛𝑝

 . (S12-11) 



𝜎𝑦𝑖

2 ,𝑖 = 1,2, … ,𝑁, are the variances of experiment measured data at spot 𝑦𝑖; 𝜎𝑥𝑐𝑖

2 ,𝑖 = 1,2, … , 𝑛𝑝, are 

the variances of controlled parameter 𝑥𝑐𝑖
. Therefore, the uncertainty emerges from both experimental 

noise and controlled parameters are all considered. Finally, the uncertainties of the unknown parameters 

can be determined form the diagonal terms of Eq. (S12-9): 

𝑉𝑎𝑟(𝑋Ԧ̂𝑼) =

(

 
 

𝜎𝑥𝑢1

2 𝑐𝑜𝑣[𝑥𝑢1
, 𝑥𝑢2

] 𝑐𝑜𝑣[𝑥𝑢1
, 𝑥𝑢3

]

𝑐𝑜𝑣[𝑥𝑢2
, 𝑥𝑢1

] 𝜎𝑥𝑢2

2 𝑐𝑜𝑣[𝑥𝑢2
, 𝑥𝑢3

]

𝑐𝑜𝑣[𝑥𝑢3
, 𝑥𝑢1

] 𝑐𝑜𝑣[𝑥𝑢3
, 𝑥𝑢2

] 𝜎𝑥𝑢3

2

…

⋮ ⋱)

 
 

. (S12-12) 

Eq. (S12-10) is the same result as illustrated in main text Eq. 8. Moreover, it is interesting to note that 

the Pearson correlation coefficients 𝜌𝑘𝑥𝑥,𝑘𝑦𝑦
, 𝜌𝑘𝑥𝑥,𝑘𝑥𝑦

, and 𝜌𝑘𝑦𝑦,𝑘𝑥𝑦
 are all close to 1, which indicates a 

strong linear relation among the unknown parameters. However, the strong linear relation does not affect 

fitting the three parameters simultaneously, detailed explanation can be found in supplementary material. 

Sec. S13. 

 

 

 

 

 

 

 

 

 

 



S13. Pearson correlation coefficient (PCC) and loss function 

S13.1 Pearson correlation coefficient 

The Pearson correlation coefficient (PCC) is defined as: 𝑟𝑖,𝑗 =
𝑐𝑜𝑣[𝑥𝑢𝑖

,𝑥𝑢𝑗
]

𝜎𝑥𝑢𝑖
𝜎𝑥𝑢𝑗

, where 𝑐𝑜𝑣[𝑥𝑢𝑖
, 𝑥𝑢𝑗

] is the 

covariance of 𝑥𝑢𝑖
and 𝑥𝑢𝑗

, 𝜎𝑥𝑢𝑖
 is the variance of 𝑥𝑢𝑖

. PCC quantifies strength of linear dependence 

between two parameters. It is a value between -1 and 1, inclusive, the closer the PCC is to the boundary, 

the stronger of the linear dependence between two parameters is. The PCC can be computed conveniently 

based on the variance-covariance matrix 𝑉𝑎𝑟(𝑋Ԧ̂𝑼) given in Eq. (S12-10). Here 𝑉𝑎𝑟(𝑋Ԧ̂𝑼)is computed 

based on the hypothetical sample with thermal conductivity tensor given in Section 4.2.2: 𝑘𝑖𝑛 =

Table. S4 Pearson correlation coefficient and corresponding uncertainty (96% confidence interval). The 

uncertainty of 𝑘𝑥𝑦 based on x-axis and y-axis data is not shown since the extremely large value. 

Data set 

Pearson correlation coefficient Uncertainty (%) 

𝜌𝑘𝑥𝑥,𝑘𝑦𝑦
 𝜌𝑘𝑥𝑥,𝑘𝑥𝑦

 𝜌𝑘𝑦𝑦,𝑘𝑥𝑦
 𝑘𝑥𝑥 𝑘𝑦𝑦 𝑘𝑥𝑦 

Map fitting 0.96 0.98 0.99 6 5 13 

Directional 

data (x-axis 

data only) 

0.89 0.97 0.89 98 255 - 

Directional 

data (y-axis 

data only) 

0.74 0.74 0.98 469 108 - 

Directional 

data  

(4 directions) 

0.96 0.89 0.88 14.22 12.9 60 



[
20 2 0
2 8 0
0 0 8

], with 𝑉𝑎𝑟(𝑦Ԧ) substituted by a constant variance (0.1°) to eliminate biased correlation 

coefficient. As mentioned in the main text, the in-plane thermal conductivity tensor is retrieved by both 

map fitting and directional fitting for comparison. For the directional fitting, we consider cases: 1. Only 

x-axis data. 2. Only y-axis data. And 3. 4 directions data evenly distributed from -90 to 90 degree (i.e., 

,0,45,90,135).   

It can be found that for map fitting, the Pearson correlation coefficient (PCC) 𝜌𝑘𝑥𝑥,𝑘𝑦𝑦
, 𝜌𝑘𝑥𝑥,𝑘𝑥𝑦

, and 

𝜌𝑘𝑦𝑦,𝑘𝑥𝑦
 are all close to 1, which indicates a strong linear relation among the unknown parameters. 

Subsequently, one might raise questions about the fitting quality and uncertainty of the result, since the 

common understanding is that the high correlation coefficient leads to increased uncertainty in the result. 

However, this statement does not necessarily imply that the fitting quality will be compromised in a 

nonlinear fitting scenario. Instead, the nonlinear least squares fitting approach has the capability to capture 

more complex relationships beyond linear associations, as demonstrated by the convex loss function with 

a single global minimum observed in the plot of the loss function as a function of 𝑘𝑥𝑥 and 𝑘𝑦𝑦 with 

fixed 𝑘𝑥𝑦 (Figure. S10 (a)). In this specific Δ𝜙 map fitting problem, the strong linear correlation among 

𝑘𝑥𝑥, 𝑘𝑦𝑦, and 𝑘𝑥𝑦 indicates fixed in-plane anisotropic ratios. Therefore, even in the presence of strong 

linear correlation, the nonlinear model is still capable of fitting the three tensor elements simultaneously 

with good accuracy and low uncertainty. On the counterpart, when examining data only offset along x-

axis with 𝜌1,2 is well below 1, the corresponding cost function appears to be non-convex (Figure. S10 

(b) and (c)), and the uncertainty to 𝑘𝑦𝑦 is extremely high indicating 𝑘𝑦𝑦 cannot be fitted simultaneously 

with 𝑘𝑥𝑥. 



S13.2. Loss function plots 
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