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Abstract

Increasing the annotation efficiency of trajectory annotations from videos has
the potential to enable the next generation of data-hungry tracking algorithms
to thrive on large-scale datasets. Despite the importance of this task, there are
currently very few works exploring how to efficiently label tracking datasets
comprehensively. In this work, we introduce SPAM, a tracking data engine that
provides high-quality labels with minimal human intervention. SPAM is built
around two key insights: i) most tracking scenarios can be easily resolved. To
take advantage of this, we utilize a pre-trained model to generate high-quality
pseudo-labels, reserving human involvement for a smaller subset of more difficult
instances; ii) handling the spatiotemporal dependencies of track annotations across
time can be elegantly and efficiently formulated through graphs. Therefore, we use
aunified graph formulation to address the annotation of both detections and identity
association for tracks across time. Based on these insights, SPAM produces high-
quality annotations with a fraction of ground truth labeling cost. We demonstrate
that trackers trained on SPAM labels achieve comparable performance to those
trained on human annotations while requiring only 3 — 20% of the human labeling
effort. Hence, SPAM paves the way towards highly efficient labeling of large-scale
tracking datasets. Our code and models will be available upon acceptance.

1 Introduction

Detecting and tracking objects in time is at the core of many challenging vision applications. To
address these problems, modern multi-object tracking (MOT) approaches [46) 79, 181 [75] 69] rely
on increasingly larger amounts of annotated data. While annotating image datasets is already costly,
introducing a temporal component further increases the task difficulty and data scale requirements.
This is due to the fact that redundancies between frames cause the information density to scale poorly
with the amount of data, making the overall annotation task more challenging and resource-intensive.

To mitigate these issues, researchers are spending more effort in operating with limited human
annotations. Self- and semi-supervised learning (SSL) and pseudo-labeling (PL) approaches are often
used to leverage unlabeled data whenever possible [36] 142} 35]], while Active learning (AL) strategies
aim at selecting the most informative samples to label. All these strategies are commonly applied in
various image understanding tasks, such as classification [14,[11] or object detection [[17,70]. Even if
video tasks do not have any lower requirement for data, there are only a handful of works that target
efficient labeling in the video domain [62, 163\ 164} 140]]. Existing works fail to provide comprehensive
solutions to video labeling by either ignoring its dense temporal component [40\64]] or working under
a limited single-object setup [74]. An effective MOT labeling engine should operate across multiple
objects and frames, considering the intricate dependencies between tracks inherent in the labeling
problem.
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Videos have unique characteristics that can be leveraged to unleash the full potential of a modern
MOT label engine. Firstly, frame-wise similarities in videos yield data redundancies. In the context
of MOT, this implies that some associations between detections are relatively easy to solve [[7]. This
setup provides an ideal opportunity to leverage state-of-the-art models pre-trained to pseudo-label new
data at zero cost. Secondly, the dependencies of objects across time and space cause annotations in
one frame of the video to have cascading effects in other frames. For example, solving an association
for one track can resolve associations for neighboring tracks. In order to maximize the efficiency of
the annotations, we frame the labeling task within a model that takes into account such dependencies.
Thus, we adopt a track-centric labeling approach rather than a frame-centric one [40]].

We present the M video data label engine, which chains Synthetic pre-training, ’seudo-labeling,
and Active learning with a graph-based Model for optimal tracking performance with minimal
human effort. In the image domain, there are plenty of large-scale annotated datasets that a model-
driven approach can leverage for pre-training [35]], but this is not the case for multi-object tracking
datasets, which tend to be much smaller in scale. To avoid depending on an initial well-curated
large-scale dataset, we advocate for a Synthetic pre-training. We further analyze which components
of a tracking method are more affected by the synthetic-to-real gap. This first experiment gives us an
important insight: labeling should be focused on detections and associations, and we can directly
use the synthetically trained reID model. With our synthetic pre-trained model, we then propose a
model-driven approach to produce P’'seudo-labels on real data and retrain the model with its own
pseudo-labels. We show that with this recipe we can even reach a performance comparable to ground
truth without ever training our labeler on manually annotated data.

Synthetic pre-training and pseudo-labeling allow us to handle easy decisions and defer only uncertain
or complex decisions to an annotator. We propose an Active learning strategy where the labeler
makes decisions at the track-level instead of frame-level, thereby utilizing the annotation budget
more efficiently. Towards this goal, we solve the labeling problem with a Model, based on graph
hierarchies [[12]. This model captures long-range spatio-temporal dependencies, which means our
annotations will have an impact across frames, and not only on the frame where the annotation
actually happens. We further enhance the model with a detection filtering layer so that we can
naturally label detection and association within the same framework.

In summary, we propose M, a multi-object tracking data label engine that significantly reduces
annotation cost by dealing with easy scenarios with (i) a strong MOT model pre-trained on Synthetic
data, and used to (ii) ’seudo-label real data for its own re-training. Harder detection and association
decisions are carefully selected by an (iii) Active learning scheme that works on a (iv) Model based
on graph hierarchies. This allows us to efficiently use the annotator’s budget and account for spatio-
temporal dependencies in the labels. The resulting model generates autolabels comparable to ground
truth performance, requiring only 3 — 20% of manual annotation effort across three diverse datasets.

2 Related Work

As a comprehensive video data label engine, SPAM is the first of its kind to label tracking datasets by
uniquely chaining the following four aspects.

Pre-training for tracking. Over the years, the multi-object tracking (MOT) community has an-
notated many challenging benchmark datasets [[18} [19,160]. However, due to the significant costs
associated with manually labeling temporal data, most benchmarks only provide few annotated
video sequences. To obtain top performance, modern data-hungry tracking methods are usually
pre-trained on additional video and tracking datasets [22, [77} 20, [71} [80]]. Many works also rely on
relevant image recognition [59]] datasets to boost their per-frame object detection performance. An
alternative pre-training direction avoids human annotations entirely by relying on simulated synthetic
data [26} 24} 161} 291 23]

Our label engine also pre-trains the labeling model synthetically, minimizing its total annotation
footprint. To this end, we demonstrate effectiveness of synthetic pre-training [23] for generating
pseudo-labels for self-supervision.

Self-supervision in the temporal domain. To benefit not only from already annotated datasets, many
works explore the utilization of available unlabeled data sources, i.e., how to perform self-supervised
learning for videos. Notable examples leverage cycle-consistency-based correspondences [67, 30],
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Figure 1: Overview of the SPAM training and annotation pipeline. (a) Initial model training on synthetic data.
(b) Application of SPAM to generate pseudo-labels without incurring manual annotation costs on a real dataset,
followed by training on pseudo-labels. (c) Real dataset labeling using pseudo-labels and an uncertainty-based
active learning approach.

color propagation [66] or augmentation-based consistencies [4} |43]. Furthermore, [47] uses con-
trastive learning over re-identification (reID) embeddings to perform unsupervised association learn-
ing. More recently, several works [36} 42,35, [33]] in the image domain demonstrate the effectiveness
of training on pseudo-labels generated by strong underlying labeling models. In the video domain,
this type of self-supervision is mostly unexplored.

We demonstrate the effectiveness of pseudo-labels for the temporal domain by improving the label
quality of our SPAM labeler via self-supervision on its own output. The necessary signal-to-noise
ratio for this training loop is obtained by pre-training a strong graph-based model on synthetic data.

Efficient labeling of video datasets. While significant effort has been devoted towards increasing the
labeling efficiency of image datasets [[1,|35]], similar approaches for the video and tracking domain are
still relatively limited. Earlier works reduce the number of frames to annotate within individual videos
but still rely heavily on human annotators [65]. Other solutions are limited to only a single object
per sequence [63} [16] or still rely on human bounding box annotations [62] to label segmentation
masks across time. The authors of [41] select key frames based on their expected impact on tracking
performance. While effective within its scope, this approach only yields sparse frame annotations,
which are insufficient for training most modern trackers. To reduce the human annotation effort for
trajectories, [45] proposes an efficient video interface that still requires labeling all trajectories.

In contrast, our label engine performs active learning for multiple objects across all video frames
and is the first of its kind to tackle long-term tracking problems via a hierarchical labeling approach.
The uncertainty measures provided by our graph-based model allow us to focus expensive annotation
efforts on individual tracks instead of labeling entire frames in a brute-force manner.

Multi-object tracking models. Tracking objects across time in a video is an established problem
with a long research history. The most dominant tracking-by-detection (TbD) paradigm splits
the task into two steps: (i) detecting objects in every frame and (ii) associating them to object
trajectories, also referred to as data association. Modern trackers have explored performing (i) and (ii)
jointly [25, (7,146, 181]], or providing solutions for (ii) relying on motion models [52} 139, 2,155 3| 156,
50,721 178]], appearance models [57}79, 149,73} 137,154, 13 [15] or more complex techniques involving
transformers [75,(10]]. An alternative direction of work relies on graph formulations [6} 31,1511 [76(38]]
to utilize the TbD paradigm. In this formulation, nodes model object detections, and edges, association
hypotheses. This long-studied formulation has recently been revived with remarkable success with
the help of learnable graph neural network (GNN)architectures [9, |8l 168} [12].

For our label engine to generate long-term pseudo-labels and active learning uncertainty estimations,
we rely on a strong graph-based tracker [12]]. To incorporate both detection and association labeling
within a unified graph framework, we introduce a novel hierarchy level dedicated to detection
filtering.

3 SPAM

3.1 Overview

Our objective is to minimize the manual annotation effort required for multi-object tracking datasets.
Our key observation is that most association cases can be solved easily by models pre-trained on
synthetic data. Therefore, no human effort is needed, and we can instead use our model’s predictions
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Figure 2: Overview of the SPAM model. We first generate a set of detection candidates with our detector.
Hierarchical GNNs then classify these candidates into valid and invalid objects via node classification, and
assign identities through edge classification.

as pseudo-labels. Decisions that are more complex or uncertain are be selected by an active learning
scheme to be annotated manually. The resulting set of labels achieves near-ground truth (GT)
performance with a dramatically reduced need for human annotation, thereby vastly enhancing the
efficiency of the overall labeling process.

In order to perform pseudo-labeling and active learning, we require a model that can capture long-
term spatio-temporal dependencies between tracks. We leverage a hierarchical graph neural network
formulation and cast the annotation task over a graph. Our architecture draws inspiration from
SUSHI [12], which demonstrated remarkable association performance. Our model’s scope, however,
goes beyond association. Given the constraints of the labeling task, we need to equip our model with
the ability to reason about detections before performing association. To address this broader goal,
our GNN hierarchy, unlike SUSHI [12], also includes the capability to accept or reject detections by
classifying nodes into correct and incorrect object hypotheses.

Our overall model is pre-trained on synthetic data [23]] and further fine-tuned on its own predicted
pseudo-labels over the target dataset that we aim to annotate. This recipe allows for strong labelling
performance without any human annotations, and provides the basis for a scalable video annotation
engine. After this training loop, we use our updated model’s predictions as pseudo-labels to annotate
a large portion of the target dataset. Decisions that are more complex or uncertain are selected by
an active learning scheme to be annotated manually. The resulting set of labels achieves near-GT
performance with a dramatically reduced set of manual annotations, vastly enhancing the efficiency
of the overall process. We provide an overview of our training and annotating recipe in Fig.

3.2 Graph Hierarchies as a Model for Labeling

Problem formulation. Our model builds upon the standard graph formulation [76] where, given a set
of object candidates O, our goal is to obtain a set of valid objects O,, C O and their corresponding
trajectories 7. Each trajectory T}, € T consists of a set of objects sharing the same identity or,
equivalently, the set of edges connecting those nodes. Specifically, we model each object candidate
0; € O as a node and each association hypothesis among candidates as an edge in an undirected
graph G = (V, E'). Within this formulation, nodes u € V could be classified into valid objects if
u € O,. Analogously, edges can be classified into correct or incorrect hypotheses depending on
whether they belong to some trajectory or not. This formulation can be generalized to a hierarchical
setting by splitting video sequences into non-overlapping subsequences, i.e., disjoint subgraphs, and
progressively merging them. For further details we refer to the supplementary material.

Background on graph hierarchies for MOT. Our model consists of a hierarchy of GNNs operating
over the graph formulation described above. Intuitively, starting from detection candidates, at each
hierarchy level, GNN hierarchy subsequently merge tracklets from the previous level into longer
ones. Nodes and edges are represented by their embeddings. Message passing is then used to share
information within the graph in order to update node and edge embeddings with richer information.
The GNNss are trained to classify edges into active and inactive association hypotheses and they share
the same features, network architecture and learnable weights across hierarchy levels. In addition
to the edge features reported in [12], for each object candidate o, we concatenate its timestamp ¢;,
normalized bounding box coordinates and dimensions (z;, y;, h;, w;) and corresponding confidence
from the detector ¢; and embed it as node features.
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Figure 3: Our graph-based labeling pipeline begins with the selection of nodes for annotation. For each node to
be labeled, the annotator is presented with the options of validating the detection, improving localization by
refining the box and association.

Classifying nodes. We aim to minimize the annotation effort; therefore, we restrict the annotator
to operate on a fixed graph of detection candidates i.e. no new detections are added to the graph
after the initial set. This is why we have to create an initial graph that is over-complete. In order to
do so, we use a low confidence threshold for our detector and obtain a large number of detection
candidates (Fig.[2). While this ensures a high detection recall, it also introduces a larger number of
false positive detections that our model needs to address. As we show in experiments, the original
SUSHI architecture [12] cannot handle such false positives, which is why we propose a new layer in
the hierarchy, GN N,,,4e. Intuitively, GN N, 4. leverages temporal information to validate object
candidates. We use its output node embeddings and feed them to a lightweight classifier to enable
false positive detection filtering. By doing so, we can consider a large number of input proposals
achieving high detection recall by leveraging the spatio-temporal reasoning ability of our GNN for
detection candidates.

Pre-training and annotation-free fine-tuning. We pre-train all of our model components on the
large-scale synthetic dataset MOTSynth [23]]. To boost our model’s performance and bridge the
domain gap with our target dataset for annotation, we conduct further fine-tuning on the target dataset
after pre-training. We achieve this by utilizing the raw predictions of our model on the target dataset
and employing them as pseudo-labels for self-training. As we show in our experimental section, this
strategy yields a significant performance improvement without incurring any human annotation cost.

3.3 How to Label on Graph Hierarchies?

Manual labeling. Labeling video data at the box level involves several steps: identifying objects
of interest, localizing their boundaries with bounding boxes, and assigning them unique identities.
Typically, annotators achieve this by examining each frame, detecting and localizing objects individu-
ally, and then assigning identities based on temporal context from neighboring frames. In terms of
annotation effort in clicks, detecting and localizing objects typically require two clicks (one for the
top-left corner and one for the bottom-right corner of the bounding box), while associating objects
across time requires one click (identifying the next occurrence of the object in subsequent frames), as
reported in [[18}/19]]. This manual process is labor-intensive, costly, and severely limits the availability
of annotated video data.

Graph-based labeling. Utilizing a graph formulation for detection and tracking enables explicit
modeling of objects in the scene and their interactions. In this framework, each node of the graph
represents an object, allowing a manual annotation of an object to be framed as selecting a node on
this graph. Given a node, we present the annotator with options of: accepting a detection and refining
the bounding-box to improve localization (two clicks, one for the top-left corner and one for the
bottom-right corner of the bounding box) and associating a node across time (1 click). As we are
working on an over-complete set of detections, the annotator can also reject a detection (1 click). We
visualize our annotation pipeline in Fig. 3]

Annotation acquisition. The core idea of our approach is to use our model decisions to guide the
annotation process. For the vast majority of scenarios, we directly use our model’s predictions as
pseudo-labels. For a small subset of more challenging decisions where our model exhibits uncertainty,
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Figure 4: Analysis of performance gap between training a model on synthetic and real data for the three most
common tracking components: detection, association, re-identification.

we validate our decisions with an annotator. Within our graphs, we adopt an uncertainty-based
approach to identify which nodes require annotations. Specifically, for each node v € V', we compute
its uncertainty as uncert(v) := maxyen, H (f(v,.)), Where N, denotes the set of neighboring nodes
of v and g, is the edge prediction for edge (v, u):

H(Q(v,u)) = _(g(v,u) lOg g(v,u) + (1 - /g(v,u)) lOg(l - g(v,u))) (1)

At the GN N,,,q4¢ level, where we have node predictions instead of edge predictions, we simply
compute uncert(v) as H (f(,)) instead. Subsequently, we refer the nodes with the highest uncertainty
scores to the annotator for manual annotation and use the remaining predictions as pseudolabels for
the rest of the nodes.

Hierarchical label generation. To fully leverage our hierarchical graph formulation, we apply our
label acquisition approach described above in a hierarchical manner. Intuitively, we distribute our
annotation budget B across L hierarchical levels as By, ..., By, with By +- - - 4+ By, = B. In deeper
hierarchy levels, nodes represent tracklets instead of single detections. This allows us to propagate
annotator decisions for the entire cluster instead of individual detections, resulting in solving multiple
uncertainties with a single annotation. As a result, we utilize the annotation budget more effectively
while also mitigating error propagation within our pseudo-labels.

4 Experiments

4.1 Datasets and Metrics
Datasets. We conduct experiments on three public benchmarks:

* MOT17 is an established benchmark containing 14 challenging video sequences,
exhibiting diverse characteristics, including variations in camera motion, viewpoint, and
pedestrian densities.

e MOT?20 [19] contains a total of 8 video sequences, all featuring extremely crowded scenes.
Due to their high pedestrian density, the emphasis is on addressing highly challenging
scenarios characterized by frequent and prolonged occlusions.

* DanceTrack [60] contains 100 video sequences. These sequences feature dancing individu-
als with similar appearances, facilitating the evaluation of tracker robustness against highly
challenging motion patterns where appearance information has a relatively minor influence.
This non-standard setup often leads to a performance drop in trackers [60].



Model | High Conf. Box Low Conf. Box | GN N,,04e ‘ MOTA 1 IDF1 1t HOTA 1 DetA 1

A 4 X X 64.4 74.7 59.9 55.9
B 4 v X 60.6 71.4 58.5 54.9
C 4 v v 65.4 75.1 60.4 56.6

Table 1: Ablation study investigating the impact of incorporating low confidence bounding boxes with and
without the GN N, ode-

Metrics. We assess the performance of trackers using three established metrics:

* MOTA [32] assesses trajectory coverage, by combining object detection measurements with
identity switches, with the latter playing a relatively minor role.

» IDF1 [53]] focusses on identity preservation over the sequences and provides a measure of
association performance.

* HOTA [44] is a recently introduced metric designed to strike a balance between association
and object detection performance within a single score.

4.2 TImplementation Details

Architecture and training. Our model consists of three main components: (i) a detector network,
based on YOLOX [27], (ii) a ResNet-based ReID network [28], and (iii) a GNN hierarchy, all
pretrained on the synthetic sequences of MOTSynth [23]]. Please see the supplementary material for
further details about training hyperparameters. After pretraining, we use the resulting model to obtain
pseudo-labels for our target MOT dataset, and then fine-tune our detector and GNN on them. Note
that our Model is never trained on human annotations, it is only trained on synthetic annotations and
its own pseudo-labels.

Experimental setup. To assess the quality of SPAM’s labels, we use them to train two state-of-the-art
online trackers: ByteTrack [78]] and GHOST [57]. For validation, we follow the standard half-split
setting [[79, 78l 157]] over MOT17 sequences. Annotation budgets are computed based on number of
clicks as described in Section[3.3]

4.3 Synthetic Pretaining

Several works have shown that synthetic pre-training is a strong starting point for multi-object
tracking methods [78] 23|]. In this section, we aim to analyze the gap between training a model
on synthetic data and training it with real data separately for the three most common tracking
components: detection, association, re-identification. For each setting, only the specific component
that we are analysing is trained on synthetic data while other components are all trained on real data.
We perform this experiment on three datasets and plot the difference in HOTA when training on
real data vs. synthetic data in Fig. 4] (a positive score indicates superior performance with real data
training). Our first observation, is that the detector is the component that suffers the domain gap
the most, with a performance drop of 9.9 HOTA points. Re-identification, on the other hand, has a
similar performance when trained on synthetic or real data. Lastly, association performance is higher
with real data training (2.1 HOTA). This first experiment gives us an important insight: labeling and
retraining should be focused on detections and associations, and we can directly use the synthetically
trained reID model.

4.4 Towards a Model for Labeling

Graph-based validation of detection candidates. In our framework, annotators have the capability
to eliminate detections, but we refrain from requesting them to annotate new detections in order to
maintain minimal annotation effort. Instead we start from an initial graph formed by an over-complete
set of detections. Towards this end, we use a low confidence threshold for our detector, thereby
reducing the number of false negatives in our initial graph and ensuring a high recall. As a result,
this leads to an increase in the number of false positives incorporated into the graph, a tendency
that is further accentuated by the fact that our detector is exclusively trained on synthetic data. We



Method HOTA t MOTA 1 IDFI 1 [HOTA { MOTA 1 IDFI f|HOTA { MOTA { IDFI }

MOT17 MOT20 DanceTrack
MeMOT [10] 56.9 72.5 69.0 54.1 66.1 63.7
TrackFormer [46] 57.3 74.1 68.0 54.7 65.7 68.6
MOTR [75] 57.8 68.6 73.4 54.2 51.5 79.7
FairMOT [79] 59.3 73.7 72.3 54.6 61.8 67.3 39.7 82.2 40.8
QDTrack [49] 63.5 78.7 71.5 60.0 74.7 73.8 54.2 87.7 50.4
ByteTrack! [78] 62.8 78.9 77.1 60.4 74.2 74.5 47.7 89.6 53.9
GHOST [57] 62.8 78.7 77.1 61.2 73.7 75.2 56.7 91.3 57.7
UTM [73] 64.0 81.8 78.7 62.5 78.2 76.9
MotionTrack [52] 65.1 81.1 80.1 62.8 78.0 76.5
SUSHI [12] 66.5 81.1 83.1 64.3 74.3 79.8 63.3 88.7 63.4

PAM (Ours) 67.5 80.7 84.6 | 65.8 76.5 819 | 64.0 89.2 63.4
Table 2: Test set results on MOT17, MOT20 and DanceTrack when using SPAM solely as a tracker.

propose to leverage the graph structure itself to validate the detections based on temporal consistency.
Specifically, we add an additional GNN-layer in our hierarchy, GN N, 0qe, Which intuitively examines
the spatial and temporal consistency of the bounding box candidates and filters out implausible ones.
In Table[I] we assess the effect of this design choice. Model A uses only high confidence bounding
boxes, model B creates a graph with also low confidence bounding boxes but without GN N,,4e,
while C includes GN N, ,4.. As we can see, simply adding low confidence boxes results in a drastic
drop in performance on all metrics. Only by adding our GN N,,,4. We are able to take full advantage
of the low confidence boxes without penalizing our performance with too many errors.

PAM is a SOTA tracker. Before moving to labeling with our Model, we want to verify its overall
performance and generalization capabilities when trained on real data. Only by using a state-of-the-art
model we will be able to reduce annotation effort as much as possible. We therefore pre-train our
model on the synthetic dataset, and finetune it on the specific real dataset using groundtruth. For a fair
comparison, we obtain object detections from a YOLOX detector [27] trained following [78} 157, [12].
Our model outperforms state-of-the-art by 1.0 HOTA point on MOT17, 1.1 HOTA points on MOT20,
and 0.7 HOTA points on DanceTrack as shown in Table[Z} Furthermore, on MOT17 and MOT?20, there
is also a significant improvement in IDF1, showing the identity-preserving capabilities of the model,
which is especially important for our video annotation setting. Even if being state-of-the-art is not the
main goal of this paper, having a strong performing model allows us to have an excellent starting
point for producing pseudolabels. We would like to emphasize that, we use ground truth annotations
only for this experiment just to validate the performance of our model with a fair comparison with
other trackers. From this point onward, we will not use ground truth labels. We will use our synthetic
pretraining weights and focus on the pseudolabeling and active learning aspects of our method to
show how to annotate multi-object tracking datasets.

4.5 Enhancing Annotation Quality through seudolabels and /A ctive Learning

Retraining our Model on Pseudolabels. In this experiment, we compare two models. The first
one, SPAM, is only trained on synthetic data. The second one, SPAM , is trained in three stages: (i)
pre-training on synthetic data, (ii) pseudo-labeling the real dataset with our model, and (iii) re-training
our model on our own pseudo-labels. In Section4.5] we observe a significant improvement when
using pseudo-labels to re-train our model: an increase of 4-6 HOTA, 4-6 MOTA and 4-7 IDF1 on
MOT17, MOT20 and DanceTrack datasets. Note that these improvements come at zero human
annotation effort as this process requires no manual annotations. Further pseudo-labeling the real
dataset and re-training our model does not lead to another performance increase. It is therefore time
to turn into manual annotations, and in particular, finding the best use of our annotator’s effort.



Model ‘ Pseudolabel ‘ HOTAT MOTAT IDF1T ) oracle ||
MOT17
8 -
PAM X 60.0 65.3 75.1 PR Ll it B "
AM v 638 692 797 " i) Rand.|Rand.
P -_,—:' -8~ Entimg|Rand.
MOT20 <« 67 " PSSt L -~ EntBox|Rand.
= .,' = EntBox|Ours
PAM X 522 654 703 e h e Coreset|ours
AM v 58.7 70.2 77.1 + 4 f' ’,—‘ =% Ensemble|Ours
DanceTrack i' ,;; r/,—' : gzr:slsuours
7 -
PAM X 41.8 65.2 434 2] ,ff e g mmmm == d
AM v 48.1 710 50.2 VAot
§ o2=F"
. &
Table 3: Performance boost obtained by our 0 6‘ T T T T o
model when retraining with its own pseudola- Budget (%)

bels incurring no manual annotation cost.
Figure 5: Impact of various active learning strategies on
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ctive learning on graph hierarchies. We now test the effectiveness of our proposed active
learning labeling on graph hierarchies, and show a comprehensive comparison with several baselines
in Fig. 5} We directly measure the accuracy of the output labels given an increasing percentage
of manual annotations selected by different acquisition functions on MOT17. The vertical axis
shows the increase in HOTA over the baseline performance, i.e., the performance without active
learning. Oracle is our upper bound and shows the performance if all possible labels are set to their
correct value. Every method has two different labeling schemes: one for detections (nodes), and one
for associations (edges) as explained in Section[3.3] In addition to our method, we explore active
learning strategies commonly used in object detection literature, including Coreset [58], Ensemble [5],
and Consistency over augmented inputs [21]. The naming convention denotes the active learning
strategy for detection in the first part and the strategy for association in the second part. For instance,
’EntImg/Rand’ indicates image level entropy-based selection for detection and random selection for
association.

The methods shown in red shades and circle markers compare three detection labeling methods while
keeping association label selection random. Box-level labeling is far superior to commonly-used
image-level labeling, or . This highlights the potential of performing active learning
at the object level rather than the frame level. The methods in blue shades and triangle markers all use
our proposed active learning selection on graph hierarchies for the association, and compare several
detection selection schemes. The [58]], which prioritizes diversity of the data over uncertainty,
emerges as the poorest performing approach. This observation underlines that, when accurate
predictions are available, an uncertainty-based approach proves to be a more effective complement
to pseudo-labels. , ensembles, and consistency all perform similarly. Finally, our
method, with both detection and association label selection on graph hierarchies. Its performance is
far superior to all compared baselines, staying at only 1.2 points from Oracle performance. Notably,
we also unify the AL strategy for detection and association with our approach.

Model ‘ Labels ‘ Pseudolabels | Active Learn. ‘ Ann. Effort | ‘ HOTA + MOTA 1 IDF1 1
ByteTrack [78] | Ground Truth | - \ 100% | 52.6 60.4 65.7
ByteTrack (78] | SPAM X X X 49.6 57.8 63.1
ByteTrack [[78] AM v X X 50.5 59.5 64.5
ByteTrack [78] M v v 3.3% 52.5 61.8 66.2

Table 4: Effect of (i) Synthetic training, (ii) Retraining our model with our Pseudo-labels, and (iii) /Active
learning-based acquisition and annotation of a small percentage of real data, on our label quality on the MOT17
validation set.



Method ‘ Labels ‘Ann. Effort | ‘ HOTA + MOTA 1 IDF1 1

MOT17 Test
ByteTrack [78]| GT 100% 50.6 60.4 61.1
ByteTrack [78] M 3.3% 51.6 64.0 63.0
GHOST [57] GT 100% 49.5 58.0 59.0
GHOST [57] M 3.3% 51.3 61.9 62.1

MOT20 Test
ByteTrack [78] | GT 100% 48.7 60.5 60.0
ByteTrack [78] M 3.3% 47.9 57.6 61.4
ByteTrack [78] M 10% 48.4 61.0 62.8
GHOST [57] GT 100% 48.3 59.7 60.2
GHOST [57] M 3.3% 47.0 58.2 60.7
GHOST [57] M 10% 46.9 59.0 60.8

DanceTrack Test

ByteTrack [78]| GT 100% 41.0 79.1 46.0
ByteTrack [78] M 3.3% 39.5 76.4 45.0
ByteTrack [78] M 20% 41.3 80.9 48.1
GHOST [57] GT 100% 45.8 80.6 46.3
GHOST [57] M 3.3% 41.0 76.3 44.8
GHOST [57] M 20% 43.9 81.3 47.7

Table 5: Evaluation of M labels on MOT17, MOT20, and DanceTrack test sets with varying annotation
budgets by training ByteTrack [78] and GHOST [57]] using annotations generated by our method.

4.6 Putting Everything Together: M Labels in Action

Training trackers with our labels. In this experiment, we ablate the effects of our M pipeline
on the actual usecase of training a model with our provided labels. We ablate label quality under the
following settings: (i) Synthetic training, (ii) Retraining our models on our Pseudo-labels, (iii) /ctive
learning based acquisiton and annotation of a small percentage of real data. We train state-of-the-art
online tracker ByteTrack [78]] from scratch with the aforementioned sets of labels and report its
performance on the MOT17 validation set in Table[d] The goal performance we want to reach is
the one achieve by the model trained on groundtruth annotations (row 1). Row 2 shows our model
trained only on synthetic data, which is 3 HOTA points below our goal. Using pseudo-label based
training of our model increases performance by almost a HOTA point, and the ground truth level
performance is achieved by also using our active learning method to select which samples to label.
By annotating only 3.3% of the data, we can achieve the same results as the model trained on 100%
of the ground truth data. This shows the potential of our M in reducing annotation effort for
multi-object tracking datasets.

How much data do we really need to label? In this final experiment, our goal is to assess the
impact of our entire pipeline by answering the question: How much data do we actually need to
label in order to achieve the same performance as a model trained on the entire groundtruth training
dataset? For that, we choose two well-established trackers, ByteTrack [[78] and GHOST [57] due to
their online inference strategy and versatility, and train them from scratch using our M pipeline.
We report their performance on MOT17, MOT?20, and DanceTrack test sets in Table E} We first
confirm that our results on the validation set also generalize to the test set, and that we can reach GT
performance with 3.3% of annotation effort on MOT17. Note that for MOT17 our annotations yield
a slight improvement over GT, which can be attributed to observed annotation noise in the original
GT, particularly in moving sequences. Further details can be found in the supplementary material.
MOT20 and DanceTrack are known to be more challenging datasets [[60], which is confirmed by the
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fact that the trackers still miss a few points when trained on only 3.3% of manually annotated data.
Given that we cannot do a full analysis of different percentages because we are working on the test
sets, we choose two percentages of manually annotated data on which to train our trackers: 10% for
MOT?20, and 20% for DanceTrack. In both cases, we achieve on-par performance with the trackers
trained on full groundtruth data. This clearly shows the potential in properly leveraging synthetic
data, pseudo-labels from a strong model, and active learning on graph hierarchies in order to label
multi-object tracking data, where we can save 96.7% of the annotation effort on MOT17, 90% of the
annotation effort on MOT20 and 80% of the annotation effort on DanceTrack.

5 Conclusion

We have introduced SPAM, a labeling engine to efficiently obtain trajectory annotations from
video. We have shown that SPAM is able to produce annotations that yield state-of-the-art tracking
performance with a significantly reduced human annotation effort. Through our extensive experiments
we have shown that (i) our synthetic pretraining + pseudo-label finetuning recipe yields a strong,
annotation-free, labeler; (ii) our combination of active learning + pseudo-labeling for annotation
generation yields high quality and efficient annotations; and (iii) that graphs are an excellent tool to
provide comprehensive modelling for trajectory annotation. We believe that SPAM paves the way to
make large-scale cheap annotation of tracking datasets a reality, which will in turn power the next
generation of data-hungry tracking algorithms.
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Appendix
Abstract

This supplementary material offers additional details (Appendix [A) and experi-
mental results (Appendix [B) of our SPAM video data label engine. To this end,
we provide further information on the architecture of our graph-based model
(Appendix [A.T)) and its application for hierarchical labeling (Appendix[A.2). In Ap-
pendix [A.3] we complete the implementation details of the main paper. The experi-
mental results in Appendix demonstrate the superiority of our approach to a

common frame-based labeling method. Finally, we compare labeling performance
for static and moving cameras (Appendix [B].

A Additional Details about M

A.1 GNN Model

Our hierarchical graph-neural network (GNN) utilizes the time-aware message passing framework
introduced in [9]. We use a hierarchy of 10 GNNs operating over a video clip of 512 frames. At the
first level, we employ a GIN N,,,4¢, Which considers a temporal window of 10 frames for each node.
Subsequent levels, denoted as GIN Negge, cover 2, 4, ..., up to 512 frames. We follow a simple and
unified approach for all hierarchy levels: GN Nyo4e and GIN Neqqe levels share the same input fea-
tures and network architecture (as presented in Section [3.2)of the main paper). Moreover, GN Ncggc
levels also share learnable weights across hierarchy levels. Overall, we rely on a lightweight GNN
hierarchy with only approximately 65K parameters running at 20 frames per second (FPS).

A.2 Active Hierarchical Labeling

To fully utilize our hierarchical graph framework, we distribute our annotation budget B across L
hierarchical levels as By, ..., By, with By + --- + By = B. Prioritizing deeper levels enables a
more effective allocation of the annotation budget. Intuitively, in deeper hierarchy levels, nodes
represent tracklets rather than individual detections. We propagate annotator decisions for entire
clusters rather than individual detections, resolving multiple uncertainties with a single annotation.
This makes the annotation pipeline more efficient compared to working at the detection level. For
example for MOT17 [48]], 50% of the budget B is allocated to the last three levels, 30% to the
previous three levels, and the remaining 20% to earlier levels. For MOT17, we do not allocate a
budget for refining bounding boxes since our experiments revealed that the bounding boxes generated

by our synthetic detector are already well localized. However, for the challenging DanceTrack [60]

dataset, we allocate a portion (approximately 30%) of our annotation budget B for refining bounding
boxes.

Influence of Frame Sampling to Label Quality on MOT17

—25

100 80 60 40 20 0
Frame (%)

Figure 6: Annotation quality (reported as relative HOTA drop) on MOT17 by uniformly labeling different
percentages of frames, and then interpolating the ground truth boxes.
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Figure 7: Comparison of MOT17 results for static and moving camera sequences.

A.3 Implementation Details

Architecture and training. We train our YOLOX [27] detector on MOTSynth for 170 epochs
following the training parameters in [[78]. We keep augmentations on throughout the training. We
train our GNN hierarchy on MOTSynth jointly for 10 epochs, with a learning rate of 3 * 10~ and
weight decay of 10~* with batches of 4 graphs. We use a focal loss with v = 1 and the Adam
optimizer [34].

Experimental setup. After obtaining labels with SPAM, we train two well-established online trackers
ByteTrack [78] and GHOST [57] to evaluate our label quality in Section .6 of the main paper. Our
main goal is to compare our label quality with ground truth label quality, therefore, we start trainings
from scratch and only train on the dataset of interest (200 epochs for MOT17, 150 epochs for MOT20
and 100 epochs for DanceTrack). During both training and testing, we follow their default training
and testing parameters [78,157].

B Additional Experiments

B.1 Frame-based Labeling and FPS

The most related work to active learning in the MOT domain is [41], a frame-based labeling method.
Motivated by the redundancy of nearby video frames, they propose to label only a portion of frames.
However, their method requires a large labeling budget (50% of the frames) to achieve ground-truth
level performance. Furthermore, the authors [41] report that at lower data regimes (20% to 40%)
their method is outperformed by a simple uniform sampling of frames.

To demonstrate the inefficiency of such a frame-based labeling method, we show that for high frame
rates, labeling such a large portion of the frames will trivially lead to ground-truth performance. This
is attributed to the redundancy of data in MOT 17 sequences, which are annotated with high frames
per second (FPS) of up to 30. To this end, we examine the annotation quality on MOT17 by uniformly
labeling different percentages of frames, i.e., reducing the FPS, and then interpolating the ground
truth boxes. We report relative HOTA drops compared to labeling all frames in Fig.[6] Notably, we
observe that a naive solution of labeling 50% of the frames (every other frame) and interpolating
the bounding boxes yields almost perfect labels (1 HOTA drop, leading to 99 HOTA). However, a
significant performance drop is observed for lower data regimes, i.e., using lower than 20% of frames
equivalent to approximately 6 FPS for MOT17. This highlights that labeling becomes notably more
challenging for low data regimes in which [41] fails to operate.

In contrast to frame-based labeling, M performs active learning for multiple objects across all
video frames, utilizing the uncertainty measures from our graph-based model. This allows us to invest
expensive annotation efforts on individual tracks instead of labeling entire frames in a brute-force
manner. Consequently, we can reach ground-truth level performance with a minimal annotation
budget of only 3.3% for MOT17.
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B.2 Label Noise for Moving Cameras

In our experiments detailed in Section[d.6]of the main paper, we found that on MOT17, our annotations
with a budget of 3.3% yield slightly better performance compared to the ground truth. We attribute
this observation to annotation noise in the original ground truth, particularly in sequences with moving
cameras. To illustrate this, we provide detailed results on MOT17 for each sequence with ByteTrack
and GHOST in Fig. [/} We compare relative HOTA scores between trainings on ground truth and
SPAM labels. Positive scores indicate superior performance with SPAM labels, while negative scores
indicate that ground truth labels result in better performance. Overall, with a 3.3% budget, ground
truth exhibits better performance on static camera sequences, while SPAM outperforms ground truth
labels on moving camera sequences. We attribute this to additional noise in ground truth labels on
moving sequences caused by the interpolation-based labeling strategy reported in [[18]].
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