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CarcassFormer: An End-to-end Transformer-based Framework for Simultaneous

Localization, Segmentation and Classification of Poultry Carcass Defect

Minh Tran†, Sang Truong† 3, Arthur F. A. Fernandes, Michael T. Kidd, Ngan Le ‡ 4

• Dataset: A poultry carcass dataset was acquired, comprising a total of 7,321 images

gathered from real-world environments and collected from diverse chicken ages, chicken

size, and number of chickens per frame. The dataset has been carefully annotated by

three experts.

• Methodology: CarcassFormer, an effective end-to-end Transformer-based frame-

work, was proposed for simultaneously localizing poultry carcass regions, segmenting

carcass areas, and determining carcasses with imperfections. CarcassFormer is based

on Transformer-based Unet architecture.

Our CarcassFormer is designed with four different components: Network Backbone to

extract visual features, Pixel Decoder to utilize feature maps from various scales, Mask-

Attention Transformer Decoder to predict the segmented masks of all instances, and

Instance Mask and Class Prediction to provide segmentation mask and correspond-

ing label of an individual instance. The extensive experiments showed that Carcass-

Former outperforms both CNN-based networks, namely Mask R-CNN He et al. (2017)

and HTC Chen et al. (2019), and Transformer-based networks, namely Mask2Former

Cheng et al. (2022) and QueryInst Fang et al. (2021) on different backbone networks

of ResNet-34 and ResNet-50 on various metrics of AP, AP@50, AP@75.

• Pre-trained models and Code: The pre-trained model and source code of Car-

cassFormer is available for research purposes at: https://github.com/UARK-AICV/

CarcassFormer.

3† indicates the same contribution
4‡ indicates corresponding author
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Abstract

In the food industry, assessing the quality of poultry carcasses during processing is a crucial

step. This study proposes an effective approach for automating the assessment of carcass

quality without requiring skilled labor or inspector involvement. The proposed system is

based on machine learning (ML) and computer vision (CV) techniques, enabling automated

defect detection and carcass quality assessment. To this end, an end-to-end framework called

CarcassFormer is introduced. It is built upon a Transformer-based architecture designed to

effectively extract visual representations while simultaneously detecting, segmenting, and

classifying poultry carcass defects. Our proposed framework is capable of analyzing imper-

fections resulting from production and transport welfare issues, as well as processing plant

stunner, scalder, picker, and other equipment malfunctions.

To benchmark the framework, a dataset of 7,321 images was initially acquired, which

contained both single and multiple carcasses per image. In this study, the performance

of the CarcassFormer system is compared with other state-of-the-art (SOTA) approaches

for both classification, detection, and segmentation tasks. Through extensive quantitative

experiments, our framework consistently outperforms existing methods, demonstrating re-

markable improvements across various evaluation metrics such as AP, AP@50, and AP@75.

Furthermore, the qualitative results highlight the strengths of CarcassFormer in captur-
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ing fine details, including feathers, and accurately localizing and segmenting carcasses with

high precision. To facilitate further research and collaboration, the source code and trained

models will be made publicly available upon acceptance.

Keywords: Carcass Defect, Detection, Segmentation, Classification, Defect Automation

1. Introduction

Increased consumption of poultry products will be a certainty for global food security

achievement in the upcoming 30 years based on the efficiency of the utilization of poul-

try, as well as diverse consumer acceptance. The Food and Agriculture Organization of

the United Nations 2005/2007 has projected that production of poultry will increase more

than 100 percent by the year 2050 with an increased tonnage of poultry products, primarily

broiler chickens, surpassing 180 million tons, with current projection estimated at just over

80 million tons Alexandratos and Bruinsma (2012). Numerous studies have demonstrated

increasing annual poultry consummation rates, mainly due to relatively inexpensive price,

nutritional value, and health benefits Elam (2022). In the U.S., broiler chicken efficiency

of feed utilization has increased 7 percent from 2021 to the present at a similar slaughter

age between 47 and 48 days across the decade Council (March 18, 2021). With annual-

ized increases in broiler production, concomitant increases in labor are necessary for meat

production supply chain efficiency. In addition to the costs of increased workforce labor

and workforce development, many poultry companies are suffering from labor shortages Wu

et al. (2022) Kaminski (2020). Another negative side of relying on people for the process

of poultry processing represents the varying results of carcass evaluation consistency. Thus,

many companies use assembly lines stationed by employees to inspect the quality of chicken

carcasses, which leaves room for human error and can result in miscategorized carcass defec-

tions. As a result, numerous agriculture industries, including poultry production facilities

and poultry processing plant factories, are researching and investing in automated robotic

technologies to improve processing and labor wellbeing, as well as profit Ahlin (2022) Ren

et al. (2020) Park et al. (2022). Further, there are numerous automation technologies offering

noticeable economic benefits to agricultural production as of late Jin et al. (2021).
Preprint submitted to Elsevier April 18, 2024
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In the era of precision agriculture, Machine Learning (ML) and Computer Vision (CV)

have emerged as high-performance computing technologies that are creating new opportuni-

ties to improve broiler management, production, and identification of processing defects with

non-invasive low-cost techniques Aydin (2017) Caldas-Cueva et al. (2021). In this study, the

focus was on utilizing modern ML&CV, i.e. Deep Learning, to analyze chicken carcasses

after scalding, picking, and removal of head and feet in processing plants. Visual inspection

is one of the most basic but also most important steps in controlling meat quality before

the product is prepared, packaged, and distributed to the market. The image processing

and classification within the poultry processing plants can optimize such systems, in addi-

tion to heightening food safety. Hence, our proposed intelligent and automated system will

analyze and improve poultry processing concomitantly with increased data acquisition. Our

computer vision system functions as an automated detection model capable of classifying

defects and contaminated carcasses. While detection, segmentation, and classification are

widespread tasks in computer vision Dong et al. (2021); Zhou et al. (2021); Le et al. (2022),

they have focused on various tasks such as autonomous driving Le et al. (2017c,b); Janai

et al. (2020); Tong et al. (2020); Truong et al. (2022); Nguyen et al. (2022), surveillance

Wray et al. (2021); Gabeur et al. (2020); Yamazaki et al. (2022); Vo et al. (2022), biometrics

Le and Savvides (2016); Le et al. (2017a); Duong et al. (2019b,a); Quach et al. (2022), and

medical imaging Han et al. (2017); Le et al. (2018); Tran et al. (2022c,a); Le et al. (2023);

Thang Pham et al. (2023); Nguyen et al. (2023), amodal understanding Tran et al. (2022b)

which mainly target humans, car, objects, face, human organs. None of them target analyz-

ing poultry carcass condemnations defects. One of the main reasons is the lack of publicly

available data.

In the context of poultry carcass analysis, distinguishing between single and multiple

carcasses in an image is a crucial step for accurate quality assessment. To achieve this,

the problem was approached as an instance segmentation task, involving the localization of

individual instances. Additionally, mask classification was performed to determine whether

a single poultry carcass was defective or not. While per-pixel classification (e.g FCN Long

et al. (2015), Unet-based approaches Ronneberger et al. (2015); Zhou et al. (2018); Ibtehaz
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and Rahman (2020); Le et al. (2021); Tran et al. (2022c)) applies a classification loss to each

output pixel and partitions an image into regions of different classes, mask classification (e.g

Mask-RCNN He et al. (2017), DETR Zhu et al. (2020)) predicts a set of binary masks, each

associated with a single class prediction. In recent years, there has been a significant growth

in the adoption of Transformer architecture Vaswani et al. (2017) for semantic segmentation

tasks. This trend is underscored by numerous approaches that have leveraged Transformer

models, demonstrating state-of-the-art performance in the field. Notable examples include

DETR Carion et al. (2020), SegFormer Xie et al. (2021), Mask2Former Cheng et al. (2022),

FASeg He et al. (2023a), and Mask DINO Li et al. (2023). In this paper, the question of how

to simultaneously handle both mask classification and pixel-level classification is addressed.

To address the aforementioned question, we particularly leverage the recent Transformer

technique Vaswani et al. (2017) and propose CarcassFormer, which aims to simultaneously

localize poultry carcasses from moving shackles, segment the poultry carcass body, and

classify defects or contaminated carcasses. To develop CarcassFormer, an experiment was

set up at the University of Arkansas-Agricultural Experiment Station Pilot Processing Plant

on the poultry research farm by placing a camera adjacent to the shackles of carcasses moving

along a processing line. Each poultry carcass in the view of the camera will be analyzed by

localizing with a bounding box, segmenting the boundary, and classifying to determine its

imperfections. Any unapproved birds are then reworked. Notably, a bird is considered to

be defective if it has one of the following issues: feathers, un-clean/dirty, skin peel, broken

wings, or broken legs. The annotation requirement is following instructions provided by

USAD USDA.

Our contribution is three-fold as follows:

• Dataset: A dataset containing a total of 7,321 images of poultry carcasses on a Pilot

processing plant. The images in this diverse dataset contain real-world examples of

chickens of a range of ages, sizes, and numbers of chickens per frame. The dataset has

been carefully annotated by three experts.

• Methodology: We propose CarcassFormer, an effective end-to-end Transformer-

4
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based framework for simultaneously localizing poultry carcass regions, segmenting car-

cass areas, and determining carcasses with imperfections. CarcassFormer is based on

Transformer-based Unet architecture.

• Pre-trained models and Code: We will release our pre-trained model and source

code of CarcassFormer for research purposes.

1.1. Related Work

1.1.1. Image Segmentation

Image segmentation is a critical computer vision task that involves dividing an image into

different regions based on visual features. This process can be accomplished through either

semantic segmentation or instance segmentation. Semantic segmentation categorizes pixels

into multiple classes, e.g. foreground and background, but does not differentiate between

different object instances of the same class. Popular semantic segmentation models include

the Fully Convolutional Network (FCN) Long et al. (2015) and its variants, such as the

U-Net family Ronneberger et al. (2015); Zhou et al. (2018); Ibtehaz and Rahman (2020); Le

et al. (2021), as well as the Pyramid Scene Parsing Network (PSPNet) Zhao et al. (2017)

and DeepLabV3 Chen et al. (2018).

In contrast, instance segmentation aims to detect and segment individual objects by

providing a unique segmentation mask for each object. There are two types of instance

segmentation approaches: two-stage and one-stage methods. Two-stage approaches, such as

top-down Cai and Vasconcelos (2018); Chen et al. (2019); Cheng et al. (2020) and bottom-up

methods Arnab and Torr (2016); Chen et al. (2017); Newell et al. (2017), detect bounding

boxes first and then perform segmentation within each region of interest. On the other

hand, one-stage approaches, such as anchor-based methods Li et al. (2017); Bolya et al.

(2019) and anchor-free methods Ying et al. (2019); Chen et al. (2020); Lee and Park (2020),

perform both detection and segmentation simultaneously, resulting in less time consumption.

Anchor-based one-stage approaches generate class-agnostic candidate masks on candidate

regions and extract instances from a semantic branch. However, these approaches rely

heavily on predefined anchors, which are sensitive to hyper-parameters. To address this issue,
5
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anchor-free one-stage methods eliminate anchor boxes and use corner/center points instead.

Moreover, based on their feature backbone and learning mechanism, various approaches to

instance segmentation can be categorized into either Convolution Neural Network (CNN)-

based or Transformer-based approaches as follows.

1.1.2. CNN-based instance segmentation

The idea of “detect then segment” has dominated in instance segmentation task, which is

a two-stage method. In particular, Mask R-CNN He et al. (2017) is the most representative

work. Based on the priority of detection and segmentation, there are two groups in this

category: top-down methods and bottom-up methods. The former first predicts a bounding

box for each object and then generates an instance mask within each bounding box He et al.

(2017); O Pinheiro et al. (2015). On the other hand, the latter associates pixel-level projec-

tion with each object instance and adopts a post-processing procedure to distinguish each

instance Arnab and Torr (2016); Kong and Fowlkes (2018). While the top-down methods

mainly rely on the detection results and are prone to systematic artifacts on an overlap-

ping instance, the bottom-up methods depend on the performances of post-processing and

tend to suffer from under-segment or over-segment problems Fathi et al. (2017). With a

large amount of pixel-wise mask annotations, fully-supervised learning instance segmenta-

tion methods have achieved great performance. However, pixel-wise mask annotating is

labor intensive (e.g., 22 hours to label 1000 segmentation masks Lin et al. (2014)). Thus,

weakly-supervised Zhou (2018); Zhu et al. (2016) and semi-supervised Van Engelen and

Hoos (2020) have been proposed. CNN-based image segmentation has been outreached in

multiple Computer Vision tasks including amodal segmentation Li and Malik (2016), salient

detection Fan et al. (2019), human segmentation Zhang et al. (2019), soft biometrics Luu

et al. (2016). CNN-based instance segmentation survey can be found at Hafiz and Bhat

(2020); Gu et al. (2022).

1.1.3. Transformer in Computer Vision

Transformer was first introduced by Vaswani et al. (2017) for language translation and

obtained State-Of-The-Art (SOTA) results in many other language processing tasks. Re-
6
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cently, many models Carion et al. (2020), Liu et al. (2022), Li et al. (2022) successfully

applied the Transformer concept to computer vision and achieved promising performance.

The core idea behind transformer architecture Vaswani et al. (2017) is the self-attention

mechanism to capture long-range relationships. It has obtained state-of-the-art in many

Natural Language Processing (NLP) tasks. Besides, Transformers have worked well suited

for parallelization, facilitating training on large datasets Transformer has been successfully

applied to enrich global information in various tasks in Computer Vision such as image

recognition Dosovitskiy et al. (2020); Touvron et al. (2021) object detection Carion et al.

(2020); Zhu et al. (2020); Sun et al. (2021), image segmentation Ye et al. (2019); Zheng

et al. (2021); Tran et al. (2022b), action localization Vo et al. (2021, 2022), video captioning

Yamazaki et al. (2022, 2023). DETR Zhu et al. (2020) is the first model that uses Trans-

former as an end-to-end and query-based object detector, with bipartite-matching loss and

set prediction objective. Inspired by Zhu et al. (2020); Cheng et al. (2021), which are end-

to-end prediction objectives and successfully address multiple tasks without modifying the

architecture, loss, or the training procedure, the merits of Transformer were inherited and

CarcassFormer was proposed. Our network is an end-to-end Transformer-based framework

and simultaneously tackles both segmentation and classification tasks.

Transformer-based networks have also found application in addressing detection and seg-

mentation challenges within poultry science. Lin et al. (2022) proposes a vision transformer

model to screen the breeding performance of roosters by analyzing correlations between

cockscomb characteristics and semen quality, aiming to overcome the time-consuming and

error-prone nature of human-based screening. Hu et al. (2023) improves pig segmentation

in farming environments using a grouped transformer attention module with Mask R-CNN

networks and data augmentation. Zhao et al. (2023) proposes a real-time mutton multi-

part classification and detection method using Swin-Transformer. He et al. (2023b) presents

Residual-Transformer-Fine-Grained (ResTFG), a model merging transformer and CNN for

precise classification of seven chicken Eimeria species from microscopic images.

7
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Figure 1: Top: Overall flowchart of our proposed CarcassFormer consisting of four components: 1. Network

Backbone; 2. Pixel Decoder; 3. Mask-Attention Transformer Decoder; 4. Instance Mask Class Prediction.

Bottom: Details of third component Mask-Attention Transformer Decoder.
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2. Materials and Methods

2.1. Data Collection

The data was collected at the University of Arkansas pilot processing plant (Fayetteville,

AR). Multiple broiler chicken products at different ages were processed using standard com-

mercial practices and following rigorous animal-handling procedures that are in compli-

ance with federal and institutional regulations regarding proper animal care practices FASS

(2010). The video-capturing system was set up in the area after feather picking and before

chilling and evisceration. We decided on his system placement so that three common kinds

of defects that can occur during normal processing could be evaluated, namely tearing of

the skin, presence of feathers, and broken/disjointed bones.

To obtain the dataset named CarcassDefect, a camera was set up in front of the shackle

line, whereas a black curtain was hung behind the shackle. Videos were recorded at 10

frames per second. The camera setup can be visualized in Fig. 2 and Fig. 3. In the end,

a total of 7,321 images were collected, comprising 4,279 single carcass images and 3,042

multiple carcass images. Fig.4 illustrates some images from our CarcassDefect dataset,

which comprised a large diversity of carcass quality such as resolution (small carcass, large

carcass), the number of carcass per image (a single carcass per image, multiple carcasses

per image), various defect (carcass defect can be the one with tearing of skin, feathers,

broken/disjointed bones.), etc.

2.2. Data Annotation

Upon acquiring the video data, the next crucial step is to annotate the images extracted

from the footage to generate training data for detection, segmentation, and classification

tasks. Annotation involves labeling each frame with bounding boxes for detection, masks

for segmentation, and labels for classification. This process enables the computer vision

system to learn from the annotated data, which enhances its ability to perform these tasks

accurately and efficiently. The data annotation process is illustrated in Fig.5. The annotated

data is saved in a JSON file and follow the COCO format Lin et al. (2014) as demonstrated

in Fig.6. In this COCO format, the data is described as follows:
9
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Figure 2: Camera setup for data collection. A

black curtain is hung behind the shackle to provide a

certain contrast to the carcasses. A camera is placed

to capture the carcasses within the black curtain.

Figure 3: An overview image of the shooting loca-

tion. The black curtain is hung on the wall behind the

shackle.

Table 1: The distribution of the images in CarcassDefect Dataset in regard to the normal carcass and

defective carcass at both a single carcass per frame and multiple carcasses per frame.

Single carcass per image Multiple carcasses per image Total

Trainset 3,017 2,115 5,132

Valset 754 535 1,289

Testset 508 392 900

Total 4,279 3,042 7,321

10
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(a)

(b)

(c)

Figure 4: Illustrations of data collected, which comprises (a) single carcass/instance per image/frame; (b)

multiple carcass/instance per image/frame; (c )carcass/instance at different scale/resolution. The carcass is

processed with various defects such as tearing of skin, feathers, broken/disjointed bones.

• categories : defined as ‘normal’ and ‘defect’ presenting labeled in the dataset. The

defect class is determined for a carcass that has either ‘feather’ or ‘broken wings’

‘broken legs’ or ‘peeled skin’.

• images : frames extracted from recorded videos. images is a list of objects with meta-

data information about the image. An object includes the following keys:

– id : a unique identifier that differentiates each image within a list. It can be

defined as the file name.

– file_name: the name of the file. In the example (Fig.6).

– width: the image height such as 950 pixels.

– height : the image height such as 960 pixels.

11
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DATA ANNOTATION

...

DATA COLLECTION

Label 0

Label 0, 0

Label 0

Label 0

Figure 5: An illustration of Data Annotation Process. Each frame from the recorded video is annotated

with bounding boxes for detection, masks for segmentation, and defect labels for classification.

– date_captured : the date and time when the image was captured.

• annotations : contain all meta-data about the labels related to an object. They are a

bounding box, segmentation mask and classification label.

– id : The index of instance.

– image_id : The index of the corresponding image. This image_id is correspond-

ing to id in images.

– category_id : This is category id which is defined in categories. In our case,

category_id is either ‘1’ - normal or ‘0’ - defect.

– iscrowd : if there are multiple instances/carcasses in the image, iscrowd is set as

1. Otherwise, iscrowd is set as 0 if there is a single instance/carcass in the image.

– area: is the area of instance in the image.

– bbox : The bounding box determines an object’s location represented as [xmin,

12
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ymin, width, height] where the (xmin, ymin) coordinates correspond to the top-

left position of an object and (width, height) are width and height of the object.

In the example shown in Fig. 6, xmin = 27, ymin = 0, width = 546, height =

731.

– segmentation: The segmentation mask is specified by Run-length encoded (RLE)

values Golomb (1966).

The data statistic of our CarcassDefect dataset is shown in Table 1 and Table 2. Table 1

shows the distribution of the image between a single carcass per image and multiple carcasses

per image between two categories of normal and defect. Table 2 shows the distribution of

the instance between a single carcass per image and multiple carcasses per image between

two categories of normal and defect.

Table 2: The distribution of the instances in CarcassDefect Dataset regarded as normal and defective

carcasses at both a single carcass per frame and multiple carcasses per frame.

Single carcass per image Multiple carcasses per image
Total

Normal Defeat Normal Defeat

Trainset 1,302 1,715 1,571 1,842 6,430

Valset 355 399 422 466 1,642

Testset 320 188 359 267 1,134

Total 1,977 2,302 2,352 2,575 9,206

2.3. Proposed method

In the sections below, the proposed end-to-end transformer-based framework, termed

CarcassFormer, is introduced for chicken carcass detection, segmentation, and carcass defect

classification. Figure 1 illustrates the flowchart of our CarcassFormer network consisting of

13
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Figure 6: A demonstration of data annotation in JSON file following COCO format.

four key parts: Backbone, Pixel Decoder, Multi-Scale Transformer Encoder, and Masked-

attention Transformer Decoder. To train CarcassFormer, the stochastic gradient descent

(SGD) optimizer was utilized with a learning rate of 0.0001 and a batch size of 4 over 100

epochs. The experiments were conducted using an Intel(R) Core(TM) i9-10980XE 3.00GHz

CPU and a Quadro RTX 8000 GPU.

2.4. Backbone

A backbone network, a foundational architecture employed for feature extraction, is typ-

ically pre-trained on a variety of tasks and has demonstrated its effectiveness across various

domains. AlexNet Krizhevsky et al. (2017) is regarded as the inaugural Deep Learning (DL)

backbone. The VGG family, which includes VGG-16 and VGG-19 Simonyan and Zisserman
14
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(2014), is one of the most prevalent backbones utilized in computer science endeavors. In

contrast to AlexNet and VGG, ResNets He et al. (2016) are based on Convolutional Neu-

ral Networks (CNNs) and were developed concomitantly with the introduction of residual

networks. ResNet variants, such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and

ResNet-151, are extensively employed for object detection and semantic segmentation tasks.

Following the advent of ResNets, numerous other CNN-based backbones have been pro-

posed, including Inception Szegedy et al. (2015), DenseNet Huang et al. (2017), DarkNet

Lin et al. (2013), ShuffleNet Zhang et al. (2018), MobileNet Howard et al. (2017), and

YOLO Huang et al. (2018). Recently, there has been a significant advancement in back-

bone architectures, incorporating transformer architecture Vaswani et al. (2017), along with

leveraging the multi-scale features of ResNet. Prominent examples of these advancements

include ViT Dosovitskiy et al. (2020), PvT Zhao et al. (2017), and Swin Liu et al. (2021). In

the present work, ResNet (i.e., ResNet-18, 34, 50) He et al. (2016) and Swin (i.e., Swin-T)

are employed as the backbone network.

By utilizing ResNets He et al. (2016) as the backbone network, an input image I with

dimensions H×W is transformed into a multi-scale feature F , specifically a set of four feature

maps Fii = 14. These feature maps are represented as F1 ∈ RCF1×H
4
×W

4 , F2 ∈ RCF2
×H

8
×W

8 ,

F3 ∈ RCF3
×H

16
×W

16 , and F4 ∈ RCF4
×H

32
×W

32 , where CF1 , CF2 , CF3 , CF4 denote the number of

channels.

2.5. Pixel Decoder

This module enhances the multi-scale features of an image by utilizing four feature maps

from the backbone. It consists of two parts: the Multi-Scale Transformer Encoder (section

2.5.1) and the Per-pixel Embeddings Module (section 2.5.2). In general, the Multi-Scale

Transformer Encoder uses an attention mechanism to learn the correlation between the

multi-scale feature maps F1, F2, F3, F4. This results in corresponding, richer encoded fea-

ture maps D1, D2, D3, D4. Meanwhile, the per-pixel embeddings Module takes the encoded

feature map (D1) to compute the per-pixel embeddings Epixel of the image.

15



TRAN ET AL. – CARCASSFORMER

2.5.1. Multi Scale Transformer Encoder

This module takes the last three features from the backbone, ordered from low to high

resolution (i.e., F4, F3, F2, and F1), are processed in a hierarchical fashion. These three

features first go through an embedding projection fE to achieve the flattened embed feature

Si with a consistent channel size Ce. Note that the value of Ce is equal to CF1 , and this is

specifically intended for computing the per-pixel embeddings in section 2.5.2.

Si = fE(Fi) (2.1)

where i = {4, 3, 2, 1}, Si ∈ RHi·Wi×Ce , fE is a 1 × 1 convolution layer with the output

dimension of Ce, followed by a flatten layer. The purpose of the flatten layer is to prepare

Si as input for a transformer layer, which requires a sequence of embedding features rather

than spatial features.

To investigate the correlated feature embeddings between different levels, the flattened

embedding features Si from each multi-scale level were concatenated and passed through a

transformer encoder. This involves merging the flattened embeddings from different levels

into a single input sequence for the transformer encoder.

S = [Si]i∈{4,3,2,1} (2.2)

where S ∈ RK×Ce , K is the total number of embedding feature, K =
∑

i∈{4,3,2,1}Hi ·Wi.

However, since the current embedding features S are flattened out of their original spatial

shapes and concatenated from multiple levels, they do not include information about the

spatial location and scale level of each feature. To address this issue, each embedding feature

in S is supplemented with two types of learnable encoding. The first is a positional encoding

that provides spatial information about the original location of each feature within the image.

The second is a level encoding that enables the transformer encoder to distinguish between

features from different scales. By incorporating these encodings, spatial and scale level

information is preserved during the calculation process. Let denote the learnable positional

encodings as P and the learnable level encodings as L, where P and L share the same shape

with S, P,L ∈ RK×Ce .
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Let denote the Multi Scale Transformer Encoder as fG, this Transformer follows the ar-

chitecture designed in Dosovitskiy et al. (2020). This transformer encoder produces learned

features from the input sequence. It takes a sequence of embedded features and outputs

encoded features that capture the relationships between the elements. These encoded fea-

tures retain important information while removing redundancy. The encoder computes each

encoded feature using a self-attention mechanism Vaswani et al. (2017), allowing it to se-

lectively focus on the most relevant features and capture long-range dependencies, making

it effective for enriching multiscale features. Formulary, the correlated feature embeddings

between different levels E ∈ RK×Ce is computed by passing S, L, and P through fG.

E = fG(S, P, L) (2.3)

The correlated feature embedding E is divided into groups based on the multi-scale level,

denoted as Ei where i ∈ {4, 3, 2, 1} and Ei ∈ RHi·Wi×Ce . Next, each Ei is restored to its

original spatial shape by unflattening, resulting in an output enriched multi-scale feature

map Di.

Di = unflatten(Ei) (2.4)

where Di ∈ RCe×Hi×Wi .

In summary, this module takes the multi-scale feature map F4 ∈ RCF4
×H

32
×W

32 , F3 ∈

RCF3
×H

16
×W

16 , F2 ∈ RCF2
×H

8
×W

8 and F1 ∈ RCF1×H
4
×W

4 and outputs the enriched multi-scale

feature map D4 ∈ RCe×H
32

×W
32 , D3 ∈ RCe×H

16
×W

16 , D2 ∈ RCe×H
8
×W

8 and D1 ∈ RCe×H
4
×W

4 , which

captures the correlation and important information while removing redundancy.

2.5.2. Per-pixel Embeddings Module

This section describes the second stage of Pixel Decoder, where the per-pixel embedding

Epixel is computed. This module takes the encoded feature map D1 ∈ RCe×H
4
×W

4 from

the Multi Scale Transformer Encoder module as input. The per-pixel embedding Epixel is

computed as follow:

Epixel = fU(D1) (2.5)
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The function fU is a sequence of two 2 × 2 transposed convolutional layers with stride 2,

which scales up the spatial shape of D1 four times from H
4
×W

4
to the original image’s spatial

shape of H ×W . As a result, Epixel has a dimension of RCe×H×W .

Intuitively, each pixel feature of Epixel represents both the semantic and the mask classi-

fication feature of the corresponding pixel on the original image.

2.6. Mask-attention Transformer Decoder

2.6.1. Mask Predictor

To predict the segmented masks of possible instances in an image, per-pixel embeddings

Epixel ∈ RCe×H×W were utilized. These embeddings represent both the semantic and mask

classification features of each corresponding pixel on the original image.

Then, the prediction process involves learning N per-segment query embeddings Q ∈

RN×Ce , which represent the features of the maximum N possible instances in the image. Each

instance query embedding correlates with every single pixel feature in Epixel to determine

whether the pixel belongs to the corresponding instance or not. Therefore, the predicted

instance segmentation mask was derived as follows:

M = fP (Q, Epixel) (2.6)

where M ∈ RN×H×W , which are N masks of N possible instances in the image. The

Mask Predictor fP is a simple dot product on the feature channel Ce, followed by a sigmoid

activation.

2.6.2. Mask-attention Transformer Decoder

The Mask-Attention Transformer Decoder fT was employed to obtain effective per-

segment query embeddings Q ∈ RN×Ce that represented instances in the image. This de-

coder applies attention to the image features, allowing it to decode the per-segment query

embeddings and capture the instance mask feature.

The third blob in our overall flowchart (Figure 1) illustrates the procedure on applying

the Mask-Attention Transformer Decoder. In general, this module decodes N per-segment
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query embeddings Q ∈ RN×Cq from the encoded feature maps D1, D2, D3, and D4. These

query embeddings represent the features of the maximum N possible instances in the image.

The decoding procedure is performed recurrently, with each step treated as a layer (de-

noted as l) and beginning at l = 0. The encoded feature maps D have four levels, denoted

as D4, D3, D2, and D1. Therefore, this recurrent process occurs four times, progressing

from the lowest to highest resolution encoded feature maps. During each recurrent step, the

encoded feature maps that are considered are D4−l, where l represents the current layer.

This means that during the first recurrent step (l = 0), the encoded feature maps that are

used are D4. During the second recurrent step (l = 1), the encoded feature maps that are

used are D3. During the third recurrent step (l = 2), the encoded feature maps that are

used are D2. Finally, during the fourth recurrent step (l = 3), the encoded feature maps

that are used are D1. At each layer, the queries Ql+1 are decoded from the previous layer’s

query Ql and the corresponding encoded feature maps.

Additionally, a predicted mask, Ml is computed by using the current query embeddings

Ql and the per-pixel embeddings Epixel. The resulting mask is then interpolated to the same

size as the current feature map D4−l. This mask is used as an attention mechanism that helps

the query embeddings to focus on the most salient parts of the feature maps. Specifically,

during the decoding process, the attention mask is applied to the encoded feature maps

D4−l, allowing the query embeddings to selectively attend to certain regions of the feature

maps that are most relevant to the instance being decoded. Formularly, at each recurrent

step:

Ml = fP (Ql, Epixel)

Ql+1 = fT (Ql, D4−l,Ml)
(2.7)

2.7. Instance Mask and Class Prediction

The procedure can be visualized using the fourth component of the overall flowchart,

as shown in Figure 1. In this step, the query encoder QL (where L = 3) and the per-

pixel embeddings Epixel are utilized to compute the output instance segmentation masks,

denoted as Mfinal. These masks, represented by a tensor Mfinal ∈ RN×H×W , correspond to
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N possible instances within the image.

To generate the masks, the function fP takes QL and Epixel as inputs:

Mfinal = fP (QL, Epixel) (2.8)

Moreover, alongside the masks, the semantic class of each instance is predicted using

another function called fC . This function is implemented as a Multi-Layer Perceptron

(MLP) with two hidden layers. It takes the per-segment embeddings QL as input and

produces N semantic classes, represented by Cfinal ∈ RN×C . Here, C represents the number

of semantic categories.

The prediction of semantic classes can be expressed as:

Cfinal = fC(QL) (2.9)

By combining these steps, this module is able to generate both instance segmentation

masks (Mfinal) and predict the semantic class labels for each instance (Cfinal) using the

decoded instance queries (QL) and per-pixel embeddings (Epixel).

2.8. Metrics

We adopt Average Precision (AP) to evaluate the method. AP quantifies how well the

model is able to precisely locate and classify objects (e.g. defect or normal) within an image.

The AP computation from MSCOCO Lin et al. (2014) was followed.

In the recognition task, each image is associated with a single prediction for classification.

Evaluating the model became straightforward as the accuracy metric could be calculated,

measuring the ratio of correct predictions. On the other hand, in the field of object detection

and classification, a prediction comprises a bounding box or a segmentation mask that helps

locate the object, along with the predicted category for that object. To determine a correct

prediction, two criteria are considered. Firstly, the prediction must have an Intersection

over Union (IoU) value greater than a threshold ϵ when compared to the actual box or mask

of the object. Secondly, the prediction must accurately classify the category of the object.

In addition, for each image, a method can output multiple predictions and the number of
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predictions can be higher or lower than the actual object within the image. Thus, precision

and recall metrics are taken into account. Precision is the ratio of correct predictions to the

total number of predictions (Equation 2.10). Precision can be considered as a measure of

how precise the model’s predictions were in terms of correctly detecting objects.

Pre =
number of correct predictions

number of predictions
(2.10)

Meanwhile, recall is the ratio of correct predictions to the total number of actual objects

within the image (Equation2.11). It can be thought of as a measure of how comprehensive

the model’s predictions are in terms of capturing all the objects present.

Rec =
number of correct predictions

number of actual objects
(2.11)

Average Precision (AP) calculates the average precision across different recall values.

Specifically, AP is computed at different IoU thresholds ϵ, which determine what is con-

sidered a correct prediction. For instance, when the threshold ϵ is set to 50%, it is de-

noted as AP@50. Let’s consider an image with a list of actual ground truth objects

denoted as A = {a1, a2, ..., an}, and a method that generates m predictions denoted as

B = {b1, b2, ..., bm}. The predictions are sorted in descending order based on their confi-

dence scores. In the process, the sorted list B was iterated through, and at each step, the

correctness of the prediction bi (where i ∈ {1, 2, ...,m}) was determined. This is done by

checking if the category is correctly matched and if the IoU is greater than the specified

threshold ϵ. The number of correct predictions at this step was kept track of, denoted as Ci.

Using Ci, the precision Prei and recall Redi could be computed at each step. The

iteration stops when Reci = 1, indicating that all the objects have been captured, or when

all the predictions were iterated through. The AP@ϵ is then computed as follows:

AP@ϵ =

∫ 1

0

Pre(Rec), dRec (2.12)

The reported AP in our table is the average of AP values ranging from AP@50 to

AP@95, with a step size of 5% as depicted in Equation 2.13. This provides a comprehensive

evaluation of the model’s performance across different IoU thresholds and recall levels.
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AP =
1

10

0.95∑
ϵ=0.5;ϵ+=0.05

AP@ϵ (2.13)

We also quantify the model’s complexity using three key metrics: the number of floating-

point operations (FLOPs), the count of model parameters (Params), and the frames pro-

cessed per second (FPS). FLOPs are computed as an average over 100 testing images. FPS

is evaluated on a Quadro RTX 8000 GPU with a batch size of 1, calculated as the average

runtime across the entire validation set, inclusive of post-processing time.

3. Results and Discussion

3.1. Implementation Details

The implementation of the pixel decoder in this study involves the use of an advanced

multi-scale deformable attention Transformer (DERT) as described in Zhu et al. (2020).

Specifically, the DERT is applied to feature maps with resolutions of 1/8, 1/16, and 1/32. A

simple upsampling layer with a lateral connection is then employed on the final 1/8 feature

map to generate the per-pixel embedding feature map of resolution 1/4. The Transformer

encoder used in this study is configured with L=3 and a set of 100 queries.

3.2. Quantitative Performance and Comparison

In this section, our proposed CarcassFormer was evaluated on the Carcass dataset (Sec-

tion 2.1), which consisted of two subsets corresponding to a single carcass per image and

multiple carcasses per image. The performance of CarcassFormer on various metrics, as

shown in Table 3 and Table 3 for different tasks, was detailedly reported. The authors

then compared CarcassFormer with both CNN-based networks, namely Mask R-CNN He

et al. (2017) and HTC Chen et al. (2019), as well as Transformer-based networks, namely

Mask DINO Li et al. (2023), Mask2Former Cheng et al. (2022) and QueryInst Fang et al.

(2021). The comparison was conducted using three different backbone networks: ResNet-34,

ResNet-50, and Swin-T. The performance for two subsets was reported: a single carcass per

image (Table 5, Table 6) and multiple carcasses per image (Table 7, Table 8, Table 9). For
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each table, the metrics for detection, classification, segmentation, and model complexity

were reported, as defined in Section 2.8.

Table 3: Detailed Performance of CarcassFormer on Single Carcass Per Image Dataset on both Detection

and Segmentation, whereas APnormal & APdefect include classification results.

Backbone Task AP AP50 AP75 AP95 APnormal APdefect Params FLOPs FPS

ResNet 34
Detection 97.70 98.23 98.23 92.89 98.02 97.38

41M 274G 5.1
Segmentation 99.22 99.22 99.22 99.22 100.00 98.45

ResNet 50
Detection 95.18 95.18 95.18 95.18 94.02 96.34

41M 274G 5.1
Segmentation 98.43 98.43 98.43 98.43 99.79 97.06

Swin-T
Detection 95.69 95.79 95.93 95.32 94.23 97.15

46M 281G 4.5
Segmentation 97.77 98.65 98.93 98.15 99.11 96.42

Table 4: Detailed Performance of CarcassFormer on Multiple Carcasses Per Image Dataset on both Detection

and Segmentation, whereas APnormal & APdefect include classification results.

Backbone Task AP AP50 AP75 AP95 APnormal APdefect Params FLOPs FPS

ResNet 34
Detection 89.72 91.45 91.45 78.51 93.48 85.96

41M 274G 5.1
Segmentation 98.23 99.34 98.86 92.55 98.77 97.68

ResNet 50
Detection 90.45 91.55 91.55 83.41 93.42 87.49

41M 274G 5.1
Segmentation 98.96 99.98 99.48 94.36 99.15 98.76

Swin-T
Detection 89.34 91.27 91.73 79.11 94.18 84.50

46M 281G 4.5
Segmentation 98.70 99.29 98.32 93.10 99.47 97.92

3.2.1. Detailed Quantitative Performance

Detailed performance conducted by our CarcassFormer is reported in Table 3 and Table 4

corresponding to two subsets: a single carcass per image and multiple carcasses per image. In
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each subset, our CarcassFormer network was examined on three different backbone networks:

ResNet-34, ResNet-50, and Swin-T. For both tasks of detection and segmentation, Average

Precision (AP) at different metrics of AP@50, AP@75, AP@95, and AP[50:95] (referred to

as AP) were reported. Regarding detection and classification, APnormal and APdefect were

evaluated for normal and defect classes. The results obtained from two tables (Table 3

and 4) underscores the remarkable performance of our model across various backbones and

tasks, with every configuration achieving an AP of over 85 for all metrics. Additionally, it

becomes evident that the Multiple Carcasses Per Image Dataset presents greater challenges

compared to the Single Carcasses Per Image Dataset. This observation is substantiated by

a noticeable decline in performance metrics when handling multiple overlapping carcasses

per image, as opposed to the single carcass per image scenario.

Table 5: Performance comparison between CarcassFormer with both CNN-based networks, namely Mask

R-CNN He et al. (2017) and HTC Chen et al. (2019) and Transformer-based networks, namely Mask2Former

Cheng et al. (2022) and QueryInst Fang et al. (2021) on both Detection, Classification and Segmentation

tasks. The comparison is conducted on ResNet-34 backbone network and in the case of single carcass

per image. Net. denotes Network architecture

Net. Method Venue

Detection
& Classification Segmentation

Model
Complexity

AP APnormal APdefect AP APnormal APdefect Params FLOPs FPS

C
N

N
-b

as
ed Mask R-CNN He et al. (2017) 2017 79.73 87.82 71.65 81.36 85.41 77.31 41M 204G 5.8

HTC Chen et al. (2019) 2019 89.00 95.30 82.60 82.30 86.30 78.40 109M 290G 4.3

Tr
an

sf
or

m
er

-b
as

ed

QueryInst Fang et al. (2021) 2021 90.40 98.00 82.90 82.20 88.10 76.30 45M 279G 4.8

Mask2Former Cheng et al. (2022) 2022 58.33 58.42 58.24 75.32 92.08 58.57 41M 272G 5.2

Mask DINO Li et al. (2023) 2023 88.12 95.11 81.12 77.67 83.45 71.89 49M 278G 5.1

CarcassFormer (Ours) 97.70 98.02 97.38 99.22 100.00 98.45 41M 274G 5.1

3.2.2. Single Carcass Per Image

Table 5 and Table 6 present the performance on a single carcass per image using ResNet-

34 and ResNet-50, respectively.
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Table 6: Performance comparison between CarcassFormer with both CNN-based networks, namely Mask

R-CNN He et al. (2017) and HTC Chen et al. (2019) and Transformer-based networks, namely Mask2Former

Cheng et al. (2022) and QueryInst Fang et al. (2021) on both Detection, Classification and Segmentation

tasks. The comparison is conducted on ResNet-50 backbone network and in the case of single carcass

per image. Net. denotes Network architecture. The best score in each table is highlighted in bold.

Net. Method Venue

Detection
& Classification Segmentation

Model
Complexity

AP APnormal APdefect AP APnormal APdefect Params FLOPs FPS

C
N

N
-b

as
ed Mask R-CNN He et al. (2017) 2017 80.35 90.15 70.56 84.19 88.39 80.00 44M 207G 5.3

HTC Chen et al. (2019) 2019 88.10 96.20 80.00 84.30 89.00 79.70 112M 294G 3.9

Tr
an

sf
or

m
er

-b
as

ed

QueryInst Fang et al. (2021) 2021 64.60 75.50 53.60 72.70 78.60 66.70 48M 281G 4.4

Mask2Former Cheng et al. (2022) 2022 85.05 91.23 78.87 85.11 91.23 78.99 44M 276G 4.8

Mask DINO Li et al. (2023) 2023 85.12 91.44 79.10 86.13 92.11 80.15 52M 280G 4.6

CarcassFormer (Ours) 95.18 94.02 96.34 98.43 99.79 97.06 44M 278G 4.6

Table 5 compares the performance of CarcassFormer with existing methods on ResNet-

34. In the first group, HTC Chen et al. (2019) obtains better performance than Mask R-CNN

He et al. (2017) whereas our CarcassFormer gains significant performance gaps compared

to both HTC Chen et al. (2019) and Mask R-CNN He et al. (2017). Take HTC Chen et al.

(2019) as an example, CarcassFormer outperforms HTC with 8.70% higher AP for detec-

tion, 2.72% higher AP for normal carcass classification, 14.78 % higher AP for defect carcass

classification, 16.92% higher AP for segmentation, 13.70% higher AP segmentation for nor-

mal carcass and 20.05% higher AP segmentation for defect carcass. In the second group,

QueryInst Fang et al. (2021) obtains better performance than Mask2Former Cheng et al.

(2022) and Mask DINO Li et al. (2023) while our CarcassFormer obtains the best perfor-

mance. Compared to QueryInst Fang et al. (2021), CarcassFormer gains 7.30% higher AP

for detection, 0.02% higher AP for normal carcass classification 14.48% higher AP for defect

carcass classification, 17.02% higher AP for segmentation, 11.90% higher AP segmentation

for normal carcass, 22.15% higher AP segmentation for defect carcass.

Table 6 compares the performance of CarcassFormer with existing methods on ResNet-50.
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In the first group, HTC Chen et al. (2019) outperforms Mask R-CNN He et al. (2017) whereas

CarcassFormer outperforms HTC Chen et al. (2019) with significant performance gaps,

including 7.08% higher AP for detection, 16.34% higher AP for defect carcass classification,

14.13% higher AP for segmentation, 10.79% higher AP segmentation for normal carcass and

17.36% higher AP segmentation for defect carcass while it is compatible with HTC Chen

et al. (2019) on normal classification. In the second group, while Mask2Former Cheng et al.

(2022) and Mask DINO Li et al. (2023) obtains much better performance than QueryInst

Fang et al. (2021), our CarcassFormer outperforms MaskDINO Li et al. (2023) 10.06%

higher AP for detection, 2.58% higher AP for normal carcass classification, 17.24% higher

AP for defect carcass classification, 13.30% higher AP for segmentation, 7.68% higher AP

segmentation for normal carcass, 16.91% higher AP segmentation for defect carcass.

Table 7: Performance comparison between CarcassFormer with both CNN-based networks, namely Mask

R-CNN He et al. (2017) and HTC Chen et al. (2019) and Transformer-based networks, namely Mask2Former

Cheng et al. (2022) and QueryInst Fang et al. (2021) on both Detection, Classification and Segmentation

tasks. The comparison is conducted on ResNet-34 backbone network and in the case of multiple car-

casses per image. Net. denotes Network architecture. The best score in each table is highlighted in bold.

Net. Method Venue

Detection
& Classification Segmentation

Model
Complexity

AP APnormal APdefect AP APnormal APdefect Params FLOPs FPS

C
N

N
-b

as
ed Mask R-CNN He et al. (2017) 2017 77.08 84.33 69.83 74.81 79.00 70.63 41M 204G 5.8

HTC Chen et al. (2019) 2019 77.80 89.70 65.90 74.00 79.10 68.90 109M 290G 4.3

Tr
an

sf
or

m
er

-b
as

ed

QueryInst Fang et al. (2021) 2021 84.10 89.60 78.70 83.20 87.70 78.70 45M 279G 4.8

Mask2Former Cheng et al. (2022) 2022 53.86 54.00 53.72 71.69 85.39 58.00 41M 272G 5.2

Mask DINO Li et al. (2023) 2023 68.44 74.55 62.33 78.80 88.26 69.33 49M 278G 5.1

CarcassFormer (Ours) 89.72 93.48 85.96 98.23 98.77 97.68 41M 274G 5.1

3.2.3. Multiple Carcasses Per Image

Table 7 and Table 8 present the performance on multiple carcasses per image using

ResNet-34 and ResNet-50, respectively.
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Table 8: Performance comparison between CarcassFormer with both CNN-based networks, namely Mask

R-CNN He et al. (2017) and HTC Chen et al. (2019) and Transformer-based networks, namely Mask2Former

Cheng et al. (2022) and QueryInst Fang et al. (2021) on both Detection, Classification and Segmentation

tasks. The comparison is conducted on ResNet-50 backbone network and in the case of multiple car-

casses per image. Net. denotes Network architecture. The best score in each table is highlighted in bold.

Net. Method Venue

Detection
& Classification Segmentation

Model
Complexity

AP APnormal APdefect AP APnormal APdefect Params FLOPs FPS

C
N

N
-b

as
ed Mask R-CNN He et al. (2017) 2017 78.76 85.61 75.73 80.67 85.61 75.73 44M 207G 5.3

HTC Chen et al. (2019) 2019 77.40 83.50 71.40 74.90 77.70 72.10 112M 294G 3.9

Tr
an

sf
or

m
er

-b
as

ed

QueryInst Fang et al. (2021) 2021 60.90 67.70 54.00 60.40 66.90 54.00 48M 281G 4.4

Mask2Former Cheng et al. (2022) 2022 73.35 88.03 58.66 75.54 90.93 60.15 44M 276G 4.8

Mask DINO Li et al. (2023) 2023 76.22 84.11 68.33 79.93 92.12 67.74 52M 280G 4.6

CarcassFormer (Ours) 90.45 93.42 87.49 98.96 99.15 98.76 44M 278G 4.6

Table 9: Performance comparison between CarcassFormer with Mask2Former Cheng et al. (2022) on both

Detection, Classification and Segmentation tasks. The comparison is conducted on Swin-T backbone

network and in the case of multiple carcasses per image. Net. denotes Network architecture. The best

score in each table is highlighted in bold.

Method Venue

Detection
& Classification Segmentation

Model
Complexity

AP APnormal APdefect AP APnormal APdefect Params FLOPs FPS

Mask R-CNN He et al. (2016) 2017 78.82 86.12 71.52 81.22 87.12 75.32 46M 230G 4.8

Mask2Former Cheng et al. (2022) 2022 73.10 88.14 58.05 77.68 92.89 62.47 46M 280G 4.6

CarcassFormer (Ours) 89.34 94.18 84.50 98.70 99.47 97.92 46M 281G 4.5

Table 7 compares the performance of CarcassFormer with existing methods on ResNet-

34. In the first group, while Mask R-CNN He et al. (2017) and HTC Chen et al. (2019)

are quite compatible on all tasks, our CarcassFormer gains big performance gaps. Take

HTC Chen et al. (2019) as an example, CarcassFormer achieves 11.92% higher AP for

detection, 3.78% higher AP for normal carcass classification, 20.06% higher AP for defect

carcass classification, 24.23% higher AP for segmentation, 19.67% higher AP segmentation
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for normal carcass, 28.79% higher AP segmentation for defect carcass. In the second group,

while QueryInst Fang et al. (2021) outperforms Mask2Former Cheng et al. (2022) and Mask

DINO Li et al. (2023), our CarcassFormer obtains better performance than QueryInst Fang

et al. (2021) with notable gaps, i.e., 5.62% higher AP for detection, 3.88% higher AP for

normal carcass classification, 7.26% higher AP for defect carcass classification, 15.03% higher

AP for segmentation, 11.07% higher AP segmentation for normal carcass, 18.98% higher AP

segmentation for defect carcass.

Table 8 compares the performance of CarcassFormer with existing methods on ResNet-

50. In the first group, while Mask R-CNN He et al. (2017) outperforms HTC Chen et al.

(2019), our CarcassFormer achieves a best performance with 11.69% higher AP for de-

tection, 7.81% higher AP for normal carcass classification, 11.76% higher AP for defect

carcass classification, 18.29% higher AP for segmentation, 13.54% higher AP segmentation

for normal carcass, 23.03% higher AP segmentation for defect carcass compared to Mask

R-CNN He et al. (2017). In the second group, while Mask2Former Cheng et al. (2022)

Mask DINO Li et al. (2023) obtain better performance than QueryInst Fang et al. (2021),

our CarcassFormer achieves the best performance. It gains 14.23% higher AP for detection,

9.31% higher AP for normal carcass classification, 19.16% higher AP for defect carcass clas-

sification, 19.03% higher AP for segmentation, 7.03% higher AP segmentation for normal

carcass, 31.02% higher AP segmentation for defect carcass compared to the second best

method Mask DINO Li et al. (2023).

Table 9 compares the performance of CarcassFormer with Mask2Former Cheng et al.

(2022) and Mask R-CNN He et al. (2017) on Swin-T. In comparison to the CNN-based

method, Mask R-CNN He et al. (2017), our approach yields significant improvements across

various performance metrics. Specifically, we observe a 10.52% increase in average preci-

sion (AP) for detection, an 8.06% enhancement for normal carcass classification, a 12.98%

boost for defect carcass classification, a remarkable 17.48% rise for segmentation, as well

as notable gains of 12.35% and 22.6% in AP segmentation for normal and defect carcasses,

respectively. In terms of comparison with transformer based network, namely Mask2Former,

our CarcassFormer achieves the significant better performance than both Mask2Former and
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Mask R-CNN. Indeed, it gains 16.24% higher AP for detection, 6.04% higher AP for nor-

mal carcass classification, 26.45% higher AP for defect carcass classification, 21.02% higher

AP for segmentation, 6.58% higher AP segmentation for normal carcass, 35.45% higher AP

segmentation for defect carcass.

Model Complexity. Analysis of model complexity reveals that our method exhibits com-

parable complexity to the majority of existing methods. However, it consistently delivers

notable performance enhancements across diverse tasks. Specifically, in the case of ResNet-

34, as illustrated in Tables 5 and 7, our model has the smallest number of model parameters,

equivalent to that of Mask R-CNN He et al. (2017) and Mask2Former Cheng et al. (2022),

while maintaining comparable FLOPs and FPS with these models. However, our model

exhibits a significant performance advantage over both. This trend is similarly observed for

ResNet-50, as shown in Tables 6 and 8, and for Swin-T, as depicted in Table 9, where our

model demonstrates comparable model complexity but yields substantial performance gains

compared to other methods.

3.3. Qualitative Performance and Comparison

Based on the quantitative comparison in Section 3.2, Mask R-CNN He et al. (2017) was

selected from the first group, and Mask2Former Cheng et al. (2022) was chosen from the

second group to conduct the qualitative comparison. Specifically, the qualitative comparison

was reported on both the detection and segmentation tasks, with a greater emphasis on the

case of defect, namely feather and skin tearing.

3.3.1. Single Carcass Per Image

Figure 7 presents a qualitative performance comparison among three models: Mask R-

CNN (a), Mask2Former (b), and our proposed CarcassFormer (c) on the defect of single

carcass with feathers is present. While Mask R-CNN can segment the global content well,

it fails to segment the details, such as feathers. On the other hand, Mask2Former performs

better than Mask R-CNN in capturing details, but it still faces difficulties in capturing fine

details, which can be seen at high resolution. Moreover, Mask R-CNN and Mask2Former
29



TRAN ET AL. – CARCASSFORMER

Figure 7: Performance comparison (a): Mask R-CNN He et al. (2016), (b): Mask2Former Cheng et al.

(2022) and (c): our CarcassFormer on the defect where single carcass with feathers. In the Segmentation

column, notable parts with feathers were highlighted. Compare with Mask R-CNN and Mask2Former, our

CarcassFormer can localize carcass with more accurate bounding box and segment carcass with more details

on feathers.

exhibited a tendency to under-localize the carcass, as observed from the detected bounding

box that did not encompass the entire carcass with details on the boundary, such as wings

and feathers. In contrast, our CarcassFormer not only accurately localizes the carcass with

a fitting bounding box but is also capable of segmenting details at high resolution.

Figure 8 depicts a qualitative performance comparison among three models: Mask R-
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Figure 8: Performance comparison (a): Mask R-CNN He et al. (2016), (b): Mask2Former Cheng et al.

(2022) and (c): our CarcassFormer on two defects where single carcass with skins tearing on the

back and feathers. In the Segmentation column, notable parts with feathers and skins tearing occurred

were highlighted. Compared with Mask R-CNN and Mask2Former, our CarcassFormer desnt not only detect

the feathers well but also accurately localize carcass with its all skins tearing.

CNN (a), Mask2Former (b), and our proposed CarcassFormer (c), on single carcass with

both two defects of feather and skin tearing. Although Mask2Former performs better than

Mask R-CNN in localizing the carcass with skin tearing, it still faces difficulties in localizing
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Figure 9: Performance comparison between Mask R-CNN (a), He et al. (2016) Mask2Former Cheng et al.

(2022) (b) and our CarcassFormer (c) on overlapping carcasses with feathers. In the Segmentation

column, notable parts with feathers were highlighted. Mask R-CNN not only lacks details in the segmentation

results but also fails to localize individual carcasses. Although Mask2Former performs better than Mask

R-CNN in localizing individual carcasses, it still struggles to accurately segment all details. In contrast,

our CarcassFormer can simultaneously segment carcasses with details and accurately localize individual

carcasses.

all details on feathers. Conversely, our CarcassFormer accurately localizes the carcass with

a fitting bounding box and is also capable of segmenting details at high resolution.
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Figure 10: Performance comparison between (a): Mask R-CNN He et al. (2016), (b): Mask2Former Cheng

et al. (2022) and (c): our CarcassFormer on overlapping carcasses with feathers and skins tearing.

Segmentation highlights some notable parts with feathers occur. Both Mask R-CNN and Mask2Former

struggle with accurately localizing individual carcasses and providing detailed segmentation, especially for

fine details like feathers. In contrast, our CarcassFormer excels in simultaneously segmenting carcasses with

fine details and accurately localizing individual carcasses.

3.3.2. Multiple Carcasses Per Image

In this section, the qualitative performance on images with multiple carcasses and their

overlap was reported. Figure 9 illustrates the qualitative performance of three models: Mask

R-CNN (a), Mask2Former (b), and our proposed CarcassFormer (c) on multiple, overlapping

carcasses with feathers. Both Mask R-CNN and Mask2Former struggle to accurately segment
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and localize each individual carcass, especially in cases where the feathers of different car-

casses overlap. Mask R-CNN lacks detail in the segmentation results, while Mask2Former,

despite performing better in localizing individual carcasses, still fails to capture all the de-

tails accurately. On the contrary, our CarcassFormer excels at accurately segmenting each

individual carcass and capturing the details of feathers, even in complex scenarios of overlap.

In Figure 10, the qualitative performance comparison of the three models on multiple,

overlapping carcasses with both feathers and skin tearing presented. Here, it is evident that

Mask R-CNN and Mask2Former both face significant challenges in accurately localizing indi-

vidual carcasses and providing detailed segmentation, especially for tiny objects like feathers

and areas of skin tearing. In stark contrast, our CarcassFormer performs outstandingly in

these complex situations. It not only accurately localizes each carcass but also segments

the fine details of feathers and skin tearing areas, thereby providing a comprehensive and

detailed segmentation output.

4. Conclusions

In conclusion, an end-to-end Transformer-based network for checking carcass quality,

CarcassFormer, has been described. Our CarcassFormer is designed with four different com-

ponents: Network Backbone to extract visual features, Pixel Decoder to utilize feature maps

from various scales, Mask-Attention Transformer Decoder to predict the segmented masks

of all possible instances, and Instance Mask and Class Prediction to provide segmentation

mask and corresponding label of an individual instance. To benchmark the proposed Car-

cassFormer network, a valuable realistic dataset was conducted at a poultry processing plant.

The dataset acquired contained various defects including feathers, broken/disjointed bones,

skins tearing, on different settings of a single carcass per image and multiple carcasses per

image, and the carcass at various ages and sizes. The CarcassFormer was evaluated and

compared with both CNN-based networks, namely Mask R-CNN He et al. (2017) and HTC

Chen et al. (2019), as well as Transformer-based networks, namely Mask2Former Cheng et al.

(2022) and QueryInst Fang et al. (2021), on both detection, classification, and segmenta-

tion tasks using two different backbone networks, ResNet-34 and ResNet-50. The extensive
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qualitative and quantitative experiment showed that our CarcassFormer outperforms the

existing methods with remarkable gaps on various metrics of AP, AP@50, AP@75.

Our current CarcassFormer system operates solely on image-based inputs, limiting our

ability to track carcasses across frames. While our model can currently determine whether

a carcass is defective or not, it lacks the capability to identify specific types of defects, such

as feathers around the carcass, feathers on the skin, flesh abnormalities, or broken wings. In

our future endeavors, we aim to expand our research to include video analysis, enabling us

to track carcasses across frames and thereby enhance the scalability of our system to process

a larger volume of carcasses. Additionally, we intend to implement finer-grained defect

detection to precisely identify the nature of defects present. This enhancement will provide

more detailed insights into the types of defects observed, facilitating improved diagnosis and

statistical analysis.
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