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Abstract

A noise modelling approach is proposed for bluff body wakes such as flow over a
cylinder, where the primary noise source comprises large-scale coherent structures
such as the vortex shedding flow feature. This phenomenon leads to Aeolian
tones in the far-field, and is inherent in wake flows across a range of Reynolds
numbers (Re), from low-Re to high-Re turbulent flows. The approach employs
linear global stability analysis on the time-averaged mean flow, with amplitude
calibration through two-point statistics, and far-field noise calculations from the
global mode fluctuations by Curle’s analogy. The overall approach is tested for
flow over a cylinder at Reynolds numbers Re=150 and 13300. For Re=150 flow,
noise directivity calculations from the present approach agree with direct far-
field computations. For Re=13300 flow, the mean flow is obtained by particle
image velocimetry (PIV). The linear global mode for spanwise-homogeneous-type
fluctuations is obtained at the main, lift fluctuation frequency. Calibration of this
global mode involves Time-Resolved PIV data in the streamwise-spanwise plane,
which is Fourier transformed in frequency-spanwise wavenumber space. The noise
calculations for this global mode are then found to be less than 1 dB off from
the microphone measurements.
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1 Introduction

Bluff body noise is one of the most important components of airframe noise during
the landing phase of commercial aircraft. Landing gear and high lift devices such as
trailing edge flaps, leading-edge slats are the primary contributors to the airframe
noise [1, 2]. Similar noise sources can be found in other moving bodies, for instance, a
car’s rear-view mirror and an electric train’s pantograph.

Strouhal [3] characterized the tones generated by a flow over a circular cylinder,
now known as Aeolian tones. For a flow, with free stream velocity as U∞, over a bluff-
body of characteristic length d, the scaling law for the Aeolian tone frequency was
found as

St =
fd

U∞
, (1)

where St is the Strouhal number. Accompanied by background turbulence, the flow
exhibits the von Kármán wake [4], an organized vortex-shedding feature which consists
of a periodic train of counter-rotating vortices shed in the wake of bluff bodies, which
leads to Aeolian tones in the acoustic field [5]. As the flow passes over the bluff body,
it creates boundary layers on both the upper and bottom surfaces of the cylinder.
These boundary layers separate, resulting in the formation of two shear layers whose
unstable character leads to the appearance of the von Kármán wake.

Flow over a cylinder exhibits distinct characteristics depending on the Reynolds
number Re = U∞d/ν where ν is the kinematic viscosity of the fluid. For Re values
greater than 47, the flow displays two-dimensional vortex shedding; for Re values
greater than 200, three-dimensionality becomes apparent. At Re values greater than
400, the wake becomes turbulent, and for Re values exceeding 106, the boundary layers
on the cylinder surface become turbulent [6, 7]. A comprehensive discussion of bluff-
body wake flows can be found in the reviews by Williamson [8], Rajagopalan and
Antonia [9], and Derakhshandeh and Alam [10].

Prediction of bluff-body noise can be achieved by solving the Navier-Stokes
equations directly in the unsteady, compressible regime. This returns both the turbu-
lent and acoustic field simultaneously [11, 12]) or in conjunction with acoustic analogies
such as Lighthill’s [13] and its extensions [14, 15]. The computational expense of such
models for high-Re flows and complicated geometries, however, remains substantial
primarily due to the necessity of resolving a broad spectrum of turbulent scales over
a 3D computational domain and a significant physical time.

Simplified physics-based noise models, on the other hand, are generally desired
in the design of low-noise airframe structures. These models offer a crucial physical
understanding of sound-generation mechanisms, making them invaluable for the initial
design phases of quieter airframe structures. Phillips [5] derived the following law for
Aeolian tones:

p2rms(r, θ) = 0.037
sin2 θ

r2
ρ2U6

∞
c20

St2 Ld, (2)

where prms is the root-mean-square (rms) pressure fluctuations at a far-field distant
r from the cylinder center and at an angle θ with the free stream flow, L is the
cylinder length, ρ is the fluid density, and c0 is the free-stream sound speed. The
constant was obtained empirically in order to match with measurements in the range
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360 < Re < 30000. It can be made explicite in the far-field for low Mach number,
assuming the cylinder as acoustically compact in the transverse plane. Derived from
Curle’s analogy [15], the refined formula is [5, 16],

p2rms(r, θ) =
sin2 θ

r2
ρ2U6

∞
c20

St2
LLcC

2
l

16
, (3)

where Cl is sectional fluctuating (rms) lift coefficient on the cylinder and Lc is the
spanwise correlation length or spanwise coherence length, representing length scale of
the spanwise decay of two-point correlation function [5] or coherence function [17–19]
respectively. These lengths are essential components of various current bluff body noise
models [16, 20–23], referred to as LLc models. These latter rely on the assumptions
that: (i) The spanwise distribution of the vortex-shedding phase is random; (ii) a
single parameter, Lc, can comprehensively represent the spanwise phase of the acoustic
source. Another limitation of such models is that it is not clear which part of the
spanwise dynamics dominates as acoustic source.

A rather different approach considers coherent structures in the flow, defined as
organized and persistent patterns that exist in turbulent flows, and that exhibit spa-
tial and temporal scales significantly larger than the integral turbulence scales. Their
existence in several turbulent shear flows has been demonstrated in cylinder wakes
[8, 24, 25].

Coherent structures can be educed from time-resolved flow field data [26, 27] by
means of various data-processing procedures [28, 29] such as proper orthogonal decom-
position (POD) [26, 30], dynamic mode decomposition (DMD) [31], linear stochastic
estimation [32], and wavelet analysis [33–35]. Also, Fourier decomposition can be used
for the homogeneous directions, if they exist, in the data. These techniques enable the
sorting of turbulent flows into modes ranked based on various criteria, such as fluctu-
ation energy content or acoustic efficiency, potentially resulting in a low-order system
in some cases.

For axisymmetric jets, it has been shown that, when decomposed in terms of
azimuthal Fourier modes, the lowest order modes are the most efficient acoustic sources
[36–38]. This is in fact a property of the Green function that describes the problem,
resulting in the dominance of low azimuthal modes in sound radiations despite their
low fluctuation energy in comparison to the energy-containing flow scales: the first
three lowest-order azimuthal Fourier modes contribute less than 10% to the overall
fluctuation energy [36, 37, 39]. For flow over a forward-facing thick plate, Debesse et al.
[40] performed an LES and analysed the resulting database with means of Fourier
analysis, POD and DMD in order to study the dominant noise producing flow motions.
The spanwise structure of the dispersion relation was used to establish that, in terms
of acoustic efficiency, only the spanwise homogeneous mode i.e. k = 0 Fourier mode
can be efficient in driving propagative pressure fluctuations.

For the flow over a spanwise-homogeneous cylinder, the spanwise Fourier decom-
position of the flow field has not been explored yet. In the context of vortex-shedding
fluctuations, the source of Aeolian tones, if a low-order system representation of the
dominant acoustic sources is found, formulation of noise models which are low-order,
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simplified and physics-based could be done. Advantage of such models over LLc models
is that they allow us to separately analyze each spanwise Fourier mode’s contribution
to far-field noise, hence providing a clearer understanding of the spanwise organisation
of the dominant acoustic sources.

For such situations, where a low-order respresentation of the acoustically domi-
nant coherent structures is present, noise models based on linear stability analysis
around mean-flow emerge as a good candidate. It has been found that many impor-
tant characteristics of coherent structures, such as their spatial structures, and phase
speeds, can be described using linearised flow equations, where linearization is per-
formed about the mean flow in flows such as jets [38, 41–44], boundary layers [45],
and airfoils [46–50]. However, due to the linear nature of the approach, a calibra-
tion step for the amplitudes and phases for linear instability modes is required before
incorporating them as acoustic sources in the noise models.

For low-Re flows (Re≤ 150) over a circular cylinder, linear stability analyses about
mean flow fields have already proven useful in terms of modelling the phenomenon
of vortex shedding [51–58]. Barkley [57] was the first to conduct a comprehensive 2D
linear stability analysis of the mean flow in the cylinder wake across Reynolds numbers
ranging from 46 to 180, providing eigenfrequencies, growth rates and eigenstructures
for the general 2D perturbations.

It has been shown that, beyond the threshold Reynolds number (Re > 47), the
mean flow, rather than the base flow which is the fixed-point solution of the Navier-
Stokes system, yields the most accurate profile for modelling the vortex shedding
phenomenon [52, 57, 59]. The inaccuracy in the frequency prediction from base-flow
stability analysis is due to the invalidity of the linear approximation as the small
unstable perturbations keep on growing far beyond the linear approximations. Initi-
ating from the base flow, studies [60–62] demonstrate modifications to the mean flow
due to the oscillating wake and subsequent nonlinear saturation via interaction with
the mean flow. The model proposed by Noack et al. [62] suggests that the amplitude
of the oscillating wake saturates precisely when the mean flow is marginally stable—a
concept reminiscent of the marginal stability criterion proposed by Malkus [63] for
fully developed turbulent flows.

Triantafyllou et al. [64] found that the formation of the vortex street is due to an
absolute instability in the wake immediately behind the cylinder, and the appearance
of global instability can be seen as the development of a region of absolute instability.
Due to this absolute instability, any initial disturbance grows at any fixed location
and after nonlinearities have limited the growth of the disturbance, a self-sustained
oscillation of the wake is established. For more in-depth reviews on global instability,
readers are referred to works by Taira et al. [28, 29], Chomaz [53], Theofilis [65], Sipp
et al. [66].

Mantič-Lugo et al. [67, 68] developed a self-consistent model based on global modes
for cylinder flow, accurately predicting the frequency and spatial structure of the
vortex shedding mode for Reynolds numbers up to 110. Fani et al. [56] extended
this model to the compressible linearized Navier-Stokes equations, providing detailed
instability information along with the acoustic field. These models were limited to
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Reynolds numbers below 150, where the flow remains laminar and two-dimensional,
and required a starting base flow.

As the Reynolds number surpasses 400, wake flows behind cylinders transition to
turbulence, marked by three-dimensional and turbulent characteristics. The applica-
bility and effectiveness of linear mean-flow-based global stability noise models at such
high Reynolds numbers are not yet fully explored, forming the focus of the current
investigation. It also remains to be seen whether, in cylinder flows, coherent struc-
tures associated with low-order spanwise wavenumbers serve as the primary sources
for Aeolian tones, analogous to the scenario observed in axisymmetric jets.

In the present work, we present a physics-based simplified noise model for tur-
bulent bluff body flows which is designed to represent coherent structures through a
mean-flow-based 2D linear global stability analysis. In the present model, coherent
structures corresponding to different spanwise Fourier modes can be included indi-
vidually as acoustic sources. With such an approach, we aim to improve the physical
understanding of the flow in terms of its dominant acoustic source structure.

The paper is structured as follows: Section 2 outlines the methodology of the noise
model, with Section 2.1 detailing the global stability analysis framework, and Section
2.2 presenting Curle’s analogy for Aeolian tone. In Section 3, we apply the noise
model to a Re=150 flow over a circular cylinder with validation versus direct noise
computation. Section 4 presents the application of the noise model to a Re=13300 flow
over a circular cylinder using experimental data for mean flow estimation and mode
amplitude calibration. Finally, Section 5 concludes the paper.

2 Methodology

In the present work, we propose a model for the aeroacoustics of bluff body wakes,
that exhibit tonal noise. The model is based on linear global stability analysis of the
time-averaged of the flow around the bluff body, in which the leading global modes are
considered to represent the acoustically important, coherent structures of the wake.

The application of this model in flow over a spanwise-homogeneous circular cylin-
der is demonstrated for two cases: Re=150 and Re=13300, in Section 3 and Section
4 respectively. Re=150 flow is examined numerically by using data from a Direct
Numerical Simulation (DNS), as an initial application of the proposed model. This
serves as a numerical test of the methodology before tackling the more challenging
experimental case of Re=13300 flow. The coordinate system is depicted in Figure 1.

The multi-step framework for the proposed models involves:

1. Obtain the time-averaged mean flow, including mean streamwise velocity (U) and
mean transverse velocity (V ). For the present applications, the time-averaged mean
flow in the 2D plane normal to the cylinder axis, i.e. in the XY plane, is required.
This is obtained here by DNS and PIV measurements for Re=150 and Re=13300
flows respectively.

2. Conduct linear global stability analysis on the time-averaged mean flow to extract
phase speeds, fluctuation frequencies, and spatial structures of dominant global
modes. This step is detailed in Section 2.1. Global stability analysis is done in the
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(a) Front view.
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(b) Bottom view.

Fig. 1: Flow over a spanwise-homogeneous cylinder: Coordinate system sketch. The
origin is fixed at the cylinder’s center at its mid-span. Free-stream flow, with velocity
U∞, is along the x−axis. The transverse axis is along the y−axis. Cylinder’s span is
along the z−axis.

present work via Arnoldi iteration-based Matrix-free method [69, 70], by employing
the Nektar++ code package [71].

3. Calibrate amplitudes of the dominant global modes. While the linear global modes
may accurately capture most of the important features of the coherent structures,
their amplitudes require calibration due to the linear nature of the approach. For
the Re=13300 flow, this calibration is accomplished through two-point velocity
measurements in the spanwise direction via TR PIV. These measurements are
decomposed into spanwise Fourier modes to extract the individual amplitudes of
the global modes corresponding to these spanwise Fourier modes. This is detailed in
Section 4.3. For the Re=150 flow over a circular cylinder, as it is a two-dimensional
flow, the global mode is calibrated by the one-point DNS recordings.

4. Utilize Curle’s analogy to predict far-field noise associated with the calibrated
global mode, considering it as the principal acoustic source, as presented in Section
2.2.

2.1 Global stability analysis

The governing incompressible Navier-Stokes system in non-dimensional form can be
written as:

∇ ·U = 0, (4a)

∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∆U. (4b)

where U is the velocity field vector, P is the pressure field. Reynolds decomposition
of the flow variables into their time-averaged and fluctuating parts (U = U + u and
P = P + p), gives a system of equations for the fluctuation field as

∇ · u = 0, (5a)

∂u

∂t
+ (U · ∇)u+ (u · ∇)U+ (u · ∇)u− (u · ∇)u = −∇p+

1

Re
∆u, (5b)
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The non-linear term, f = (u · ∇)u− (u · ∇)u, can be neglected to arrive at Linearized
Incompressible Navier-Stokes equations,

∇ · u = 0, (6a)

∂u

∂t
+ (U · ∇)u+ (u · ∇)U = −∇p+

1

Re
∆u, (6b)

System (6) can be written in matrix form as,

B∂q

∂t
= Aq (7)

where q is the fluctuation field expressed in vector form as

q =


u
v
w
p

 =

[
u
p

]
, (8)

B is a mass matrix given by

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (9)

and A contains the information about the Navier-Stokes system, mean-flow informa-
tion, Jacobians, and spatial derivates.

In the case of a spanwise-homogeneous bluff body, there exist two homogeneous
directions, one in time and the other in its spanwise direction, allowing us to express
disturbance around the mean flow in the following normal-mode form,

q(x, y, z, t) = q̂(x, y, z)eiωt = q̃(x, y)eikzeiωt. (10)

where ω is the complex frequency, k is the spanwise wavenumber and q̃(x, y) are the
eigenfunctions (the spatial distribution of the fluctuation mode in the x− y domain)
for the mode for the corresponding k−ω wavenumber-frequency set. Using the normal
mode ansatz (10) in the LNS (7) gives the 3D eigenvalue problem as

iωBq̃(x, y) = Akq̃(x, y), (11)

which can be solved as an eigenvalue problem for each spanwise wavenumber, k, indi-
vidually, where we look for ω as eigenvalues (temporal) and q̃(x, y) as eigenfunctions
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of the system. The final expression for Ak is:

Ak =



−U
∂

∂x
− V

∂

∂y
−

∂U

∂x
+

1

Re
∆ −

∂U

∂y
0 −

∂

∂x

−
∂V

∂x
−U

∂

∂x
− V

∂

∂y
−

∂V

∂y
+

1

Re
∆ 0 −

∂

∂y

0 0 −U
∂

∂x
− V

∂

∂y
+

1

Re
∆ −ik

∂

∂x

∂

∂y
ik 0


.

(12)

where ∆ =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
.

As in the present case, the linear analysis is performed about the mean flow around
a cylinder, we expect eigenvalues to be either stable or marginally stable. Solving
the eigenvalue problem (11) for 2D and 3D problems by direct methods, such as the
standard QR method, is complicated due to the large size of matrix Ak, n = 4NxNy,
where Nx and Ny represent the number of grid points and the number of components
in the fluctuation vector respectively.

Matrix-free methods, often known as time-stepper approaches, offer a solution for
the leading eigenvectors and eigenvalues without explicitly constructing or solving the
associated eigenmatrix. These methods involve solving the eigenvalue problem using
snapshots of velocity fields at various time intervals, without storing matrices. Utilizing
these time snapshots of velocity vectors, a lower-order eigenmatrix is created and
solved, providing leading eigenvectors and eigenvalues for the original eigenmatrix.
This technique has gained popularity in both stability analysis [72–74] and control
design [75]. Methods such as Arnoldi Iteration [69, 70], employed in the present work,
facilitate this process. More details about the method can be found in Appendix A.

Solving (11) for each spanwise wavenumber results in eigenfunctions with free
amplitudes and phases, owing to its linear formulation. Prior to employing these eigen-
functions as acoustic source fluctuations through the ansatz provided in (10), it is
necessary to calibrate their amplitudes. Once calibrated, these global mode fluctua-
tions can be utilized as acoustic sources in an acoustic analogy to calculate far-field
noise associated with them.

2.2 Curle’s acoustic analogy for a flow over a cylinder

2.2.1 Formulation

To compute sound radiation from global modes, an acoustic analogy can be used.
Lighthill’s analogy [13, 76] reformulates the compressible Navier-Stokes equations into
an inhomogeneous wave equation form,(

∂2

∂t2
− c20∇2

)
ρ =

∂2Tij
∂xi∂xj

(x, t). (13)
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Here ρ is the density, c0 is the free-stream sound speed, Tij = ρuiuj+(p−c20ρ)δij−τij ,
incorporating velocity ui, pressure p, and viscous stress components τij . In (13), the
hydrodynamic flow-field data serves as the acoustic source on the right-hand side. To
address the sound propagation problem, the inhomogeneous wave equation on the left-
hand side is solved independently and separately from the hydrodynamics calculations
or measurements.

Curle’s analogy [15] includes the effects of bodies and surfaces in the flow and
has been successfully applied to cylinder flows using a surface-dipole formulation (for
instance, see [11, 77, 78]). Derived from Lighthill’s analogy, Curle’s analogy for a steady
impermeable surface allows the radiated sound pressure to be expressed as,

ρ′(x, t) =
∂2

∂xi∂xj

∫∫∫
V–

[
Tij

4πc2 | x−w |

]
d3w − ∂

∂xi

∫∫
∂V–

[
p′ni

4πc2 | x−w |

]
d2w,

(14)
where, ρ′ = ρ− ρ0, p

′ = p− p0 with (ρ0, p0) representing the constant reference state
in the observer domain, ∂V– represents the boundary of the control volume V– and the
viscous stress has been neglected in the surface term. The bracketed terms are to be
evaluated at the retarded (emission) time, τ∗ = t− | x−w | /c. The first part of the
R.H.S. in (14) corresponds to the incident field, a quadrupole source in the free field,
while the second part corresponds to the scattered field [77], a dipole source in the
free field. In the frequency domain, Equation 14 reads

p̂(x, ω) = c2ρ̂(x, ω) = −
∫∫∫

V–

∂2Ĝ

∂wi∂wj
T̂ij d

3w −
∫∫

∂V–

∂Ĝ

∂wi
p̂(w, ω)nj d

2w , (15)

where Ĝ(x | w, ω) is the free-field Green function in the frequency domain, given by

Ĝ(x | w, ω) = − e−ik0|x−w|

4π | x−w |
(16)

where k0 = ω/c0 = 2πStU∞/c0d is the acoustic wavenumber.

2.2.2 Acoustic compactness of the cross section

Acoustic compactness connects the sound emission characteristic length i.e. the acous-
tic wavelength (λ) with the cylinder’s characteristic length. If the diameter of the
cylinder is negligible in comparison to an acoustic wavelength, λ ≫ d, the differences
in retarded time for the different locations of the cylinder across its circumference are
negligible and the cylinder may be considered as a point source in the sectional plane.
If the spanwise characteristic length is much smaller than the acoustic wavelength
(λ ≫ L or Lc), then the differences in the retarded time for various points along the
span of the cylinder are negligible. Otherwise, these differences need to be considered.

For the application of noise model for the Re=13300 flow over a cylinder, which
will be presented in Section 4, we have d = 0.01 m, L = 0.7 m and U∞ = 20 m/s which
corresponds to Mach number, M = U∞/c0 = 0.06. The spanwise coherence length for
this flow has been measured as Lc ≃ 5d = 0.05m [19]. The Aeolian tone frequency,
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as measured during the present experiment campaign and which will be presented in
Section 4.4.1, is f ≈ 400 Hz which corresponds to an acoustic wavelength λ ≈ 0.85
m. Across section, compactness ratio rseccom = λ/d = 85, meaning that the cylinder can
be assumed compact across its section. Across span, if the cylinder length is taken as
spanwise characteristic length, compactness ratio , rspancom = λ/L ≈ 1.2, meaning that
the span of the cylinder is acoustically compact. However, if the coherence length is
taken as spanwise characteristic length, then rspancom = λ/Lc ≈ 17.

If the cylinder is taken as an overall compact source, an order of magnitude analysis
for Equation 15 shows that the quadrupolar contribution of the volume integral to the
sound power is M2 smaller than the contribution of the dipolar surface integral [79].
Thus for M ≪ 1 flows, the dipole noise contribution shall be much stronger than the
quadrupolar noise contribution. Hence, for such flows, the quadrupole source can be
neglected, giving

p̂(x, ω) = −
∫∫

∂V–

∂Ĝ

∂wi
p̂(w, ω)nj d

2w , (17)

where
∂G

∂wi
=

e−ik0ri

4πr

(
ri
r2

+
ik0ri
r

)
, (18)

where ri = xi − wi, r =| x−w |. This gives,

p̂(x, ω) = −
∫ L/2

−L/2

∮
C

P̂ (w1, w2, w3, ω)
e−ik0r

r

ri
4πr

(
1

r
+ ik0

)
ni dldw3, (19)

where P̂ (w1, w2, w3, ω) is the hydrodynamic pressure fluctuation distribution over the
cylinder surface (w1, w2, w3) for the considered frequency, ω, C is the closed loop on
cylinder surface for the (w1, w2) plane with dl the elementary length along C.

For the present application of the Re=13300 flow over a cylinder, as which will be
presented in Section 4.2, only spanwise-homogeneous type fluctuations are considered
which gives p̂(w1, w2, w3, ω) = p̂(w1, w2, ω). Equation 19 is further simplified by using
the sectional compactness assumption (

√
x2
1 + x2

2 ≫
√

w2
1 + w2

2), that allows to use
r1 = x1−w1 ≈ x1, r2 = x2−w2 ≈ x2 and r3 = x3−w3. Taking these two factors into
account, we finally arrive at

p̂(x, ω) = −
∫ L/2

−L/2

e−ik0r

r

(x3 − w3)

4πr

(
1

r
+ ik0

)
dw3 ×

∮
C

P̂ (w1, w2, ω)ni dl , (20)

where r =
√

x2
1 + x2

2 + (x3 − w3)2. The first integral on the R.H.S. of (20) is across
the cylinder length, hence not assuming spanwise compactness here i.e. retaining the
retarded time effect across the span. The second integral is the resulting, sectional
pressure force, which can be evaluated independently of the acoustic estimation.

Summarising the noise modelling approach, the global modes, (q̃, k, ω), are
obtained from linear global stability analysis on the mean flow. After the amplitude
calibration of the global modes, they are used, via ansatz (10), to get the pressure fluc-
tuations distribution over the cylinder surface, P̂ (w1, w2, w3, ω). These surface pressure
fluctuations are then utilized in (20), for the calculation of sound radiation associated
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with these global modes. Section 3 and Section 4 present the implementation of the
proposed noise model for flows at Re=150 and Re=13300, respectively, over a cylinder.

3 Validation: Re=150 flow over a cylinder

In this section, the noise model is built for a case of Re=150 flow over a circular
cylinder, for validation purposes. Opting for this low-Re flow was driven by existing
literature and the advantage of more regular and easier-to-analyze cylinder wakes
compared to the turbulent wakes at high-Re.

3.1 Mean flow evaluation

An incompressible 2D DNS is done for the present configuration to record the time-
resolved flow field which was then used to evaluate the time-averaged velocity and
pressure fields. It employs the Nektar++ solver [71] which is based on the spectral/hp
element method which combines the geometric flexibility of classical h-type finite
element techniques with the desirable resolution properties of spectral methods by
increasing the polynomial order (p-type) in regions demanding higher accuracy. These
techniques have been applied in many fundamental studies of fluid mechanics [80].

Flow setup is 2D and is same as shown in the Figure 1(a). The computational
domain used for the numerical simulation is kept as −45 < x/d < 125,−45 < y/d <
45.

An unstructured grid is used with mesh refinement near the cylinder (∆x/d =
0.017) and a coarser mesh is used at the domain boundaries (∆x/d = 1.2), which can
be seen in Figure 2(a). The polynomial expansions used on grid points were of the order
“5”. No-slip conditions are imposed on the cylinder. Uniform flow, (U, V ) = (U∞, 0), is
imposed upstream and an outflow boundary condition is imposed at the downstream
end of the domain and on the lateral sides. The time-step, ∆t × U∞/d = 0.001 was
used for the time-evolution of the solution. This time-step was chosen according to the
Courant–Friedrichs–Lewy (CFL) condition and close to the time-step (∆t× U∞/d =
0.002) in 2D compressible DNS for Re=150 flow by Inoue and Hatakeyama [11].

(a) Global view. Domain: −45 < x/d < 125, −45 < y/d < 45. (b) Closer view.

Fig. 2: Re=150 flow over a circular cylinder: Computational grid.
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(a) U/U∞, mean streamwise velocity (b) V /U∞, mean transverse velocity

(c) P/ρU2
∞, mean pressure

Fig. 3: Re=150 flow over a circular cylinder: mean flow from DNS.

After reaching the developed flow state, the flow is evolved for 20 vortex-shedding
cycles that signify the total time, T × U∞/d = 104 (Total number of time-steps,
Nt = 130000) to evaluate the time-averaged flow field, which is presented in Figure 3.

3.2 Global stability analysis

The linear global stability analysis for the time-averaged mean flow for the Re=150
flow around a circular cylinder is done here to get the leading global modes, considering
only k = 0 spanwise mode.

The same grid as during the mean flow calculation but with the polynomial expan-
sions on grid points being of the order “7”, is used here, which corresponds to 38318
grid points distributed over the domain of −45 < x/d < 125,−45 < y/d < 45.
Boundary conditions are kept as zero velocity fluctuations at the cylinder surface, left
boundary, top boundary and bottom boundary, and outflow at the right boundary.
The Krylov space of κ = 256 is used for global stability analysis.

Among the converged leading eigenmodes (largest growth rates), eigenvalues for the
leading 30 global modes are presented in the eigenspectrum as shown in Figure 4. Here,
the eigenfunctions corresponding to a mode in the left plane of the eigenspectrum,
together with its counterpart in the right plane, represent the real and imaginary parts
of the global mode eigenfunction, forming a pair.

Only one pair of modes in Figure 4 (marked in red circles) is found to be nearly
neutrally stable, all other pairs were stable. The eigenvalues corresponding to this
leading global mode are

ω × d/U∞ = ±1.1443 + 0.0004i, (21)
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Fig. 4: Re=150 flow over a circular cylinder: Eigenspectrum for the leading 30 global
stability modes. All modes are stable with 2 modes being neutrally stable, marked in
red.

indicating that the mean flow is marginally stable, consistent with previous studies
[56, 57, 67]. The fluctuation frequency for this mode corresponds to the Strouhal
number St= fd/U∞ = ℜ{ω}/2π × d/U∞ = 0.182. This value is in agreement with St
= 0.183 for the lift fluctuation (LF) frequency in the compressible DNS by Inoue and
Hatakeyama [11].

The spatial structure of the mode can be seen in the Figure 5. It shows alternate
vortices in ±y positions, being propagated downstream with the mean flow while
growing at the beginning as they travel downstream and reaching a saturated state.
Not shown here in Figure 5, but beyond x ≈ 30d downstream of the body, they tend
to decay. The eigenstructures are also found to be in qualitative agreement with the
eigenstructures from the global stability done by Fani et al. [56] at this Re.

Also, the domain size dependence on the leading global mode was checked by
performing global stability analysis on various domains and comparing their eigen-
values and eigenvectors together. The quantitative similarity of the eigenvectors from
domains with that of domain A is calculated by the function, | p̃p̃HA | /| p̃ || p̃A |, where
p̃ and p̃A are the complex eigenfunctions on the cylinder surface for that particular
domain and domain A respectively, and H represents the Hermitian transpose. The
results are shown in Table 1. We see that the fluctuation frequency for the dominant
global mode and eigenfunctions are very well converged. The growth rate (ℑ{ω}) for
the mode is also close to zero for all the domains considered.

3.3 Mode calibration

As the linear global modes have a free amplitude, this is calibrated here using a single-
point signal from the DNS. The time history of pressure fluctuations, at a single spatial
location, is recorded during the incompressible DNS run, to calibrate the LF global
mode. For the probe location, x/d = 0, y/d = 0.9, the pressure time-series from DNS
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(a) ℜ{ũ}/U∞, streamwise velocity fluctua-
tions

(b) ℑ{ũ}/U∞, streamwise velocity fluctua-
tions

(c) ℜ{ṽ}/U∞, transverse velocity fluctua-
tions

(d) ℑ{ṽ}/U∞, transverse velocity fluctua-
tions

(e) ℜ{p̃}/ρU2
∞, pressure fluctuations (f) ℑ{p̃}/ρU2

∞, pressure fluctuations

Fig. 5: Re=150 flow over a circular cylinder: structure of the leading eigenmode
(ℜ{ω}/2π × d/U∞ = 0.182).

Table 1: Domain convergence test for dominant mode from global stability analysis
for Re=150 flow over a circular cylinder. Eigenvalues and eigenfunctions at the cylinder
surface are compared.

Domain x/d y/d ω | p̃p̃HA |/| p̃ || p̃A |
A -45 to +125 -45 to +45 ±1.1443 + 0.0004i 1
B -16 to +46 -20 to +20 ±1.1446 + 0.0009i 0.9964
C -9 to +32 -14 to +14 ±1.1433 + 0.0004i 0.9962
D -2 to +19 -8 to +8 ±1.1540− 0.01i 0.9583
E -2 to +10 -8 to +8 ±1.1540− 0.01i 0.9723
F -2 to +10 -2 to +2 ±1.1707− 0.03i 0.9833
G -2 to +8 -2 to +2 ±1.1708− 0.03i 0.9575
H -2 to +6 -2 to +2 ±1.1710− 0.03i 0.9582
I -2 to +4 -2 to +2 ±1.1697− 0.03i 0.9616
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Fig. 6: Re=150 flow over a circular cylinder: Global mode calibration.

is shown in Figure 6 for a time-snippet. The global-mode amplitude is adjusted to
match the DNS, to give the comparison shown in Figure 6. The robustness of the
calibration method was checked by recording the pressure fluctuations, p, at various
spatial locations in the region −1 < x/d < 3, 0.1 < y/d < 1.5. In the considered
region, the change in calibration ratio was found to be within ±22%.

3.4 Farfield noise by the global mode

The far-field noise produced by the calibrated global mode is evaluated here by employ-
ing Curle’s analogy (20). The noise directivity calculations are done along a circular
arc of radius r/d = 75 centred at the cylinder centre, where the 2D global mode pres-
sure fluctuations were homogeneously distributed along the cylinder’s spanwise length
of 104 diameters. This length is selected as a numerical approximation to the infinitely
long span of the cylinder, simulating a 2D case. This choice enables comparison of our
noise calculations with the 2D compressible DNS conducted by Inoue and Hatakeyama
[11].

The sound directivity at r/d = 75 is shown in Figure 7, exhibiting its dipole nature,
as expected from Curle’s approach for such a low-drag geometry. Figure 7 also shows
the comparison with the output of a compressible DNS for Re=150, Mach number,
M = 0.2 [11]. Note that the ±22% variation in calibration ratio leads to ±2 dB
variations in the far-field sound. The median underestimates the DNS value by about
1 dB, but these calibration bounds contain it.

4 Application: Re=13300 flow over a cylinder

The noise model is now applied to a Re=13300 flow over a spanwise-homogeneous
circular cylinder in this section. To this aim, flow and acoustic measurements have been
performed, specifically, (i) XY Mean PIV: time-averaged mean velocity measurements
in the streamwise-transverse (XY) plane at the mid-span position (z = 0), which
will be used to perform stability analysis, (ii) XZ TR PIV: Time-resolved velocity
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Fig. 7: Re=150 flow over a circular cylinder: Far-field sound directivity at r/d =
75. Streamwise direction corresponds to θ = 0. The error bar at θ = 90 (in black)
corresponds to the ±22% variation in calibration ratio.

measurements in a streamwise-spanwise (XZ) plane, which will be used to extract
the fluctuation amplitude of the spanwise Fourier modes of interest for calibration of
the corresponding global modes, and (iii) acoustic measurements by a microphone,
synchronised with PIV, used to validate the noise calculations from the model.

The experiments are conducted at the anechoic chamber of the wind-tunnel BETI
(Bruit Environnement Transport Ingénierie) of Institut Pprime at Poitiers, France.
This facility has been previously used for the location, identification, analysis and
control of aeroacoustic sources [81, 82]. The setup for the present work is shown in
Figure 8 where the flow is exiting from the convergent nozzle in the direction from
left to right. The collector is placed on the right after the open test section. The wind
tunnel has a closed circuit, with an exit nozzle of section 70 cm × 70 cm, contraction
factor of 10:1, and maximum velocity of U∞ = 50 m/s. The walls, floor and ceiling
around the open test section of the wind tunnel are covered with dihedral pieces of
foam, ensuring an anechoic behaviour for frequencies above 200 Hz.

A d = 10 mm cylindrical bar is placed in the test section, as shown in Figure 8. The
bar is aligned perpendicular to the incoming flow direction, positioned at the vertical
centre of the test section and is located at a streamwise distance of 30 cm from the
nozzle outlet. It is mounted on two vertical stands affixed 86 cm apart which is larger
than the nozzle outlet dimensions, L = 70 cm, hence it cuts through the nozzle shear
layer.

Flow velocity was set to 20 m/s which corresponds to Reynolds numbers of 13300.
The background turbulence intensity is 1.5%. The room temperature recorded during
each measuring session averaged between approximately 17 and 23 degrees Celsius.
Air properties were taken as air density, ρ = 1.225 kg/m3; sound speed, c = 340
m/s, resulting in free-stream Mach number (M) of 0.06; and air kinematic viscosity,
ν = 1.5× 10−5 m2/s.
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Fig. 8: BETI Wind tunnel: experiments for aeroacoustics of the cylinder flows. The
setup shown is for spanwise TR PIV measurements taken for global mode’s amplitude
calibration.

4.1 Mean flow evaluation

In this section, the mean flow evaluation is presented, which will be used for global
stability analysis in the next section. Section 4.1.1 presents the PIV measurements
done to record the mean flow and Section 4.1.2 presents the post-processing of the
mean flow field.

4.1.1 Measurements

The incoming flow is seeded with smoke fluid and illuminated with the laser sheet
in the XY plane at the mid-span (z = 0) via a light source kept at the top-right
corner, as sketched in Figure 9 with the dimensions and locations of the bar and
microphone. Note the shadowed area upstream of the cylindrical bar, which limits
access to reliable velocity vector calculations in that area due to insufficient lighting. A
high-resolution camera (4096×2304 pixels) is placed behind the laser sheet, capturing
images for the spatial domains (−11.5 < x/d < 0.5,−2 < y/d < 4 and −0.5 < x/d <
11.5,−2 < y/d < 4 corresponding to the two positions for the camera). The time-
averaged mean flows from these spatial domains were merged to have a unified domain
of −11.5 < x/d < 11.5,−2 < y/d < 4 with spatial resolution of ∆x = ∆y = 0.0235d.
The velocity fields are obtained from PIV camera images by employing “DAVIS 10”
software by LAVISION . A total of 6, 000 time-steps were recorded with a sampling
frequency of 50 Hz corresponding to 120 s of acquisition time.
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Fig. 9: Laser and camera setup for XY Mean PIV. Mean flow on which global stability
analysis is done for Re=13000 flow over a cylinder (front view, not to scale).

(a) Time-averaged mean flow field (U/U∞) (b) Velocity field at a time-instant (U/U∞)

Fig. 10: Streamwise velocity field for Re=13300 flow at z = 0

The mean and instantaneous streamwise velocity, U and U respectively, in the XY
plane are shown in Figure 10. We see the expected flow separation, Figure 10(a), due
to an adverse pressure gradient which is followed by a recirculation region in the wake.
Observing the instantaneous velocity field snapshots, Figure 10(b), we see a vortex-
shedding structure in the wake of the cylinders, and a broad range of turbulence
scales.

Measurements are compared with those available in the existing literature in
Figure 11(a), where the streamwise variation of the mean streamwise velocity at the
centerline (y = 0) is presented. The data is compared with Large Eddy Simulation
(LES) results at Re=3900 by Kravchenko and Moin [83], Particle Image Velocimetry
(PIV) and Direct Numerical Simulation (DNS) results at Re=10000 by Dong et al.
[84], and LES results at Re=13100 by Prsic et al. [85]. The presented x-profiles show
characteristic behaviours of cylinder flow, including the distinctive minimum mean-
velocity position (Umin/U∞ = −0.26 at x/d = 0.95) and the subsequent stagnation
point (x/d = 1.3), marking the extent of the recirculation region. A very close match
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(b) y−profile for urms/U∞ at x/d = 1.

Fig. 11: XY Mean PIV at z = 0: Time-averaged mean and R.M.S. for streamwise
velocity

is seen with the PIV and DNS results from Dong et al. [84] as well as a reasonable
match with LES results by Prsic et al. [85].

Figure 11(b) presents the y-profile of the root-mean-square of streamwise velocity
fluctuations at x/d = 1. This profile shows peaks approximately at y/d ≈ 0.5 (the
centre of the shear layer), with subsequent decay as one moves away from the y = 0
axis. The profile appears symmetrical across the y = 0 axis. A close match with PIV
and DNS results from Dong et al. [84] is evidenced.The differences with LES results
by Kravchenko and Moin [83] are attributed to the much lower Reynolds number for
the flow in their study.

4.1.2 Post-processing

A processing of the mean flow is required as the mean flow data is unavailable in
the shadowed region, and the flow velocities very close to the cylinder’s surface were
contaminated by high reflection at the cylinder’s surface. The processing actions that
are taken to overtake these issues are as follows:

1. Using the mean flow symmetry condition around the centerline, y = 0 axis, the
mean flow field in the +y region is mapped symmetrically to the −y region.

2. Solution for the potential flow around the cylinder is then used to fill the remaining
missing part. The potential flow Uϕ around a cylinder is characterized by the
velocity components given as

U
ϕ

r =

[
1− d2

4r2

]
U∞ cos θ and U

ϕ

θ = −
[
1 +

d2

4r2

]
U∞ sin θ (22)

where U
ϕ

r and U
ϕ

θ are in polar coordinates, and r =
√

x2 + y2, θ = tan−1(y/x).
3. The mean flow is then interpolated on the unstructured grid shown in Figure 2,

the same as for Re=150 case in Section 3.
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Fig. 12: Symmetrical, extrapolated, smooth, non-slip PIV mean flow over a circular
cylinder at Re = 13300 flow: streamwise (U/U∞, left) and transverse (V /U∞ , right)
components.

4. At the cylinder surface, the boundary condition (zero velocity) is forced i.e. U =
V = 0.

5. The smoothing action is then applied to avoid the irregularities in the mean flow
field that may lead to highly unstable unphysical modes while performing the global
stability analysis. The smoothing utility available in the Nektar++ code package
was used for this action that performs a Helmholtz smoothing projection of the
form, (

∇2 −
(
2π

L0

)2
)
ûnew = −

(
2π

L0

)2

ûorig (23)

which can be interpreted in a Fourier sense as smoothing the original coefficients
using a low pass filter of the form

ûnew
k =

1

(1 + k2/K2
0 )

ûorig
k where K0 = 2π/L0 (24)

where the length scale, L0 = 0.6d was used, below which the coefficient values are
halved or more. For more details, please refer to the Nektar++ user guide.

The final processed mean flow is shown in Figure 12 where streamwise and trans-
verse velocities are shown. The regularities in the mean flow velocity gradients up to
second order were assured. This will be used for global stability analysis.

4.2 Mean field, global stability analysis at Re=13300.

The global stability analysis is conducted for fluctuations of spanwise homogeneity
type (i.e., k = 0 spanwise Fourier mode) as a starting point, based on their a-priori
higher acoustic efficiency. For the global stability analysis at Re=13300, the same
numerical grid was used as shown in Figure 2 but with the polynomial expansions
being of the order ‘13’, which corresponds to 22308 grid points distributed over the
domain of −2 < x/d < 10,−2 < y/d < 2. Boundary conditions are kept as zero
velocity fluctuations at the cylinder surface, left boundary, top boundary and bottom
boundary, and outflow at the right boundary. The Krylov space of κ = 128 is used for
global stability analysis.

Among the leading eigenmodes (least decay rates), eigenvalues for the leading 16
global modes are plotted as circles in Figure 13. The eigensystem is found to be globally
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Fig. 13: Eigenspectrum for the leading 16 global stability modes. Red markers rep-
resent the eigenvalues for lift fluctuation frequency mode and blue markers represent
the eigenvalues for other modes. Circles and crosses represent the eigenvalues for mesh
with polynomial expansions of the order ‘13” in contrast to the order ‘14” respectively.

stable. It is furthermore observed that only one mode reaches convergence, suggesting
that the remainder of the modes might be artifacts of numerical inaccuracies. Indeed,
conducting the global stability analysis on a refined mesh utilizing polynomial expan-
sions of order ‘14’ (which corresponds to 25872 grid points in the same computational
domain) returns comparative eigenspectra shown as cross symbols in Figure 13: only
the eigenvalue corresponding to the lift fluctuation (LF) mode remains unchanged
with the grid density enhancement while the eigenvalues for the other modes exhibit
significant variations.

The global mode corresponding to LF has eigenvalues

ω × d/U∞ = ±1.38 + 0.13i, (25)

which leads to St=0.220. This is close to, though slightly higher than, the dominant
fluctuation frequency in the flow field St=0.19, as reported in Section 4.3.1.

The spatial structures corresponding to the wake, leading global mode are pre-
sented in Figure 14. As compared to the leading Re=150 global mode, the structures
are more and more pulled in the downstream direction as we move closer to the x−axis.
However, it was found that, in contrast to the leading Re=150 global mode structures
which grow and then decay in the downstream direction after reaching a saturation
point, the leading Re=13300 global mode structures do not tend to saturate in the
available domain (x/d ≤ 10).

4.3 Mode calibration

For the Re=13300 flow, amplitude calibration of the global modes corresponding to
spanwise homogeneous Fourier mode is achieved by employing the Fourier-transform of
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(a) ℜ{ũ}/U∞, streamwise velocity fluctua-
tions

(b) ℑ{ũ}/U∞, streamwise velocity fluctua-
tions

(c) ℜ{ṽ}/U∞, transverse velocity fluctua-
tions

(d) ℑ{ṽ}/U∞, transverse velocity fluctua-
tions

(e) ℜ{p̃}/ρU2
∞, pressure fluctuations (f) ℑ{p̃}/ρU2

∞, pressure fluctuations

Fig. 14: Re=13300 flow over a circular cylinder: Leading global mode spatial struc-
tures

the two-point measurements in the spanwise direction. The details of the XZ TR PIV
experiment to record the velocity fluctuation time-dependent data in the streamwise-
spanwise domain, and its decomposition into the frequency-spanwise wavenumber
space is presented in Section 4.3.1. This data is used to calibrate the amplitudes of
the leading global mode in Section 4.3.2.

4.3.1 Spanwise time-resolved PIV measurements

The experimental setup for the XZ TRPIV experimental campaign is shown in
Figure 15. The incoming flow is illuminated with the laser sheet in the XZ plane at
y/d = −1. The decision to position the plane at y/d = −1 was driven by our objective
to effectively capture the large-scale coherent flow fluctuations. This choice was made
to ensure that the areas characterized by more intense broadband turbulence con-
tained in the shear layer region (typically around y/d ≈ ±0.5 for a circular cylinder,
as illustrated in Figure 10 showcasing streamwise velocity fields at the mid-span XY

22



Cam1 Cam2

1c
m Wind tunnel

1c
m

86cm
70cm

(a) Side view.

30cm

16cm

31
cm

1cm

(b) Top view.

Fig. 15: Laser and camera setup for XZ TR PIV. Spanwise TR PIV measurements
for global mode’s amplitude calibration. (not to scale).

plane), were avoided. This strategy is similar to that of using irrotational, nearfield
pressure measurements to educe the signature of coherent structures in turbulent jets
[43, 44, 86].

Two high-speed cameras (1024×1024 pixels) are placed side-to-side under the bar
with an overlapping region of −0.3 < z/d < 0.5. The objective is to study the spanwise
organisation of the flows in order to extract all the important time scales and length
scales for the coherent structures in the flow. Overall the two cameras give the time-
dependent velocity field (U and V ) with a time resolution of ∆t = 100µs (sampling
frequency, Fs = 10kHz) over an acquisition period of 2.18 seconds, resulting in a total
of 21,842 recorded time steps. The spatial resolution was ∆x = ∆z = 0.126d for the
spatial domain of −2 < x/d < 14,−15.5 < z/d < 15.7.

In the XZ plane at y/d = −1, the streamwise velocity time-averaged field (U) is
shown in Figure 16(a). It looks fairly spanwise homogeneous in the considered spanwise
region, −15 < z/d < 15, as was expected considering the spanwise homogeneity of the
cylinders as well as the incoming flow. In the same XZ plane, the streamwise velocity
fluctuation field (u) at a time-instant is shown in Figure 16(b). We see the organized
character of the vortex shedding. These are the structures we are interested in char-
acterising and assessing in terms of their importance for sound radiation. Presently,
elongated spanwise structures are apparent, likely indicative of spanwise homogeneity,
potentially accompanied by distinct wiggles representing higher spanwise wavenum-
ber modes. These coherent structures align with the alternating vortices inherent to
the vortex-shedding mechanism, as also visualized in Figure 10 through instantaneous
velocity field snapshots in the XY plane. We also assess the spanwise homogeneity
of the streamwise velocity r.m.s. field as presented in Figure 16(c). As was the case
with the mean field, the flow is, on the whole, and particularly in the mid-section,
spanwise-homogeneous concerning the streamwise velocity fluctuation energy.

The XZ TR PIV measurements are validated by comparing them against XY
Mean PIV measurements at spatial locations they share, as illustrated in Figure 17.
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(a) U/U∞ (b) u/U∞ at a time-instant (c) urms/U∞

Fig. 16: Streamwise velocity field at y/d = −1 for Re=13300 flow. (a): Time-averaged
mean flow field, U/U∞. (b): Fluctuation field at a time-instant, u/U∞. (c): r.m.s. for
the streamwise velocity field, urms/U∞
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Fig. 17: XY Mean PIV at z = 0 vs XZ TR PIV at y/d = −1: x−profiles for U and
urms

It is important to note that mean statistics from XY Mean PIV at y/d = 0.88, as
opposed to y/d = 1, are presented, as they demonstrate a close alignment with XY
TR PIV measurements. This discrepancy in the y-location may be attributed to the
misalignment of the XZ TR PIV laser sheet plane during the PIV setup. This small
discrepancy of about 1 mm is generally unavoidable. It is also minimally impactful as
the spanwise coherence field has been found to be relatively insensitive to a specific
(x, y) location [19].

Fourier transform from time-space to frequency-space Here, streamwise velocity span-
wise cross-spectral density (CSD), which is a direct measure of the acoustic source, is
evaluated, and then decomposed in the frequency-spanwise wavenumber space, which
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will then be used in Section 4.3.2 for the amplitude calibration of the linear global
modes.

The streamwise velocity fluctuation field, u(x, z, t), at y/d = 1, is subjected to
Fourier transform from time to frequency.

Following the data-processing procedure by Brès et al. [87], the Welch method is
used here to compute the PSD and CSD. For streamwise velocity field at each spatial
location (x, z), Fast Fourier transforms (FFTs) are performed on blocks of data of size
Nfft = 1024, and an overlap of 75% is imposed; i.e., block i is

Nbi = u(x, z, 1 + (i− 1)Nov) : u(x, z,Nfft + (i− 1)Nov), (26)

where Nov = Nfft/4 − 1. The Hanning window Hn is applied to each block prior to
application of the FFT. A Fourier-transformed block is thus

û(x, z, f) =

√
8/3

Nfft
(FFT (Hn(t)u(x, z, t))), (27)

where the factor
√

8/3 corrects for the energy loss associated with the Hanning
window. The PSD of block i is then computed as

Ŝi(x, z, f) =
2

∆f
ûi(x, z, f1 : ∆f : fNyq)û

∗
i (x, z, f1 : ∆f : fNyq), (28)

where ∆f = 12Hz (∆St ≈ 0.006), fNyq = 5kHz (∆St ≈ 2.5) and û∗
i is the complex

conjugate of ûi. The block-averaged narrowband PSD is then

S̄(x, z, f) =
1

Nb

Nb∑
i=1

Ŝi(x, z, f), (29)

where Nb = 82 is the total number of blocks of data.
At z/d = 0 (mid-span location), Figure 18 shows the distribution of streamwise

velocity PSD in the St−x space. Figure 19 shows the same at the streamwise location
x = 2.01, where peak urms is located (see Figure 16(c)). We see that the majority of
fluctuation energy is clustered around the LF frequency (St≈ 0.2), and the same was
found for other z−locations as well. Given the tonal nature of the flow and acoustic
fields, our subsequent investigation focuses on this tonal frequency.

Additionally, the streamwise velocity fluctuation field here is characterized by a
narrow broadband profile centred around the LF frequency as well instead of being a
pure tone. To account for this, we consider Bandlimited Power, which in the context
of streamwise velocity PSD is defined as,

BPPSD(x, z) =

∫ fmax

f=fmin

| S̄(x, z, f) | df, (30)

where [fmin, fmax] represents the frequency range for which BPPSD is calculated. In
the present work, it is kept ∆St= ±0.03 around the LF frequency. At LF frequency,
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Fig. 18: Streamwise velocity PSD,
log10{S̄/U2

∞}, spectra at z/d = 0, y/d =
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Fig. 19: Streamwise velocity PSD,
log10{S̄/U2

∞}, spectra at z/d = 0, x/d =
2.01, y/d = −1. Bandlimited power
range, ∆St= ±0.03 around St = 0.2.

the BPPSD distribution in the x − z space is plotted in Figure 20, exhibiting good
homogeneity over the PIV plane span.

Following the procedure similar to PSD computation, the spanwise CSD of block
i is computed as,

S̃i(x, z, f) =
2

∆f
ûi(x, z0, f1 : ∆f : fNyq)û

∗
i (x, z, f1 : ∆f : fNyq), (31)

where z0 represents the reference spanwise location relative to which the CSD is
computed. For the present work, we set z0 = 0 i.e. the mid-span location. The
block-averaged narrowband spanwise CSD is finally computed as,

S̃(x, z, f) =
1

Nb

Nb∑
i=1

S̃i(x, z, f). (32)

Bandlimited power for CSD is then computed as,

BPCSD(x, z) =

∫ fmax

f=fmin

| S̃(x, z, f) | df. (33)

At LF frequency, the distribution of BPCSD in the x− z space is shown in Figure 21.
For all streamwise locations, the BPCSD is maximal at z = 0 and the same as BPPSD

at z = 0, as per definition. As | z | or x increases, BPCSD decays.

Fourier transform from z−space to spanwise wavenumber space
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Fig. 20: BPPSD/U2
∞, at St = 0.2 for the

streamwise velocity field at y/d = −1.
Fig. 21: BPCSD/U2

∞, at St = 0.2 (z0 = 0
is the reference spanwise location)

The complex spanwise CSD, S̃(x, z, f), is transformed in the spanwise wavenumber
space through the Fourier transform as,

ˆ̃S(x, k, f) =

∫ L/2

z=−L/2

S̃(x, z, f) e−ik(z−z0) dz, (34)

where k represents the spanwise wavenumber (corresponding to the spanwise wave-

length, λ = 2π/k), ˆ̃S(x, k, f) signifies the Fourier transform of the S̃(x, z, f) at
spanwise wavenumber bin k, and L = 70d represents the cylinder spanwise length.
For the present work, z0 = 0 has been kept as the reference spanwise location. Note
that the spanwise integration domain is limited to [−15d, 15d] where data is available.
This has negligible impact on the quadrature because S̃(x, z, f) → 0 for | z |> 15d.
Consequently, the following approximation is made:

ˆ̃S(x, k, f) ≈
∫ 15d

z=−15d

S̃(x, z, f) e−ik(z−z0) dz. (35)

The computation of ˆ̃S by (35) is performed for each frequency f across all x positions.
Given that the available PIV domain spans 30d in the spanwise direction, this limi-
tation represents the longest wavelength resolved, corresponding to 2π/kd = 30. On
the other hand, the smallest resolved wavelengths, defined by twice the spatial reso-
lution, result in 2π/kd = 2∆z = 0.25. Notably, the zero-wavenumber term (k = 0)
corresponds to the spanwise homogeneous component of the CSD.

Subsequently, the spectral density in the k−space is computed for the Bandlimited
Power, BPSD. This methodology quantitatively evaluates how the fluctuation energy
is distributed across the frequency-wavenumber space relative to the overall fluctuation
energy (as depicted in Figure 16(c)). This calculation is done using the following
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Fig. 22: Spectral density in the k−space for the Bandlimited Power at St = 0.2,
BPSDCSDk

, log10{BPSDCSDk
/U2

∞}, for the streamwise velocity field at y/d = −1.
Here, z0 = 0 is kept as reference spanwise location.

expression:

BPSDCSDk
(x, k) =

∫ fmax

f=fmin

| ˆ̃S(x, k, f) | df. (36)

Figure 22 illustrates the distribution of BPSDCSDk
in the k − x space for the

LF frequency. We see that energy content diminishes significantly for wavenumbers
where | kd/2π |> 0.1 (equivalently, wavelengths λ < 10d). This indicates that the
primary energy concentration occurs within the range of wavenumbers | kd/2π |< 0.1
(λ > 10d), with particular emphasis on the dominance of the homogeneous mode
(k = 0 or λ → ∞). These calculations can be used to calibrate the amplitudes of
global modes.

4.3.2 Mode amplitude calibration

The spanwise-homogeneous component of the complex spanwise CSD, from the TR
PIV measurements, is used to calibrate the leading global mode for k = 0 spanwise
wavenumber. It is expressed as

S̃k=0(x, f) =

∫ L/2

z=−L/2
S̃(x, z, f) dz

L
≈
∫ 15d

z=−15d
S̃(x, z, f) dz

L
, (37)

which is indeed the spanwise average of the CSD. The Bandlimited power of this for
the LF frequency is given as

BPPIV, k=0(x) =

∫ fmax

f=fmin

| S̃k=0(x, f) | df. (38)

BPPIV, k=0 is used to calibrate the leading global mode for k = 0 spanwise wavenum-
ber. The power for the uncalibrated, leading global mode at the y/d = −1 position,
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Fig. 23: Re=13300 flow over a circular cylinder: spanwise-homogeneous leading global
mode calibration ratio, rcal(x) =

√
BPPIV, k=0(x)/PGM, k=0(x,−d). The calibration

plane is at y/d = −1.

is expressed as,
PGM, k=0(x,−d) = | ũ(x,−d) |2 /2. (39)

The calibration ratio for the VS global mode amplitude is thus evaluated as,

rcal(x) =

√
BPPIV, k=0(x)

PGM, k=0(x,−d)
. (40)

The calibration ratio, rcal, depends on the x−position in the region 0.5 < x/d < 3, as
shown in Figure 23, where the wavemaker, the region of absolute instability, exists.
Pragmatically, an average value in this spatial range is calculated yielding ravgcal = 42.5
for the present distribution. Around this average value, a variation of ±44% is noticed
in Figure 23.

The global mode is then calibrated as

q̃(x,y) |= ravgcal × q̃(x,y). (41)

On the cylinder surface, the r.m.s. pressure fluctuation of the calibrated global mode,
prms =| p̃ | /

√
2, is shown in Figure 24. The wall distribution is vanishing in the stream-

wise direction and is maximum around θ = 75o, consistently with the domination of
lift component on the aerodynamic force fluctuation.

4.4 Farfield noise

The calibrated global mode is used as the acoustic source input to Curle’s analogy,
Equation 20, to calculate the sound radiations associated with it. The noise calcula-
tions for the Re=13300 flow over a circular cylinder are done here and are compared
with the acoustic measurements. Acoustic measurements are presented in Section 4.4.1
and noise calculations by global mode are compared with the measurements in Section
4.4.2.
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Fig. 24: Re=13300 flow over a circular cylinder: prms =| p̃ | /
√
2, R.M.S. pressure

fluctuations of the calibrated spanwise-homogeneous leading global mode at the cylin-
der surface. Streamwise direction corresponds to θ = 0o.

4.4.1 Farfield noise measurements

Farfield acoustic measurements are done via a microphone at x/d = 0, y/d =
100, z/d = 0 i.e. vertically above the cylinder’s mid-span location at a distance of 100d,
which is 1.42 times the cylinder’s length (see Figure 15(a)). Microphone sensitivity is
40 mV/Pa and it is calibrated at 1 kHz, 94 decibels. The pressure measurements at
the microphone location corresponded to the acquisition time of 6s with a sampling
frequency of 50kHz.

The sound spectra were calculated using Welch’s method by segmenting the signal
into 146 blocks (8192 time-steps in each block) with an overlap of 75 % and Hanning
window, leading to a frequency resolution, ∆f = 6.4Hz or ∆St= 0.003. The resulting
PSD is shown in Figure 25. It shows that the tone appears as a discrete peak at
frequency, St ≈ 0.2 (f = 400Hz).Its first harmonic, St ≈ 0.4, shows negligible energy
content while its second harmonic, St ≈ 0.6 shows a local energy peak. We also see
fluctuation energy accumulated for the St < 0.025 (f < 50Hz) which is below the
anechoic frequency cutoff of the wind tunnel.

4.4.2 Noise estimation from the global mode

Curle’s analogy has been used here as follows: the pressure fluctuations from the
calibrated 2D leading global mode are homogeneously distributed (as they correspond
to k = 0 spanwise mode) along the cylinder’s span of ±35d, which is the width of the
wind-tunnel jet.

Sound Pressure Level (SPL) is then evaluated as,

SPL = 20× log10

(
prms

p0

)
, (42)

where prms is root mean square (r.m.s) for the far-field pressure fluctuations in Pa,
p0 = 20 × 10−6Pa is the reference pressure, and SPL is the sound pressure level
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Fig. 25: Microphone measurements at x/d = 0, y/d = 100, z/d = 0: Noise spectra.
Bandlimited power range, ∆St= ±0.03 around the VS frequency.

in dB. The SPL noise directivity along a circular arc of radius r/d = 100 centred
at the cylinder centre is plotted in Figure 26, exhibiting a dipole nature.The noise
measurements at x/d = 0, y/d = 100, z/d = 0 are also shown (with crosses).The
measured noise SPL is calculated from the BP in the range, St= 0.2± 0.03, where the
dominant tone was located. Also, acoustic measurements by Pinto et al. Pinto et al.
[88], for the same flow configuration are plotted.

Figure 26 shows that the noise estimation from the calibrated global mode is less
than 1dB off from the measurements. Figure 26 also presents the noise calculations by
the classic model by Phillips [5], as expressed in Equation 2 and which incorporates
an empirically assessed constant. Finally, Figure 26 includes noise estimation from
LLc model as expressed in Equation 3, using Lc = 10d [19], and sectional r.m.s. lift-
coefficient, Cl = 0.44 [89]. That model overestimates the experimental levels by more
than 5 dB, which is beyond the uncertainty range of the global mode estimate due to
the calibration ratio. Such overestimation may be attributable to the lift fluctuation
coefficient, as it encompasses all the spanwise Fourier modes. It is worth revisiting the
fact that not all of these modes exhibit the same acoustic efficiency, a factor that is not
considered in the calculation of the coherence length. Another source of error could
be the fact that LLc model is derived under the assumption of the far-field observer’s
location. However, in the current flow scenario, this assumption does not hold, as
the noise predictions are made at distances where the observer is not in the far-field,
specifically at r/L = 1/0.7 = 1.43 or r/λ = 1/0.85 = 1.18. The error associated with
the assumption can still be quantified using the near-field correction factor proposed
by Fujita [16], which yields a factor of [1+(λ/2πr)2] = [1+(0.85/((2π×1)))2] = 1.02.
Given that this correction factor is approximately equal to 1, errors stemming from
the far-field assumption can be deemed negligible.

5 Concluding remarks

A simplified physics-based low-order dynamic noise model has been proposed for Aeo-
lian tones from the bluff bodies. The model is based on the representation of coherent
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Fig. 26: Re=13300 flow over a circular cylinder: SPL directivity at r/d = 100.
Streamwise direction corresponds to θ = 0. Calibrated global mode noise calculations
compared with measurements and classic models. The ±4dB SPL error bar (in black)
at θ = 90 corresponds to the ±44% variation in calibration ratio.

structures, the structures dominating the acoustically important wake dynamics, as
global modes from linear global stability analysis done on the mean flow. The noise
model involves four key steps: (a) evaluation of time-averaged mean flow around the
bluff body, (b) assessment of global modes corresponding to vortex shedding (VS) fluc-
tuations through linear global stability analysis done on mean flow, (c) calibration of
the global mode utilizing 2-point statistics in an XZ plane, and (d) noise calculations
via Curle’s analogy, incorporating the calibrated global mode as the acoustic source
input.

The noise model was implemented for flow over a circular cylinder at two Reynolds
number cases: Re=150 and Re=13300. For the Re=150 scenario, global stability anal-
ysis on the mean flow, obtained through incompressible DNS, revealed a marginally
stable dominant global mode associated with VS fluctuations (spanwise homogeneous
mode, k = 0). Calibration of this global mode, performed using 1-point statistics
from DNS, showcased noise level and directivity in agreement with a direct far-field
simulation, with discrepancies below 1dB, underscoring the model’s effectiveness.

In the case of Re= 13300 flow over a circular cylinder, global stability analysis was
done on the mean flow at the cylinder’s mid-span, as determined during the XY Mean
PIV campaign. Specifically analyzing spanwise homogeneous mode structures (k = 0),
the dominant global mode aligned with the lift fluctuation (LF) frequency and Aeolian
tones in the far field. Amplitude calibration of this k = 0 leading global mode utilized
streamwise velocity fluctuation data from XZ TR PIV at y/d = −1, specifically by
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matching its amplitude with the corresponding frequency-wavenumber mode of the
spanwise CSD. The calibration ratio was found to be dependent on the streamwise
location of the calibration point and an average calibration ratio, determined in the
region (−0.5 < x/d < 3) localising the wavemaker (the zone of absolute instability),
was employed to calibrate the global mode.

Comparative analysis of noise directivity with microphone measurements displayed
differences below 1dB. Despite the turbulent nature of the flow around a cylinder,
featuring multiple spatial and temporal scales, the model’s accuracy, built on global
mode fluctuations of a rank-1 system (sole frequency: LF, singular spanwise wavenum-
ber mode: k = 0), is promising. The model was found to behave better than statistical
dipole model based on the rms lift fluctuation coefficient and on the coherence or cor-
relation length.It would be interesting to assess how precisely it can account for change
of the cross section shape, this being able to drastically modify the dipole intensity
(for instance, 10 dB more for the square section [88]).
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Appendix A Leading global modes computation by
Matrix free method based on Arnoldi
Iteration

As mentioned in Section 2.1, we employ the matrix-free time-stepper approach, which
is based on the modified Arnoldi method [90] to compute the leading eigenvalues and
eigenmodes. In the present work, leading modes are the ones with largest growth rates
or least decay rate if all modes are stable.

This matrix-free time-stepper approach involves performing unsteady NS simula-
tion to generate a set of velocity fields at various time intervals. These time snapshots
of velocity vectors are used to formulate a Krylov subspace which then utilised to cre-
ate and solve a lower-order eigenmatrix, yielding leading eigenvectors and eigenvalues
according to the desired criteria. Taken from Bagheri et al. [91], the governing system
of equations is briefly derived here.

The discretized, linearized Navier–Stokes equations (6) can be cast as an initial
value problem:

u̇(t) = Du(t) u(0) = u0, (A1)

for some initial state u0.
The long-time-horizon behaviour is determined by the eigenvalues of D:

D = UΛUH , (A2)

where the columns of the matrix U contain the global modes, the columns of UH

contain the adjoint global modes (i.e. UHU = I) and the diagonal matrix Λ =
diag(λ1, λ2, ...., λn) contains the eigenvalues of D.

Our analysis is based on the solution of the linearized Navier–Stokes equations
that can be represented by the matrix exponential also referred to as the evolution
operator. The linear evolution of a perturbation under Eqs. (A1) can be expressed as

u(t) = eDtu0 = E(t)u(0). (A3)

The matrix exponential E(t) = eDt is the key to stability analysis, the eigensystem for
which is represented as

E(t) = UΣUH , (A4)

where Σ = exp(Λt). Note that the evolution operator for a fixed t has the same
eigenfunctions as D. The temporal growth rate and frequency of the eigenmodes are
given by

ℜ(λj) = ln(| σj |)/t ℑ(λj) = arg(σj)/t, (A5)

respectively, where Σ = diag(σ1, σ2, ...., σn). If ℜ(λj) > 0 (or | σj |> 1), the flow
is considered linearly globally unstable. We seek, for some arbitrary time ∆t, the
dominant eigenvalues and eigenmodes of the operator E(∆t), which has the same size
as D.

An iterative Arnoldi method [69, 70] is applied to get the leading eigenmodes
at a much lower computational cost. Repeated actions of E(∆t) are applied to the
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discrete initial state u0 using the non-linear numerical simulation [71, 91], allowing us
to formulate a Krylov subspace given as

Kd(E ,q0) = span {q0, E(∆t) q0, E(2∆t) q0, ...., E((d− 1)∆t) q0} . (A6)

where u0 is the initial guess that should contain non-zero components of the
eigenmodes.

The Krylov subspace K is then orthonormalized with an m step Arnoldi factoriza-
tion yielding the unitary basis V on which E(∆t) can be projected as

E(∆t) ≈ VRV∗ (A7)

This results in a much smaller m×m eigenvalue problem of the upper Hessenberg
matrix R,

RS = ΣS, (A8)

solvable using standard methods like the QR algorithm.
A set of Ritz values Σ = diag(σ1, σ2, ...., σm) generally converges rapidly to the

eigenvalues of the system E(∆t). The Implicitly Restarted Arnoldi Algorithm (IRAM)
[92] integrated into the ARPACK software package [70] enables faster convergence even
in case of a smaller size of Krylov subspace. Finally, leading eigenvectors corresponding
to the m converged eigenvalues are recovered by U = VS, and the eigenvalues for the
original system are then recovered by (A5).

In the present work, Nektar++ code package [71] is used as the numerical tool for
the global stability calculations. Information on how to install the libraries, solvers,
and utilities is available on the webpage www.nektar.info. Mean flow, around which
the global stability needs to be performed, and a starting fluctuation field, which could
be a random field as well, are required as input files for the stability analysis code. At
the end of every iteration, the leading set of eigenvalues and eigenvectors is obtained
which is then used to create a starting fluctuation field for the next iteration. This is
repeated until a converged set of eigenvalues and eigenvectors is reached.
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[38] Cavalieri, A.V., Rodŕıguez, D., Jordan, P., Colonius, T., Gervais, Y.: Wavepackets
in the velocity field of turbulent jets. Journal of fluid mechanics 730, 559–592
(2013)

[39] Jaunet, V., Jordan, P., Cavalieri, A.: Two-point coherence of wave packets in
turbulent jets. Physical Review Fluids 2(2), 024604 (2017)

[40] Debesse, P., Pastur, L., Lusseyran, F., Fraigneau, Y., Tenaud, C., Bonamy,
C., Cavalieri, A.V., Jordan, P.: A comparison of data reduction techniques
for the aeroacoustic analysis of flow over a blunt flat plate. Theoretical and
Computational Fluid Dynamics 30, 253–274 (2016)

[41] Crighton, D., Gaster, M.: Stability of slowly diverging jet flow. Journal of Fluid
Mechanics 77(2), 397–413 (1976)

[42] Crow, S.C., Champagne, F.: Orderly structure in jet turbulence. Journal of fluid
mechanics 48(3), 547–591 (1971)

38



[43] Gudmundsson, K., Colonius, T.: Instability wave models for the near-field
fluctuations of turbulent jets. Journal of Fluid Mechanics 689, 97–128 (2011)

[44] Suzuki, T., Colonius, T.: Instability waves in a subsonic round jet detected using
a near-field phased microphone array. Journal of Fluid Mechanics 565, 197–226
(2006)

[45] Schoppa, W., Hussain, F.: Coherent structure generation in near-wall turbulence.
Journal of fluid Mechanics 453, 57–108 (2002)

[46] De Pando, M.F., Schmid, P.J., Sipp, D.: A global analysis of tonal noise in flows
around aerofoils. Journal of Fluid Mechanics 754, 5–38 (2014)

[47] Yeh, C.-A., Taira, K.: Resolvent-analysis-based design of airfoil separation control.
Journal of Fluid Mechanics 867, 572–610 (2019)

[48] Symon, S., Sipp, D., McKeon, B.J.: A tale of two airfoils: resolvent-based mod-
elling of an oscillator versus an amplifier from an experimental mean. Journal of
Fluid Mechanics 881, 51–83 (2019)

[49] Abreu, L.I., Tanarro, A., Cavalieri, A.V., Schlatter, P., Vinuesa, R., Hanifi, A.,
Henningson, D.S.: Spanwise-coherent hydrodynamic waves around flat plates and
airfoils. Journal of Fluid Mechanics 927 (2021)

[50] Demange, S., Yuan, Z., Jekosch, S., Hanifi, A., Cavalieri, A.V., Sarradj, E.,
Kaiser, T.L., Oberleithner, K.: Resolvent model for aeroacoustics of trailing-edge
noise (16 October 2023, PREPRINT (Version 1)) https://doi.org/10.21203/rs.3.
rs-3421258/v1

[51] Huerre, P., Monkewitz, P.A.: Local and global instabilities in spatially developing
flows. Annual review of fluid mechanics 22(1), 473–537 (1990)

[52] Pier, B.: On the frequency selection of finite-amplitude vortex shedding in the
cylinder wake. Journal of Fluid Mechanics 458, 407–417 (2002)

[53] Chomaz, J.-M.: Global instabilities in spatially developing flows: non-normality
and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392 (2005)

[54] Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the
cylinder wake. Journal of Fluid Mechanics 581, 167–197 (2007)

[55] Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach
and its applications to cylinder and open cavity flows. Journal of Fluid Mechanics
593, 333–358 (2007)

[56] Fani, A., Citro, V., Giannetti, F., Auteri, F.: Computation of the bluff-body sound
generation by a self-consistent mean flow formulation. Physics of Fluids 30(3),
036102 (2018)

39

https://doi.org/10.21203/rs.3.rs-3421258/v1
https://doi.org/10.21203/rs.3.rs-3421258/v1


[57] Barkley, D.: Linear analysis of the cylinder wake mean flow. EPL (Europhysics
Letters) 75(5), 750 (2006)

[58] Meliga, P., Pujals, G., Serre, E.: Sensitivity of 2-d turbulent flow past a d-shaped
cylinder using global stability. Physics of Fluids 24(6), 061701 (2012)

[59] Mittal, S.: Global linear stability analysis of time-averaged flows. International
journal for numerical methods in fluids 58(1), 111–118 (2008)

[60] Maurel, A., Pagneux, V., Wesfreid, J.: Mean-flow correction as non-linear
saturation mechanism. Europhysics Letters 32(3), 217 (1995)

[61] Zielinska, B., Goujon-Durand, S., Dusek, J., Wesfreid, J.: Strongly nonlinear effect
in unstable wakes. Physical review letters 79(20), 3893 (1997)
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