
Fidelity decay and error accumulation in quantum volume circuits

Nadir Samos Sáenz de Buruaga1, Rafał Bistroń2,3, Marcin Rudziński2,3,
Rodrigo Miguel Chinita Pereira1, Karol Życzkowski2,4, and Pedro Ribeiro1

1CeFEMA, LaPMET, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland

3Doctoral School of Exact and Natural Sciences, Jagiellonian University,
ul. Łojasiewicza 11, 30-348 Kraków, Poland and

4Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
(Dated: April 17, 2024)

We provide a comprehensive analysis of fidelity decay and error accumulation in faulty quantum
circuit models. We devise an analytical bound to the average fidelity between the desired and faulty
output states, accounting for errors that may arise during the implementation of two-qubit gates
and multi-qubit permutations. We demonstrate that fidelity decays exponentially with both the
number of qubits and circuit depth, and determine the decay rates as a function of the parame-
terized probabilities of the two types of errors. These decay constants are intricately linked to the
connectivity and dimensionality of the processor’s architecture. Furthermore, we establish a robust
linear relationship between fidelity and the heavy output frequency used in Quantum Volume tests
to benchmark quantum processors, under the considered errors protocol. These findings pave the
way for predicting fidelity trends in the presence of specific errors and offer insights into the best
strategies for increasing Quantum Volume.

Introduction.— Developing a full-fledged quantum
computer faces a substantial technological challenge: pre-
cisely controlling large numbers of quantum degrees of
freedom (qubits) while ensuring their adequate isolation
to uphold collective quantum coherence and large-scale
entanglement. Although present-day quantum comput-
ers are still noisy and prone to errors, the progress of the
last decade has been substantial. However, regardless
of the improvements to come, quantum processors will
inevitably operate amidst a finite degree of errors and
noise.

Irrespectively of the way to tackle these difficulties, for
example, to enhance error-correcting codes or to directly
utilize the capabilities of the so-called noisy intermediate-
scale quantum era (NISQ) [1], there is a pressing de-
mand for larger and more reliable quantum computers
(QCs). Despite the lack of consensus on whether quan-
tum supremacy [2, 3] has been achieved with current
technologies [4], scaling is essential alongside with bench-
marking tools to assess computer performance and char-
acterize error accumulation, which is vital for ensuring
the trustworthiness of QCs.

Although quantum tomography is the ultimate char-
acterization tool [5], the number of experiments needed
to store a state of L qubits grows exponentially with the
number of qubits, making it unfeasible to assess large
computers.

The practical inapplicability of quantum tomography
requires the development of alternative benchmarking
tools that should remain agnostic to specific technolog-
ical implementation of qubits, such as superconducting
circuits [6], trapped ions [7], Rydberg atoms [8], quan-
tum dots [9], photonics [10], etc., while also being capa-

ble of assessing the scaling capabilities of the processor.
Both requirements are met with randomized benchmark-
ing protocols [11–16], which originally characterized the
decay rate of quantum fidelity [17], F = ⟨Ψ∣ρ̃∣Ψ⟩, quan-
tifying the discrepancy between the outcome state of an
ideal quantum computer ∣Ψ⟩ and the actual implemented
density matrix ρ̃, where Ã denotes hereafter the faulty
(real) version of the physical quantity A.

Another standard benchmarking protocol is the Quan-
tum Volume (QV) [18, 19], which, roughly speaking,
counts the maximum number of qubits that can be prop-
erly entangled in a circuit. More precisely, given a QC
made of L qubits and T layers. The QV corresponds to
the dimension of the Hilbert space associated with the
largest square circuit (2min(L,T)) that can exceed a spec-
ified threshold ϵ, according to a passing criterion. Orig-
inally, it was related to gate fidelities [20],[18], however,
the currently adopted standard, proposed in [19], relays
on the heavy output generation problem [21].

To ensure agnosis with respect to the details of the
qubit nature and to capture the influence of many vari-
ables such as L, T , architecture, imperfections in the
gates, connectivity, and derived crosstalk errors, the QV
test was designed to be implemented in a random circuit
depicted in Fig. 1 (a) where each layer τ = 1, . . . , T im-
plements the unitary operation Uτ = VτΠτ specified in
Fig. 1 (b). For this layer configuration, we refer to as
original. Πτ is an operator applying a random permu-
tation P ∈ SL that interconnects the qubits accordingly,
followed by a unitary operation Vτ made of random two-
qubit gates sampled from the circular unitary ensemble
(CUE).

There is a growing literature on numerical simulations

ar
X

iv
:2

40
4.

11
44

4v
1

 [
qu

an
t-

ph
]

 1
7

A
pr

 2
02

4

2

and real experiments with NISQ computers that calculate
the QV [22–32]. However, to our knowledge, there has
not been a rigorous analytical study of the dependence
of the aforementioned criteria on different noise sources
or of its scalability.

FIG. 1: Schematic of the randomized circuit considered
(a). In the original circuit (b), each layer of unitaries is
composed of a random permutation and faulty 2-qubit
gates. The solvable (c) is obtained from the previous by
acting with a unitary gate R before and after the
permutation. In (d) we depict an example of
permutation decomposition by SWAP gates in two
different architectures: full connectivity, where
interactions between all qubits are allowed, and 1D
connectivity, where only the nearest neighbors can
interact.

The purpose of this work is to establish bounds for er-
ror accumulation in the original quantum volume circuit
of width L and depth T , depicted in Fig. 1 (a,b), as quan-
tified by both fidelity F and heavy output frequency hU
scores. We analyze the effects of implementing faulty 2-
qubit gates poisoned by generic unstructured noise drawn
from the Gaussian Unitary Ensemble (GUE). Further-
more, we explore faulty permutations by assuming Π̃ is
implemented by a combination of malfunctioning swap
gates S̃ that interchange nearest-neighbour qubits within
a specific architecture.

Our main result is an analytical expression for fidelity
decay as a function of the number of qubits and layers
and noise, that takes into account parametrization for
faulty 2-qubit gates and swaps as well as effective pro-
cessor connectivity. We offer evidence that the rather
intuitive conjecture in Ref. [19] regarding the increase
in QV with connectivity holds for these generic circuits.
These results allow one to identify the noise source whose
reduction most effectively enhances the quantum volume.

Average Quantum Fidelity.— The main object we com-
pute is the average fidelity between the faulty and ideal
states F = ∣⟨Ψ∣Ψ̃⟩∣2. We obtain it analytically by eval-
uating the overlap of an averaged superoperator acting
in a four-copy Hilbert space H(24L). We also double-
check our results numerically. To present our finding we
first introduce the ket vectorization, and the compact no-
tation that emphasizes the dependence between the four

copies ∥+14;23⟩ ∶= ∑nm ∥mnnm⟩, where m =m1, . . .mL,
m = 0,1. Equipped with this, as we detail in the Ap-
pendix A,

F =
1

2L
⟨+14;23∥ (U)T ∥+1234⟩ , (1)

with

U = [Ũ ⊗ Ũ∗ ⊗U ⊗U∗],

and where we have assumed that each layer τ is sampled
independently, and the average is taken over all computa-
tional basis states ∥+1234⟩ ∶= ∑n ∥nnnn⟩, which also cor-
respond to the entanglement fidelity of a channel [33]. We
use bold calligraphic typeface symbols hereafter to rep-
resent averaged superoperators acting on the four-copy
Hilbert space.

Error Modeling.— As mentioned, each layer of the
original circuit has the form Uτ = VτΠτ consisting of the
alternation of random permutations Π ∈ SL, followed by a
unitary operation Vτ =⊗

L/2
r=1 u2r−1,2r with ur,r′ ∈ CUE(4).

Therefore, we distinguish between errors that arise in the
permutation operator Π caused by faulty swaps and er-
rors in the computation itself Vτ .

To simulate the errors within the permutation opera-
tor Π̃, we first decompose it as a combination of swap
operators S interchanging nearest qubits within some ar-
chitecture – see Fig. 1 (d). The error scheme assumes
that each swap S is not performed exactly but with some
too-short or too-long impulse S → Sβ , where the power β
is drawn from the Gaussian distribution with mean equal
1 and variance σ2 independently for all swaps. Such mod-
elling of error is natural, for example, if one uses

√
S as

a universal 2-qubit gate because in such a case the swap
gate S is elementary and hence fast, so the natural source
of error is the imperfection in

√
S itself.

In the Appendix C, we illustrate how the faulty per-
mutation Π̃ can be conveniently reinterpreted, after av-
eraging the swap powers β, as a composition of the
same swaps S, with each swap having the probabil-
ity p = [1 − exp(−π2σ2/2)] /2 of being omitted indepen-
dently.

Concerning the errors in the random gates, each
two-qubit gate is modified by a generic noise Ṽ =

⊗
L/2
r=1 ũ2r−1,2r with ũ2r−1,2r = eiαh2r−1,2ru2r−1,2r, where

h2r,2r−1 ∈ GUE(4) and α ≥ 0.
Hence, we are interested in computing the average fi-

delity Eq. (1) in terms of the two noise parameters
F(α, p). Notice that this is a challenging task, since
due to the random permutations, each layer cannot be
treated independently.

Solvable Model.— We now present a solvable model
that exhibits a qualitative fidelity decay with L and T
akin to the original circuit. The solvable circuit, pre-
sented in Fig. 1 (c) is derived from the original, pre-
sented in Fig. 1 (b) by introducing faultless random uni-
taries Rτ and Rτ+1 ∈ CUE(2L) before and after each

3

permutation Πτ . The ability to average each R-layer
independently enables us to explicitly compute F using
Eq. (1). Despite notable differences between the cir-
cuits, particularly in terms of their expressibility or en-
tanglement capability [34], we present extensive numeri-
cal evidence that both circuits exhibit the same responses
to the considered noise models. A simplified rationale
for this agreement is as follows: although implementing
CUE(2L) matrices with two-qubit layers is exponentially
costly [35], their cumulative action decorrelates a typi-
cal state for the solvable model in a similar manner as
random two-qubit gates. This remarkable agreement is
evident in Figs. 2 (a) and (b), where the fidelity is plot-
ted as a function of number of layers T or noise level α,
respectively, assuming no permutation errors. In all sub-
sequent figures, points represent numerical simulations of
the original model, while solid curves correspond to Eq.
(4) (below) obtained for the solvable model.

We now outline the calculation leading to an analyti-
cal closed form of the fidelity for the solvable model. De-
tailed derivations are provided in the Appendix A. Each
layer average, denoted as U , can be decomposed into the
contribution of permutation P , embedded by CUE av-
erages R, and the contribution of faulty operations V .
Their combined action can be expressed in terms of an
effective spin-1/2 orthonormal basis, denoted as ∥⇑⟩ , ∥⇓⟩,
which remains invariant under R [36, 37]:

RP R = ∥⇑⟩ ⟨⇑∥ + δ − 1

4L − 1
∥⇓⟩ ⟨⇓∥ , (2)

with δ = (trΠ̃(p)ΠT)2. After a straightforward calcula-
tion, we obtain δ(p) = 4m(P,p), where m(P, p) is the num-
ber of cycles in the permutation Q(p)P −1, with Q(p) cor-
responding to faulty implementation of permutation P .
The contribution of faulty operations V are obtained by
conveniently assembling each 2-qubit gate superoperator

u2r−1,2r = ∥⇑2r−1,2r⟩ ⟨⇑2r−1,2r∥

+
4f(α) + 1

5
∥⇓2r−1,2r⟩ ⟨⇓2r−1,2r∥ , (3)

where in this case the orthonormal basis spans the sub-
space of a four-copy H(24) of two qubits. The effect
of noise is manifested through the function f(α) that
is closely related to the spectral form factor of GUE(4)
[38] (see App. B). In the most relevant limit α ≪ 1,
f(α) ≈ e−5α

2

.
Combining the contribution of both sources of noise,

we obtain the main result of this work consisting of an
upper bound for the average fidelity – for derivation de-
tails see App.B,

F = (1 −
1

2L
)(
(δ − 1)(∆ − 1)

(4L − 1)2
)

T

+
1

2L
. (4)

The noise parameter δ = δ(p) is given above Eq. (2),
while ∆ =∆(α) ≈ 2L (3f(α) + 1)L/2. The last term corre-
sponds to the fidelity between two random L-qubit pure
states [39].

Faulty operations.— Let us consider that all permuta-
tions Πτ are noiseless and that the only source of error
comes from the two-qubit gates. This corresponds to fix
δ(0) = 4L in Eq. (4). For small α and large L we can
write F ∼ exp(−15α2LT /8). The validity of this approx-
imation can be seen in Fig. 2(b). Furthermore, we show
in Fig. 2 (a) that both circuits, original and solvable,
behave correspondingly even for shallow circuits.

0 10 20 30 40 50

T

0.0

0.2

0.4

0.6

0.8

1.0

F

(a)

α = 0.07:

α = 0.1:

O

O

S

S

A

A

L = 4

L = 8

L = 4

L = 8

0.0 0.1 0.2 0.3 0.4

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

−
lo

g(
F

)/
T
L 15α2/8

(b)

L = T = 4:

L = T = 8:

O

O

S

S

FIG. 2: Fidelity evolution for the system sizes L = 4 and
8 with for the solvable (S) and original (O) circuit
together with the analytical prediction (A), both for
p = 0. (a) - Decay as a function of the number of layers
T . The solid lines correspond to the analytical result for
the (S) model with α = 0.07 whereas the dashed to
α = 0.1. (b) - Exponent in fidelity as a function of the
parameter α for square circuits. Asymptotically,
F ∼ e−15α

2LT /8.

Faulty permutations.— To understand the permuta-
tion error factor δ(p) we have to first grasp the decom-
position of a random permutation operator Π for a given
architecture. The subject of decomposing permutations
into swaps within certain graph architectures – token
swapping – is already quite extensively studied –see for
example [40–43]. However, to the best of our knowledge,
they were not considered from the perspective of faulty
behavior of the entire quantum circuit.

We acknowledge that in real-live implementation of
quantum volume circuits those permutations are mod-
ified and optimized [27] However, we noticed that for the
discussed scenarios the optimal modifications of permu-
tations in the circuit one by one change the results only
by a parameter-independent constant. Thus for clarity,
we restrict our attention only to the implementation of
permutations.

Full connectivity. Let us first consider the idealistic
situation in which each pair of qubits is connected and
can be swapped in one move. For such a case the optimal
way of decomposing permutation can be established giv-
ing the minimal number of swaps organized in a minimal
number of layers. Each permutation P can be decom-
posed into a set of cycles {Ci} of ki elements and each
cycle Ci can be decomposed into ki−1 swaps combined in
just two layers [40], as shown in the Appendix C. Thus, to

4

implement permutations of L qubits on average one per-
formers only L−HL ≈ L− logL− γ, where HL ≈ logL+ γ
are Harmonic numbers describing the average number of
cycles in permutation [40] and γ is Euler’s constant.

The structure of the above-discussed implementation
of Π in only two layers gives one more crucial property. In
the derived probabilistic model (see App. C) with each
swap omitted with probability p, one omission in Π̃(p)
corresponds directly to the disappearance of one cycle in
Q(p)P −1. In other words, each omitted swap in Π̃(p)
introduces a new error instead of possibly mutating or
suppressing previous ones.

Thanks to the properties described above the error fac-
tor δ(p) can be directly calculated

δfull ≈ 4Le−
3
4p(L−logL−γ) , (5)

neglecting small corrections in higher powers of p. This
corresponds, in the absence of other errors, to fidelity
decay in the pattern:

Ffull ≈ e
−

3
4pTL(1− logL+γ

L)
≈ e−

3
4pTL (6)

in the limit of the large number of qubits L and layers T .
1D Architecture. Full connectivity serves only as a the-

oretical limiting case, which is why we focus on different
models, first 1 dimensional line. The generalization of
this model into 2 or higher dimensional lattices will be
considered later and discussed in detail in the Appendix
D.

For 1D, and other lattice-like architectures new diffi-
culty emerges. Since in typical permutation Π the qubits
usually have to be "moved" by the number of nodes pro-
portional to the length scale of architecture, the number
of layers and additional swaps in which Π is decomposed
have to grow with the size of the circuit as well, result-
ing in the stacking of multiple swaps one onto the other.
Thus the omission of some swap in Π̃(p) can modify pre-
vious errors instead of introducing a new one. For clar-
ity, we refer to the regime of "spare errors" when the
frequency of such cases is negligible. Then we may state:

δ ≳ 4Le−
3
4pw(L), (7)

Where w(L) is an average number of swaps in permuta-
tions of L qubits. With the increase of error probability p
this approximation deviates from the exact value of the
error factor and starts serving as a lower bound – see
App. D.

Based on the above discussion our focus is on "opti-
mal" implementations of Π in the sense of minimal nec-
essary number of swaps. Simultaneously, we also want
to minimize the number of layers in Π implementation,
since they translate to longer implementation time, hence
larger chances of memory errors.

For 1D architecture the decomposition of permutation
P which gives the minimal number of swaps is obtained
by the odd-even sort (known also as brick-sort or parity-
sort algorithm) [44]. The maximal number of swaps is

L(L − 1)/2 and the distribution of a minimal number of
swaps is given by the Mahonian distribution [45] which
very quickly converges to Gaussian distribution. More-
over, the maximal number of layers in Π implementation
is equal L which is also an asymptotic limit for the min-
imal necessary number of layers.

Summarizing, in the regime of sparse errors for 1D
architecture the error factor is given by:

δ1D ≳ 4Le−
3
4p

L(L−1)
4 , (8)

Which corresponds, in the absence of other errors, to
fidelity decay in the pattern:

F1D ≳ e
−

3
16pTL2

(1− 1
L
)
≈ e−

3
16pTL2

(9)

in the limit of the large number of cubits L and layers T .

0.002 0.004 0.006 0.008 0.010

p

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

−
lo

g(
F

)/
T
L

(a)

L = 6

L = 8

L = 12

L 7→ ∞

0.002 0.004 0.006 0.008 0.010

p

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

−
lo

g(
F

)/
T
L

2

(b)

L = 4

L = 8

L = 12

L 7→ ∞

FIG. 3: Fidelity decay as a function of swap ommission
probability p for quantum volume circuits with perfect
two-qubit gates α = 0 with L qubits and from 1 to L
layers (from thinner to stronger shade). (a) – fully
connected architecture, (b) – linear architecture. To
compare different numbers of qubits L and layers T the
index in fidelity decay is divided by general trends.
Dots with shaded lines correspond to numerical results
with fitted behavior, continuous lines to theoretical
predictions for a given number of qubits (6), (9) and
grey line the asymptotic behavior for many qubits.

Other Architectures. The above discussion of 1D archi-
tecture can be generalized for 2D and higher dimensional
cubic lattices. Although the exact optimal implementa-
tions are not known, the complexity in the number of
swaps and layers required can be directly derived. In
the Appendix D, we present lower bounds for the aver-
age necessary number of swaps and layers to implement
a permutation. For example, in 2D square lattice of L
qubits, the typical permutation "moves" any qubit by
a distance proportional to the length of a square

√
L.

So if we allow only nearest neighbor swaps, the aver-
age minimal number of swaps cannot be smaller than
w(L)∝ L3/2.

Furthermore, we also constructed a complex algo-
rithm to decompose permutations on square or higher

5

dimensional architectures with the desired complexity,
presented in App. D, which implementation is avail-
able at the github repository. The study of this al-
gorithm lets us establish a lower bound for the error
factor δ2D ≳ 4Le−9pL

3/2
/8 for square circuit and δdD ≳

4Le−
3
4 (d−1/2)pL

1+ 1
d for d-dimensional circuit. In the ab-

sence of other errors, this leads to the bounds for the
fidelity decay,

F2D > e
−

9
8pTL3/2

, FdD > e
−

3
4 (d−1/2)pTL1+1/d

(10)

in the limit of the large number of qubits L and layers T .

0.0 0.2 0.4 0.6 0.8 1.0

F
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

h
Ũ

(a)

L = 4

L = 10

L = 12

0 1 2 3 4

α2 ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p

×10−2

(b)

L = T = 10:

L = T = 12:

Full

Full

1D

1D

0.66

2/3

0.67

0.675

0.68

h
Ũ

FIG. 4: (a) Linear relation collapse between the heavy
output frequency and fidelity for the original circuit
(dots) and solvable circuit (full lines) for various T ≥ L,
1D and fully connected architectures, and different
values of α and p. The dotted lines indicate a
postulated linear relation. The threshold value h∗

Ũ
= 2/3

corresponds to a fidelity of F∗ ≈ 0.479 (black dashed
lines). (b) Threshold contour curves for QV = L = T for
1D (dashed line) and fully connected (full line)
architectures obtained by solving F(α, p) = F∗ with Eq.
(4). The colored points represent the corresponding
numerical average hŨ of the original circuit Fig. 1 (b).

Heavy output frequency vs Fidelity.— In this section,
we present the arguments for the generalization of the
discussed result from fidelity into a more operational
framework. To do so, we refer to Quantum Volume,
which is a widely used benchmarking tool for assessing
quantum processors [18, 19].

The standard measure in the Quantum Volume test,
heavy-output frequency hŨ , compares the outputs of
faulty and ideal states represented in the computational
basis. Heavy output frequency hŨ is calculated as the av-
erage sum of probabilities measured in the experiment,
p̃(m) = ∣⟨m∣ρ̃∣m⟩∣, that exceed the median of the ideal dis-
tribution p(m) = ∣ ⟨m∣Ψ⟩ ∣2. QCs achieving an average hŨ
greater than a certain threshold, ϵ = 2/3, with statistical
accuracy deemed reliable [21].

The numerical experiments performed (Appendix E)
strongly indicate that for the original circuit and the
noise models discussed F and hŨ have a linear rela-
tion, similar as stated in [27]. These coincidences suggest
that the obtained dependence may be a more general

phenomenon, accurate e.g. for isotropic noise. In Fig.
4(a) we illustrate how this relationship together with its
asymptotic. A detailed discussion of our findings is pre-
sented in Appendix E.

Plugging the limiting value of fidelity corresponding to
h∗
Ũ
= 2/3 into the analytical expression Eq. (4) allows us

to obtain the threshold line in the space of parameters α
and p below which a circuit of L qubits passes the quan-
tum volume test with QV equal to 2L. Fig. 4(b) shows
this threshold line for circuits L = 10,12 and for the two
architectures, together with discrepancies obtained from
the numerical study of the heavy output frequency on the
original circuit. For a quantum processor characterized
by (α, p) tuple, our results can be used not only to com-
pute its QV but also to infer what is the best strategy to
increase it, e.g. by decreasing α or p.

Concluding remarks.— We have quantified error ac-
cumulation in random quantum circuits with faulty
two-qubit gates and permutations, with error rates
parametrized by α and p respectively, and assuming a
processor architecture where qubit connectivity is charac-
terized by an effective dimension d. The average fidelity
(4) for a large number of qubits and layers converges to

F ≈ exp(−
15

8
α2LT) exp(−

3

4
(d −

1

2
)pL1+ 1

dT). (11)

This expression is of practical interest for identifying
the primary error source that must be mitigated to en-
hance computational figures of merit such as Quantum
Volume. We establish this result by providing numeri-
cal evidence for the linear dependence between average
fidelity and heavy output frequency in random bench-
marking circuits. The obtained formula formalizes the
viewpoint presented for example in [19], that denser con-
nectivity in quantum computer architecture leads to bet-
ter performance.

Our results pave the way to a general framework for
understanding how fidelity decay and error accumula-
tion are affected by errors in two-qubit gates and per-
mutations, across varying levels of connectivity and di-
mensional configurations of quantum architectures. This
framework also serves as a starting point for consider-
ing other kinds of errors, such as nonunitary, memory,
crosstalk and implementation-specific errors.

Acknowledgements. It is a pleasure to thank Ryszard
Kukulski, and Javier Molina-Villaplana for fruitful dis-
cussions. We also acknowledge Tomaž Prosen and
Sergiy Denisov for early discussion that triggered this
work. This work realized within the DQUANT Quan-
tERA II Programme was supported by the National
Science Centre, Poland, under the contract number
2021/03/Y/ST2/00193, and by FCT-Portugal Grant
Agreement No. 101017733 [46] It received funding from
the European Union’s Horizon 2020 research and innova-
tion programme under Grant Agreement No 101017733.
PR, NB, and RP acknowledge further support from FCT-
Portugal through Grant No. UID/CTM/04540/2020.

https://github.com/RafalBistron/Hypercube_sorting

6

Appendix A: Average fidelity computation

In this section, we derive the expression Eq. (1) of the main document. The faultless circuit yields a state ∣Ψ⟩

∣Ψ⟩ = UTUT−1, . . . , U1 ∣ψ0⟩ , (A1)

whereas the more realistic circuit produces

∣Ψ̃⟩ = ŨT ŨT−1, . . . , Ũ1 ∣ψ0⟩ , (A2)

where Ũτ corresponds to the faulty realization of the clean layer unitary Uτ . In particular, we always can write:

Ũτ = VτUτ , (A3)

where Vτ is the unitary error. As discussed in the previous section, we are interested in computing the average of the
fidelity

F = ∣⟨Ψ∣Ψ̃⟩∣
2
. (A4)

To do so, it is useful to use the vectorized notation.

∣ψT ⟩ = ⟨ψ∣
T (A5)

∥ψϕ⟩ = ∣ψ⟩⊗ ∣ϕT ⟩ . (A6)

Equipped with it we can write the fidelity in a 4-copy Hilbert H(24L) space:

F = ∣⟨Ψ∣Ψ̃⟩∣
2

= ⟨ψ0∣U
†
1 ...U

†
T ŨTŨ1 ∣ψ0⟩ ⟨ψ0∣ Ũ

†
1 ...Ũ

†
TUTU1 ∣ψ0⟩

=∑
nm

⟨ψ0∣U
†
1 ...U

†
T ∣m⟩ ⟨m∣ ŨTŨ1 ∣ψ0⟩ ⟨ψ0∣ Ũ

†
1 ...Ũ

†
T ∣n⟩ ⟨n∣UTU1 ∣ψ0⟩

=∑
nm

⟨mn∥ (ŨTŨ1 ⊗ Ũ
∗

T ...Ũ
∗

1) ∣ψ0⟩⊗ ∣ψ
T
0 ⟩ ⟨nm∥UTU1 ⊗U

∗

T ...U
∗

1 ∥ψ0ψ0ψ0ψ0⟩

=∑
nm

⟨mnnm∥
←Ð
∏
τ

[Ũτ ⊗ Ũ
∗

τ ⊗Uτ ⊗U
∗

τ] ∥ψ0ψ0ψ0ψ0⟩ , (A7)

where

∑
n

∣n⟩ =
⎛

⎝
∑

m=0,1

∣m⟩
⎞

⎠

⊗L

.

The average fidelity is then

F = ∑
nm

⟨mnnm∥ ([Ũ ⊗ Ũ∗ ⊗U ⊗U∗])T ∥ψ0ψ0ψ0ψ0⟩ = ∑
nm

⟨mnnm∥ (U)T ∥ψ0ψ0ψ0ψ0⟩ , (A8)

where we have assumed that each layer is sampled independently, so we can remove the subindex τ .
It is convenient to introduce these two different notations

∑
nm

∥mnnm⟩ = ∥+14;23⟩ = , and ∑
nm

∥mmnn⟩ = ∥+12;34⟩ = , (A9)

and to average the above quantity also with respect to all the all the computational basis states ∣ψ0⟩ = ∣m⟩

∑
n

∥nnnn⟩ = ∥+1234⟩ = . (A10)

Hence, the final expression of the average fidelity is

F =
1

2L
⟨+14;23∥ (U)T ∥+1234⟩ , (A11)

7

Appendix B: Average fidelity solvable model circuit

In this section, we will obtain the expression Eq. (4) of the main document corresponding to the average fidelity of
the solvable model introduced in the main text, where each layer of the solvable model consists of a faulty permutation
Π̃ embedded between two faultless large unitaries R1,R2 ∈ CUE(2L) belonging to the circular unitary ensemble, i.e.,
sampled uniformly according to the Haar measure, and a gate made of nonoverlapping random faulty 2-qubit unitaries
Ṽ =⊗

L/2
r=1 ũ2r−1,2r. Therefore, we have the average of the superoperator U in Eq. (A11) can be further decompose:

U = V R P R , (B1)

where

V = Ṽ ⊗ Ṽ ∗ ⊗ V ⊗ V ∗ (B2)

P = Π̃⊗ Π̃⊗Π⊗Π (B3)
R = R⊗R∗ ⊗R⊗R∗ (B4)

On what follows, we will describe in detail each of the above quantities. First, the averages in the circular unitary
ensemble have been widely studied and computed by means of Weingarten calculus [36, 47]. In particular, following
the tensor network perspective introduced in [48], we have that given R ∈ CUE(d),

R = R⊗R∗ ⊗R⊗R∗ = 1

d2 − 1

⎛

⎝
+ −

1

d

⎛

⎝
+

⎞

⎠

⎞

⎠
, (B5)

where we have used the diagrammatic notation introduced above in Eq. (A9).
Observe that the states ∥+14;23⟩ and ∥+12;34⟩ are not orthogonal:

⟨+12;34 ∥+12;34⟩ = = d2 = = ⟨+14;23 ∥+14;23⟩

⟨+12;34 ∥+14;23⟩ = = d = = ⟨+14;23 ∥+12;34⟩ . (B6)

Hence, we find an orthogonal basis via the Gram-Schmidt procedure:

∥⇑⟩ =
1

d
∥+12;34⟩ ∥⇓⟩ =

1
√
d2 − 1

(∥+14;23⟩ − 1

d
∥+12;34⟩) . (B7)

On this basis, the expression Eq. (B5) takes the simpler form

R = ∥⇑⟩ ⟨⇑∥ + ∥⇓⟩ ⟨⇓∥ . (B8)

It is clear from the above expression that R is a projector since Rk
=R, k ∈ N. This property will be convenient in

what follows.

1. Computing V

On this subsection we aim to compute the corresponding average contribution of the faulty 2-qubit gates

V =
L/2

⊗
r=1

ũ2r−1,2r ⊗
L/2

⊗
r=1

ũ∗2r−1,2r ⊗
L/2

⊗
r=1

u2r−1,2r ⊗
L/2

⊗
r=1

u∗2r−1,2r =
L/2

⊗
r=1

ũ2r−1,2r ⊗ ũ∗2r−1,2r ⊗ u2r−1,2r ⊗ u∗2r−1,2r

=
L/2

⊗
r=1

u2r−1,2r. (B9)

8

As discussed in the main text, each faulty gate is modeled as a random unitary ur,r′ ∈ CUE(4) poissoned with an
unstructured and generic noise given by a random unitary whose generator belongs to the Gaussian Unitary Ensemble
ũ2r−1,2r = e

iαh2r−1,2ru2r−1,2r h2r,2r−1 ∈ GUE(4) where α ≥ 0. Therefore, the local average of the 4-copied unitaries can
be further decomposed.

u2r,2r−1 = ũ2r−1,2r ⊗ ũ∗2r−1,2r ⊗ u2r−1,2r ⊗ u∗2r−1,2r

= (eiαh2r−1,2r ⊗ e−iαh2r−1,2r ⊗ 1⊗ 1) (u2r−1,2r ⊗ u∗2r−1,2r ⊗ u2r−1,2r ⊗ u∗2r−1,2r) . (B10)

We identify the rightmost average as the one outlined in the previous section R particularized for d = 4. Therefore,
it remains to compute the average eiαh2r−1,2r ⊗ e−iαh2r−1,2r with respect to the GUE measure. To keep the discussion
more general, let us compute this quantity for a general H ∈ GUE(d).

eiαH ⊗ e−iαH∗ = ∫ dHe−tr
H2

2 (e−iαH ⊗ eiαH
∗
) , dH =

d

∏
i=1

dHii∏
i>j

1
√
2
RHijIHij. (B11)

In terms of the unitary that diagonalizes eiαH = UDλU
†, with

Dλ = diag(eiαλ1⋯eiαλd) (B12)

we can decompose Eq. (B11) in terms of the average with the Haar measure discussed above of the unitaries, and the
average with respect to the GUE measure of the eigenvalues:

eiαH ⊗ e−iαH∗ = (U ⊗U∗)(Dλ ⊗D∗λ)(U
† ⊗UT) = (U ⊗U∗)D(U † ⊗UT). (B13)

In terms of the diagrammatic notation, we can write:

eiαH ⊗ e−iαH∗ =

U

U∗

U†

UT

D

=

U

U∗

U∗

U

D

(B14)

After interchanging rows three and four, we identify the first box as the average computed above R Eq. (B5).
Hence, it can be shown that

eiαH ⊗ e−iαH∗ =
1

d2 − 1

⎛

⎝
(D −

1

d
D) + (D −

1

d
D)

⎞

⎠
. (B15)

The above expression can be further simplified taking into account

D = = d since DλD
T
λ = 1

D =
⎛

⎝

Dλ
⎞

⎠

2

= tr2Dλ =
d

∑
m,n=1

eiα(λm−λn). (B16)

We recognize in the second row the definition of the spectral form factor (SFF) [49, 50]: the Fourier transform of two
point function, which is the simplest correlation function that displays universality. In this context, the strength of
the noise α plays the role of time. For the GUE, there is a translational invariance between eigenvalues, and we can
eliminate the specific dependence on n,m:

fd(α) ∶= fd(λn, λm, α) = ∫

d

∏
i=1

dλiPGUE(λ1, . . . , λd)e
iα(λm−λn) = ∫ C ∫

d

∏
i=1

(dλie
−

λ2
i
2) ∏

λi>λj

(λi−λj)
2eiα(λm−λn), n ≠m,

(B17)

9

where PGUE is GUE probability density function. We postpone the computation of this expression for the next section.
Now, it is enough to write the SFF as

tr2Dλ = d(1 + (d − 1)fd(α))

Thus, the average Eq. (B11) is

eiαH ⊗ e−iαH∗ =
1 − fd(α)

d + 1
+
dfd(α) + 1

d + 1
. (B18)

Finally, to find u2r−1,2r Eq.(B10), we multiply Eq. (B18) (previosly adding two identities/ horizontal lines to the
diagrams) and Eq. (B5):

(eiαH ⊗ e−iαH∗ ⊗ 1⊗ 1) (R⊗R∗ ⊗R⊗R∗) =
1

d2 − 1

⎧⎪⎪
⎨
⎪⎪⎩

(1 +
fd(α) − 1

d(d + 1)
) +

dfd(α) + 1

d + 1

⎛

⎝
−
1

d
−
1

d

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

=
1

d2 − 1
{(1 +

fd(α) − 1

d(d + 1)
) ∥+12;34⟩ ⟨+12;34∥ + dfd(α) + 1

d + 1
(∥+14;23⟩ ⟨+14;23∥ − 1

d
∥+12;34⟩ ⟨+14;23∥ − 1

d
∥+14;23⟩ ⟨+12;34∥)},

where we have used the state notation Eq. (A9) and ommited the labeling of the gates, since the above result is
valid for all dimensions. In terms of the spin basis 1/2 introduced above, Eq. (B7) we find

(eiαH ⊗ e−iαH∗ ⊗ 1⊗ 1) (R⊗R∗ ⊗R⊗R∗) = ∥⇑⟩ ⟨⇑∥ +
dfd(α) + 1

d + 1
∥⇓⟩ ⟨⇓∥ . (B19)

Observe that the average is also diagonal in this basis, but the ⇓ sector depends on f4(α), and consequently the
projector property that the R possesses Eq. (B8) is not valid anymore.

To conclude, we shall reintroduce the labelling of the unitaries and restrict the case for d = 4, yielding:

V =
L/2

⊗
r=1

∥⇑2r−1,2r⟩ ⟨⇑2r−1,2r∥ +
4f4(α) + 1

5
∥⇓2r−1,2r⟩ ⟨⇓2r−1,2r∥ (B20)

In the remainder of this subsection, we compute explicitly fd(α).

a. Computing fd(α)

In this subsection, we finally address the computation of the function fd(α), intimately connected with the spectral
form factor. Whereas the large L limit is well known; see, for instance, [38, 51], the exact computation is less standard.
See [52]quantity for arbitrary d and α, although in practice, we are interested in d = 4 and α≪ 1. This is, in a time-
evolution Hamiltonian perspective, we are interested in the non-universal regime, where the nature of the matrix
ensemble takes a great relevance. For a complete introduction to the random matrix, see, for example, [51, 53]. Here
we start by taking into account the definition of the n-point function:

ρ(n)(λ1, . . . , λn) = ∫ dλn+1 . . . dλdPGUE(λ1, . . . , λd), (B21)

we see that

fd(α) = ∫ ρ(2)(λm, λn)e
iα(λm−λn), n ≠m. (B22)

The term ∏λi>λj
(λi − λj)

2 that appears with the Jacobian is called Vandermonde determinant ∆d(λ):

∆2
d(λ) = (λ) ∏

λi>λj

(λi − λj)
2
= det[{λi−1j }

d
i,j=1]

2
=

RRRRRRRRRRRRRRRRR

1 1 ⋯ 1
λ1 λ2 ⋯ λd
⋮ ⋮ ⋮ ⋮

λd−11 λd−12 ⋯ λd−1d

RRRRRRRRRRRRRRRRR

2

(B23)

Now we can harness the properties of the determinant. That is,

∆d(λ) = det[{λ
i−1
j }

d
i,j=1] = det[{Pi−1(λj)}

d
i,j=1], (B24)

10

where Pk(x) k = 0, . . . , d−1 are a family of monic orthogonal polynomials. In our case, the Hermite family is suitable.
The reason is that they are orthogonal to the weight e−

x2

2 that appears in our probability density function PGUE:

∫

∞

−∞

dxe−
x2

2 Hm(x)Hn(x) =
√
2πn!δmn. (B25)

In order to play with orthonormal objects, we shall define the Hermite wavefunctions:

Ψm(x) =
1

(2π)1/4
1
√
m!
e−

x2

4 Hm(x). (B26)

Therefore, we write:

fd(α) = C ∫

d

∏
i=1

dλi det[{e
−

λ2
j
4 Hi−1(λj)}

d
i,j=1]det[{e

−

λ2
j
4 Hi−1(λj)}

d
i,j=1]e

iα(λm−λn) (B27)

= (2π)d/2
d−1

∏
k=1

k!C ∫

d

∏
i=1

dλi det[{Ψi−1(λj)}
d
i,j=1]det[{Ψi−1(λj)}

d
i,j=1]e

iα(λm−λn), n ≠m. (B28)

Taking into account that det[A]det[B] = det[AB] and det[A] = det[AT]:

fd(α) = (2π)
d/2

d−1

∏
k=1

k!C ∫

d

∏
i=1

dλi det[{
d−1

∑
k=0

Ψk(λi)Ψk(λj)}
d
i,j=1]e

iα(λm−λn) (B29)

= Cd ∫

d

∏
i=1

dλi det[{Kd(λi, λj)}
d
i,j=1]e

iα(λm−λn), n ≠m, (B30)

where we have collected the constants, and

Kd(x, y) =
d−1

∑
k=0

Ψk(x)Ψk(y) (B31)

is the reproducing Hermite kernel. The reason is that it satisfies the property:

Kd(x, y) = ∫
∞

−∞

duKd(x,u)Kd(u, y). (B32)

This property allows the d × d determinant to be sequentially simplified by reducing its dimension. It can be shown
that

Cd ∫ dλn det[{Kd(λi, λj)}
n
i,j=1] = Cd(Kd(x,x) − n + 1)det[{Kd(λi, λj)}

n−1
i,j=1], Kd(x,x) = d. (B33)

Hence, iterating the above expression d times, we obtain the normalization constant of the probability density function
Cd = 1/d! , and we rewrite the 2-point function Eq. (B21)

ρ(2)(λm, λn) =
(d − n)!

d!
∣
Kd(λm, λm) Kd(λm, λn)
Kd(λn, λm) Kd(λn, λn)

∣ (B34)

Using the above expression in Eq. (B22) yields

fd(α) =
(d − 2)!

d!
∬ dλmdλn ∣

Kd(λm, λm) Kd(λm, λn)
Kd(λn, λm) Kd(λn, λn)

∣ eiα(λm−λn)

=
1

d(d − 1)
((∫ dxKd(x,x)e

−iαx
)
2

− (∫ dxdyKd(x, y)e
−iα(x−y)

)
2

) . (B35)

We have to compute the following integral:

∫

∞

−∞

dxe−
x2

2 Hk(x)Hk′(x)e
±iαx. (B36)

We make use of the following three results:

11

1. Given a function f(x) that vanishes at infinity, the integral

∫

∞

−∞

dxe−
x2

2 Hkf(x) = ∫
∞

−∞

dxe−
x2

2 f (k)(x), f (k)(x) =
dk

dxk
f(x), (B37)

as can be seen by integrating k times by parts.

2. The generalized Leibniz rule:

(f × g)(k) =
k

∑
l=0

k!

l!(k − l)!
f (k−l)g(l). (B38)

3. The following recursion relation that the Hermite polynomials hold:

H(m)n (x) =
n!

(n −m)!
Hn−m(x). (B39)

To solve the integral Eq. (B36), we first use the identity Eq. (B37) with f(x) = Hk′(x)e
±iαx, following by the

Leibniz Eq.(B38) rule, and finally Eq. (B39):

∫

∞

−∞

dxe−
x2

2 Hk(x)Hk′(x)e
±iαx

=
k

∑
l=0

k!k′!(±iα)k
′
−k+2l

l!(k − l)!(k′ − k + l)!

√
2πe−

α2

2 (B40)

We use the above result to obtain fd(α). It is interesting to distinguish between the contribution of the connected
and disconnected parts of the (Fourier transform of) the two-point function. The disconnected part is obtained by
particularizing k = k′:

(∫

∞

−∞

dxKd(x,x)e
±iαx
)
2

=
1
√
2π

d−1

∑
k=0

1

k!
∫

∞

−∞

dxe−x
2
/2H2

k(x)e
−iαx

= e−α
2

(
d−1

∑
k=0

k!
k

∑
l=0

(±iα)2l

(l!)2(k − l)!
)
2

(B41)

The connected part is:

∫

∞

−∞

dxdyKd(x, y)Kd(y, x)e
±iα(x−y)

=
1

2π

d−1

∑
k=0

d−1

∑
k′=0

1

k!k′!
(∫

∞

−∞

dxe−x
2
/2eiαxHk(x)Hk′(x))

×(∫

∞

−∞

dxe−y
2
/2e−iαxHk(y)Hk′(y))

= e−α
2

(
d−1

∑
k=0

d−1

∑
k′=0

k!k′!(−1)k
′
−k+1αk′−k

k

∑
l=l′=0

α2(l+l′)

l!l′!(k − l)!(k − l′)!(k′ − k + l)!(k′ − k + l′)!
). (B42)

So we arrive to the final result:

fd(α) =
e−α

2

d(d − 1)
{(

d−1

∑
k=0

k!
k

∑
l=0

(±iα)2l

(l!)2(k − l)!
)
2

− (
d−1

∑
k=k′=0

k!k′!(−1)k
′
−k+1αk′−k

∣
k

∑
l=0

(iα)2l

l!(k − l)!(k′ − k + l)!
∣

2

)} (B43)

In particular, we find that

f4(α) =
1

36
e−α

2

(−α10
+
25α8

2
− 64α6

+ 138α4
− 144α2

+ 36) . (B44)

Remarkably, it can be seen that fd(α) = 1 − (d + 1)α2 + o(α3), so we shall propose a more manageable expression:

fd(α) ∼ e
−(d+1)α2

. (B45)

The validity of this approximation can be examined in Fig. 5

12

FIG. 5: fd(α) for d = 4 and d = 64. The thick lines correspond to the analytic result Eq. (B43), and the dashed lines
to Eq. (B45).

2. Computing R P R

Now we shall focus on the average of the faulty permutation contribution P . The large unitaries that encapsulate
the permutation contribution allow us to assume that the effect of each permutation is decorrelated, making a great
simplification. As a first step, we harness the left/right invariance of the Haar measure:

R P R = (R⊗R∗ ⊗R⊗R∗) (Π̃⊗ Π̃⊗Π⊗Π) (R⊗R∗ ⊗R⊗R∗)

= (R⊗R∗ ⊗R⊗R∗) (Π̃ΠT ⊗ Π̃ΠT ⊗ 1⊗ 1) (R⊗R∗ ⊗R⊗R∗) . (B46)

RP R = 1

(d2 − 1)2

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
−

1

d

⎞

⎠
+
⎛

⎝
−
1

d

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Ξ⊗Ξ ⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
−

1

d

⎞

⎠
+

⎛

⎝
−
1

d

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (B47)

where Ξ = Π̃ΠT . Using Eq. (B16) we find that

Ξ⊗Ξ

= d Ξ⊗Ξ = d2 ,

Ξ⊗Ξ

= Ξ⊗Ξ = tr2Π̃ΠT ∶= δ. (B48)

Ξ⊗Ξ

=

Ξ⊗Ξ

= Ξ⊗Ξ = d.

Therefore, we find that

R P R = 1

(d2 − 1)2

⎧⎪⎪
⎨
⎪⎪⎩

(d2 − 2 +
δ

d2
) + (δ − 1)

⎛

⎝
−
1

d
−
1

d

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

(B49)

Finally, we write it in terms of the orthogonal basis Eq.(B7):

R P R = ∥⇑⟩ ⟨⇑∥ + δ − 1

d2 − 1
∥⇓⟩ ⟨⇓∥ . (B50)

Recall that δ = tr2Π̃ΠT . In the next section, we give details regarding the computation of this average and the nature
itself of the faulty permutation Π̃.

13

3. Putting all together

We have all the ingredients to compute the average fidelity Eq. (A11), but they need to be written on a common
basis: whileRPR is written in terms of the total spins ⇑,⇓, V is written in terms of local spins ⇑2r−1,2r,⇓2r−1,2r with
r = 1,⋯, L/2 as can be seen in Eq. (B20). To do so, we introduce the notation ∥m, i⟩ where m counts the number of
spins ⇓2r−1,2r and i labels the degeneracy. We shall write all the quantities, namely ∥⇑⟩, ∥⇓⟩, U in terms of this basis.

The easiest starting point is ∥⇑⟩, since

∥⇑⟩ = ⊗
L/2
r=1 ∥⇑2r−1,2r⟩ = ∥0,0⟩ . (B51)

The state ∥⇓⟩ is a complicated combination consequence of being a superposition state (see Eq. (B7)) Equivalently
(see Eq. (B7))

∥⇓⟩ =
1

√
4L − 1

⎛

⎝

L/2

⊗
r=1

∥+14;232r−1,2r⟩ −
1

2L

L/2

⊗
r=1

∥+12;342r−1,2r⟩
⎞

⎠
=

1
√
4L − 1

⎛

⎝

L/2

⊗
r=1

(∥⇑2r−1,2r⟩ + 15
1/2
∥⇓2r−1,2r⟩) − ∥0,0⟩

⎞

⎠

=
1

√
4L − 1

L/2

∑
m=1

15m/2
(
L/2
m
)

∑
i=1

∥m, i⟩ , (B52)

where in the second equality we have inverted Eq. (B7) and particularized for d = 4. It is important to note that the
summation index starts from 1 and not from 0 in the final result.

Now we express V Eq. (B20) and R P R Eq. (B50) in the new basis {∥m, i⟩}:

V =
L/2

⊗
r=1

∥⇑2r−1,2r⟩ ⟨⇑2r−1,2r∥ +
4f4(α) + 1

5
∥⇓2r−1,2r⟩ ⟨⇓2r−1,2r∥ =

L/2

∑
m=0

(
4f4(α) + 1

5
)

m (L/2
m
)

∑
i=1

∥m, i⟩ ⟨m, i∥

R P R = ∥⇑⟩ ⟨⇑∥ +
δ − 1

d2 − 1
∥⇓⟩ ⟨⇓∥ = ∥0,0⟩ ⟨0,0∥ + (

δ − 1

4L − 1
)(

1

4L − 1
)

L/2

∑
m,n=1

15
m+n

2

(
L/2
m
)(

L/2
n
)

∑
i,j=1

∥m, i⟩ ⟨n, j∥ . (B53)

Observe that the summation index in V runs from 0 in this case. Hence, we are finally able to write the average of
one layer:

U = V R P R =
⎛
⎜
⎝

L/2

∑
m=0

(
4f4(α) + 1

5
)

m (L/2
m
)

∑
i=1

∥m, i⟩ ⟨m, i∥
⎞
⎟
⎠

⎛
⎜
⎝
∥0,0⟩ ⟨0,0∥ + (

δ − 1

4L − 1
)(

1

4L − 1
)

L/2

∑
n,p=1

15
n+p
2

(
L/2
n
)(

L/2
p
)

∑
j,k=1

∥n, j⟩ ⟨p, k∥
⎞
⎟
⎠

= ∥0,0⟩ ⟨0,0∥ + (
δ − 1

4L − 1
)(

1

4L − 1
)

L/2

∑
m,n=1

15
m+n

2 (
4f4(α) + 1

5
)

m (L/2
m
)(

L/2
n
)

∑
i,j=1

∥m, i⟩ ⟨n, j∥ , (B54)

where we have used that ⟨m, i ∥n, j⟩ = δm,nδi,j . Indeed, we are able to exponentitate the above quantity thanks to the
fact that the crossed terms vanish:

(U)T = ∥0,0⟩ ⟨0,0∥ + [(δ − 1
4L − 1

)(
1

4L − 1
)

L/2

∑
m=1

15m (
4f4(α) + 1

5
)

m

(
L/2

m
)]

T−1

× [(
δ − 1

4L − 1
)(

1

4L − 1
)

L/2

∑
m,n=1

15
m+n

2 (
4f4(α) + 1

5
)

m (L/2
m
)(

L/2
n
)

∑
i,j=1

∥m, i⟩ ⟨n, j∥] (B55)

To finally find the average fidelity, we just need compute the overlaps ⟨+14;23∥UT
∥+1234⟩. First,

⟨+14;23 ∥0,0⟩ = 1

2L
⟨+14;23 ∥+12;34⟩ = 1,

where we have used Eq. (B51) and Eq. (B6). It is straightforward to check that

⟨+14;23∥
⎛
⎜
⎝

L/2

∑
m=1

15
m
2 (

4f4(α) + 1

5
)

m (L/2
m
)

∑
i=1

∥m, i⟩
⎞
⎟
⎠
=

L/2

∑
m,n=1

15
m+n

2 (
4f4(α) + 1

5
)

m (L/2
m
)(

L/2
n
)

∑
i,j=1

⟨n, j ∥m, i⟩

=

L/2

∑
m=1

15m (
4f4(α) + 1

5
)

m

(
L/2

m
) (B56)

14

Also, from Eq. (B6) and Eq. (B7) it is clear that

⟨0,0 ∥+1234⟩ = 1

2L
⟨+12;34 ∥+1234⟩ = 1, (B57)

and that ⟨⇓2r−1,2r ∥+12342r−1,2r⟩ = 3/
√
15. Then we can fin the last overlap:

⎛
⎜
⎝

L/2

∑
m=1

15
m
2 (

4f4(α) + 1

5
)

m (L/2
n
)

∑
j=1

⟨n, j∥
⎞
⎟
⎠
∥+1234⟩ =

L/2

∑
m=1

(
4f4(α) + 1

5
)

m

3m(
L/2

m
) (B58)

Hence, we finally obtain:

F =
1

2L
(1 + [(

δ − 1

4L − 1
)
(15 4f4(α)+1

5
+ 1)

L/2
− 1

4L − 1
]
T

(2L − 1)) (B59)

=
1

2L
+ [(

δ − 1

4L − 1
)(
(12f4(α) + 4)

L/2 − 1

4L − 1
)]

T

(1 −
1

2L
) . (B60)

Defining ∆(α) = 2L(3f4(α) + 1)
L/2, we get to the final result Eq. (4) of the main text.

Appendix C: Permutations implementation

In this section, we discuss the structure of permutations and their implementation. Our results let us then establish
the analytical formula for the error factor δ of permutation for the fully connected architecture as a starting point to
for discussing outer architectures.

1. Imperfect SWAP gates

We address the imperfections in SWAP gate operations, characterizing each swap S in a permutation Π as imprecise
due to variations in impulse duration. Such an model of error is natural, if one uses

√
S as the universal 2-qubit

gate (instead of, for example, CNOT), in which case the S gate is a simple composition of two fundamental gates
S =
√
S
√
S and each of them could be performed imperfectly.

Specifically, a swap operation S is modified to S → Sβ = PS − eiπβPA, where β follows a Gaussian distribution with
a mean of 1 and variance σ, independently for each swap. PS and PA are projectors on symmetric and antisymmetric
subspaces respectively. For any density matrix ρ the average over imperfect swapping reads

∫

∞

−∞

dβ Sβρ(Sβ
)
† 1

σ
√
2π
e−

(β−1)2
2σ2 = ∫

∞

−∞

dβ [(PSρPS) + (PAρPS)e
iπβ
+ (PSρPA)e

−iπβ
+ (PAρPA)]

1

σ
√
2π
e−

(β−1)2
2σ2 =

= (PSρPS) − (PAρPS)e
−

1
2π

2σ2

− (PSρPA)e
−

1
2π

2σ2

+ (PAρPA) = pρ + (1 − p) SρS

Which turns out to simplify into a probabilistic mixture with swapping probability 1− p and no swapping probability
p, where

p =
1

2
(1 − e−

1
2π

2σ2

) (C1)

Thus from now on, we will use such an integrated scenario keeping in mind the original source of errors. Since the
model of imperfect swapping directly corresponds to the probabilistic occurrence of swaps with p ∈ [0,1/2] and larger
values of p are futile from the perspective of quantum computer performance, we restrict ourselves to p to such a
range.

This model allows us to perform various estimations of the error factor δ(p) = δ as in (B49). In the simplest one of
those, when we consider the implementation of a generic permutation of L qubit system by expanding in the following
series (averaging over all permutations of L elements)

δ(p) =
1

L!
∑

P ∈ΣL

⟨Tr[Π̃(p)Π⊺]2⟩p =
1

L!
∑

P ∈ΣL

(1 − p)w(P)Tr[ΠΠ⊺]2 +⋯ > 4L(1 − p)w(P) (C2)

15

where P is a permutation of L qubits, Π is the corresponding operator and Π̃(p) is a faulty realization of Π. In
the second step, we extracted the cases with all swaps executed properly. Note that the only parameters are the
probability p of not performing a swap and the number of swaps w necessary to implement a permutation.

The analytical expressions for the number of swaps w necessary to implement each permutation are not known for
most architectures. In such cases, we may further bound Eq. (C2) further in the following way. Let mw be a number
of permutations which demand w swaps to implement, then: +

δ(p) ≥
4L

L!
∑

P ∈ΣL

(1 − p)w =
4L

L!
∑
w

mw(1 − p)
w
≥
4L

L!
∑
w

mw(aw + b) (C3)

Where f(w) = aw+b is a tangent line to a function (1−p)w in a point with w equal its average over all permutations
w = w. More precisely, a = ln(1 − p)(1 − p)wL , b = (1 − ln(1 − p)wL)(1 − p)

wL . Because f(w) = aw + b is tangent to a
convex function, the last inequality in (C3) is obvious. The remaining calculations are quite simple:

δ(p) ≥
4L

L!
∑
w

mw(aw + b) =
4L

L!
(a∑

w

mww + b∑
w

mw) =
4L

L!
(a L! wm + b L!) = aw + b = 4

L
(1 − p)wL = 4Le−qwL (C4)

with q = − ln(1 − p) ≈ p ≈ π2σ2

4
for small p. Therefore to know a lower-bound one just has to know the average number

of swaps.

2. Fully connected architecture

In this section we provide a detailed computation of Eq. (6) of the main text. We consider a fully connected
quantum architecture that allows arbitrary qubit interactions. In this model, any permutation can be decomposed
into at most L swap operations. The decomposition process involves organizing the permutation into cycles, where
swaps within different cycles can be executed simultaneously. Each cycle can be transformed into 2-cycles using
one layer of swaps, with the transformation process described as follows: starting with any two adjacent elements,
subsequent swaps are performed between the next nearest elements until the cycle is completed. Since a 2-cycle can
be reduced to the identity with a single swap, every permutation can be implemented with exactly two layers. See
the figure 6, decomposition of cycle C, and for more more detailed discussion see [40].

Moreover, because each cycle of m elements involves only m−1 swaps, the number of necessary swaps equals L minus
the number of cycles. Fortunately, the average number of cycles is given by Harmonic numbers HL = ∑

L
k=1

1
k
≈ lnL+γ,

where γ ≈ 0.577 is the Euler number. Therefore the average number of necessary swaps grows as

wL = L −HL ≈ L − (lnL + γ) (C5)

with the dimension L.
More precisely, the distribution of the permutations of L elements with m cycles is given by the Stirling numbers

[
L
m
]. The number of swaps is given by k = L −m since for each cycle one swap can be omitted, as argued before.
To derive the formula for the error factor δ(p) (Eq. (5) of the main text), we aim to translate the number of omitted

swaps in Q(p) into the number of cycles in Q(p)P −1 for each permutation P and its faulty realization Q(p). The
next step is to average the formula for the error factor over all realizations of Q and finally over all permutations P .

Let us start by considering any k element cycle C (constructed by k − 1 swaps) from permutation P , name its
unperfect realization D(p) and the number of omitted swaps as l(p). We also want to emphasize that in order to
maintain the connection between the number of cycles in qubit permutation P̃ and its trace, we treat each node
unmoved by P̃ as a 1-cycle. According to the optimal implementation of the cycle presented in figure 6 each node
in the cycle C except two is connected with two "neighbouring" nodes via swaps. Thus, one can enumerate nodes
in cycle C, starting from 0, starting from the node which is moved only by the second layer. Then tag the node
connected to it by second-layer swap as 1, next tag the node connected to node 1 by first-layer swap as 2, next tag
the node connected to node 2 in the second layer as 3 and so on, see fig 6.

Notice that in the composition C−1 with its faulty realization D the errors in the first layer results in corresponding
swaps, each connecting nodes with numbers 2m+1 and 2m+2 for some integer m, "sandwiched" by the second layer.
Moreover, the errors in the second layer can be rewritten as additional swaps, connecting nodes with numbers 2m+ 2
and 2m + 3 for some integer m, cancelling appropriate swaps in the perfect second layer (see fig 6 first equality). In
the next step, we combine two perfect second layers with the errors from the first layers sandwiched between them.
This results in the shift of each extra first-layer swap from the pair nodes 2m + 1, 2m + 2 into the pair of nodes 2m,

16

2m + 3 (see fig 6 second equality, blue lines). Finally, we multiply those transformed extra first-layer swaps by the
swaps corresponding the the second-layer errors. Notice that each of the modified first-layer error lowers the number
of cycles in the product C⊺D by one since each of them combines two 1-cycles into one 2-cycle. Moreover, each
second-layer error connects two cycles into one larger cycle, because, by the previous discussion, it cannot cancel the
first-layer swap.

FIG. 6: Graphic representation of decomposed 13-cycle C combined with its decomposed faulty realization D. Each line
corresponds to a swap and each arrow to the shift in the final product. In the first step, the errors from the first (blue) layer
are combined to the extra swaps and the errors in the second (red) layer in D are decomposed by additional outer swaps.
Next, the "perfect outer layer" moves the inner swaps, as described in the text and the outer errors complete them to cycles.

Thus, we established a linear dependence between the number of omitted swaps l(p) and the number of cycles in
D(p): m(C,p).

m(C,p) = k − l(p) = k −∑
l

(
k − 1

l
)pl(1 − p)l = k − (k − 1)p = k(1 − p) + p

To consider the entire permutation P one must add the m(C,p) for all cycles C in P .

m(P, p) = ∑
cycles

k(1 − p) + p = L(1 − p) + cp (C6)

where c is a number of cycles in P . Therefore, the average error factor factorizes in the following way:

δfull(p) = ⟨⟨Tr[Π⊺Π̃(p)]2⟩p⟩P = ⟨⟨4m(P,p)
⟩p⟩P = ⟨⟨∏

Ci

4m(Ci,p)⟩p⟩P

Where the inner average is taken over all false realizations of Q(p) of P and the outer average is taken over all
permutations P on L elements, and in the last step we used the decomposition of permutation P into its cycles Ci.
Let us start with the calculation of the middle average. Consider one chosen cycle C of k elements, assuming that
the positions of omitted swaps are uncorrelated:

⟨4m(C,p)
⟩p =

k−1

∑
l=0

(
k − 1

l
)pl(1 − p)k−1−l4k−l = 4(4 − 3p)k−1 (C7)

Because swaps in different cycles are uncorrelated we may combine the above calculation into an average of a trace
of the entire permutation:

δfull(p) = ⟨⟨Tr[Π⊺Π̃(p)]2⟩p⟩P = ⟨∏
Ci

4(4 − 3p)ki−1⟩P = ⟨4
c
(4 − 3p)L−c⟩P = ⋯ (C8)

where c is the number of cycles in the permutation. Because the distribution of number of cycles is given by Stirling
numbers, we follow the calculations:

δfull(p) =
L

∑
c=1

1

L!
[
L

c
]4c(4 − 3p)L−c = 4f(p)L

L

∑
c=1

1

L!
[
L

c
]4g(p)c

17

with

f(p) = log4(4 − 3p) ≈ 1 −
3p

4 log(4)
−

9p2

32 log(4)
+O(p3) and g(p) = 1 − f(p) =

3p

4 log(4)
+

9p2

32 log(4)
+O(p3).

So, one clearly sees that for small p both f(p) and g(p) can be assumed to be linear with very small corrections for
reasonably small p. For example, for the extremal value of p = 0.5, the corrections from all nonlinear terms sum to
only 0.068⋯, whereas the f(p) takes a value f(0.5) ≈ 0.661.

Since from the study general bounds (C4), we know that (at least for small p) the fidelity should decay exponentially
as δfull(p) ≈ 4Le−α(L)Lp, using this assumption we might derive the value of α(L) using equation (C8). Notice that
by the above mentioned anzatz we can express parameter α(L) as:

α(L) ≈ −
∂ log(δ(p))

∂p
∣
p=0

1

L
= −

∂δ(p)
∂p
∣
p=0

δ(0)

1

L
=

= −
1

4LL
(4f(0)L log(4)Lf ′(p)∣p=0

L

∑
c=1

1

L!
[
L

c
]4g(0)c + 4f(0)

L

∑
c=1

1

L!
[
L

c
]4g(0)c log(4)g′(p)∣p=0c) =

= −
log(4)

4LL
(4LLf ′(0)

L

∑
c=1

1

L!
[
L

c
] + 4L

n

∑
c=1

1

L!
[
L

c
]g′(0)c) = − log(4)(f ′(0) + g′(0)

1

n

L

∑
c=1

1

L!
[
L

c
]c) =

= − log(4) (f ′(0) + g′(0)
HL

L
) ≈ − log(4) (f ′(0) + g′(0)

logL + γ

L
) =

=
3

4
(1 −

logL + γ

L
)

Thus for large n (and reasonably small p), up to the corrections of order O(log(L)/L), the decay constant is equal
α = 3/4, so the average error factor δ(p) behaves as

δfull(p) ≈ 4
Le
−

3
4pL(1−

logL+γ
L)

≈ 4Le−
3
4pL (C9)

The quadratic and higher corrections in p for this formula originate from the higher orders of f(p) and g(p) expansion
and a mixed term which decays as O (log(L)/L), thus as we have shown can be neglected to a good approximation.

Appendix D: Other architectures

From now on we focus our attention on simple models of physical architectures: 1D architecture of all qubits
connected in line, 2D architecture with qubits placed in a square lattice and 3D and higher dimensional architectures
with qubits placed in a cubic lattice.

For each of those scenarios, we discuss the optimal, or almost optimal way to decompose permutations given the
connectivity. Next given the error model discussed above, we calculate the formula for error factor δ from the formula
of fidelity (B60), which for small errors is close to exact, and for larger errors gives a lower bound.

In the quantum volume test, one has the freedom to modify and optimize the circuit as long as its overall action on
quantum states is the same. Thus at the end of each subsection, we present also an estimated bound for error factor
δ(p) given that the permutations are not explicitly implemented but each of them is separately "optimized" during
implementation.

1. Linear architecture

In this section, we discuss linear architecture with only nearest-neighbour interactions. Thus, the permutation must
be implemented as a composition of swap operators Si,i+1 between i and i + 1 qubits. One way of decomposition of a
given permutation into such swaps is the brick sort algorithm (also known as left-right sort or parallel bubble sort)
[44]. This approach guarantees the minimal number of swaps involved and gives an upper bound for a number of
layers (equal to a number of qubits). Hence, if necessary, we will focus on this decomposition and apply it to the
generic permutation.

18

The distribution of the number of swaps ws necessary to implement a typical permutation σ of n elements is known
as Mahonian distribution [45], and very quickly approximates the Gaussian distribution, with average wn and variance
Var(ws) equal:

wL =
L(L − 1)

4
, Var(wL) =

2L3 + 3L2 − 5L

72
(D1)

see [45]. The number of layers in each permutation could be bounded by the longest path in this permutation. This
can be further lower bounded if we consider only right-moving paths. Then number of permutations of n elements,
with such path of length k number is given by T (n, k) = maxi(σi − i) = T (n, k) = k!((k + 1)

n−k − kn−k). The average
length of the longest right-moving path, using Ramanujan P -function, is given by [54]

P (L) =
L−1

∑
k=0

kT (L,k)

k!
≈ (L − 1) −

√
(L − 1)π

2
+O(1). (D2)

Thus the number of layers one needs to use for the decomposition of standard permutation tends to the maximal
number of layers - L.

From a computational point of view, the simplest efficient way to obtain a decomposition of a given permutation
σ using a minimal number of swaps and a small number of layers is to utilize a brick sort algorithm known also as
odd-even sort or parallel bubble sort [44]. One just needs to sort the permutation save the sequence of swaps and
then apply it layer by layer in the inverse order on qudits. Since a brick sort may not be optimal, it gives an upper
bound on a number. Moreover, since it is a parallelization of bubble sort, it can also be upper bounded by n layers.

Later we will use one more distribution T (L,k) [https://oeis.org/A324225] of the number of signed paths of
length k in all permutations of n elements:

T (L,k) = (L − ∣k∣)(L − 1)! ,

By convention, we will describe right-moving paths with positive k and left-moving paths with negative k. Using this
distribution, one can, for example, calculate the average (unsigned) length of the path averaged over all permutations
of L elements

nL =
1

L!L
∑
k

∣k∣T (L,k) =
L2 − 1

3L
. (D3)

For general architecture, the direct connection between the number of omitted swaps in Q(p) and the cycles of
Q(p)P −1 is unfortunately no longer valid. This is so because, contrary to the implementation of fully connected
architecture, the omitted swaps can be stacked on top of each other, so that new errors do not create new cycles in
Q(p)P −1 but modify the existing one.

Nevertheless, below we try to calculate the average Fidelity decay in scenarios where the errors are so sparse,
later called sparse error regime, that the abovementioned phenomena occur with negligible frequency. One sees, that
when there is on average more than one error in each layer: p ≥ l/w ≈ 1/L, the discussion below is almost certainly
not valid. However, when there are on average one or fewer errors in the implementation of standard permutation:
p ≤ 1/w ≈ 1/L2, there is a large chance that we did not exploit our assumptions too drastically.

We also emphasize that since further from sparse error regimes new omitted swaps have a smaller chance of reducing
the error factor δ(p), thus the approximation we are deriving is in fact a lower bound for the error factor δ(p).

Thus, for sparse error regime (suitable small p), we assume that number of cycles in P̃ , m(P, p), is given by

m(P, p) ≈ L − l(p)

where L is the number of qubits, and l(p) the number of omitted swaps. Hence, one clearly sees that for l ≈ L, so
average one error in a layer, p ≈ 1/L, this approximation cannot be true. The average overall realizations for one
permutation gives

⟨4m(P,p)
⟩p ≈

w

∑
l=0

(
w

l
)pl(1 − p)w−l4L−l = 4L (1 −

3p

4
)

w

= 4L4f(p)w (D4)

https://oeis.org/A324225

19

Where

f(p) = log4(1 − 3p/4) ≈ −
3p

4 log(4)
−

9p2

32 log(4)
+O(p3),

so exactly as before taking our assumptions of small p into account we may safely assume that f(p) is linear.
Since from the study of general bounds (C4), we know that (at least for small p) the error factor should behave as

δ(p)1D ≈ 4
Le−α(L)L

2p. using this assumption we might derive the value of α(L) from the equation (D4). This results
in

α(L) ≈ −
∂ log(δ(p))

∂p
∣
p=0

1

L2
= −

∂δ(p)
∂p
∣
p=0

δ(0)

1

L2
= −

1

4LL2

⎛

⎝
4L

L(L−1)/2

∑
w=0

4f(0)wρ(w) log(4)f ′(p)∣p=0w
⎞

⎠
=

= −
log(4)f ′(0)

L2

⎛

⎝

L(L−1)/2

∑
w=0

ρ(w)w
⎞

⎠
= −

log(4)f ′(0)

L2

L(L − 1)

4
=

3

16
(1 −

1

L
)

Where ρ(w) are weights coming from the Mahonian distribution, and so is the expectation value of w. Thus, for large
L and appropriately small p≪ 1

L
, up to the corrections of order O(1/L), the decay constant is equal α = 3/16, so the

average fidelity behaves as

δ(p)1D ≳ 4
Le−

3
16pL

2
(1− 1

L
)
≈ 4Le−

3
16pL

2

(D5)

The above derivation can be generalized in a straight-forward way into

δ(p)1D ≳ 4
Le−

3
4pwL (D6)

where wL is the average number of swaps in permutations of L elements for a given architecture.

a. Upper bound of error factor δ for optimized permutation in 1D

As mentioned at the beginning of the section, in real-life quantum volume tests the permutations do not need to be
exactly implemented. Only the performance of the entire circuit needs to agree. This does not mean, however, that
we cannot leverage the information about the average behaviour of permutations and about 1D architecture.

In particular, if permutation brings together a pair of distant qubits on which a 2-qubit gate is applied, then no
matter how good one’s transpiler is, those qubits need to be moved to each other. Therefore to calculate general
minimal number of swaps to implement "optimized" permutation we first need to calculate the average distance dist
between two qubits that are moved to each other.

Consider a permutation represented by a permutation matrix P . Then a pair of elements that are moved to each
other corresponds to a pair of rows in P and the distance between those elements is the distance between columns in
which there are 1 in those two rows. Because we consider the average over all permutations, without loss of generality
we can the first two rows. Moreover, for each distance - each occupied pair of columns - the number of permutations
is exactly the same. Hence the formula for the distance is given by:

dist =
∑

L
i≠j=1 ∣i − j∣

∑
L
i≠j=1 1

=
∑

L
ij ∣i − j∣

L(L − 1)
=

1
3
L (L2 − 1)

L(L − 1)
=
1

3
(L + 1)

Finally, for each pair of cubits, the sum of distances travelled by two of those must be a least the original distance
between them. Thus we can give a strict and always true bound for the average number of swaps for 1D architecture

wL ≥ ⌊L/2⌋ (dist − 1) ≈
L(L − 2)

6
(D7)

which, using (D5) gives the following upper bound for error factor for small p:

δ(p) < 4Le−
1
8pL(L−2) ≈ 4Le−

1
8pL

2

(D8)

20

2. Square cube and hypercube architectures

The most natural generalization of linear architecture is square architecture, where the L qubits are arranged in a
square of size

√
L ×
√
L, and the swaps are allowed between nearest neighbours in both axes. In this subsection, we

will discuss such a case and along the way, we generalize presented results for higher dimensional cubes.
For such an arrangement, one can easily derive a lower bound of an average number of necessary swaps wL and

layers tL to implement permutations of L elements on a square.
Firstly let’s consider the average number of layers tL. The average length of the longest right-moving path in one

dimension was (asymptotically) given by (L−1)+
√
(L − 1)π/2+O(1), and in two dimensions elements can move also

in "top-bottom" direction, effectively skipping
√
L elements at once. Thus the average longest right-bottom-path,

and therefore the average number of layers to implement a permutation, is bounded from below by

tL ≥
L − 1
√
L
+

√
(L − 1)π

2L
+O(L−1/2) = O(

√
L). (D9)

In the case of higher-dimensional cubes of dimension d the above expression generalizes to

tL ≥
L − 1

L1− 1
d

+

√
(L − 1)π
√
2L1− 1

d

+O(L−
d−1
d) = O(L

1
d) (D10)

by the analogous arguments.
To study a lower bound on the average number of swaps wL necessary to implement permutations of L elements let

us notice that each swap can decrease the sum length of all paths in a permutation (∑L
i=1 n

2D
i,P) by at most 2. Thus the

number of swaps in permutation π: wπ cannot be smaller than half of the sum of the length of all paths. Averaging
this relation over all permutations of n elements we obtain:

wL ≥
1

L!
∑

P ∈ΣL

1

2

L

∑
i=1

n2Di,P (D11)

In the next step, we once again bound the length of the path in 2D architecture, by its length on a line which, using
(D3), gives us:

wL ≥
1

L!
∑

P ∈ΣL

1

2

L

∑
i=1

1
√
L
ni,P =

1

2

√
L nL =

L2 − 1

6
√
L
= O(L

3
2) . (D12)

The generalization into higher-dimensional cubes of dimension d gives us

wL ≥
1

2
L

d−1
d nL =

L2 − 1

6L1− 1
d

= O(L1+ 1
d) . (D13)

a. Hypercube sorting

Below we describe an algorithm which gives an efficient upper bound for the average necessary number of layers
and swaps simultaneously to implement a permutation using hypercube architectures. The implementation of the
algorithm in the Python language is provided in the github repository. The main idea of this algorithm is aligned
with [40] theorem 4.3, but our derivation is self-sustained and fully structural thanks to the properties of discussed
architectures. Moreover, due to explicit construction, we can argue simultaneously about both the necessary number
of swaps and layers to implement a permutation.

As we already argued the problem of implementing a permutation is equivalent to the problem of sorting the inverse
of that permutation, thus we focus on the second one for convenience.

Let us start with a square. If all elements from each column were in the correct columns, one would just perform
brick sort in each column, see 7, thus the maximal number of layers would be equal

√
L, the maximal number of

swaps
√
L ×

√

L(
√

L−1)
2

≈ L3/2/2. If some elements are in the wrong column, but in each row, there are elements from
all columns, one must first sort the rows, again by brick sort. Thus placing all elements in the correct columns, and
simplifying the problem to the previous one, see 7b.

https://github.com/RafalBistron/Hypercube_sorting

21

In general, however, elements which should be placed in one column are randomly scattered through the entire
square, see 7c. We claim that the general case can be reduced to the one described in the above paragraph. One may
mark each element in a square by natural numbers from 1 to

√
L in such a way, that in each column there are all marks

(without repetitions) and elements which should be in one column are marked with all marks (without repetitions).
The proof that such enumeration is always possible, and an explicit algorithm for such enumeration, is placed at the
end of the section for clarity. Then after sorting by marks in each column, using brick sort, the elements with marker
i end up in row number i, so by the properties of enumeration we reduced the problem to the above-described.

Overall to sort a 2D square of L elements we thus did 3 times parallel brick sort - one in columns one in rows and
again one in columns - giving maximally 3

√
L layers and no more than 3L3/2/2 swaps.

(a) (b)

4

3

2

1

2

1

3

4

4

3

1

2

2

1

4

3

(c)

FIG. 7: In the picture (a), elements on a square lattice with correct columns, the original column for each element is
denoted by its colour. In the middle picture (b), columns are incorrect, however, there is only one colour in each row, so one
could sort it by brick sort. In the picture (c), a most complex case with appropriate marking is presented.

Now we can iteratively generalize this method to hypercubes of L elements. Similarly as above we mark the elements
in d dimensional hypercube by natural numbers form 1 to L

1
d , such that in each 1 dimensional column there are all

markers and the elements which should be in one column are marked by all the marks. Then we perform sorting over
marks in each 1 dimensional column. After this sorting, by the properties of marking, in each L

1
d of d−1 dimensional

stratums there are elements with the same marks, thus in each stratum there are elements which should be placed in
all columns. The next step is to perform recursive sorting in those d−1 dimensional stratums, after which all elements
are in the correct columns, so we finish sorting by applying brick sort in each column separately.

It is a simple proof by induction that such a way of sorting gives the following bound on the maximal, hence also
the average number of layers and swaps:

tL ≤ L
1
d (2d − 1) and wL < L

d+1
d (d −

1

2
) (D14)

The only missing part in the above-described algorithm is the proof that appropriate enumerations can always be
done. For the general case of hypercubes, we prove the following statement

Theorem 1 Let p be a permutation of m × j elements organized in the rectangle of size m × j. Then there always
exists a way to mark all elements of p by the numbers from 1 to j such that in each column are all markers form 1 to
j and the set of elements originated from each column has all the markers form 1 to j.

a. Proof: If m = 1 all marking numbers are 1 so the theorem is trivially satisfied, so in the following, we assume
m > 1. Each permutation p can be decomposed into a finite number of transpositions, thus we prove the theorem by
induction over consecutive transpositions.

As a first inductive step let us notice that if p is an identity, there is a straightforward way of marking: the marker
of each element is just its position in the column. Next, we assume that there was some correct marking for the
permutation p and that the permutation p′ differs from p by one extra transposition of elements.

If those elements had the same marks in p, or they originated from the same column, marking for p is also a valid
marking for p′. Moreover, if those elements belong to the same column, but originated from different rows, the valid
marking for p′ differs from the marking for p by the same transposition.

Now, we come to the last, most complicated, case, where the transposition changing p into p′ mixes the elements
which originated from different columns, are in different columns, and have different markings.

To construct the new marking for p′ we first copy all the marks, except those with values the same as for swapped
elements. Then we start to rewrite the marks from one of two columns with exchanged elements. First, we exchange

22

FIG. 8: Plot of the average number of layers (left) and swaps (right) to implement a permutation by the recursive version of
the brick sort discussed above for the square of n elements and cube of n elements. The upper bound follows directly from the
discussion within the algorithm (D14) and the lower bound from the discussion of the average length of paths (D10)(D13).
Each point was obtained as an average over 1000 trials.

those marks which are the same as those of swapped elements in one of the columns. This move resolved the conflict
with marks for the first swapped element without affecting the property that in each column there are all marks.
However, this exchange of marks created a new error for elements which originated from the same column as the one
with just exchanged marks.

So next we look for the element with the same mark from this set, identify its column in this column swap the two
marks of interest. This swap resolved the above-mentioned error but potentially created a new one, thus we further
proceeded in the discussed manner. Because the number of columns is limited, this procedure finishes under a finite
number of steps with all the conflicts resolved. If some marks for p weren’t transcribed into marks for p′ in this
process, the final step is to copy them without any changes. Therefore we constructed the proper marking for the
permutation p′. ◻

The above theorem guarantees the existence of correct marking not only for permutations on a square architecture
(for m = j =

√
L) but also on a hypercube (m = L

1
d , j = L

1−d
d) since all dimensions except the first (column) one can

be flattened without affecting the properties of marking.

Hence, according to to (D6) we obtain the following bounds for error rate δ(p):

δ(p)2D ≈ 4
Le−

9
8pL

3
2 and δ(p)dD ≈ 4

Le−
3
4pL

d+1
d (d− 1

2
) (D15)

23

b. Upper bound of error factor δ for optimized permutation in 2D and higher dimensions

For square architecture, similarly, as for 1D architecture, we may lower bound the minimal necessary number of
swaps by calculating the distance between a pair of qubits that are brought together. All the arguments regarding
the average over permutations from 1D case hold still, but now we consider displacement in two dimensions so the
average distance between the pair of qubits is given by:

dist2D =
∑

√

L
(i1,i2)≠(j1,j2)=1

∣i1 − j1∣ + ∣i2 − j2∣

∑

√

L
(i1,i2)≠(j1,j2)=1

=

2
3
L3/2 (L − 1)

L(L − 1)
=
2

3
L1/2 . (D16)

This calculation can be easily generalized to d dimensional case:

distdD =

d
3
L2− 1

d (L
2
d − 1)

L(L − 1)
≈
d

3
L1/d . (D17)

Hence same as (D7) we can derive a lower bound on the necessary number of swaps to implement an "optimized"
permutation. Which gives the following upper bounds for the error factor:

δ(p)2D ≲ 4
Le−

1
4pL

3
2 and δ(p)dD ≲ 4

Le−
d
8 pL

d+1
d (D18)

Appendix E: Connection between the Heavy-output frequency and the Fidelity

In this section, we first present the definition and design of a heavy-output frequency test. Then we provide
additional evidence for the connection already suggested between heavy output frequency and fidelity [27].

For a given random quantum circuit U and an input state ∣ψ0⟩, the output state is denoted as ∣Ψ⟩ = U ∣ψ0⟩. The
basis states measured with a probability greater than the median pmed of all probabilities are named heavy outputs,
constituting the heavy output subspace represented by HU .

HU = {∣m⟩ s.t. pm > pmed}, (E1)

where pm = ∣ ⟨Ψ∣m⟩ ∣2 denotes the probability of measuring a basis state ∣m⟩. The heavy-output probability hU is
defined as

hU = ∑
∣m⟩∈HU

pm. (E2)

This concept is useful for benchmarking quantum computers. Under specific assumptions, it has been demonstrated
that no classical algorithm can identify heavy outputs with a probability greater than 2/3 [21]. Consequently, a
quantum device’s ability to exceed this probability threshold of 2/3 may signify a quantum advantage in sampling,
making it a passing criterion in the Quantum Volume test [19]. In the QV test, the heavy output subspace is identified
by the classical simulation of the quantum circuit U . A real quantum device executes a corresponding faulty circuit
Ũ that generates an outcome state ∣Ψ̃⟩ = Ũ ∣ψ0⟩. The probabilities of the basis states of the heavy output subspace,
determined by classical simulation of a quantum circuit, are measured leading to the faulty heavy output frequency
hŨ , which reads

hŨ = ∑
m∈HU

p̃m, (E3)

For an ideal, error-free circuit, the asymptotic average heavy output frequency approaches hU → (1 + log(2)) /2 ≈ 0.85,
compared to 0.5 for a completely depolarized device [21].

24

0.0 0.2 0.4 0.6 0.8 1.0

F

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
h
Ũ

Full connectivity with α = 0

L = 4

L = 10

L = 12

0.0 0.2 0.4 0.6 0.8 1.0

F

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

h
Ũ

Full connectivity with α, p 6= 0

L = 4

L = 10

L = 12

0.0 0.2 0.4 0.6 0.8 1.0

F

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

h
Ũ

1D connectivity with α = 0

L = 4

L = 10

L = 12

0.0 0.2 0.4 0.6 0.8 1.0

F

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

h
Ũ

1D connectivity with α, p 6= 0

L = 4

L = 10

L = 12

FIG. 9: Plot of the average faulty heavy output frequency as a function of the average fidelity for the two
architectures considered. The data points were obtained for several layers varying the parameters α and p, and only
consider data with 12 ≤ T ≤ 20. Each point was obtained averaging over 5000 iterations for L = 4, 2000 for L = 10,
and 1000 for L = 12. For α, p ≠ 0 and both for Full and 1D connectivities, the values of the parameters (α, p) were
(0.003, 0.006), (0.008, 0.0048), (0.04, 0.008), (0.08, 0.008) for all system sizes. Moreover, in simulations for 1D
architecture the parameters (0.001, 0.002), (0.002, 0.0012), (0.003, 0.0006), (0.0045, 0.00045) for L = 10,12 were also
used. In the case of α = 0 and both architectures, the simulations were realized using the parameter p = n× 10−j with
n = {1,2, ...,9} and j = {1,2,3} and p ≤ 0.2.

The likelihood of measuring a specific outcome can be straightforwardly determined by executing a quantum circuit
multiple times. However, deriving an analytical expression for the average heavy output frequency in the presence of
noise remains challenging. The expression for the average heavy output frequency can be obtained in the spirit of Eq.
(A4) is

25

hŨ =∑
m

⟨mm∥PH(UT . . . U1)⊗PH(UT . . . U1)
←Ð
∏
τ

[Ũτ ⊗ Ũ∗τ] ∥ψ0ψ0⟩ , (E4)

where ∣ψ0⟩ is the chosen input state, the PH denotes the projection on the appropriate heavy output subspace and
in general is dependent both on the gates inside the circuit and the chosen input state. Due to this fact, the averages
cannot be factorized even for the uncorrelated errors. Moreover, the unitarity in the circuit is lost as well making the
analytical calculations unattainable in general scenarios.

However, it has been achieved for certain simple noise types, such as depolarizing noise, where the dependency was
found to be linear in relation to the average fidelity [27]. Conversely, calculating the average fidelity Eq. (A4) between
a state produced by a perfect circuit and one affected by noise is analytically more tractable but experimentally
challenging. This discrepancy raises the question of how closely these quantities are related.

It turns out that for the discussed types of errors and architectures of the quantum volume circuit, the connection
between the fidelity and heavy output frequency can also be stated as a simple function. The relation is given by the
linear rescaling such that the lower and upper bounds for both quantities coincide:

F = 1 −
2L − 1

2L
hU − hŨ
hU −

1
2

, (E5)

where hU is the average value of heavy output frequency obtained for the ideal scenario with no errors. The numerical
evidence supporting this claim is presented in Figure 9.

We note that the same relation was obtained in the case of global depolarizing channel [27], which suggests that
this simple behavior is general at least for isotropic noise. The fact that standard approximations of heavy output
frequency, which stream from the behaviour of fidelity, repeatedly provided the expected results [19][27] additionally
support this claim.

[1] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
[2] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven,

Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595 (2018).
[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, et al.,

Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).
[4] F. Pan, K. Chen, and P. Zhang, Solving the Sampling Problem of the Sycamore Quantum Circuits, Physical Review Letters

129, 090502 (2022).
[5] I. L. Chuang and M. A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box,

Journal of Modern Optics 44, 2455 (1997).
[6] D. D. Stancil and G. T. Bird, Principles of Superconducting Quantum Computers (John Wiley & Sons, Inc, 2022).
[7] I. Pogorelov, T. Feldker, Ch. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky,

et al., Compact Ion-Trap Quantum Computing Demonstrator, PRX Quantum 2, 020343 (2021).
[8] C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, Journal of Physics B: Atomic,

Molecular and Optical Physics 53, 012002 (2019).
[9] C. Kloeffel and D. Loss, Prospects for Spin-Based Quantum Computing in Quantum Dots, Annual Review of Condensed

Matter Physics 4, 51 (2013).
[10] S. Takeda and A. Furusawa, Toward large-scale fault-tolerant universal photonic quantum computing, APL Photonics 4,

060902 (2019).
[11] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J.

Wineland, Randomized benchmarking of quantum gates, Physical Review A 77, 012307 (2008).
[12] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Robust Randomized Benchmarking of Quantum Processes,

Physical Review Letters 106, 180504 (2011).
[13] E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Physical

Review A 85, 042311 (2012).
[14] A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Bounding the average gate fidelity of composite channels using the

unitarity, New Journal of Physics 21, 053016 (2019).
[15] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, Scalable randomised benchmarking of non-

Clifford gates, npj Quantum Information 2, 1 (2016).
[16] J. Helsen, I. Roth, E. Onorati, A. Werner, and J. Eisert, General Framework for Randomized Benchmarking, PRX Quantum

3, 020357 (2022).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1080/09500349708231894
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119750758
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1088/1361-6455/ab52ef
https://doi.org/10.1088/1361-6455/ab52ef
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1063/1.5100160
https://doi.org/10.1063/1.5100160
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1088/1367-2630/ab1800
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1103/PRXQuantum.3.020357
https://doi.org/10.1103/PRXQuantum.3.020357

26

[17] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise estimation with random unitary operators, Journal of Optics B:
Quantum and Semiclassical Optics 7, S347 (2005).

[18] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, et al.,
Quantum optimization using variational algorithms on near-term quantum devices, Quantum Science and Technology 3,
030503 (2018).

[19] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, Validating quantum computers using randomized
model circuits, Physical Review A 100, 032328 (2019).

[20] L. S. Bishop, S. Bravyi, A. Cross, J. M. Gambetta, and J. Smolin, Quantum Volume, Storage Consortium (2017).
[21] S. Aaronson and L. Chen, Complexity-Theoretic Foundations of Quantum Supremacy Experiments (2016),

arxiv:1612.05903 [quant-ph].
[22] IBM Achieves a New Quantum Volume Level of 128 (2020).
[23] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, et al.,

Demonstration of quantum volume 64 on a superconducting quantum computing system, Quantum Science and Technology
6, 025020 (2021).

[24] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes,
et al., Demonstration of the trapped-ion quantum CCD computer architecture, Nature 592, 209 (2021).

[25] E. Pelofske, A. Bärtschi, and S. Eidenbenz, Quantum Volume in Practice: What Users Can Expect From NISQ Devices,
IEEE Transactions on Quantum Engineering 3, 1 (2022).

[26] I. P. Galanis, I. K. Savvas, and G. Garani, Experimental Approach of the Quantum Volume on Different Quantum
Computing Devices, in Intelligent Distributed Computing XIV , edited by D. Camacho, D. Rosaci, G. M. L. Sarné, and
M. Versaci (Springer International Publishing, Cham, 2022).

[27] C. H. Baldwin, K. Mayer, N. C. Brown, C. Ryan-Anderson, and D. Hayes, Re-examining the quantum volume test: Ideal
distributions, compiler optimizations, confidence intervals, and scalable resource estimations, Quantum 6, 707 (2022).

[28] R. LaRose, A. Mari, V. Russo, D. Strano, and W. J. Zeng, Error mitigation increases the effective quantum volume of
quantum computers (2022), arxiv:2203.05489 [quant-ph].

[29] Y. Zhang, D. Niu, A. Shabani, and H. Shapourian, Quantum Volume for Photonic Quantum Processors, Physical Review
Letters 130, 110602 (2023).

[30] Achieving Quantum Volume 128 on the Honeywell Quantum Computer.
[31] Honeywell Sets New Record For Quantum Computing Performance.
[32] Quantinuum H-Series quantum computer accelerates through 3 more performance records for quantum volume: 217, 218,

and 219.
[33] S. T. Flammia and Y.-K. Liu, Direct Fidelity Estimation from Few Pauli Measurements, Physical Review Letters 106,

230501 (2011).
[34] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and Entangling Capability of Parameterized Quantum Circuits

for Hybrid Quantum-Classical Algorithms, Advanced Quantum Technologies 2, 1900070 (2019).
[35] E. Knill, Approximation by Quantum Circuits (1995), arxiv:quant-ph/9508006.
[36] B. Collins, S. Matsumoto, and J. Novak, The Weingarten Calculus, Notices of the American Mathematical Society 69, 1

(2022).
[37] M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random Quantum Circuits, Annual Review of Condensed Matter

Physics 14, 335 (2023).
[38] J. Liu, Spectral form factors and late time quantum chaos, Physical Review D 98, 086026 (2018).
[39] K. Życzkowski and H.-J. Sommers, Average fidelity between random quantum states, Physical Review A 71, 032313 (2005).
[40] N. Alon, F. R. K. Chung, and R. L. Graham, Routing permutations on graphs via matchings, in Proceedings of the

Twenty-Fifth Annual ACM Symposium on Theory of Computing - STOC ’93 (ACM Press, San Diego, 1993).
[41] F. Wagner, A. Bärmann, F. Liers, and M. Weissenbäck, Improving Quantum Computation by Optimized Qubit Routing,

Journal of Optimization Theory and Applications 197, 1161 (2023).
[42] É. Bonnet, T. Miltzow, and P. Rzążewski, Complexity of Token Swapping and Its Variants, Algorithmica 80, 2656 (2018).
[43] A. M. Childs, E. Schoute, and C. M. Unsal, Circuit Transformations for Quantum Architectures, in Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 135 (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019).
[44] S. Lakshmivarahan, S. K. Dhall, and L. L. Miller, Parallel Sorting Algorithms, in Advances in Computers, Vol. 23, edited

by M. C. Yovits (Elsevier, 1984).
[45] E. R. Canfield, S. Janson, and D. Zeilberger, The Mahonian probability distribution on words is asymptotically normal,

Advances in Applied Mathematics Special Issue in Honor of Dennis Stanton, 46, 109 (2011).
[46] https://doi.org/10.54499/QuantERA/0003/2021.
[47] J. A. Miszczak and Z. Puchała, Symbolic integration with respect to the Haar measure on the unitary groups, Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2017; 65; No 1; 21-27 (2017).
[48] K. Poland, K. Beer, and T. J. Osborne, No Free Lunch for Quantum Machine Learning (2020), arxiv:2003.14103 [quant-ph].
[49] L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique, Fourier Transform: A Tool to Measure Statistical Level Properties

in Very Complex Spectra, Physical Review Letters 56, 2449 (1986).
[50] E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Physical Review E 55, 4067 (1997).
[51] M. L. Mehta, Random Matrices, 3rd ed., Vol. Volume 142.
[52] A. del Campo, J. Molina-Vilaplana, and J. Sonner, Scrambling the spectral form factor: Unitarity constraints and exact

results, Physical Review D 95, 126008 (2017).
[53] F. Haake, Quantum Signatures of Chaos, Springer Series in Synergetics, Vol. 54 (Springer, Berlin, Heidelberg, 2010).

https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1103/PhysRevA.100.032328
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://doi.org/10.48550/arXiv.1612.05903
https://arxiv.org/abs/1612.05903
https://quantumcomputingreport.com/ibm-achieves-a-new-quantum-volume-level-of-128/
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1109/TQE.2022.3184764
https://doi.org/10.1007/978-3-030-96627-0_43
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.48550/arXiv.2203.05489
https://doi.org/10.48550/arXiv.2203.05489
https://arxiv.org/abs/2203.05489
https://doi.org/10.1103/PhysRevLett.130.110602
https://doi.org/10.1103/PhysRevLett.130.110602
https://www.honeywell.com/us/en/news/2020/09/achieving-quantum-volume-128-on-the-honeywell-quantum-computer
https://www.honeywell.com/us/en/news/2021/03/honeywell-sets-new-record-for-quantum-computing-performance
https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219
https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1002/qute.201900070
https://doi.org/10.48550/arXiv.quant-ph/9508006
https://arxiv.org/abs/quant-ph/9508006
https://doi.org/10.1090/noti2474
https://doi.org/10.1090/noti2474
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1103/PhysRevD.98.086026
https://doi.org/10.1103/PhysRevA.71.032313
https://doi.org/10.1145/167088.167239
https://doi.org/10.1145/167088.167239
https://doi.org/10.1007/s10957-023-02229-w
https://doi.org/10.1007/s00453-017-0387-0
https://doi.org/10.4230/LIPIcs.TQC.2019.3
https://doi.org/10.4230/LIPIcs.TQC.2019.3
https://doi.org/10.1016/S0065-2458(08)60467-2
https://doi.org/10.1016/j.aam.2009.10.001
https://doi.org/10.54499/QuantERA/0003/2021
https://www.czasopisma.pan.pl/dlibra/publication/121307/edition/105697
https://www.czasopisma.pan.pl/dlibra/publication/121307/edition/105697
https://doi.org/10.48550/arXiv.2003.14103
https://arxiv.org/abs/2003.14103
https://doi.org/10.1103/PhysRevLett.56.2449
https://doi.org/10.1103/PhysRevE.55.4067
https://shop.elsevier.com/books/random-matrices/lal-mehta/978-0-12-088409-4
https://doi.org/10.1103/PhysRevD.95.126008
https://doi.org/10.1007/978-3-642-05428-0

27

[54] M. Bouvel, L. Cioni, and L. Ferrari, Preimages under the Bubblesort Operator, The Electronic Journal of Combinatorics
, P4.32 (2022).

https://doi.org/10.37236/11390
https://doi.org/10.37236/11390

	 Fidelity decay and error accumulation in quantum volume circuits
	Abstract
	Average fidelity computation
	Average fidelity solvable model circuit
	Computing V
	Computing fd()

	Computing R P R
	Putting all together

	Permutations implementation
	Imperfect SWAP gates
	Fully connected architecture

	Other architectures
	Linear architecture
	Upper bound of error factor for optimized permutation in 1D

	Square cube and hypercube architectures
	Hypercube sorting
	Upper bound of error factor for optimized permutation in 2D and higher dimensions

	Connection between the Heavy-output frequency and the Fidelity
	References

