
Solution to the iterative differential equation
−γg′ = g−1

Roland Miyamoto

April 18, 2024

Abstract

Using a Picard-like operator T , we prove that the iterative differential equation
−γg′ = g−1 with parameter γ > 0 has a solution g = h : [0, 1] → [0, 1] for only one
value γ = κ ≈ 0.278877, and that this solution h is unique. As an even stronger
result, we exhibit h as the global limit of the operator T .
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1 Introduction

The study of Levine’s sequence [6, 10, 9] naturally leads to some differentiable function
g : [0, 1] → [0, 1] satisfying the following property: When we rotate (the graph of) g
clockwise by 90◦ about the origin and subsequently stretch it vertically by a suitable
positive factor, then we obtain its derivative g′. Formally speaking, g satisfies the iterative
differential equation (IDE)

(1) g : [0, 1] → [0, 1], −γg′ = g−1 for some γ > 0

where g−1 denotes the compositional inverse of g. We call such a function a unit stribola
(from Greek στρίβω = turn, twist). Every unit stribola, that is, any solution g to (1) will
obviously be continuously differentiable and strictly decreasing and satisfy the identities

g(0) = 1, g(1) = 0, g′(0) = − 1
γ
,

∫ 1

0
g = γ.

IDEs similar to (1) have been studied by Eder [3], Fečkan [5], Buică [2], Egri and Rus [4]
and Berinde [1], but the techniques employed there appear to be inapt for solving (1).
In [7], we have constructed a unit stribola h by an iterative process. At each step of this
process, we perform the following operation, denoted T : Given any decreasing function
f : [0, 1] → [0, 1] with f(0) = 1 and non-zero area α :=

∫ 1

0
f , we rotate it by 90◦ about the

origin, then stretch it vertically by 1
α
, then integrate, to obtain Tf : [0, 1] → [0, 1]. Starting

from the line segment h1 = 1−id[0,1], the sequence of iterates h1, h2 := Th1, h3 := Th2, . . .
is shown to converge to a unit stribola h. Figure 1 on the next page illustrates the functions
h and h′ and some of their geometric properties.
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Figure 1:

The unit stribola h and its derivative h′.
Their tangents at 0 resp. 1 bisect the
areas they enclose with the axes.

The derivative h′ arises from h by a
90◦ clockwise rotation about the origin
and a subsequent vertical stretching
with 1

κ
where κ =

∫ 1

0
h ≈ 0.278877.



For the sake of better clarity, we include the existence proof from [7] here in a simplified
form. A key ingredient to proving the convergence hn → h is the observation that
the hn, when stretched horizontally and vertically by arbitrary positive factors, always
“cross” each other at most twice. This feature (addressed by the concept of “domination”)
automatically extends to their limit. To be explicit, the unit stribola h is “dominated”
by each iterate hn. From this, we can easily prove h to be the only unit stribola. Finally,
we will establish global convergence, that is, limn→∞ T nf = h for any decreasing function
f : [0, 1] → [0, 1] with f(0) = 1 and

∫ 1

0
f > 0. We attain this strong result by again

and more heavily exploiting the domination structure between the iterates hn and their
limit h.

2 The operator T

For 0 ≤ a ≤ b ≤ 1 and any (Lebesgue) measurable function f : [0, 1] → [0,∞), we

abbreviate
∫ b

a
f :=

∫ b

a
f(x)dx and

∫
f :=

∫ 1

0
f . We will also conveniently write id := id[0,1]

for the identity function on [0, 1]. Our investigations will involve the spaces

M := {f : [0, 1] → [0,∞) : f measurable,
∫
f > 0},

E := {f ∈ M : f decreasing, f(0) = 1},
C := {f ∈ E : f continuous, f(1) = 0}, C̆ := {f ∈ C : f convex},
D := {f ∈ C : f strictly decreasing}, D̆ := D ∩ C̆,
D′ := {f ∈ D : f continuously differentiable on (0, 1]}, D̆′ := D′ ∩ C̆,
D` := {f ∈ D′ : f ′(1) = 0, lim

x→0
f ′(x) ∈ (−∞, 0] exists}, D̆` := D`∩ C̆

of functions on [0, 1]. On E we consider the sup-metric d∞ and the 1-pseudometric d1
defined by

d∞(f, g) := sup
x∈[0,1]

|f(x)− g(x)| and d1(f, g) :=
∫
|f − g| for f, g ∈ E .

Note that d1 is not a metric on E , but on C because d1(f, g) = 0 ⇐⇒ f = g almost
everywhere. With any given g ∈ C̆ we associate its stride

(2) ∠g := sup{α ≥ 0 : α− id ≤ αg} ∈ [0, 1]

and note that the two slopes

(3) g′(0) := − 1
∠g ∈ [−∞,−1] and g′(1) = inf{α ≤ 0 : α(id− 1) ≤ g} ∈ [−1, 0]

are well-defined, where we intentionally allow g′(0) to assume the value −∞.
Given g ∈ E , we will use its pseudo-inverse g∗ ∈ E defined by

g∗(y) := sup g−1[y, 1] = sup{x ∈ [0, 1] : g(x) ≥ y} for y ∈ [0, 1].

According to 2.1(c) below, g∗ equals the compositional inverse g−1 if g ∈ D. Thus we may,
and shall, consistently write g∗ in all cases from now on. In [7], the following properties
of the pseudo-inverse are established.
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2.1 Remark. For f, g ∈ E, the following statements hold.

(a) f ≤ g =⇒ f ∗ ≤ g∗.

(b) If g ∈ C, then g∗ is strictly decreasing.

(c) If g ∈ D, then g∗ = g−1 ∈ D is the inverse function of g.

(d) g ∈ D̆ ⇐⇒ g∗ ∈ D̆.

(e) g ∈ D̆` =⇒ g∗ ∈ D̆′.

(f)
∫
g =

∫
g∗.

(g) d1(f, g) =
∫
|f − g| =

∫
|f ∗ − g∗| = d1(f

∗, g∗).

(h)
∫ 1

g(t)
g∗ =

∫ t

0
g − tg(t) for all t ∈ [0, 1].

For given g ∈ M and f ∈ D̆ ,̀ we define the continuous functions Ig and Df by setting

(Ig)(x) :=

∫ 1

x
g∫
g

and (Df)(x) :=
f ′(x)

f ′(0)
for x ∈ [0, 1]

and formally introduce the operator T : E → C described in the introduction by setting

Tf := If ∗ for f ∈ E , that is, (Tf)(x) =

∫ 1

x
f ∗∫
f

for x ∈ [0, 1]

by 2.1(f), as well as its iterations T 0 = idE and T n := T ◦ T n−1 for n ∈ N.

2.2 Proposition. For g ∈ C, the following statements hold.

(a) Tg ∈ D̆ \ {1− id}.
(b) 1− id∫

g
≤ Tg ≤ 1− id.

(c) (Tg)(g(t)) ·
∫
g =

∫ t

0
g − tg(t) for all t ∈ [0, 1].

(d) If g|[0,1) > 0, then Ig ∈ D̆` with − 1
(Ig)′(0)

= ∠Ig =
∫
g and DIg = g.

(e) If g ∈ D̆ ,̀ then Dg ∈ C with (Dg)|[0,1) > 0,
∫
Dg = ∠g and IDg = g.

(f) C> := {f ∈ C : f |[0,1) > 0} ⊆ D, and I|C> : C> → D̆` is bijective with inverse D.

Proof. (a) Let 0 ≤ a < b ≤ 1. Then g∗(a) > g∗(b) by 2.1(b), hence

∫
g ·

[
(Tg)(a)− (Tg)(b)

]
=

∫ b

a

g∗ > (b− a)g∗(b) ≥ 0,

showing that Tg is strictly decreasing. Similarly, for a < x < b, we obtain

(4)
∫
g · (Tg)(a)− (Tg)(x)

x− a
=

∫ x

a
g∗

x− a
> g∗(x) >

∫ b

x
g∗

b− x
=

∫
g · (Tg)(x)− (Tg)(b)

b− x
,

hence Tg is convex. Evaluating (4) for 0 = a < x < b = 1 yields (Tg)(x) < 1− x, which
completes the proof of the assertion.
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(b) We have γ :=
∫
g =

∫
g∗ according to 2.1(f) and g∗ ≤ 1, hence γ(Tg)(x) =

∫ 1

x
g∗ =

γ−
∫ x

0
g∗ ≥ γ−x for all x ∈ [0, 1], implying the left inequality, while the right one follows

from (a).

(c) follows from 2.1(f) and (h).

(d) By the assumptions, Ig ∈ D, (Ig)′ = − g∫
g
is continuous and increasing, (Ig)′(1) = 0,

and we have − 1
∠Ig = (Ig)′(0) = − 1∫

g
using (3), so that Ig ∈ D̆` and DIg = (Ig)′

(Ig)′(0)
= g.

(e) From g ∈ D̆`we conclude that g′(0) < −1 and Dg = g′

g′(0)
: [0, 1] → [0, 1] is continuous

and decreasing with (Dg)|[0,1) > 0, (Dg)(0) = 1 and (Dg)(1) = 0, hence Dg ∈ C.
Moreover,

∫
Dg = g(1)−g(0)

g′(0)
= ∠g by (3) and (

∫
Dg)(IDg)(x) =

∫ 1
x g′

g′(0)
= ∠g · g(x) for all

x ∈ [0, 1], hence IDg = g.

(f) follows from (c) and (d).

We now explicitly state the connection between the operator T and the IDE (1).

2.3 Proposition. A function g ∈ C is a fixed point of the operator T if and only if g
solves the IDE (1) for some γ > 0, and then g also satisfies the following properties:

(a) g ∈ D̆ .̀

(b)
∫
g = γ.

(c) ∠g = γ.

(d) g∗ and g′ are continuously differentiable on the interval (0, 1].

(e) g′′(1) = 1 and (g∗)′(1) = −γ.

Proof. First we assume that g = Tg ∈ C and set α :=
∫
g. Using Proposition 2.2(a),

we conclude that g ∈ D̆ and then g ∈ D̆` by 2.1(c) and Proposition 2.2(d), settling

assertion (a). Differentiating the equation g(x) = (Tg)(x) = 1
α

∫ 1

x
g∗, we arrive at −αg′ =

g∗, that is, g solves (1) with γ = α.
Conversely assume that g ∈ C (is differentiable and) solves (1) for some γ > 0. Inte-

grating (1) while considering 2.1(c) leads to g(x) = 1
γ

∫ 1

x
g∗. Plugging 0 into this, yields

1 = g(0) = 1
γ

∫
g by 2.1(f), thereby showing (b) and g = Tg.

(a) Plugging 0 into (1) and using 2.1(c) gives g′(0) = −g∗(0)
γ

= −1
γ
, hence ∠g = γ by (3).

(b) By (a) and 2.1(e), we have g∗ ∈ D′, and the assertion follows from (1).

(c) Plugging 1 into the derivative of (1), yields −γg′′(1) = (g∗)′(g(0)) = 1
g′(0)

= −γ by

the chain rule and (c), thus g′′(1) = 1 and (g∗)′(1) = −γ.

Now we want to construct a complete T -invariant subset K of C̆. To this end, we need to
bound area and stride of Tg from below.

2.4 Lemma. Let g ∈ C̆, 0 < α ≤ ∠g, β := inf g−1{0} and γ :=
∫
g. Then

(a) α ≤ 2γ ≤ β ≤ 1, and α = 2γ =⇒ 2γ = β =⇒
∫
Tg = 1

3
,

(b) (Tg)′ : [0, 1] → (−∞, 0] exists, is continuous, strictly increasing and concave,

(c) Tg ∈ D̆` with ∠Tg = γ
β
,
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(d) β
γ
(id− 1) ≤ (Tg)′ ≤ α

γ
(id− 1),

(e)
∫
Tg ≤ 1

3
,

(f) αβ − 4αγ + 4γ2 ≤ 6(β − α)γ
∫
Tg.

Proof. (a) From g ∈ C̆ and the definition of β, we infer that g(x) ≤ 1 − x
β

for all

x ∈ [0, β], hence α
2
=

∫ α

0
(1 − id

α
) ≤

∫
g = γ ≤

∫ β

0
(1 − id

β
) = β

2
, settling the asserted

inequality chain. From this, we also see that α
2
= γ ⇐⇒ g|[α,1] = 0 =⇒ β = α and that

γ = β
2

=⇒ g∗(y) = β(1− y) for y ∈ (0, 1] =⇒ Tg = (1− id)2 =⇒
∫
Tg = 1

3
.

(b) By its convexity, g is strictly decreasing on [0, β]. Thus f(x) := g(βx) for x ∈ [0, 1]
defines a function f ∈ D̆, which satisfies 1− β

α
id ≤ f ≤ 1− id. Using 2.1(d), (a) and (f),

we infer that f ∗ ∈ D̆,

(5) α
β
(1− id) ≤ f ∗ ≤ 1− id and

∫
f ∗ =

∫
f = 1

β

∫
g = γ

β
.

Because βf ∗(x) = g∗(x) for all x ∈ (0, 1], we conclude that Tg = Tf is differentiable with
continuous derivative

(6) (Tg)′ = (Tf)′ = −β
γ
f ∗,

and the assertions follow.

(c) From (3) and (6), we infer that ∠Tg = − 1
(Tg)′(0)

= γ
β
and (Tg)′(1) = 0, hence Tg ∈ D ,̀

while Tg ∈ D̆ holds by Proposition 2.2(a).

(d) follows from (5) and (6).

(e) By (a)–(c) and becaus
∫
(Tg)′ = (Tg)(1)− (Tg)(0) = −1 =

∫
(2id− 2),

s := sup{0 < x < 1 : (Tg)′(x) ≤ 2x− 2} ∈ (0, 1]

is well-defined, (Tg)′|[0,s] ≤ 2id[0,s] − 2 and (Tg)′|[s,1] ≥ 2id[s,1] − 2. We conclude that

(Tg)(x) ≤ 1 +
∫ x

0
(2id − 2) = (1 − x)2 for x ∈ [0, s] and also (Tg)(x) = −

∫ 1

x
(Tg)′ ≤

−
∫ 1

x
(2id− 2) = (1− x)2 for x ∈ [s, 1]. Hence,

∫
Tg ≤

∫
(1− id)2 = 1

3
.

(f) Using (a), the asserted inequality is verified directly if α ≤ 2γ = β, and we may
assume α < 2γ < β. We conclude that ξ := 2γ−α

β−α
∈ (0, 1) and define b : [0, 1] → R by

setting

b(x) :=

{
b0(x) := 1− β

γ
x+ β2−2α(β−γ)

2(2γ−α)γ
x2 for x ∈ [0, ξ],

b1(x) :=
α
2γ
(1− x)2 for x ∈ [ξ, 1].

It is straightforward to verify that b ∈ D̆` with derivative b′ : [0, 1] → R given by

b′(x) =

{
b′0(x) = −β

γ
+ β2−2α(β−γ)

(2γ−α)γ
x for x ∈ [0, ξ],

b′1(x) = −α
γ
(1− x) for x ∈ [ξ, 1],

which is concave and consists of two lines meeting in the point (ξ, α
γ
(ξ − 1)). Using (b)

and (d), we infer that

s := inf{x ∈ (0, 1] : (Tg)′(x) ≤ b′(x)} ∈ [0, ξ],
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(Tg)′|[0,s] ≥ b′|[0,s] and (Tg)′|[s,1] ≤ b′|[s,1]. Thus (Tg)(x) = 1 +
∫ x

0
(Tg)′ ≥ 1 +

∫ x

0
b′ = b(x)

for x ∈ [0, s] and also (Tg)(x) = −
∫ 1

x
(Tg)′ ≥ −

∫ 1

x
b′ = b(x) for x ∈ [s, 1], hence

∫
Tg ≥

∫ 1

0

b =

∫ ξ

0

b0 +

∫ 1

ξ

b1 =
αβ − 4αγ + 4γ2

6(β − α)γ

after a tedious but straightforward calculation.

We are now ready to establish the set

K := {g ∈ C̆ : ∠g,
∫
g ≥ 1

5
}.

and its properties concerning the operator T , needed to prove our main theorems.

2.5 Theorem. The set K has the following properties.

(a) T (K) ⊆ K.

(b) For each f ∈ E there exists n ∈ N such that T nf ∈ K.

(c) The two metrics d∞ and d1 are equivalent on K in the sense that d1(f, g) ≤ d∞(f, g) ≤
5
√

d1(f, g) for all f, g ∈ K.

(d) The metric space (K, d∞) resp. (K, d1) is complete.

(e) The restriction T |K : K → K is continuous when equipping domain and codomain
independently with d∞ or d1.

(f) Every sequence in (K, d∞) resp. (K, d1) has a convergent subsequence.

Proof. (a) Let g ∈ K. Then γ :=
∫
g, ∠g ≥ 1

5
and β := inf g−1{0} ∈ [2

5
, 1] by 2.4(a).

With 2.4(f) we infer that
∫
Tg ≥ u(γ), where the function u : (0,∞) → R satisfies

u(x) =
β − 4x+ 20x2

6(5β − 1)x
and u′(x) =

20x2 − β

6(5β − 1)x2
for all x > 0.

We conclude that
∫
Tg ≥ u

(
β

2
√
5

)
= 2

3
·
√
5−1

5β−1
≥

√
5−1
6

> 1
5
. Moreover, Tg ∈ D̆` ⊆ C̆ and

∠Tg = γ
β
≥ γ ≥ 1

5
by 2.4(c). In total we have shown Tg ∈ K.

(b) Let f ∈ E , and set fn := T 2+nf , γn :=
∫
fn and αn := ∠fn for n ∈ N0. For 0 < α < 1,

define ϑ(α) := 3
2
(α +

√
α) and the function uα : (0,∞) → (0,∞) given by

uα(γ) :=
α− 4αγ + 4γ2

6(1− α)γ
, thus u′

α(γ) =
4γ2 − α

6(1− α)γ2
for all γ > 0,

which therefore satisfies uα(γ) ≥ uα

(√
α
2

)
= α

ϑ(α)
for all γ > 0. With Proposition 2.2(a)

and (b) and Lemma 2.4(c) and (f), we obtain

fn ∈ D̆, αn+1 = γn and γn+1 ≥ uαn(γn) ≥ αn

ϑ(αn)
for all n ∈ N0.

Because

0 < α ≤ 1
5

=⇒ ϑ(α) ≤ ϑ
(
1
5

)
< 1 and 1

5
≤ α < 1 =⇒ α

ϑ(α)
≥

√
5−1
6

> 1
5
,

there consequently exists n ∈ N0 with αn, γn ≥ 1
5
, hence fn ∈ K.
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(c) Let f, g ∈ K. The estimate
∫
|f−g| ≤ supx∈[0,1] |f(x)−g(x)| settles the left inequality.

As for the right one, we may assume that δ := d∞(f, g) = f(x0)−g(x0) for some x0 ∈ [0, 1].
From ∠f, ∠g ≥ 1

5
and f, g ∈ C̆ we infer that

f(x)− g(x) ≥ δ − 5|x− x0| for all x ∈ [0, 1],

hence 0 ≤ a := x0 − δ
5
≤ b := x0 +

δ
5
≤ 1 and d1(f, g) ≥

∫ b

a
(f − g) ≥ δ

2
(b− a) = δ2

5
.

(d) Recall that C0[0, 1], the R-vector space of continuous functions on the interval [0, 1],
is complete with respect to the sup-norm. Therefore, each Cauchy sequence (gn)n∈N
in (K, d∞) converges to some function g ∈ C0[0, 1] satisfying g(0) = 1 and g(1) = 0.
Clearly, g is again decreasing and convex, and both inequalities g ≥ 1− 5id and

∫
g ≥ 1

5

hold. Hence g ∈ K, showing that (K, d∞) is complete. The completeness of (K, d1) follows
with (c).

(e) Let (gn)n∈N be a sequence in K converging to g ∈ K with respect to d∞ or d1. Setting
ĝ :=

∫
g · Tg and ĝn :=

∫
gn · Tgn, Remark 2.1(g) yields

|ĝ(x)− ĝn(x)| =
∣∣∫ 1

x
(g∗ − g∗n)

∣∣ ≤ ∫
|g∗ − g∗n| = d1(g, gn) ≤ d∞(g, gn)

for all x ∈ [0, 1], implying limn→∞ d∞(ĝ, ĝn) = 0 and limn→∞
∫
gn =

∫
g because (Tg)(0) =

1 = (Tgn)(0). We conclude that d1(Tg, Tgn) ≤ d∞(Tg, Tgn) → 0 as n → ∞.

(f) Let gn ∈ K for n ∈ N. Because gn is convex and ∠gn ≥ 1
5
, we conclude that |gn(x1)−

gn(x2)| ≤ 5|x2 − x1| for all x1, x2 ∈ [0, 1], n ∈ N. Therefore the sequence (gn)n∈N is
uniformly equicontinuous, and as it is also uniformly bounded, the Arzelà-Ascoli theorem
guarantees that it has a convergent subsequence in (K, d∞). By (d) its limit lies in K,
and by (c) the same subsequence converges in (K, d1) to the same limit.

Henceforth, when speaking about convergence in K, we mean convergence in (K, d∞), i.e.
uniform convergence, and, by 2.5(c) equivalently, convergence in (K, d1).

3 Crossing number

The crucial proofs of 2.4(e) and (f) rest on the fact that (Tg)′ intersects another derivative
at most once. More generally, if f, g ∈ D, g ≤ f ̸= g and (Tg)′− (Tf)′ = f∗∫

f
− g∗∫

g
changes

its sign only once (from − to + in this case), then we will have Tg ≤ Tf . To propagate
this reasoning to the next iteration step, we would require the difference of (Tf)∗ and
(Tg)∗, after somehow stretching them vertically, to also change sign at most once. But
a vertical stretching of, say (Tg)∗, corresponds to a horizontal stretching of Tg and thus
of (Tg)′ = − g∗∫

g
, which again corresponds to a vertical and horizontal stretching of g.

Because it is hard to tell the stretching factors in advance, we will consider the difference
of f and g after arbitrary horizontal and vertical stretching.
As a first step, we want to count how often a given continuous function ∆: [a, b] → R
defined on a bounded, closed interval [a, b] changes sign. To this end, we call a closed
subinterval [c, d] ⊆ [a, b] with a < c ≤ d < b and image ∆([c, d]) = {0} a sign switch of
∆ if there exists δ ∈ (0,min{c−a, b−d}] such that ∆(c−x) ·∆(d+x) < 0 for all x ∈ (0, δ].
By X∆ we denote the set of all sign switches of ∆ and by χ∆ := #X∆ ∈ N0 ∪{∞} their
number.
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3.1 Remark. Let k ∈ N0, a, b, a
′, b′ ∈ R with a < b and a′ < b′. Let u : [a′, b′] → [a, b]

and ∆: [a, b] → R be continuous functions, u bijective. The following statements hold.

(a) X (c∆) = X∆ for every c ∈ R \ {0}.
(b) χ(∆ ◦ u) = χ∆.

(c) χ∆ ≥ k if and only if there exist a ≤ x0 < · · · < xk ≤ b such that ∆(xi−1) ·∆(xi) < 0
for i ∈ {1, . . . , k}.

(d) If ∆(a) ·∆(b) > 0, then χ∆ is even or ∞.

(e) If ∆(a) ·∆(b) < 0, then χ∆ is odd or ∞.

(f) Suppose that ∆ is continuously differentiable. Then χ∆′ ≥ χ∆−1. If ∆(a)·∆′(a) > 0
in addition, then χ∆′ ≥ χ∆.

(g) Let ∆n : [a, b] → R for n ∈ N be continuous functions such that (∆n)n∈N converges
uniformly to ∆. Then χ∆ ≤ supn∈N χ∆n.

Proof. (a)–(c) are immediate from the definition of sign switches.

(a) and (e) follow from (c).

(b) Suppose that k := χ∆ ∈ N0. Then there are a ≤ x0 < · · · < xk ≤ b as in (c). By the
mean value theorem, we can find yi ∈ [xi−1, xi] with ∆′(yi) ·∆(xi) > 0 for i ∈ {1, . . . , k}.
This shows χ∆′ ≥ k − 1 according to (c).

If ∆(a) ·∆′(a) > 0, then we can find y0 ∈ [a, x0] with ∆′(y0) ·∆(x0) > 0; hence χ∆′ ≥ k
by (c) again.

(c) Let χ∆ ≥ k with x0, . . . , xk as in (c). By assumption, we can choose n ∈ N such that
|∆n(xi)−∆(xi)| < min{|∆(x0)|, . . . , |∆(xk)|}, hence ∆n(xi) ·∆(xi) > 0 for i ∈ {0, . . . , k}.
This implies ∆n(xi−1) · ∆n(xi) < 0 for i ∈ {1, . . . , k} which, by (c), is equivalent to
χ∆n ≥ k.

Given two functions f, g ∈ D and a, b > 0, we introduce the function

f ◦· a := f ◦ (aid) : [0, 1
a
] → [0, 1], x 7→ f(ax)

obtained by stretching f horizontally with the factor 1
a
, and consider the continuous

function f ◦· a − bg : [0,min{1, 1
a
}] → R. The next lemma tells us how its number of sign

switches behaves under swapping f with g and under the operators ∗ and I.

3.2 Lemma. Let a, b > 0 and f, g ∈ D. The following statements hold.

(a) χ(f ◦· a− bg) = χ(g◦· 1
a
− 1

b
f).

(b) χ(f ◦· a− bg) = χ(g∗◦· 1
b
− 1

a
· f ∗).

(c) Let ∆̂ := If ◦· a− bIg, b′ :=
b
∫
f

a
∫
g
and ∆ := f ◦· a− b′g. Then χ∆̂ ≤ 1 + χ∆.

If b < 1 < b′ or b′ < 1 < b, then χ∆̂ ≤ χ∆.

(d) If either a, b < 1 or a, b > 1, then χ(f ◦· a− bg) is even or ∞.

(e) If a < 1 < b or b < 1 < a, then χ(f ◦· a− bg) is odd or ∞.

(f) If a, b ≤ 1 and g ≤ f , then χ(f ◦· a− bg) = 0.

9



Proof. (a) Let a′ := min{1, 1
a
}, ∆ := f ◦· a− bg and ∆̃ := g◦· 1

a
− 1

b
f . Then

b∆̃(ax) = b ·
(
g(ax

a
)− 1

b
f(ax)

)
= bg(x)− f(ax) = −∆(x)

for all x ∈ [0, a′]. Hence, χ∆ = χ∆̃ by 3.1(a) and (b).

(b) Let a′ := min{1, 1
a
}, b′ := min{1, b}, ∆ := f ◦· a− bg : [0, a′] → R and

∆̃ := g∗◦· 1
b
− 1

a
f ∗ : [0, b′] → R.

Because the function u : [0, a′] → [0, b′], x 7→ min{f(ax), bg(x)} is bijective by 2.1(c) and
X (∆̃ ◦ u) = X∆, the assertion follows from 3.1(b).

(c) According to its definition, ∆̂ is differentiable with continuous derivative

∆̂′ = a(If)′◦· a− b(Ig)′ = − a∫
f
∆,

hence χ∆ = χ∆̂′ ≥ χ∆̂ − 1 by 3.1(a) and (f). If b < 1 < b′ or b′ < 1 < b, then
∆̂(0) · ∆̂′(0) = (1− b) · a∫

f
· (b′ − 1) > 0, hence χ∆ = χ∆̂′ ≥ χ∆̂, again by 3.1(a) and (f).

(d) Set ∆ := f ◦· a − bg. If a, b < 1, then ∆(0) = f(0) − bg(0) = 1 − b > 0 and
∆(1) = f(a) > 0. If a, b > 1, then ∆(0) = f(0)−bg(0) = 1−b < 0 and ∆( 1

a
) = −g( 1

a
) < 0.

In both cases, the assertion follows from 3.1(d).

(e) Set ∆ := f ◦· a− bg. If a < 1 < b, then ∆(0) = f(0)− bg(0) = 1− b < 0 and ∆(1) =
f(a) > 0. If b < 1 < a, then ∆(0) = f(0)− bg(0) = 1− b > 0 and ∆( 1

a
) = −g( 1

a
) < 0. In

both cases, the assertion follows from 3.1(e).

(f) From f, g ∈ D, a, b ≤ 1 and g ≤ f , we conclude f(ax) ≥ f(x) and bg(x) ≤ g(x),
hence (f ◦· a − bg)(x) = f(ax) − bg(x) ≥ f(x) − g(x) ≥ 0 for all x ∈ [0, 1], so that
χ(f ◦· a− bg) = 0.

Given f, g ∈ D, we define the crossing number

χ(f, g) := sup{χ(f ◦· a− bg) : a, b > 0} ∈ N0 ∪ {∞}

of f with g. We write g ◁ f or f ▷ g and say that f dominates g if χ(f, g) = 2 and
g ≤ f .

3.3 Lemma. For f, g ∈ D, the following statements hold.

(a) χ(f, g) = χ(g, f) ≥ 1.

(b) g ◁ f ⇐⇒ g∗ ◁ f ∗.

(c) χ(f, f) is odd or ∞.

(d) χ(f, g) ≤ 2 =⇒ χ(f − g) = 0 ⇐⇒ f ≤ g or g ≤ f =⇒ f = g or χ(f, g) ≥ 2.

(e) χ(f, g) = 2 ⇐⇒ f ̸= g and either f ◁ g or g ◁ f .

(f) If g ◁ f and 0 < min{a, b} ≤ 1, then χ(f ◦· a− bg) ≤ 1.

Proof. (a) follows from 3.2(a) and (e).

(b) follows from 3.2(b) and 2.1(a).
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(c) If a, b ≤ 1 or a, b ≥ 1, then χ(f ◦· a − bf) = 0 by 3.2(a) and (f). Therefore, the
assertion follows with 3.2(e).

(d) We prove the first implication by contraposition. Suppose that χ(f − g) > 0, that
is, neither f ≤ g nor g ≤ f holds. Then we may assume w.l.o.g. that there are 0 <
x1 < x2 < 1 with f(x1) > g(x1) and f(x2) < g(x2), and ∆ := f ◦· (1 − ε) − (1 + ε)g by
continuity still satisfies ∆(x1) > 0 and ∆(x2) < 0 for sufficiently small ε > 0. But then
∆(0) = −ε < 0 and ∆(1) = f(1− ε) > 0, so that χ∆ ≥ 3 by 3.1(c). The last implication
is obvious.

(e) follows from (c), (d) and the definition of ◁.

(f) Set ∆ = f ◦· a − bg, then χ∆ ≤ 2. The case a, b ∈ (0, 1] is covered by 3.2(f). If
0 < a ≤ 1 < b, then ∆(0) = b − 1 > 0, and χ(∆) = 2 would imply ∆(x) < 0 for
some x ∈ (0, 1), where we may assume a < 1 by continuity, in violation of 3.2(e). If
0 < b ≤ 1 < a, then ∆( 1

a
) = −bg( 1

a
) < 0, and χ(∆) = 2 would imply ∆(x) > 0 for some

x ∈ (0, 1
a
), where we may assume b < 1 by continuity, violating 3.2(e) again.

Now we can show that domination in D is preserved by the operators I and T .

3.4 Theorem. Let f, g ∈ D such that g ◁ f . Then Ig ◁ If and Tg ◁ Tf .

Proof. By continuity and 2.2(d), we have

(7) ∠Ig =
∫
g <

∫
f = ∠If.

Let a, b > 0 and b′ :=
b
∫
f

a
∫
g
. Then k′ := χ(f ◦· a− b′g) ≤ 2 and k := χ(If ◦· a− bIg) ≤ 1 + k′

according to 3.2(c). Because of 3.2 (d), we need only consider the two cases a ≤ 1 ≤ b
and b < 1 ≤ a, in order to show that k ≤ 2.

• If a ≤ 1 ≤ b, then b′ > 1 by (7), hence k ≤ 1 + k′ ≤ 2 by 3.3(f).

• Now suppose that b < 1 ≤ a. If b′ ≤ 1, then k ≤ 1 + k′ ≤ 2 by 3.3(f), and if b′ > 1,
then k ≤ k′ ≤ 2 by 3.2(c).

In view of 3.3(a) and 3.2(d) we have altogether proved χ(If, Ig) = 2, hence Ig◁If by (7).
Because f ∗, g∗ ∈ D by 2.1 and g∗◁f ∗ by 3.3(b), we also obtain Tg = Ig∗◁If ∗ = Tf .

We conclude this section by observing that domination is also preserved under taking
limits.

3.5 Proposition. Let fn, gn ∈ K for all n ∈ N such that the limits f := limn→∞ fn and
g := limn→∞ gn exist. The following statements hold.

(a) χ(f, g) ≤ supn∈N χ(fn, gn).

(b) If gn ◁ fn for all n ∈ N, then either f = g or g ◁ f .

Proof. (a) Let a, b > 0, set ∆ := f ◦· a − bg and ∆n := fn◦· a − bgn for all n ∈ N.
Then (∆n)n∈N converges uniformly to ∆ by Theorem 2.5. Hence, χ∆ ≤ supn∈N χ∆n due
to 3.1(g).

(b) From the assumption and (b), we infer that g ≤ f and χ(f, g) ≤ 2. With 3.3(a), (d)
and (e), we conclude that either f = g or g ◁ f .
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4 Existence, uniqueness and global convergence

We will now construct a unit stribola, that is, a solution to the IDE (1). To this end, we
define the canonical stribolic iterates and their areas

(8) hn := T n1[0,1] ∈ E , κn :=
∫
hn for n ∈ N0.

In particular, we have h0(x) = 1 = h∗
0(x), h1(x) = (Ih∗

0)(x) = 1 − x = h∗
1(x), h2(x) =

(Ih∗
1)(x) = (1− x)2, h∗

2(x) = 1−
√
x, h3(x) = (Ih∗

2)(x) = 1− 3x+ 2x
3
2 for x ∈ [0, 1], and

(κ0, κ1, κ2, κ3, . . . ) = (1, 1
2
, 1
3
, 3
10
, . . . ).

Figure 2: Graphs of h0, . . . , h5

Repeated application of Theorem 3.4 will show that these iterates descend to a unit
stribola.

4.1 Theorem. The sequence (hn)n∈N0 from (8) satisfies hn+1◁hn ∈ K for all n ∈ N and
converges to a function h ∈ K. Moreover, h = Th solves (1) with γ =

∫
h.

Proof. Because h1 ∈ K is linear, it dominates the non-linear, convex function h2 ∈ K.
With Theorems 3.4 and 2.5(a), we inductively conclude that

(9) hn+1 ◁ hn ∈ K for all n ∈ N.

By 2.5(f), there are positive integers n1 < n2 < · · · and h ∈ K such that limk→∞ hnk
= h,

which implies limn→∞ hn = h because of (9). Finally, using 2.5(e), (8) and Proposition 2.3,
we see that

Th = T
(
lim
n→∞

hn

)
= lim

n→∞
Thn = lim

n→∞
hn+1 = h

solves (1) with γ =
∫
h.
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Until the end of this paper, we shall focus on the unit stribola h := limn→∞ hn ∈ D̆` and
its area

(10) κ :=
∫
h = − 1

h′(0)
= ∠h = lim

n→∞
κn = inf

n∈N0

κn,

as established in Theorem 4.1.

4.2 Corollary. For m,n ∈ N with m < n, we have

(a) hn ◁ hm,

(b) h◁ hm,

(c) χ(hm, hm) = 1,

(d) χ(h, h) = 1.

Proof. (a) Clearly, hn ◁ h1 because h1 is linear, hn ̸= h1 and hn is convex. The assertion
follows with Theorem 3.4 by induction on m.

(b) holds according to (a) and Proposition 3.5(b).

(c) We proceed by induction on m. Obviously, χ(h1, h1) = 1. Assume that χ(hm, hm) =
1. Because hm+1 = Ih∗

m, we conclude that χ(hm+1, hm+1) ≤ 2 using 3.2(b) and (c), hence
χ(hm+1, hm+1) = 1 by 3.3(c).

(d) follows from (c) with 3.5(a) and 3.3(a).

As an aside, we observe that the function

(11) h̃ := 1
κ
h◦·κ : [0, 1

κ
] → [0, 1

κ
] satisfies − h̃′ = h̃∗,

that is, h̃ becomes its own derivative when rotated clockwise about the origin by 90◦. A
function defined on [0, a] for some a > 0 and satisfying the above IDE shall be called a
standard stribola.
Our next goals are to prove that h is the only unit stribola and that (T nf)n∈N converges
to h for every f ∈ E (global convergence). We begin with a result frequently used in the
sequel, that involves the stride, see (2) and (3).

4.3 Stride Lemma. Let f, g ∈ D̆ satisfy g ◁ f and ∠g > 0. Then

(12) f ◦· ∠f ≤ g◦· ∠g

and ∠g ·
∫
f < ∠f ·

∫
g.

Proof. We have 0 < ∠g ≤ ∠f by assumption. Suppose (12) were wrong. Then f( ∠f
∠gx2) >

g(x2) for some x2 ∈ (0, ∠g
∠f ). By continuity, there is a > ∠f

∠g such that f(ax2) > g(x2) still

holds. But because ∠(f ◦· a) = ∠f
a

< ∠g, we can find x1 ∈ (0, x2) with f(ax1) < g(x1).
Again by continuity, there is b ∈ (0, 1) such that ∆ := f ◦· a − bg still satisfies ∆(x1) < 0
and ∆(x2) > 0. Since also ∆(0) = 1 − b > 0 and ∆( 1

a
) = −bg( 1

a
) < 0, we would have

χ(f, g) ≥ 3 by 3.1(c). Therefore (12) holds. Because f ◦· ∠f = g◦· ∠g would imply f = g, we
conclude that ∠g ·

∫
f < ∠f ·

∫
g.
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4.4 Corollary. If the unit stribola h dominates g ∈ D̆, then ∠g <
∫
g = ∠Tg < κ.

Proof. We may assume that ∠g > 0 and obtain κ · ∠g = ∠g ·
∫
h < ∠h ·

∫
g = κ

∫
g from 4.3,

hence ∠g <
∫
g = ∠Tg by 2.2(d) and 2.1(f). Moreover, g ◁ h implies

∫
g <

∫
h = κ.

4.5 Corollary. The sequence
(

κn

κn−1

)
n∈N is strictly increasing and converges to 1.

Proof. Let n ∈ N. Applying the Stride Lemma 4.3 to hn+1 ◁ hn yields

κ2
n = ∠hn+1 ·

∫
hn < ∠hn ·

∫
hn+1 = κn−1κn+1,

hence κn

κn−1
< κn+1

κn
. The convergence to 1 holds because of (10).

We shall use the following lemma as a tool to estimate areas from below.

4.6 Hammock Lemma. Let n ∈ N and g ∈ D̆ satisfy g ◁ h, hn and
∫
g ≤ κn

κ
∠g. Then

κn+1 − 1 + κ
κn

<
∫
Tg.

Proof. From c := κn∫
g
≥ κ

∠g and the Stride Lemma 4.3, we obtain

h ≤ g◦· 1
c
=: g̃ and c

∫
g∗ = c

∫
g =

∫ c

0
g̃ = κn =

∫
hn =

∫
h∗
n.

Because χ(g, hn) ≤ 2, there is x ∈ (0, 1) such that hn|[0,x] ≥ g̃|[0,x] and hn|[x,1] ≤ g̃|[x,1].
Therefore,

0 ≤ κn(hn+1 − Tg) ≤ δ :=
∫ 1

g̃(x)
(h∗

n − cg∗) =
∫ x

0
(hn − g̃) < κn − κ,

which proves κn+1 − 1 + κ
κn

<
∫
Tg upon integration.

Due to Theorem 2.5, for any f ∈ E , the limit set

L(f) := { lim
k→∞

Tmkf : 0 < m1 < m2 < · · · and (Tmkf)k∈N is Cauchy}

of the sequence (T nf)n∈N0 is well-defined and satisfies ∅ ≠ L(f) ⊆ K.

4.7 Lemma. Let f ∈ E and g ∈ L(f). Then
(a) Tmg ∈ L(f) for all m ∈ N,
(b) g ◁ hn for all n ∈ N,
(c) g = h or g ◁ h,

(d) h ∈ L(f) implies limn→∞ T nf = h.

Proof. By Theorem 2.5(b), we may assume that h1 ̸= f ∈ K and conclude that

(13) fn := T n−1f ◁ h1, . . . , hn

for all n ∈ N using Theorem 3.4 with induction. By assumption, there are positive
integers m1 < m2 < · · · such that g = limk→∞ fmk

, implying (b) and (c) by (13) and
Proposition 3.5(b). Due to 2.5(e), Tm is continuous on K, hence Tmg = limk→∞ Tmfmk

=
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limk→∞ fmk+m ∈ L(f) for all m ∈ N, proving (a). As for (d), let ε > 0. Since h ∈ L(f)
and (κn)n∈N0 is decreasing with limit κ, we can choose m ∈ N such that∫

fm > κ− ε and κm <
κ− ε

κ− 2ε
κ.

Using (13) and applying the Stride Lemma 4.3 to fm+1 ◁ hm+1, . . . , fn ◁ hn yields∫
fn >

κn

κm

∫
fm >

κ

κm

∫
fm >

κ− 2ε

κ− ε

∫
fm > κ− 2ϵ

for all n > m. We conclude that limn→∞ fn = h using (13) again.

Although the strong uniqueness established in the next theorem would follow from the
global convergence, we feel like proving it directly because it drops out easily from a small
subset of our previous results.

4.8 Theorem. Suppose that r ∈ N and g ∈ E satisfy T rg = g. Then g = h.

Proof. The assumptions and 2.5(b) imply L(g) = {g, Tg, . . . , T r−1g} ⊆ K. By
Lemma 4.7(a) and (c), we either have g = h or g, Tg, . . . , T r−1g ◁ h. But the latter
option entails the contradictory inequality chain

∠g <
∫
g = ∠Tg < · · · <

∫
T r−1g = ∠T rg = ∠g

according to Corollary 4.4.

4.9 Corollary. The IDE (1) has a solution only for γ = κ, and h is the only unit stribola.
Furthermore, the function h̃ from (11) is the only standard stribola.

Proof. The assertions concerning (1) and h follow immediately from Theorem 4.8. As for
the standard stribola, suppose that a > 0 and g̃ : [0, a] → [0, a] satisfies −g̃′ = g̃∗. Then
g := 1

a
g̃◦· a satisfies (1) with γ = 1

a
. Hence g = h, a = 1

κ
and g̃ = h̃.

We are now also ready to prove the global convergence.

4.10 Theorem. We have limn→∞ T nf = h for every f ∈ E.

Proof. Let f ∈ E . In view of Lemma 4.7(d), it suffices to show that h ∈ L(f). To this
end, let us assume that h ̸= g1 ∈ L(f). Then, by Lemma 4.7(a)–(c) and Corollary 4.4,

gm := Tm−1g1 ∈ L(f),(14)

gm ◁ h, hn and(15)

γm−1 := ∠gm <
∫
gm = γm = ∠gm+1 < κ(16)

for all m,n ∈ N. In particular, limn→∞
γm

γm−1
= 1, hence, for each n ∈ N there exists

m ∈ N such that γm
γm−1

≤ κn

κ
and thus κn+1 − 1 + κ

κn
< γm+1 according to 4.5, (15) and

the Hammock Lemma 4.6. With (15) and (16), we conclude that (γm)m∈N converges to κ
and that (gm)m∈N converges to h, implying that h ∈ L(f) by (14).

The following variation of the Hammock Lemma 4.6 allows us to estimate κ from below.
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4.11 Lemma. Let f, g ∈ D̆ satisfy g◁f , g◁Tf ≤ f and ∠g ≥
∫
g. Then

∫
Tf−1+

∫
Tf∫
f

<∫
Tg <

∫
Tf .

Proof. From g ◁ f , we conclude that c :=
∫
f∫
g
> 1, and also Tg ◁ Tf by 3.4, hence∫

Tg <
∫
Tf , settling the last inequality. Since ∠Tf =

∫
f > 0, we can apply the Stride

Lemma 4.3 to g and Tf and obtain

Tf ≤ g◦· ∠g
∠Tf ≤ g◦· 1

c
=: g̃ and c

∫
g∗ = c

∫
g =

∫ c

0
g̃ =

∫
f =

∫
f ∗.

Because χ(f, g) ≤ 2, there is 0 < x < 1 such that f |[0,x] ≥ g̃|[0,x] and f |[x,1] ≤ g̃|[x,1].
Therefore,

0 ≤
∫
f · (Tf − Tg) ≤ δ :=

∫ 1

f(x)
(f ∗ − cg∗) =

∫ x

0
(f − g̃) <

∫
f −

∫
Tf,

which proves
∫
Tf − 1 +

∫
Tf∫
f

<
∫
Tg upon integration.

4.12 Corollary. For all n ∈ N, we have κn − 1 + κn

κn−1
< κ. In particular,

0.2788770612338 < κ23 − 1 +
κ23

κ22

< κ < κ23 < 0.2788770613941.

Proof. The assertion holds trivially for n = 1. Let n ∈ N, then h◁ hn, Thn by 4.2(b), so

that κn+1 − 1 + κn+1

κn
=

∫
Thn − 1 +

∫
Thn∫
hn

<
∫
Th = κ follows from 4.11. The values for

κ0, . . . , κ23 are determined in [8].
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