Solution to the iterative differential equation
 $-\gamma g^{\prime}=g^{-1}$

Roland Miyamoto

April 18, 2024

Abstract

Using a Picard-like operator T, we prove that the iterative differential equation $-\gamma g^{\prime}=g^{-1}$ with parameter $\gamma>0$ has a solution $g=h:[0,1] \rightarrow[0,1]$ for only one value $\gamma=\kappa \approx 0.278877$, and that this solution h is unique. As an even stronger result, we exhibit h as the global limit of the operator T.

2020 Mathematics Subject Classification: 34K43, 47H10, 47J25, 33E30
Keywords: iterative differential equation, operator, fixed function, global convergence

1 Introduction

The study of Levine's sequence $[6,10,9]$ naturally leads to some differentiable function $g:[0,1] \rightarrow[0,1]$ satisfying the following property: When we rotate (the graph of) g clockwise by 90° about the origin and subsequently stretch it vertically by a suitable positive factor, then we obtain its derivative g^{\prime}. Formally speaking, g satisfies the iterative differential equation (IDE)
(1) $g:[0,1] \rightarrow[0,1], \quad-\gamma g^{\prime}=g^{-1} \quad$ for some $\quad \gamma>0$
where g^{-1} denotes the compositional inverse of g. We call such a function a unit stribola (from Greek $\sigma \tau \rho i \beta \omega=$ turn, twist). Every unit stribola, that is, any solution g to (1) will obviously be continuously differentiable and strictly decreasing and satisfy the identities

$$
g(0)=1, \quad g(1)=0, \quad g^{\prime}(0)=-\frac{1}{\gamma}, \quad \int_{0}^{1} g=\gamma .
$$

IDEs similar to (1) have been studied by Eder [3], Fečkan [5], Buică [2], Egri and Rus [4] and Berinde [1], but the techniques employed there appear to be inapt for solving (1). In [7], we have constructed a unit stribola h by an iterative process. At each step of this process, we perform the following operation, denoted T : Given any decreasing function $f:[0,1] \rightarrow[0,1]$ with $f(0)=1$ and non-zero area $\alpha:=\int_{0}^{1} f$, we rotate it by 90° about the origin, then stretch it vertically by $\frac{1}{\alpha}$, then integrate, to obtain $T f:[0,1] \rightarrow[0,1]$. Starting from the line segment $h_{1}=1-\mathrm{id}_{[0,1]}$, the sequence of iterates $h_{1}, h_{2}:=T h_{1}, h_{3}:=T h_{2}, \ldots$ is shown to converge to a unit stribola h. Figure 1 on the next page illustrates the functions h and h^{\prime} and some of their geometric properties.

For the sake of better clarity, we include the existence proof from [7] here in a simplified form. A key ingredient to proving the convergence $h_{n} \rightarrow h$ is the observation that the h_{n}, when stretched horizontally and vertically by arbitrary positive factors, always "cross" each other at most twice. This feature (addressed by the concept of "domination") automatically extends to their limit. To be explicit, the unit stribola h is "dominated" by each iterate h_{n}. From this, we can easily prove h to be the only unit stribola. Finally, we will establish global convergence, that is, $\lim _{n \rightarrow \infty} T^{n} f=h$ for any decreasing function $f:[0,1] \rightarrow[0,1]$ with $f(0)=1$ and $\int_{0}^{1} f>0$. We attain this strong result by again and more heavily exploiting the domination structure between the iterates h_{n} and their limit h.

2 The operator T

For $0 \leq a \leq b \leq 1$ and any (Lebesgue) measurable function $f:[0,1] \rightarrow[0, \infty)$, we abbreviate $\int_{a}^{b} f:=\int_{a}^{b} f(x) d x$ and $\int f:=\int_{0}^{1} f$. We will also conveniently write id $:=\operatorname{id}_{[0,1]}$ for the identity function on $[0,1]$. Our investigations will involve the spaces

$$
\begin{array}{rlrl}
\mathcal{M} & :=\left\{f:[0,1] \rightarrow[0, \infty): f \text { measurable, } \int f>0\right\}, & & \\
\mathcal{E} & :=\{f \in \mathcal{M}: f \text { decreasing, } f(0)=1\}, & & \\
\mathcal{C} & :=\{f \in \mathcal{E}: f \text { continuous, } f(1)=0\}, & \breve{\mathcal{C}}:=\{f \in \mathcal{C}: f \text { convex }\}, \\
\mathcal{D} & :=\{f \in \mathcal{C}: f \text { strictly decreasing }\} & \breve{\mathcal{D}}:=\mathcal{D} \cap \breve{\mathcal{C}}, \\
\mathcal{D}^{\prime} & :=\{f \in \mathcal{D}: f \text { continuously differentiable on }(0,1]\}, & \mathcal{D}^{\prime}:=\mathcal{D}^{\prime} \cap \breve{\mathcal{C}}, \\
\mathcal{D} & :=\left\{f \in \mathcal{D}^{\prime}: f^{\prime}(1)=0, \lim _{x \rightarrow 0} f^{\prime}(x) \in(-\infty, 0] \text { exists }\right\}, & \breve{\mathcal{D}}:=\mathcal{D}^{\prime} \cap \breve{\mathcal{C}}
\end{array}
$$

of functions on $[0,1]$. On \mathcal{E} we consider the sup-metric d_{∞} and the 1-pseudometric d_{1} defined by

$$
d_{\infty}(f, g):=\sup _{x \in[0,1]}|f(x)-g(x)| \quad \text { and } \quad d_{1}(f, g):=\int|f-g| \quad \text { for } f, g \in \mathcal{E}
$$

Note that d_{1} is not a metric on \mathcal{E}, but on \mathcal{C} because $d_{1}(f, g)=0 \Longleftrightarrow f=g$ almost everywhere. With any given $g \in \breve{\mathcal{C}}$ we associate its stride

$$
\begin{equation*}
\Delta g:=\sup \{\alpha \geq 0: \alpha-\mathrm{id} \leq \alpha g\} \in[0,1] \tag{2}
\end{equation*}
$$

and note that the two slopes

$$
\begin{equation*}
g^{\prime}(0):=-\frac{1}{\Omega} \in[-\infty,-1] \quad \text { and } \quad g^{\prime}(1)=\inf \{\alpha \leq 0: \alpha(\mathrm{id}-1) \leq g\} \in[-1,0] \tag{3}
\end{equation*}
$$

are well-defined, where we intentionally allow $g^{\prime}(0)$ to assume the value $-\infty$.
Given $g \in \mathcal{E}$, we will use its pseudo-inverse $g^{*} \in \mathcal{E}$ defined by

$$
g^{*}(y):=\sup g^{-1}[y, 1]=\sup \{x \in[0,1]: g(x) \geq y\} \quad \text { for } y \in[0,1] .
$$

According to 2.1(c) below, g^{*} equals the compositional inverse g^{-1} if $g \in \mathcal{D}$. Thus we may, and shall, consistently write g^{*} in all cases from now on. In [7], the following properties of the pseudo-inverse are established.
2.1 Remark. For $f, g \in \mathcal{E}$, the following statements hold.
(a) $f \leq g \Longrightarrow f^{*} \leq g^{*}$.
(b) If $g \in \mathcal{C}$, then g^{*} is strictly decreasing.
(c) If $g \in \mathcal{D}$, then $g^{*}=g^{-1} \in \mathcal{D}$ is the inverse function of g.
(d) $g \in \breve{\mathcal{D}} \Longleftrightarrow g^{*} \in \breve{\mathcal{D}}$.
(e) $g \in \breve{\mathcal{D}^{\prime}} \Longrightarrow g^{*} \in \breve{\mathcal{D}}^{\prime}$.
(f) $\int g=\int g^{*}$.
(g) $d_{1}(f, g)=\int|f-g|=\int\left|f^{*}-g^{*}\right|=d_{1}\left(f^{*}, g^{*}\right)$.
(h) $\int_{g(t)}^{1} g^{*}=\int_{0}^{t} g-t g(t)$ for all $t \in[0,1]$.

For given $g \in \mathcal{M}$ and $f \in \breve{\mathcal{D}}$, we define the continuous functions $I g$ and $D f$ by setting

$$
(I g)(x):=\frac{\int_{x}^{1} g}{\int g} \quad \text { and } \quad(D f)(x):=\frac{f^{\prime}(x)}{f^{\prime}(0)} \quad \text { for } x \in[0,1]
$$

and formally introduce the operator $T: \mathcal{E} \rightarrow \mathcal{C}$ described in the introduction by setting

$$
T f:=I f^{*} \text { for } f \in \mathcal{E}, \quad \text { that is, } \quad(T f)(x)=\frac{\int_{x}^{1} f^{*}}{\int f} \text { for } x \in[0,1]
$$

by $2.1(\mathrm{f})$, as well as its iterations $T^{0}=\mathrm{id}_{\mathcal{E}}$ and $T^{n}:=T \circ T^{n-1}$ for $n \in \mathbb{N}$.
2.2 Proposition. For $g \in \mathcal{C}$, the following statements hold.
(a) $T g \in \breve{\mathcal{D}} \backslash\{1-\mathrm{id}\}$.
(b) $1-\frac{\mathrm{id}}{\int g} \leq T g \leq 1-\mathrm{id}$.
(c) $(T g)(g(t)) \cdot \int g=\int_{0}^{t} g-t g(t)$ for all $t \in[0,1]$.
(d) If $\left.g\right|_{[0,1)}>0$, then $I g \in \breve{\mathcal{D}}{ }^{`}$ with $-\frac{1}{(I g)^{\prime}(0)}=\downharpoonleft I g=\int g$ and $D I g=g$.
(e) If $g \in \breve{\mathcal{D}}$, then $D g \in \mathcal{C}$ with $\left.(D g)\right|_{(0,1)}>0, \int D g=\Delta g$ and $I D g=g$.
(f) $\mathcal{C}^{>}:=\left\{f \in \mathcal{C}:\left.f\right|_{[0,1)}>0\right\} \subseteq \mathcal{D}$, and $\left.I\right|_{\mathcal{C}>}: \mathcal{C}^{>} \rightarrow \breve{\mathcal{D}}^{`}$ is bijective with inverse D.

Proof. (a) Let $0 \leq a<b \leq 1$. Then $g^{*}(a)>g^{*}(b)$ by 2.1(b), hence

$$
\int g \cdot[(T g)(a)-(T g)(b)]=\int_{a}^{b} g^{*}>(b-a) g^{*}(b) \geq 0
$$

showing that $T g$ is strictly decreasing. Similarly, for $a<x<b$, we obtain

$$
\begin{equation*}
\int g \cdot \frac{(T g)(a)-(T g)(x)}{x-a}=\frac{\int_{a}^{x} g^{*}}{x-a}>g^{*}(x)>\frac{\int_{x}^{b} g^{*}}{b-x}=\int g \cdot \frac{(T g)(x)-(T g)(b)}{b-x}, \tag{4}
\end{equation*}
$$

hence $T g$ is convex. Evaluating (4) for $0=a<x<b=1$ yields $(T g)(x)<1-x$, which completes the proof of the assertion.
(b) We have $\gamma:=\int g=\int g^{*}$ according to 2.1(f) and $g^{*} \leq 1$, hence $\gamma(T g)(x)=\int_{x}^{1} g^{*}=$ $\gamma-\int_{0}^{x} g^{*} \geq \gamma-x$ for all $x \in[0,1]$, implying the left inequality, while the right one follows from (a).
(c) follows from 2.1(f) and (h).
(d) By the assumptions, $I g \in \mathcal{D},(I g)^{\prime}=-\frac{g}{\int g}$ is continuous and increasing, $(I g)^{\prime}(1)=0$, and we have $-\frac{1}{\sqrt{I g}}=(I g)^{\prime}(0)=-\frac{1}{\int g}$ using (3), so that $I g \in \breve{\mathcal{D}}$ ' and $D I g=\frac{(I g)^{\prime}}{(I g)^{\prime}(0)}=g$.
(e) From $g \in \breve{\mathcal{D}}$ ' we conclude that $g^{\prime}(0)<-1$ and $D g=\frac{g^{\prime}}{g^{\prime}(0)}:[0,1] \rightarrow[0,1]$ is continuous and decreasing with $\left.(D g)\right|_{[0,1)}>0,(D g)(0)=1$ and $(D g)(1)=0$, hence $D g \in \mathcal{C}$. Moreover, $\int D g=\frac{g(1)-g(0)}{g^{\prime}(0)}=\downharpoonleft g$ by (3) and $\left(\int D g\right)(I D g)(x)=\frac{\int_{x}^{1} g^{\prime}}{g^{\prime}(0)}=\downharpoonleft g \cdot g(x)$ for all $x \in[0,1]$, hence $I D g=g$.
(f) follows from (c) and (d).

We now explicitly state the connection between the operator T and the IDE (1).
2.3 Proposition. A function $g \in \mathcal{C}$ is a fixed point of the operator T if and only if g solves the $\operatorname{IDE}(1)$ for some $\gamma>0$, and then g also satisfies the following properties:
(a) $g \in \breve{\mathcal{D}}$.
(b) $\int g=\gamma$.
(c) $\lrcorner g=\gamma$.
(d) g^{*} and g^{\prime} are continuously differentiable on the interval (0,1$]$.
(e) $g^{\prime \prime}(1)=1$ and $\left(g^{*}\right)^{\prime}(1)=-\gamma$.

Proof. First we assume that $g=T g \in \mathcal{C}$ and set $\alpha:=\int g$. Using Proposition 2.2(a), we conclude that $g \in \breve{\mathcal{D}}$ and then $g \in \breve{\mathcal{D}}$ ' by 2.1(c) and Proposition 2.2(d), settling assertion (a). Differentiating the equation $g(x)=(T g)(x)=\frac{1}{\alpha} \int_{x}^{1} g^{*}$, we arrive at $-\alpha g^{\prime}=$ g^{*}, that is, g solves (1) with $\gamma=\alpha$.
Conversely assume that $g \in \mathcal{C}$ (is differentiable and) solves (1) for some $\gamma>0$. Integrating (1) while considering 2.1(c) leads to $g(x)=\frac{1}{\gamma} \int_{x}^{1} g^{*}$. Plugging 0 into this, yields $1=g(0)=\frac{1}{\gamma} \int g$ by $2.1(\mathrm{f})$, thereby showing (b) and $g=T g$.
(a) Plugging 0 into (1) and using 2.1(c) gives $g^{\prime}(0)=\frac{-g^{*}(0)}{\gamma}=\frac{-1}{\gamma}$, hence $\rfloor g=\gamma$ by (3).
(b) By (a) and 2.1(e), we have $g^{*} \in \mathcal{D}^{\prime}$, and the assertion follows from (1).
(c) Plugging 1 into the derivative of (1), yields $-\gamma g^{\prime \prime}(1)=\left(g^{*}\right)^{\prime}(g(0))=\frac{1}{g^{\prime}(0)}=-\gamma$ by the chain rule and (c), thus $g^{\prime \prime}(1)=1$ and $\left(g^{*}\right)^{\prime}(1)=-\gamma$.

Now we want to construct a complete T-invariant subset \mathcal{K} of $\breve{\mathcal{C}}$. To this end, we need to bound area and stride of $T g$ from below.
2.4 Lemma. Let $g \in \breve{\mathcal{C}}, 0<\alpha \leq \Delta g, \beta:=\inf g^{-1}\{0\}$ and $\gamma:=\int g$. Then
(a) $\alpha \leq 2 \gamma \leq \beta \leq 1$, and $\alpha=2 \gamma \Longrightarrow 2 \gamma=\beta \Longrightarrow \int T g=\frac{1}{3}$,
(b) $(T g)^{\prime}:[0,1] \rightarrow(-\infty, 0]$ exists, is continuous, strictly increasing and concave,
(c) $T g \in \breve{\mathcal{D}}{ }^{`}$ with $\triangle T g=\frac{\gamma}{\beta}$,
(d) $\frac{\beta}{\gamma}(\mathrm{id}-1) \leq(T g)^{\prime} \leq \frac{\alpha}{\gamma}(\mathrm{id}-1)$,
(e) $\int T g \leq \frac{1}{3}$,
(f) $\alpha \beta-4 \alpha \gamma+4 \gamma^{2} \leq 6(\beta-\alpha) \gamma \int T g$.

Proof. (a) From $g \in \breve{\mathcal{C}}$ and the definition of β, we infer that $g(x) \leq 1-\frac{x}{\beta}$ for all $x \in[0, \beta]$, hence $\frac{\alpha}{2}=\int_{0}^{\alpha}\left(1-\frac{\text { id }}{\alpha}\right) \leq \int g=\gamma \leq \int_{0}^{\beta}\left(1-\frac{\mathrm{id}}{\beta}\right)=\frac{\beta}{2}$, settling the asserted inequality chain. From this, we also see that $\frac{\alpha}{2}=\left.\gamma \Longleftrightarrow g\right|_{[\alpha, 1]}=0 \Longrightarrow \beta=\alpha$ and that $\gamma=\frac{\beta}{2} \Longrightarrow g^{*}(y)=\beta(1-y)$ for $y \in(0,1] \Longrightarrow T g=(1-\mathrm{id})^{2} \Longrightarrow \int T g=\frac{1}{3}$.
(b) By its convexity, g is strictly decreasing on $[0, \beta]$. Thus $f(x):=g(\beta x)$ for $x \in[0,1]$ defines a function $f \in \breve{\mathcal{D}}$, which satisfies $1-\frac{\beta}{\alpha} \mathrm{id} \leq f \leq 1$ - id. Using 2.1(d), (a) and (f), we infer that $f^{*} \in \breve{\mathcal{D}}$,

$$
\begin{equation*}
\frac{\alpha}{\beta}(1-\mathrm{id}) \leq f^{*} \leq 1-\mathrm{id} \quad \text { and } \quad \int f^{*}=\int f=\frac{1}{\beta} \int g=\frac{\gamma}{\beta} . \tag{5}
\end{equation*}
$$

Because $\beta f^{*}(x)=g^{*}(x)$ for all $x \in(0,1]$, we conclude that $T g=T f$ is differentiable with continuous derivative
(6) $(T g)^{\prime}=(T f)^{\prime}=-\frac{\beta}{\gamma} f^{*}$,
and the assertions follow.
(c) From (3) and (6), we infer that $\Delta T g=-\frac{1}{(T g)^{\prime}(0)}=\frac{\gamma}{\beta}$ and $(T g)^{\prime}(1)=0$, hence $T g \in \mathcal{D}$, while $T g \in \breve{\mathcal{D}}$ holds by Proposition 2.2(a).
(d) follows from (5) and (6).
(e) By (a)-(c) and becaus $\int(T g)^{\prime}=(T g)(1)-(T g)(0)=-1=\int(2 \mathrm{id}-2)$,

$$
s:=\sup \left\{0<x<1:(T g)^{\prime}(x) \leq 2 x-2\right\} \in(0,1]
$$

is well-defined, $\left.(T g)^{\prime}\right|_{[0, s]} \leq 2 \mathrm{id}_{[0, s]}-2$ and $\left.(T g)^{\prime}\right|_{[s, 1]} \geq 2 \operatorname{id}_{[s, 1]}-2$. We conclude that $(T g)(x) \leq 1+\int_{0}^{x}(2 \mathrm{id}-2)=(1-x)^{2}$ for $x \in[0, s]$ and also $(T g)(x)=-\int_{x}^{1}(T g)^{\prime} \leq$ $-\int_{x}^{1}(2 \mathrm{id}-2)=(1-x)^{2}$ for $x \in[s, 1]$. Hence, $\int T g \leq \int(1-\mathrm{id})^{2}=\frac{1}{3}$.
(f) Using (a), the asserted inequality is verified directly if $\alpha \leq 2 \gamma=\beta$, and we may assume $\alpha<2 \gamma<\beta$. We conclude that $\xi:=\frac{2 \gamma-\alpha}{\beta-\alpha} \in(0,1)$ and define $b:[0,1] \rightarrow \mathbb{R}$ by setting

$$
b(x):= \begin{cases}b_{0}(x):=1-\frac{\beta}{\gamma} x+\frac{\beta^{2}-2 \alpha(\beta-\gamma)}{2(2 \gamma-\alpha) \gamma} x^{2} & \text { for } x \in[0, \xi], \\ b_{1}(x):=\frac{\alpha}{2 \gamma}(1-x)^{2} & \text { for } x \in[\xi, 1] .\end{cases}
$$

It is straightforward to verify that $b \in \breve{\mathcal{D}}$. with derivative $b^{\prime}:[0,1] \rightarrow \mathbb{R}$ given by

$$
b^{\prime}(x)= \begin{cases}b_{0}^{\prime}(x)=-\frac{\beta}{\gamma}+\frac{\beta^{2}-2 \alpha(\beta-\gamma)}{(2 \gamma-\alpha) \gamma} x & \text { for } x \in[0, \xi], \\ b_{1}^{\prime}(x)=-\frac{\alpha}{\gamma}(1-x) & \text { for } x \in[\xi, 1],\end{cases}
$$

which is concave and consists of two lines meeting in the point $\left(\xi, \frac{\alpha}{\gamma}(\xi-1)\right)$. Using (b) and (d), we infer that

$$
s:=\inf \left\{x \in(0,1]:(T g)^{\prime}(x) \leq b^{\prime}(x)\right\} \in[0, \xi]
$$

$\left.(T g)^{\prime}\right|_{[0, s]} \geq\left. b^{\prime}\right|_{[0, s]}$ and $\left.(T g)^{\prime}\right|_{[s, 1]} \leq\left. b^{\prime}\right|_{[s, 1]}$. Thus $(T g)(x)=1+\int_{0}^{x}(T g)^{\prime} \geq 1+\int_{0}^{x} b^{\prime}=b(x)$ for $x \in[0, s]$ and also $(T g)(x)=-\int_{x}^{1}(T g)^{\prime} \geq-\int_{x}^{1} b^{\prime}=b(x)$ for $x \in[s, 1]$, hence

$$
\int T g \geq \int_{0}^{1} b=\int_{0}^{\xi} b_{0}+\int_{\xi}^{1} b_{1}=\frac{\alpha \beta-4 \alpha \gamma+4 \gamma^{2}}{6(\beta-\alpha) \gamma}
$$

after a tedious but straightforward calculation.
We are now ready to establish the set

$$
\left.\mathcal{K}:=\{g \in \breve{\mathcal{C}}:\lrcorner g, \int g \geq \frac{1}{5}\right\} .
$$

and its properties concerning the operator T, needed to prove our main theorems.
2.5 Theorem. The set \mathcal{K} has the following properties.
(a) $T(\mathcal{K}) \subseteq \mathcal{K}$.
(b) For each $f \in \mathcal{E}$ there exists $n \in \mathbb{N}$ such that $T^{n} f \in \mathcal{K}$.
(c) The two metrics d_{∞} and d_{1} are equivalent on \mathcal{K} in the sense that $d_{1}(f, g) \leq d_{\infty}(f, g) \leq$ $5 \sqrt{d_{1}(f, g)}$ for all $f, g \in \mathcal{K}$.
(d) The metric space $\left(\mathcal{K}, d_{\infty}\right)$ resp. $\left(\mathcal{K}, d_{1}\right)$ is complete.
(e) The restriction $\left.T\right|_{\mathcal{K}}: \mathcal{K} \rightarrow \mathcal{K}$ is continuous when equipping domain and codomain independently with d_{∞} or d_{1}.
(f) Every sequence in $\left(\mathcal{K}, d_{\infty}\right)$ resp. $\left(\mathcal{K}, d_{1}\right)$ has a convergent subsequence.

Proof. (a) Let $g \in \mathcal{K}$. Then $\left.\gamma:=\int g,\right\lrcorner g \geq \frac{1}{5}$ and $\beta:=\inf g^{-1}\{0\} \in\left[\frac{2}{5}, 1\right]$ by 2.4(a). With 2.4(f) we infer that $\int T g \geq u(\gamma)$, where the function $u:(0, \infty) \rightarrow \mathbb{R}$ satisfies

$$
u(x)=\frac{\beta-4 x+20 x^{2}}{6(5 \beta-1) x} \quad \text { and } \quad u^{\prime}(x)=\frac{20 x^{2}-\beta}{6(5 \beta-1) x^{2}} \quad \text { for all } x>0
$$

We conclude that $\int T g \geq u\left(\frac{\beta}{2 \sqrt{5}}\right)=\frac{2}{3} \cdot \frac{\sqrt{5}-1}{5 \beta-1} \geq \frac{\sqrt{5}-1}{6}>\frac{1}{5}$. Moreover, $T g \in \breve{\mathcal{D}} \subseteq \breve{\mathcal{C}}$ and $\Delta T g=\frac{\gamma}{\beta} \geq \gamma \geq \frac{1}{5}$ by 2.4(c). In total we have shown $T g \in \mathcal{K}$.
(b) Let $f \in \mathcal{E}$, and set $f_{n}:=T^{2+n} f, \gamma_{n}:=\int f_{n}$ and $\alpha_{n}:=\searrow f_{n}$ for $n \in \mathbb{N}_{0}$. For $0<\alpha<1$, define $\vartheta(\alpha):=\frac{3}{2}(\alpha+\sqrt{\alpha})$ and the function $u_{\alpha}:(0, \infty) \rightarrow(0, \infty)$ given by

$$
u_{\alpha}(\gamma):=\frac{\alpha-4 \alpha \gamma+4 \gamma^{2}}{6(1-\alpha) \gamma}, \quad \text { thus } \quad u_{\alpha}^{\prime}(\gamma)=\frac{4 \gamma^{2}-\alpha}{6(1-\alpha) \gamma^{2}} \quad \text { for all } \gamma>0
$$

which therefore satisfies $u_{\alpha}(\gamma) \geq u_{\alpha}\left(\frac{\sqrt{\alpha}}{2}\right)=\frac{\alpha}{\vartheta(\alpha)}$ for all $\gamma>0$. With Proposition 2.2(a) and (b) and Lemma 2.4(c) and (f), we obtain

$$
f_{n} \in \breve{\mathcal{D}}, \quad \alpha_{n+1}=\gamma_{n} \quad \text { and } \quad \gamma_{n+1} \geq u_{\alpha_{n}}\left(\gamma_{n}\right) \geq \frac{\alpha_{n}}{\vartheta\left(\alpha_{n}\right)} \quad \text { for all } n \in \mathbb{N}_{0} .
$$

Because

$$
0<\alpha \leq \frac{1}{5} \Longrightarrow \vartheta(\alpha) \leq \vartheta\left(\frac{1}{5}\right)<1 \quad \text { and } \quad \frac{1}{5} \leq \alpha<1 \Longrightarrow \frac{\alpha}{\vartheta(\alpha)} \geq \frac{\sqrt{5}-1}{6}>\frac{1}{5}
$$

there consequently exists $n \in \mathbb{N}_{0}$ with $\alpha_{n}, \gamma_{n} \geq \frac{1}{5}$, hence $f_{n} \in \mathcal{K}$.
(c) Let $f, g \in \mathcal{K}$. The estimate $\int|f-g| \leq \sup _{x \in[0,1]}|f(x)-g(x)|$ settles the left inequality. As for the right one, we may assume that $\delta:=d_{\infty}(f, g)=f\left(x_{0}\right)-g\left(x_{0}\right)$ for some $x_{0} \in[0,1]$. From $\downarrow f,\lrcorner g \geq \frac{1}{5}$ and $f, g \in \breve{\mathcal{C}}$ we infer that

$$
f(x)-g(x) \geq \delta-5\left|x-x_{0}\right| \quad \text { for all } x \in[0,1]
$$

hence $0 \leq a:=x_{0}-\frac{\delta}{5} \leq b:=x_{0}+\frac{\delta}{5} \leq 1$ and $d_{1}(f, g) \geq \int_{a}^{b}(f-g) \geq \frac{\delta}{2}(b-a)=\frac{\delta^{2}}{5}$.
(d) Recall that $\mathcal{C}^{0}[0,1]$, the \mathbb{R}-vector space of continuous functions on the interval $[0,1]$, is complete with respect to the sup-norm. Therefore, each Cauchy sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $\left(\mathcal{K}, d_{\infty}\right)$ converges to some function $g \in \mathcal{C}^{0}[0,1]$ satisfying $g(0)=1$ and $g(1)=0$. Clearly, g is again decreasing and convex, and both inequalities $g \geq 1-5 i d$ and $\int g \geq \frac{1}{5}$ hold. Hence $g \in \mathcal{K}$, showing that (\mathcal{K}, d_{∞}) is complete. The completeness of (\mathcal{K}, d_{1}) follows with (c).
(e) Let $\left(g_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{K} converging to $g \in \mathcal{K}$ with respect to d_{∞} or d_{1}. Setting $\hat{g}:=\int g \cdot T g$ and $\hat{g}_{n}:=\int g_{n} \cdot T g_{n}$, Remark 2.1(g) yields

$$
\left|\hat{g}(x)-\hat{g}_{n}(x)\right|=\left|\int_{x}^{1}\left(g^{*}-g_{n}^{*}\right)\right| \leq \int\left|g^{*}-g_{n}^{*}\right|=d_{1}\left(g, g_{n}\right) \leq d_{\infty}\left(g, g_{n}\right)
$$

for all $x \in[0,1]$, implying $\lim _{n \rightarrow \infty} d_{\infty}\left(\hat{g}, \hat{g}_{n}\right)=0$ and $\lim _{n \rightarrow \infty} \int g_{n}=\int g$ because $(T g)(0)=$ $1=\left(T g_{n}\right)(0)$. We conclude that $d_{1}\left(T g, T g_{n}\right) \leq d_{\infty}\left(T g, T g_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(f) Let $g_{n} \in \mathcal{K}$ for $n \in \mathbb{N}$. Because g_{n} is convex and $\rfloor g_{n} \geq \frac{1}{5}$, we conclude that $\mid g_{n}\left(x_{1}\right)-$ $g_{n}\left(x_{2}\right)|\leq 5| x_{2}-x_{1} \mid$ for all $x_{1}, x_{2} \in[0,1], n \in \mathbb{N}$. Therefore the sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ is uniformly equicontinuous, and as it is also uniformly bounded, the Arzelà-Ascoli theorem guarantees that it has a convergent subsequence in $\left(\mathcal{K}, d_{\infty}\right)$. By (d) its limit lies in \mathcal{K}, and by (c) the same subsequence converges in $\left(\mathcal{K}, d_{1}\right)$ to the same limit.

Henceforth, when speaking about convergence in \mathcal{K}, we mean convergence in (\mathcal{K}, d_{∞}), i.e. uniform convergence, and, by $2.5(\mathrm{c})$ equivalently, convergence in $\left(\mathcal{K}, d_{1}\right)$.

3 Crossing number

The crucial proofs of 2.4(e) and (f) rest on the fact that $(T g)^{\prime}$ intersects another derivative at most once. More generally, if $f, g \in \mathcal{D}, g \leq f \neq g$ and $(T g)^{\prime}-(T f)^{\prime}=\frac{f^{*}}{j f}-\frac{g^{*}}{j g}$ changes its sign only once (from - to + in this case), then we will have $T g \leq T f$. To propagate this reasoning to the next iteration step, we would require the difference of $(T f)^{*}$ and $(T g)^{*}$, after somehow stretching them vertically, to also change sign at most once. But a vertical stretching of, say $(T g)^{*}$, corresponds to a horizontal stretching of $T g$ and thus of $(T g)^{\prime}=-\frac{g^{*}}{J g}$, which again corresponds to a vertical and horizontal stretching of g. Because it is hard to tell the stretching factors in advance, we will consider the difference of f and g after arbitrary horizontal and vertical stretching.
As a first step, we want to count how often a given continuous function $\Delta:[a, b] \rightarrow \mathbb{R}$ defined on a bounded, closed interval $[a, b]$ changes sign. To this end, we call a closed subinterval $[c, d] \subseteq[a, b]$ with $a<c \leq d<b$ and image $\Delta([c, d])=\{0\}$ a sign switch of Δ if there exists $\delta \in(0, \min \{c-a, b-d\}]$ such that $\Delta(c-x) \cdot \Delta(d+x)<0$ for all $x \in(0, \delta]$. By $\mathcal{X} \Delta$ we denote the set of all sign switches of Δ and by $\chi \Delta:=\# \mathcal{X} \Delta \in \mathbb{N}_{0} \cup\{\infty\}$ their number.
3.1 Remark. Let $k \in \mathbb{N}_{0}, a, b, a^{\prime}, b^{\prime} \in \mathbb{R}$ with $a<b$ and $a^{\prime}<b^{\prime}$. Let $u:\left[a^{\prime}, b^{\prime}\right] \rightarrow[a, b]$ and $\Delta:[a, b] \rightarrow \mathbb{R}$ be continuous functions, u bijective. The following statements hold.
(a) $\mathcal{X}(c \Delta)=\mathcal{X} \Delta$ for every $c \in \mathbb{R} \backslash\{0\}$.
(b) $\chi(\Delta \circ u)=\chi \Delta$.
(c) $\chi \Delta \geq k$ if and only if there exist $a \leq x_{0}<\cdots<x_{k} \leq b$ such that $\Delta\left(x_{i-1}\right) \cdot \Delta\left(x_{i}\right)<0$ for $i \in\{1, \ldots, k\}$.
(d) If $\Delta(a) \cdot \Delta(b)>0$, then $\chi \Delta$ is even or ∞.
(e) If $\Delta(a) \cdot \Delta(b)<0$, then $\chi \Delta$ is odd or ∞.
(f) Suppose that Δ is continuously differentiable. Then $\chi \Delta^{\prime} \geq \chi \Delta-1$. If $\Delta(a) \cdot \Delta^{\prime}(a)>0$ in addition, then $\chi \Delta^{\prime} \geq \chi \Delta$.
(g) Let $\Delta_{n}:[a, b] \rightarrow \mathbb{R}$ for $n \in \mathbb{N}$ be continuous functions such that $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to Δ. Then $\chi \Delta \leq \sup _{n \in \mathbb{N}} \chi \Delta_{n}$.

Proof. (a)-(c) are immediate from the definition of sign switches.
(a) and (e) follow from (c).
(b) Suppose that $k:=\chi \Delta \in \mathbb{N}_{0}$. Then there are $a \leq x_{0}<\cdots<x_{k} \leq b$ as in (c). By the mean value theorem, we can find $y_{i} \in\left[x_{i-1}, x_{i}\right]$ with $\Delta^{\prime}\left(y_{i}\right) \cdot \Delta\left(x_{i}\right)>0$ for $i \in\{1, \ldots, k\}$. This shows $\chi \Delta^{\prime} \geq k-1$ according to (c).
If $\Delta(a) \cdot \Delta^{\prime}(a)>0$, then we can find $y_{0} \in\left[a, x_{0}\right]$ with $\Delta^{\prime}\left(y_{0}\right) \cdot \Delta\left(x_{0}\right)>0$; hence $\chi \Delta^{\prime} \geq k$ by (c) again.
(c) Let $\chi \Delta \geq k$ with x_{0}, \ldots, x_{k} as in (c). By assumption, we can choose $n \in \mathbb{N}$ such that $\left|\Delta_{n}\left(x_{i}\right)-\Delta\left(x_{i}\right)\right|<\min \left\{\left|\Delta\left(x_{0}\right)\right|, \ldots,\left|\Delta\left(x_{k}\right)\right|\right\}$, hence $\Delta_{n}\left(x_{i}\right) \cdot \Delta\left(x_{i}\right)>0$ for $i \in\{0, \ldots, k\}$. This implies $\Delta_{n}\left(x_{i-1}\right) \cdot \Delta_{n}\left(x_{i}\right)<0$ for $i \in\{1, \ldots, k\}$ which, by (c), is equivalent to $\chi \Delta_{n} \geq k$.

Given two functions $f, g \in \mathcal{D}$ and $a, b>0$, we introduce the function

$$
f \odot a:=f \circ(a \mathrm{id}):\left[0, \frac{1}{a}\right] \rightarrow[0,1], \quad x \mapsto f(a x)
$$

obtained by stretching f horizontally with the factor $\frac{1}{a}$, and consider the continuous function $f \odot a-b g:\left[0, \min \left\{1, \frac{1}{a}\right\}\right] \rightarrow \mathbb{R}$. The next lemma tells us how its number of sign switches behaves under swapping f with g and under the operators * and I.
3.2 Lemma. Let $a, b>0$ and $f, g \in \mathcal{D}$. The following statements hold.
(a) $\chi(f \odot a-b g)=\chi\left(g \odot \frac{1}{a}-\frac{1}{b} f\right)$.
(b) $\chi(f \odot a-b g)=\chi\left(g^{*} \odot \frac{1}{b}-\frac{1}{a} \cdot f^{*}\right)$.
(c) Let $\hat{\Delta}:=I f \odot a-b I g, b^{\prime}:=\frac{b \int f}{a \int g}$ and $\Delta:=f \odot a-b^{\prime} g$. Then $\chi \hat{\Delta} \leq 1+\chi \Delta$. If $b<1<b^{\prime}$ or $b^{\prime}<1<b$, then $\chi \hat{\Delta} \leq \chi \Delta$.
(d) If either $a, b<1$ or $a, b>1$, then $\chi(f \odot a-b g)$ is even or ∞.
(e) If $a<1<b$ or $b<1<a$, then $\chi(f \odot a-b g)$ is odd or ∞.
(f) If $a, b \leq 1$ and $g \leq f$, then $\chi(f \odot a-b g)=0$.

Proof. (a) Let $a^{\prime}:=\min \left\{1, \frac{1}{a}\right\}, \Delta:=f \odot a-b g$ and $\tilde{\Delta}:=g \odot \frac{1}{a}-\frac{1}{b} f$. Then

$$
b \tilde{\Delta}(a x)=b \cdot\left(g\left(\frac{a x}{a}\right)-\frac{1}{b} f(a x)\right)=b g(x)-f(a x)=-\Delta(x)
$$

for all $x \in\left[0, a^{\prime}\right]$. Hence, $\chi \Delta=\chi \tilde{\Delta}$ by 3.1(a) and (b).
(b) Let $a^{\prime}:=\min \left\{1, \frac{1}{a}\right\}, b^{\prime}:=\min \{1, b\}, \Delta:=f \odot a-b g:\left[0, a^{\prime}\right] \rightarrow \mathbb{R}$ and

$$
\tilde{\Delta}:=g^{*} \odot \frac{1}{b}-\frac{1}{a} f^{*}:\left[0, b^{\prime}\right] \rightarrow \mathbb{R} .
$$

Because the function $u:\left[0, a^{\prime}\right] \rightarrow\left[0, b^{\prime}\right], x \mapsto \min \{f(a x), b g(x)\}$ is bijective by $2.1(\mathrm{c})$ and $\mathcal{X}(\tilde{\Delta} \circ u)=\mathcal{X} \Delta$, the assertion follows from 3.1(b).
(c) According to its definition, $\hat{\Delta}$ is differentiable with continuous derivative

$$
\hat{\Delta}^{\prime}=a(I f)^{\prime} \odot a-b(I g)^{\prime}=-\frac{a}{\int f} \Delta,
$$

hence $\chi \Delta=\chi \hat{\Delta}^{\prime} \geq \chi \hat{\Delta}-1$ by 3.1(a) and (f). If $b<1<b^{\prime}$ or $b^{\prime}<1<b$, then $\hat{\Delta}(0) \cdot \hat{\Delta}^{\prime}(0)=(1-\bar{b}) \cdot \frac{a}{\int f} \cdot\left(b^{\prime}-1\right)>0$, hence $\chi \Delta=\chi \hat{\Delta}^{\prime} \geq \chi \hat{\Delta}$, again by $3.1(\mathrm{a})$ and (f).
(d) Set $\Delta:=f \odot a-b g$. If $a, b<1$, then $\Delta(0)=f(0)-b g(0)=1-b>0$ and $\Delta(1)=f(a)>0$. If $a, b>1$, then $\Delta(0)=f(0)-b g(0)=1-b<0$ and $\Delta\left(\frac{1}{a}\right)=-g\left(\frac{1}{a}\right)<0$. In both cases, the assertion follows from 3.1(d).
(e) Set $\Delta:=f \odot a-b g$. If $a<1<b$, then $\Delta(0)=f(0)-b g(0)=1-b<0$ and $\Delta(1)=$ $f(a)>0$. If $b<1<a$, then $\Delta(0)=f(0)-b g(0)=1-b>0$ and $\Delta\left(\frac{1}{a}\right)=-g\left(\frac{1}{a}\right)<0$. In both cases, the assertion follows from 3.1(e).
(f) From $f, g \in \mathcal{D}, a, b \leq 1$ and $g \leq f$, we conclude $f(a x) \geq f(x)$ and $b g(x) \leq g(x)$, hence $(f \odot a-b g)(x)=f(a x)-b g(x) \geq f(x)-g(x) \geq 0$ for all $x \in[0,1]$, so that $\chi(f \odot a-b g)=0$.

Given $f, g \in \mathcal{D}$, we define the crossing number

$$
\chi(f, g):=\sup \{\chi(f \odot a-b g): a, b>0\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

of f with g. We write $g \triangleleft f$ or $f \triangleright g$ and say that f dominates g if $\chi(f, g)=2$ and $g \leq f$.
3.3 Lemma. For $f, g \in \mathcal{D}$, the following statements hold.
(a) $\chi(f, g)=\chi(g, f) \geq 1$.
(b) $g \triangleleft f \Longleftrightarrow g^{*} \triangleleft f^{*}$.
(c) $\chi(f, f)$ is odd or ∞.
(d) $\chi(f, g) \leq 2 \Longrightarrow \chi(f-g)=0 \Longleftrightarrow f \leq g$ or $g \leq f \Longrightarrow f=g$ or $\chi(f, g) \geq 2$.
(e) $\chi(f, g)=2 \Longleftrightarrow f \neq g$ and either $f \triangleleft g$ or $g \triangleleft f$.
(f) If $g \triangleleft f$ and $0<\min \{a, b\} \leq 1$, then $\chi(f \odot a-b g) \leq 1$.

Proof. (a) follows from 3.2(a) and (e).
(b) follows from 3.2(b) and 2.1(a).
(c) If $a, b \leq 1$ or $a, b \geq 1$, then $\chi(f \odot a-b f)=0$ by $3.2(\mathrm{a})$ and (f). Therefore, the assertion follows with 3.2(e).
(d) We prove the first implication by contraposition. Suppose that $\chi(f-g)>0$, that is, neither $f \leq g$ nor $g \leq f$ holds. Then we may assume w.l.o.g. that there are $0<$ $x_{1}<x_{2}<1$ with $f\left(x_{1}\right)>g\left(x_{1}\right)$ and $f\left(x_{2}\right)<g\left(x_{2}\right)$, and $\Delta:=f \odot(1-\varepsilon)-(1+\varepsilon) g$ by continuity still satisfies $\Delta\left(x_{1}\right)>0$ and $\Delta\left(x_{2}\right)<0$ for sufficiently small $\varepsilon>0$. But then $\Delta(0)=-\varepsilon<0$ and $\Delta(1)=f(1-\varepsilon)>0$, so that $\chi \Delta \geq 3$ by 3.1(c). The last implication is obvious.
(e) follows from (c), (d) and the definition of \triangleleft.
(f) Set $\Delta=f \odot a-b g$, then $\chi \Delta \leq 2$. The case $a, b \in(0,1]$ is covered by $3.2(\mathrm{f})$. If $0<a \leq 1<b$, then $\Delta(0)=b-1>0$, and $\chi(\Delta)=2$ would imply $\Delta(x)<0$ for some $x \in(0,1)$, where we may assume $a<1$ by continuity, in violation of 3.2(e). If $0<b \leq 1<a$, then $\Delta\left(\frac{1}{a}\right)=-b g\left(\frac{1}{a}\right)<0$, and $\chi(\Delta)=2$ would imply $\Delta(x)>0$ for some $x \in\left(0, \frac{1}{a}\right)$, where we may assume $b<1$ by continuity, violating 3.2(e) again.
Now we can show that domination in \mathcal{D} is preserved by the operators I and T.
3.4 Theorem. Let $f, g \in \mathcal{D}$ such that $g \triangleleft f$. Then $\operatorname{Ig} \triangleleft I f$ and $T g \triangleleft T f$.

Proof. By continuity and 2.2(d), we have

$$
\begin{equation*}
\Delta I g=\int g<\int f=\Delta I f . \tag{7}
\end{equation*}
$$

Let $a, b>0$ and $b^{\prime}:=\frac{b \int f}{a \int g}$. Then $k^{\prime}:=\chi\left(f \odot a-b^{\prime} g\right) \leq 2$ and $k:=\chi(I f \odot a-b I g) \leq 1+k^{\prime}$ according to 3.2 (c). Because of 3.2 (d), we need only consider the two cases $a \leq 1 \leq b$ and $b<1 \leq a$, in order to show that $k \leq 2$.

- If $a \leq 1 \leq b$, then $b^{\prime}>1$ by (7), hence $k \leq 1+k^{\prime} \leq 2$ by 3.3(f).
- Now suppose that $b<1 \leq a$. If $b^{\prime} \leq 1$, then $k \leq 1+k^{\prime} \leq 2$ by $3.3(\mathrm{f})$, and if $b^{\prime}>1$, then $k \leq k^{\prime} \leq 2$ by 3.2 (c).
In view of $3.3(\mathrm{a})$ and $3.2(\mathrm{~d})$ we have altogether proved $\chi(I f, I g)=2$, hence $I g \triangleleft I f$ by (7). Because $f^{*}, g^{*} \in \mathcal{D}$ by 2.1 and $g^{*} \triangleleft f^{*}$ by 3.3(b), we also obtain $T g=I g^{*} \triangleleft I f^{*}=T f$.

We conclude this section by observing that domination is also preserved under taking limits.
3.5 Proposition. Let $f_{n}, g_{n} \in \mathcal{K}$ for all $n \in \mathbb{N}$ such that the limits $f:=\lim _{n \rightarrow \infty} f_{n}$ and $g:=\lim _{n \rightarrow \infty} g_{n}$ exist. The following statements hold.
(a) $\chi(f, g) \leq \sup _{n \in \mathbb{N}} \chi\left(f_{n}, g_{n}\right)$.
(b) If $g_{n} \triangleleft f_{n}$ for all $n \in \mathbb{N}$, then either $f=g$ or $g \triangleleft f$.

Proof. (a) Let $a, b>0$, set $\Delta:=f \odot a-b g$ and $\Delta_{n}:=f_{n} \odot a-b g_{n}$ for all $n \in \mathbb{N}$. Then $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to Δ by Theorem 2.5. Hence, $\chi \Delta \leq \sup _{n \in \mathbb{N}} \chi \Delta_{n}$ due to $3.1(\mathrm{~g})$.
(b) From the assumption and (b), we infer that $g \leq f$ and $\chi(f, g) \leq 2$. With 3.3(a), (d) and (e), we conclude that either $f=g$ or $g \triangleleft f$.

4 Existence, uniqueness and global convergence

We will now construct a unit stribola, that is, a solution to the IDE (1). To this end, we define the canonical stribolic iterates and their areas
(8) $\quad h_{n}:=T^{n} 1_{[0,1]} \in \mathcal{E}, \quad \kappa_{n}:=\int h_{n} \quad$ for $n \in \mathbb{N}_{0}$.

In particular, we have $h_{0}(x)=1=h_{0}^{*}(x), h_{1}(x)=\left(h_{0}^{*}\right)(x)=1-x=h_{1}^{*}(x), h_{2}(x)=$ $\left(I h_{1}^{*}\right)(x)=(1-x)^{2}, h_{2}^{*}(x)=1-\sqrt{x}, h_{3}(x)=\left(I h_{2}^{*}\right)(x)=1-3 x+2 x^{\frac{3}{2}}$ for $x \in[0,1]$, and $\left(\kappa_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right)=\left(1, \frac{1}{2}, \frac{1}{3}, \frac{3}{10}, \ldots\right)$.

Figure 2: Graphs of h_{0}, \ldots, h_{5}
Repeated application of Theorem 3.4 will show that these iterates descend to a unit stribola.
4.1 Theorem. The sequence $\left(h_{n}\right)_{n \in \mathbb{N}}$ from (8) satisfies $h_{n+1} \triangleleft h_{n} \in \mathcal{K}$ for all $n \in \mathbb{N}$ and converges to a function $h \in \mathcal{K}$. Moreover, $h=$ Th solves (1) with $\gamma=\int h$.

Proof. Because $h_{1} \in \mathcal{K}$ is linear, it dominates the non-linear, convex function $h_{2} \in \mathcal{K}$. With Theorems 3.4 and 2.5(a), we inductively conclude that
(9) $h_{n+1} \triangleleft h_{n} \in \mathcal{K} \quad$ for all $n \in \mathbb{N}$.

By 2.5(f), there are positive integers $n_{1}<n_{2}<\cdots$ and $h \in \mathcal{K}$ such that $\lim _{k \rightarrow \infty} h_{n_{k}}=h$, which implies $\lim _{n \rightarrow \infty} h_{n}=h$ because of (9). Finally, using 2.5(e), (8) and Proposition 2.3, we see that

$$
T h=T\left(\lim _{n \rightarrow \infty} h_{n}\right)=\lim _{n \rightarrow \infty} T h_{n}=\lim _{n \rightarrow \infty} h_{n+1}=h
$$

solves (1) with $\gamma=\int h$.

Until the end of this paper, we shall focus on the unit stribola $h:=\lim _{n \rightarrow \infty} h_{n} \in \breve{\mathcal{D}}$ 긍 its area

$$
\begin{equation*}
\left.\kappa:=\int h=-\frac{1}{h^{\prime}(0)}=\right\rfloor h=\lim _{n \rightarrow \infty} \kappa_{n}=\inf _{n \in \mathbb{N}_{0}} \kappa_{n}, \tag{10}
\end{equation*}
$$

as established in Theorem 4.1.
4.2 Corollary. For $m, n \in \mathbb{N}$ with $m<n$, we have
(a) $h_{n} \triangleleft h_{m}$,
(b) $h \triangleleft h_{m}$,
(c) $\chi\left(h_{m}, h_{m}\right)=1$,
(d) $\chi(h, h)=1$.

Proof. (a) Clearly, $h_{n} \triangleleft h_{1}$ because h_{1} is linear, $h_{n} \neq h_{1}$ and h_{n} is convex. The assertion follows with Theorem 3.4 by induction on m.
(b) holds according to (a) and Proposition 3.5(b).
(c) We proceed by induction on m. Obviously, $\chi\left(h_{1}, h_{1}\right)=1$. Assume that $\chi\left(h_{m}, h_{m}\right)=$ 1. Because $h_{m+1}=I h_{m}^{*}$, we conclude that $\chi\left(h_{m+1}, h_{m+1}\right) \leq 2$ using 3.2 (b) and (c), hence $\chi\left(h_{m+1}, h_{m+1}\right)=1$ by $3.3(\mathrm{c})$.
(d) follows from (c) with 3.5(a) and 3.3(a).

As an aside, we observe that the function

$$
\begin{equation*}
\tilde{h}:=\frac{1}{\kappa} h \odot \kappa:\left[0, \frac{1}{\kappa}\right] \rightarrow\left[0, \frac{1}{\kappa}\right] \quad \text { satisfies } \quad-\tilde{h}^{\prime}=\tilde{h}^{*}, \tag{11}
\end{equation*}
$$

that is, \tilde{h} becomes its own derivative when rotated clockwise about the origin by 90°. A function defined on $[0, a]$ for some $a>0$ and satisfying the above IDE shall be called a standard stribola.
Our next goals are to prove that h is the only unit stribola and that $\left(T^{n} f\right)_{n \in \mathbb{N}}$ converges to h for every $f \in \mathcal{E}$ (global convergence). We begin with a result frequently used in the sequel, that involves the stride, see (2) and (3).
4.3 Stride Lemma. Let $f, g \in \breve{\mathcal{D}}$ satisfy $g \triangleleft f$ and $\Delta g>0$. Then

$$
\begin{equation*}
f \odot \sqsupset f \leq g \odot \sqsupset g \tag{12}
\end{equation*}
$$

and $\downarrow g \cdot \int f<\Delta f \cdot \int g$.
Proof. We have $0<\downarrow g \leq \downarrow f$ by assumption. Suppose (12) were wrong. Then $f\left(\frac{f f}{1 g} x_{2}\right)>$ $g\left(x_{2}\right)$ for some $x_{2} \in\left(0, \frac{\lfloor g}{\boxed{f}}\right)$. By continuity, there is $a>\frac{\lfloor f}{\sqrt{g}}$ such that $f\left(a x_{2}\right)>g\left(x_{2}\right)$ still holds. But because $\downarrow(f \odot a)=\frac{\downarrow f}{a}<\downarrow g$, we can find $x_{1} \in\left(0, x_{2}\right)$ with $f\left(a x_{1}\right)<g\left(x_{1}\right)$. Again by continuity, there is $b \in(0,1)$ such that $\Delta:=f \odot a-b g$ still satisfies $\Delta\left(x_{1}\right)<0$ and $\Delta\left(x_{2}\right)>0$. Since also $\Delta(0)=1-b>0$ and $\Delta\left(\frac{1}{a}\right)=-b g\left(\frac{1}{a}\right)<0$, we would have $\chi(f, g) \geq 3$ by 3.1 (c). Therefore (12) holds. Because $f \odot \downarrow f=g \odot \downarrow g$ would imply $f=g$, we conclude that $\rfloor g \cdot \int f<\Delta f \cdot \int g$.
4.4 Corollary. If the unit stribola h dominates $g \in \breve{\mathcal{D}}$, then $\rfloor g<\int g=\Delta T g<\kappa$.

Proof. We may assume that $\rfloor g>0$ and obtain $\kappa \cdot \Delta g=\Delta g \cdot \int h<\Delta h \cdot \int g=\kappa \int g$ from 4.3, hence $\rfloor g<\int g=\downharpoonleft T g$ by 2.2(d) and 2.1(f). Moreover, $g \triangleleft h$ implies $\int g<\int h=\kappa$.
4.5 Corollary. The sequence $\left(\frac{\kappa_{n}}{\kappa_{n-1}}\right)_{n \in \mathbb{N}}$ is strictly increasing and converges to 1 .

Proof. Let $n \in \mathbb{N}$. Applying the Stride Lemma 4.3 to $h_{n+1} \triangleleft h_{n}$ yields

$$
\kappa_{n}^{2}=\Delta h_{n+1} \cdot \int h_{n}<\Delta h_{n} \cdot \int h_{n+1}=\kappa_{n-1} \kappa_{n+1},
$$

hence $\frac{\kappa_{n}}{\kappa_{n-1}}<\frac{\kappa_{n+1}}{\kappa_{n}}$. The convergence to 1 holds because of (10).
We shall use the following lemma as a tool to estimate areas from below.
4.6 Hammock Lemma. Let $n \in \mathbb{N}$ and $g \in \breve{\mathcal{D}}$ satisfy $g \triangleleft h, h_{n}$ and $\left.\int g \leq \frac{\kappa_{n}}{\kappa}\right\rfloor g$. Then $\kappa_{n+1}-1+\frac{\kappa}{\kappa_{n}}<\int T g$.
Proof. From $c:=\frac{\kappa_{n}}{\int g} \geq \frac{\kappa}{\sqrt{g}}$ and the Stride Lemma 4.3, we obtain

$$
h \leq g \odot \frac{1}{c}=: \tilde{g} \quad \text { and } \quad c \int g^{*}=c \int g=\int_{0}^{c} \tilde{g}=\kappa_{n}=\int h_{n}=\int h_{n}^{*} .
$$

Because $\chi\left(g, h_{n}\right) \leq 2$, there is $x \in(0,1)$ such that $\left.h_{n}\right|_{[0, x]} \geq\left.\tilde{g}\right|_{[0, x]}$ and $\left.h_{n}\right|_{[x, 1]} \leq\left.\tilde{g}\right|_{[x, 1]}$. Therefore,

$$
0 \leq \kappa_{n}\left(h_{n+1}-T g\right) \leq \delta:=\int_{\tilde{g}(x)}^{1}\left(h_{n}^{*}-c g^{*}\right)=\int_{0}^{x}\left(h_{n}-\tilde{g}\right)<\kappa_{n}-\kappa,
$$

which proves $\kappa_{n+1}-1+\frac{\kappa}{\kappa_{n}}<\int T g$ upon integration.
Due to Theorem 2.5, for any $f \in \mathcal{E}$, the limit set

$$
\mathcal{L}(f):=\left\{\lim _{k \rightarrow \infty} T^{m_{k}} f: 0<m_{1}<m_{2}<\cdots \text { and }\left(T^{m_{k}} f\right)_{k \in \mathbb{N}} \text { is Cauchy }\right\}
$$

of the sequence $\left(T^{n} f\right)_{n \in \mathbb{N}_{0}}$ is well-defined and satisfies $\emptyset \neq \mathcal{L}(f) \subseteq \mathcal{K}$.
4.7 Lemma. Let $f \in \mathcal{E}$ and $g \in \mathcal{L}(f)$. Then
(a) $T^{m} g \in \mathcal{L}(f)$ for all $m \in \mathbb{N}$,
(b) $g \triangleleft h_{n}$ for all $n \in \mathbb{N}$,
(c) $g=h$ or $g \triangleleft h$,
(d) $h \in \mathcal{L}(f)$ implies $\lim _{n \rightarrow \infty} T^{n} f=h$.

Proof. By Theorem 2.5(b), we may assume that $h_{1} \neq f \in \mathcal{K}$ and conclude that
(13) $f_{n}:=T^{n-1} f \triangleleft h_{1}, \ldots, h_{n}$
for all $n \in \mathbb{N}$ using Theorem 3.4 with induction. By assumption, there are positive integers $m_{1}<m_{2}<\cdots$ such that $g=\lim _{k \rightarrow \infty} f_{m_{k}}$, implying (b) and (c) by (13) and Proposition 3.5(b). Due to 2.5(e), T^{m} is continuous on \mathcal{K}, hence $T^{m} g=\lim _{k \rightarrow \infty} T^{m} f_{m_{k}}=$
$\lim _{k \rightarrow \infty} f_{m_{k}+m} \in \mathcal{L}(f)$ for all $m \in \mathbb{N}$, proving (a). As for (d), let $\varepsilon>0$. Since $h \in \mathcal{L}(f)$ and $\left(\kappa_{n}\right)_{n \in \mathbb{N}_{0}}$ is decreasing with limit κ, we can choose $m \in \mathbb{N}$ such that

$$
\int f_{m}>\kappa-\varepsilon \quad \text { and } \quad \kappa_{m}<\frac{\kappa-\varepsilon}{\kappa-2 \varepsilon} \kappa .
$$

Using (13) and applying the Stride Lemma 4.3 to $f_{m+1} \triangleleft h_{m+1}, \ldots, f_{n} \triangleleft h_{n}$ yields

$$
\int f_{n}>\frac{\kappa_{n}}{\kappa_{m}} \int f_{m}>\frac{\kappa}{\kappa_{m}} \int f_{m}>\frac{\kappa-2 \varepsilon}{\kappa-\varepsilon} \int f_{m}>\kappa-2 \epsilon
$$

for all $n>m$. We conclude that $\lim _{n \rightarrow \infty} f_{n}=h$ using (13) again.
Although the strong uniqueness established in the next theorem would follow from the global convergence, we feel like proving it directly because it drops out easily from a small subset of our previous results.
4.8 Theorem. Suppose that $r \in \mathbb{N}$ and $g \in \mathcal{E}$ satisfy $T^{r} g=g$. Then $g=h$.

Proof. The assumptions and 2.5(b) imply $\mathcal{L}(g)=\left\{g, T g, \ldots, T^{r-1} g\right\} \subseteq \mathcal{K} . \quad$ By Lemma 4.7(a) and (c), we either have $g=h$ or $g, T g, \ldots, T^{r-1} g \triangleleft h$. But the latter option entails the contradictory inequality chain

$$
\lrcorner g<\int g=\downharpoonleft T g<\cdots<\int T^{r-1} g=\Delta T^{r} g=\right\rfloor g
$$

according to Corollary 4.4.
4.9 Corollary. The IDE ($\underset{\sim}{1}$) has a solution only for $\gamma=\kappa$, and h is the only unit stribola. Furthermore, the function \tilde{h} from (11) is the only standard stribola.

Proof. The assertions concerning (1) and h follow immediately from Theorem 4.8. As for the standard stribola, suppose that $a>0$ and $\tilde{g}:[0, a] \rightarrow[0, a]$ satisfies $-\tilde{g}^{\prime}=\tilde{g}^{*}$. Then $g:=\frac{1}{a} \tilde{g} \odot a$ satisfies (1) with $\gamma=\frac{1}{a}$. Hence $g=h, a=\frac{1}{\kappa}$ and $\tilde{g}=\tilde{h}$.

We are now also ready to prove the global convergence.
4.10 Theorem. We have $\lim _{n \rightarrow \infty} T^{n} f=h$ for every $f \in \mathcal{E}$.

Proof. Let $f \in \mathcal{E}$. In view of Lemma $4.7(\mathrm{~d})$, it suffices to show that $h \in \mathcal{L}(f)$. To this end, let us assume that $h \neq g_{1} \in \mathcal{L}(f)$. Then, by Lemma 4.7(a)-(c) and Corollary 4.4,

$$
\begin{align*}
g_{m} & :=T^{m-1} g_{1} \in \mathcal{L}(f), \tag{14}\\
g_{m} & \triangleleft h, h_{n} \quad \text { and } \tag{15}\\
\gamma_{m-1} & :=\Delta g_{m}<\int g_{m}=\gamma_{m}=\Delta g_{m+1}<\kappa
\end{align*}
$$

for all $m, n \in \mathbb{N}$. In particular, $\lim _{n \rightarrow \infty} \frac{\gamma_{m}}{\gamma_{m-1}}=1$, hence, for each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $\frac{\gamma_{m}}{\gamma_{m-1}} \leq \frac{\kappa_{n}}{\kappa}$ and thus $\kappa_{n+1}-1+\frac{\kappa}{\kappa_{n}}<\gamma_{m+1}$ according to 4.5, (15) and the Hammock Lemma 4.6. With (15) and (16), we conclude that $\left(\gamma_{m}\right)_{m \in \mathbb{N}}$ converges to κ and that $\left(g_{m}\right)_{m \in \mathbb{N}}$ converges to h, implying that $h \in \mathcal{L}(f)$ by (14).

The following variation of the Hammock Lemma 4.6 allows us to estimate κ from below.
4.11 Lemma. Let $f, g \in \breve{\mathcal{D}}$ satisfy $g \triangleleft f, g \triangleleft T f \leq f$ and $\downarrow g \geq \int g$. Then $\int T f-1+\frac{\int T f}{\int f}<$ $\int T g<\int T f$.

Proof. From $g \triangleleft f$, we conclude that $c:=\frac{\int f}{\int g}>1$, and also $T g \triangleleft T f$ by 3.4, hence $\int T g<\int T f$, settling the last inequality. Since $\rfloor T f=\int f>0$, we can apply the Stride Lemma 4.3 to g and $T f$ and obtain

$$
T f \leq g \odot \frac{\partial g}{\frac{I T f}{} \leq g \odot \frac{1}{c}=: \tilde{g} \quad \text { and } \quad c \int g^{*}=c \int g=\int_{0}^{c} \tilde{g}=\int f=\int f^{*} ~}
$$

Because $\chi(f, g) \leq 2$, there is $0<x<1$ such that $\left.f\right|_{[0, x]} \geq\left.\tilde{g}\right|_{[0, x]}$ and $\left.f\right|_{[x, 1]} \leq\left.\tilde{g}\right|_{[x, 1]}$. Therefore,

$$
0 \leq \int f \cdot(T f-T g) \leq \delta:=\int_{f(x)}^{1}\left(f^{*}-c g^{*}\right)=\int_{0}^{x}(f-\tilde{g})<\int f-\int T f
$$

which proves $\int T f-1+\frac{\int T f}{\int f}<\int T g$ upon integration.
4.12 Corollary. For all $n \in \mathbb{N}$, we have $\kappa_{n}-1+\frac{\kappa_{n}}{\kappa_{n}-1}<\kappa$. In particular,

$$
0.2788770612338<\kappa_{23}-1+\frac{\kappa_{23}}{\kappa_{22}}<\kappa<\kappa_{23}<0.2788770613941
$$

Proof. The assertion holds trivially for $n=1$. Let $n \in \mathbb{N}$, then $h \triangleleft h_{n}, T h_{n}$ by $4.2(\mathrm{~b})$, so that $\kappa_{n+1}-1+\frac{\kappa_{n+1}}{\kappa_{n}}=\int T h_{n}-1+\frac{\int T h_{n}}{\int h_{n}}<\int T h=\kappa$ follows from 4.11. The values for $\kappa_{0}, \ldots, \kappa_{23}$ are determined in [8].

References

[1] V. Berinde. Existence and approximation of solutions of some first order iterative differential equations. Miskolc Mathematical Notes 11/1 (2010) 13-26.
[2] A. Buică. Existence and continuous dependence of solutions of some functional-differential equations. Seminar on Fixed Point Theory Cluj-Napoca 3 (1995) 1-14.
[3] E. Eder. The functional-differential equation $x^{\prime}(t)=x(x(t))$. J. Differential Equations 54/3 (1984) 390-400.
[4] E. Egri, I. A. Rus. First order iterative functional-differential equation with parameter. Stud. Univ. Babeş-Bolyai Math. 52/4 (2007) 67-80.
[5] M. Fečkan. On a certain type of functional-differential equations. Math. Slovaca 43/1 (1993) 39-43.
[6] L. Levine. Levine's sequence. https://oeis.org/A011784
[7] R. Miyamoto, J. W. Sander. Solving the Iterative Differential Equation $-\gamma g^{\prime}=g^{-1}$. In: H. Maier, J. \& R. Steuding (Hrsg.), Number Theory in Memory of Eduard Wirsing, Springer, 2023, 223-236.
[8] R. Miyamoto. Polynomial parametrisation of the canonical iterates to the solution of $-\gamma g^{\prime}=g^{-1}$. arXiv:2402. 06618 [math.CO], 2024.
[9] N. J. A. Sloane. My Favorite Integer Sequences. In: C. Ding, T. Helleseth, H. Niederreiter (eds): Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London, 1999, p. 118.
[10] C. L. Mallows, B. Poonen, N. J. A. Sloane. Discussion of A011784. [scans of pages 150-155 and 164 of Sloane's notebook "Lattices 77" from June-July 1997] https://oeis.org/A011784/a011784.pdf

