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SELF-AFFINITY OF DISCS UNDER GLASS-CUT DISSECTIONS

CHRISTIAN RICHTER

Abstract. A topological disc is called n-self-affine if it has a dissection into n

affine images of itself. It is called n-gc-self-affine if the dissection is obtained by
successive glass-cuts, which are cuts along segments splitting one disc into two.
For every n ≥ 2, we characterize all n-gc-self-affine discs. All such discs turn
out to be either triangles or convex quadrangles. All triangles and trapezoids
are n-gc-self-affine for every n. Non-trapezoidal quadrangles are not n-gc-self-
affine for even n. They are n-gc-self-affine for every odd n ≥ 7, and they are
n-gc-self-affine for n = 5 if they aren’t affine kites. Only four one-parameter
families of quadrangles turn out to be 3-gc-self-affine.

In addition, we show that every convex quadrangle is n-self-affine for all

n ≥ 5.

1. Background and main results

A topological disc D in the Euclidean plane is an image of a closed circular disc
under an affine transformation of the plane. The disc D is called n-self-affine if it
has a dissection into discs D1, . . . , Dn, called pieces, that are all affine images of
D. Here we speak of a dissection if D is the union of all pieces and any two pieces
have disjoint interiors. We call D self-affine if it is n-self-affine for some integer
n ≥ 2. The concept of self-affinity generalizes self-similarity and is prominent in
fractal geometry, where the affine transformations are supposed to be contractions
[4, Section 9.4]. But it is also fruitful in the elementary geometry of polygons, see
e.g. [2, 6, 7, 11]. Figure 1 presents some examples. The non-convex ones are adopted
from [5]. Self-affine convex polygons have at most five vertices as follows from [1,
Theorem 5], see also [6, Satz 1]. Self-affinity of triangles is trivial. All convex
quadrangles are 5-self-affine. This goes back to Attila Pór, see [7, Proposition 1].
There exist self-affine convex pentagons [7, Proposition 4], but the regular pentagon
and, more generally, pentagons whose inner angles are close to 3π

5 = 108◦ are not
self-affine [7, Proposition 3], [2, Theorem 1].
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Figure 1. Realizations of self-affinities and gc-self-affinities
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2 CHRISTIAN RICHTER

In the present paper our main focus is on so-called glass-cut dissections. A glass-cut
(also guillotine cut) dissects a disc D along a line segment into two discs. That
process can be repeated finitely many times with some of the resulting pieces. The
outcome is called a glass-cut dissection (or gc-dissection for short) of D. Accord-
ingly, we obtain the concepts of n-gc-self-affine and gc-self-affine discs. Glass-cut
dissections are less flexible than general ones, but are more accessible to algorithmic
approaches, see e.g. [3, 8, 9, 10, 13] for applications. Only the last two dissections
in Figure 1 are based on glass-cuts.

Our main result is the following characterization of all n-gc-self-affine discs for every
n = 2, 3, . . .

Theorem 1. (i) Every gc-self-affine topological disc is a triangle or a convex
quadrangle.

(ii) Every triangle is n-gc-self-affine for all n = 2, 3, . . .
(iii) Let n ∈ Z, n ≥ 2, be even. Then a convex quadrangle is n-gc-self-affine if

and only if it is a trapezoid.
(iv) Let n ∈ Z, n ≥ 7, be odd. Then every convex quadrangle is n-gc-self-affine.
(v) A convex quadrangle is not 5-gc-self-affine if and only if it is an affine image

of a kite, but no parallelogram.
(vi) The 3-gc-self-affine convex quadrangles are given by four one-parameter

families, see Theorem 18 for details.

Theorem 1 shows in particular that gc-self-affinity of every non-trapezoidal quad-
rangle Q is non-trivial in so far as there is no number n0 such that Q is n-gc-self-
affine for all n ≥ n0. Let us point out that the situation is different for self-affinity
based on general dissections.

Theorem 2. Every convex quadrangle is n-self-affine for every n ∈ Z, n ≥ 5.

Since every dissection of a convex quadrangle into two quadrangles is done by a
glass-cut, the only 2-self-affine convex quadrangles are trapezoids by Theorem 1
(see also [6, Satz 3]). In view of Theorem 2, the following question arises.

Problem 3. What convex quadrangles are n-self-affine for n = 3, 4 ?

First systematic considerations of that problem can be found in [6, 14].

The remainder of the present paper is organized as follows. In Section 2 we show
that qc-self-affine topological discs are necessarily convex. The short Section 3
proves Theorem 1(i). Theorem 1(ii) is trivial. In Section 4 we start the discus-
sion of quadrangles by introducing a appropriate parametrization of affine types of
quadrangles. In Section 5 we analyse the parameters of a quadrangle that is com-
posed by glueing together two given quadrangles along a common side. Section 6 is
devoted to the proof of Theorem 1(iii), Section 7 concerns Theorem 1(iv) and (v),
and Section 8 gives Theorem 1(vi). Finally, Section 9 proves Theorem 2.

We use the following notations. Open and closed intervals in R are denoted by
(ξ, η) and [ξ, η], respectively. The line segment in R

2 with endpoints x and y is
denoted by xy, its length by |xy|. The straight line through x and y is l(xy). We
write B(x0, r) for the closed circular disc (or ball) {x ∈ R

2 : |xx0| ≤ r} of radius
r > 0 centred at x0 ∈ R

2. Interior, boundary, convex hull and area of a plane set
X are int(X), bd(X), conv(X) and area(X), respectively.
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2. All gc-self-affine discs are convex

Let the disc D be n-gc-self-affine based on a dissection into affine images ϕ1(D),
. . ., ϕn(D). For every integer k ≥ 1, the affine images ϕi1 ◦ . . .◦ϕik(D), i1, . . . , ik ∈
{1, . . . , n}, form an (iterated) nk-gc-self-affinity of D. Every sequence (ik)

∞
k=1 ⊆

{1, . . . , n} gives rise to a decreasing sequence (ϕi1 ◦ . . . ◦ ϕik(D))nk=1 of compact
sets, whose limit set in the Hausdorff metric is S =

⋂∞
k=1 ϕi1 ◦ . . . ◦ ϕik(D) ⊆ D

(see [12, Lemma 1.8.2]). Since the determinants of (the linear maps associated to)
ϕi1 ◦ . . . ◦ϕik , k = 1, 2, . . ., tend to zero, S is either a singleton or a non-degenerate
line segment. In the latter case we speak of a limit segment.

Lemma 4. The following are satisfied for every qc-self-affine disc D.

(i) Every x ∈ D belongs to some limit set.
(ii) Two limit segments S1 and S2 do not cross in the sense that S1 ∩ S2 is a

singleton in the relative interiors of both S1 and S2.
(iii) If some limit set S satisfies S ⊆ int(D), then D is convex.

Proof. For (i), one easily checks that there is a sequence (ik)
∞
k=1 such that x ∈

ϕi1 ◦ . . . ◦ ϕik(D) for k = 1, 2, . . .

For (ii), assume that the Hausdorff limits S1 =
⋂∞

k=1 ϕi1 ◦ . . . ◦ ϕik(D) and S2 =
⋂∞

k=1 ϕj1 ◦ . . . ◦ ϕjk(D) cross. Hence, for all k, the pieces ϕi1 ◦ . . . ◦ ϕik (D) and
ϕj1 ◦ . . . ◦ ϕjk(D) of the k-th iterated dissection share some inner points. Then
(ik)

∞
k=1 = (jk)

∞
k=1 and in turn S1 = S2, a contradiction.

For (iii), note that, if S =
⋂∞

k=1 ϕi1 ◦ . . . ◦ ϕik(D) ⊆ int(D), then D0 = ϕi1 ◦ . . . ◦
ϕik0

(D) ⊆ int(D) for some sufficiently large k0. Since the piece D0 of the k0-th

iterated gc-dissection is in int(D), its boundary is formed by finitely many line
segments and its inner angles are smaller than π. Hence D0 = ϕi1 ◦ . . . ◦ϕik0

(D) is
a convex polygon, and so is D. �

Unfortunately, there are gc-self-affinities of some discs D that do not give rise to
limit sets completely contained in the interior of D, see e.g. the right-most example
in Figure 1. Therefore Lemma 4(iii) is not enough to show convexity of every
gc-self-affine disc. A deeper analysis is needed.

Lemma 5. Let D be a non-convex gc-self-affine topological disc. Then there exists
a limit segment S = ab such that S ∩ bd(D) ⊆ {a, b}.

Proof. We divide the proof into two parts.

Claim 1. There exist r > 0 and uncountably many limit segments, all placed on
mutually different straight lines and being of length at least r, and each meeting
bd(D).

We pick some x ∈ int(D) and r > 0 such that B(x, 2r) ⊆ int(D), see the left-hand
part of Figure 2. By Lemma 4(i) and (iii), every point from B(x, r) belongs to
some limit segment that meets bd(D). By the triangle inequality, their lengths are
larger than r. Since countably many straight lines cannot cover B(x, r), there are
uncountably many such limit segments placed on different lines. Figure 2 illustrates
three examples and their intersections with bd(D).
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D

B(x, r)

B(x, 2r)
B
(

x0,
ε
2

)

x0

x1

x2

x3

x4

S1

S2

S3
S4

Figure 2. Proof of Lemma 5

Claim 2. At most countably many limit segments ab found in Claim 1 satisfy
ab ∩ bd(D) 6⊆ {a, b}.
We shall prove Claim 2 by showing that, for every ε > 0, at most finitely many of
the segments S = ab described in Claim 1 contain some x ∈ S ∩ bd(D) such that
min{|ax|, |bx|} > ε.

Suppose that, contrary to the last assertion, there are infinitely many limit segments
Si = aibi and points xi ∈ (Si∩bd(D))\(B(ai, ε)∪B(bi, ε)), i = 1, 2, . . . Since bd(D)
is compact, we can assume that (xi)

∞
i=1 converges to some x0 ∈ bd(D) and that

(xi)
∞
i=1 ⊆ B

(

x0,
ε
2

)

, see the right-hand part of Figure 2. By the triangle inequality,

the end-points of each Si are outside B
(

x0,
ε
2

)

. By Lemma 4(ii), distinct segments

Si do not meet in B
(

x0,
ε
2

)

.

Since x0 ∈ bd(D), bd(D) ∩B
(

x0,
ε
2

)

contains a connected component Γ of bd(D)
that contains x0 in its relative interior. Since (xi)

∞
i=1 ⊆ bd(D) and limi→∞ xi = x0,

we get (xi)
∞
i=i0

⊆ Γ for some i0. But then the arc Γ ⊆ B
(

x0,
ε
2

)

has to connect all
the points xi, i = i0, i0 + 1, . . ., without crossing any of the segments Si, because
Si ⊆ D and Γ ⊆ bd(D). This is impossible. The proof of Claim 2 and of Lemma 5
is complete. �

Lemma 6. Let D be a gc-self-affine topological disc having a limit segment S = ab

such that S∩bd(D) ⊆ {a, b}. Then, for every ε ∈
(

0, 12
]

, there is an equiaffine map

αε : R
2 → R

2 such that

(i) [−1, 1]× {0} ⊆ αε(D) ⊆ [−1− ε, 1 + ε]× R,
(ii) αε(D) ∩ ([−1 + ε, 1− ε]× R) is convex,
(iii) αε(D) ∩ ([−1 + ε, 1− ε]× R) ⊆ [−1 + ε, 1− ε]× [−2 area(D), 2 area(D)].

Proof. W.l.o.g., i.e., after some equiaffine transformation, we have S = [−1, 1]×{0},
i.e., a =

(−1
0

)

and b =
(

1
0

)

. Since S is the Hausdorff limit of a decreasing sequence

of pieces in certain gc-self-affinities of D and since S \ {
(−1

0

)

,
(

1
0

)

} ⊆ int(D), there
exist some δ = δ(ε) ∈ (0, ε] and an affine transformation βε such that

[−1, 1]× {0} ⊆ βε(D) ⊆ [−1− ε, 1 + ε]× R,(1)

βε(D) ∩ ([−1 + ε, 1− ε]× R) ⊆ [−1 + ε, 1− ε] ∩ [−δ, δ] ⊆ int(D).(2)
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Since the piece βε(D) belongs to a gc-dissection of D, bd(βε(D))∩ int(D) is a finite
union of polygonal arcs with inner angles smaller than π. Hence (2) implies

(3) βε(D) ∩ ([−1 + ε, 1− ε]× R) is convex.

We define the equiaffine map αε as αε = γ ◦ βε with γ
(

ξ1
ξ2

)

=
(

ξ1
1

det(βε)
ξ2

)

. Then (1)

implies (i) and (3) yields (ii). Finally, since ε ≤ 1
2 , (i) gives

[

− 1
2 ,

1
2

]

× {0} ⊆ αε(D) ∩ ([−1 + ε, 1− ε]× R).

By (ii) and area(αε(D)) = area(D), this shows (iii). �

Every equiaffine map α : R2 → R
2 has a unique representation α

(

ξ1
ξ2

)

=
(

α11ξ1+α12ξ2+α13

α21ξ1+α22ξ2+α23

)

with (α11, . . . , α23) ∈ R
6. This way the set Aff1

2 of all equiaffine maps corresponds
to a closed subset of R6, and the natural topology of R6 gives rise to a respective
topology on Aff1

2. The following lemma is routine, based on elementary topological
properties of Rn and the localization of the Hausdorff convergence in the sense of
[12, Theorem 1.8.8].

Lemma 7. (i) For every x0 ∈ R
2, every r > 0 and every compact set C ⊆ R

2,

{α ∈ Aff1
2 : α(B(x0, r)) ⊆ C} is compact.

(ii) Suppose that α0, α1, . . . ∈ Aff1
2 satisfy limi→∞ αi = α0. Then, for every

non-empty compact set C ⊆ R
2, limi→∞ αi(C) = α0(C) in the Hausdorff

metric.

Lemma 8. Let D be a topological disc. Then there exist a disc B(x0, r) ⊆ D,
x0 ∈ D, r > 0, and µ ∈ (0, 1) such that, for every affine functional β : R2 → R,

[minβ(B(x0, r)),max β(B(x0, r))]

⊆ [(1− µ)minβ(D) + µmaxβ(D), (1 − µ)max β(D) + µminβ(D)] .

Proof. We fix x0 ∈ int(D) and R > r > 0 such that

B(x0, r) ⊆ B(x0, 2r) ⊆ D ⊆ B(x0, R).

Since β is affine, we have
3
2 minβ(B(x0, r))− 1

2 max β(B(x0, r)) = min β(B(x0, 2r)),(4)
r−R
2r minβ(B(x0, r)) +

r+R
2r max β(B(x0, r)) = max β(B(x0, R)).(5)

By (4) and minβ(B(x0, 2r)) ≥ minβ(D),

3(r +R)minβ(B(x0, r)) − (r +R)maxβ(B(x0, r)) ≥ 2(r +R)minβ(D).

Similarly, by (5) and max β(B(x0, R)) ≥ max β(D),

(r −R)minβ(B(x0, r)) + (r +R)maxβ(B(x0, r)) ≥ 2rmaxβ(D).

Adding the last two inequalities and dividing by 4r + 2R, we get

(6) minβ(B(x0, r)) ≥ r+R
2r+R

min β(D) + r
2r+R

maxβ(D).

In the same way we arrive at

(7) maxβ(B(x0, r)) ≤ r+R
2r+R

maxβ(D) + r
2r+R

minβ(D).

Inequalities (6) and (7) yield the claim of Lemma 8 with µ = r
2r+R

. �

Lemma 9. If a topological disc D is gc-self-affine such that there is a limit segment
S = ab with S ∩ bd(D) ⊆ {a, b}, then D is convex.
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Proof. We use the equiaffine maps αε, 0 < ε ≤ 1
2 , obtained from Lemma 6 and the

circular disc B(x0, r) ⊆ D and the real µ given by Lemma 8.

Let ε0 = min
{

2µ
2−µ

, 1
2

}

. First we show that, for all ε ∈ (0, ε0],

(8) αε(B(x0, r)) ⊆ [−1, 1]× [−2 area(D), 2 area(D)].

For that, let ε ∈ (0, ε0] be fixed and let π : R2 → R denote the projection onto the
first coordinate. Then Lemma 8 and Lemma 6(i) give

min π ◦ αε(B(x0, r)) ≥ (1− µ) ·minπ ◦ αε(D) + µ ·max π ◦ αε(D)

≥ (1− µ)(−1 − ε) + µ · 1
= −1 + (2µ− (1− µ)ε)

≥ −1 + ε,

where the last estimate comes from ε ≤ ε0 ≤ 2µ
2−µ

. In the same way we get

maxπ ◦ αε(B(x0, r)) ≤ 1− ε.

Consequently, the first coordinates of all points from αε(B(x0, r)) are in [−1+ε, 1−
ε]. Hence

αε(B(x0, r)) ⊆ ([−1 + ε, 1− ε]× R) ∩ αε(D),

and Lemma 6(iii) yields (8).

For εn = 1
n
, (8) gives

α 1
n
(B(x0, r)) ⊆ [−1, 1]× [−2 area(D), 2 area(D)],

provided n ≥ n0 = ⌈ 1
ε0
⌉. Lemma 7(i) shows that the sequence

(

α 1
n

)∞
n=n0

is in a

compact set of equiaffine transformations, in turn having a convergent subsequence.
W.l.o.g., limn→∞ α 1

n
= α0 ∈ Aff1

2. By Lemma 7(ii),

lim
n→∞

α 1
n
(D) = α0(D)

in the Hausdorff metric. In particular,

α0(D) ∩ ((−1, 1)× R) = ((−1, 1)× R) ∩ limn→∞ α 1
n
(D) ∩

([

−1 + 1
n
, 1− 1

n

]

× R
)

.

Now Lemma 6(ii) shows that α0(D)∩((−1, 1)×R) is convex. Moreover, Lemma 6(i)
yields α0(D) ⊆ [−1, 1] × R. Therefore α0(D) is the closure of the convex set
α0(D) ∩ ((−1, 1)× R), because α0(D) is a topological disc. Thus α0(D) is convex,
as well as D = α−1

0 (α0(D)). �

Lemmas 5 and 9 together show that every gc-self-affine topological disc is convex.

3. Reduction to triangles and quadrangles

Proof of Theorem 1(i). Let the disc D be gc-self-affine. Then it is convex as we
have seen above. Moreover, it is a convex polygon by [11].

A dissection of a convex k0-gonD0 along some line segment splits it into a convex k1-
gonD∗

0 and a convex k2-gonD∗∗
0 with k1+k2 ∈ {k0+2, k0+3, k0+4}. In particular,

min{k1, k2} ≤ k0+4
2 , whence min{k1, k2} ≤ k0 if k0 ∈ {3, 4} and min{k1, k2} < k0 if

k0 ≥ 5. Iteration of this argument shows that each gc-dissection of a convex k0-gon
D0 with k0 ≥ 5 has a tile with less than k0 vertices. Consequently, the gc-self-affine
disc D must be a triangle or a convex quadrangle. �
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a = (0, 0) b = (1− α, 0) s = (1, 0)

c =
(

1− β, 1− 1−β
1−α

)

=
(

1− β, 1− β̄
)

d =
(

0, 1− (1−β)α
(1−α)β

)

= (0, 1− ᾱ)

t = (0, 1)

α

β

1

ᾱ

β̄

1

Q(α, β)

Figure 3. Parametrization of non-trapezoids.

4. Parametrization of quadrangles

We call a side of a convex quadrangle opening (or closing or constant, respectively)
if the inner angles adjacent to that side sum up to a value less than π (or larger than
π or equal to π, respectively). Suppose that the sides bc and cd of the quadrangle
abcd are closing, and let s be the intersection point of the straight lines l(ab) and

l(cd). Then 0 <
|bs|
|as| <

|cs|
|ds| < 1. We use α := |bs|

|as| and β := |cs|
|ds| for parametrizing

the quadrangle and denote its affine type by Q(α, β) (over the closing side bc). The
same can be done over the closing side cd. If t is the intersection of l(bc) and l(ad),

we obtain 0 < ᾱ := |dt|
|at| < β̄ := |ct|

|bt| < 1. We get the second parametrization

Q
(

ᾱ, β̄
)

with

(9)
(

ᾱ, β̄
)

=
1− β

(1 − α)β
(α, β),

see Figure 3 for the situation a = (0, 0), s = (1, 0), t = (0, 1). Both Q(α, β) and
Q
(

ᾱ, β̄
)

describe the same affine type of quadrangles. For further operations we

keep both parametrizations and call them flips of each other; Q(α, β)F = Q
(

ᾱ, β̄
)

and Q
(

ᾱ, β̄
)F

= Q(α, β). Note that Q(α, β) and Q
(

ᾱ, β̄
)

give rise to the same

value 0 < α
β
= ᾱ

β̄
< 1, that we call the affine quotient of that class of quadrangles.

Clearly, for every choice of 0 < α < β < 1, Q(α, β) describes a unique affine type
of convex quadrangles, and all non-trapezoidal convex quadrangles are covered this
way.

Now let the quadrangle abcd be a trapezoid with (unique) closing side bc. Again

let s be the common point of l(ab) and l(cd). Then 0 <
|bs|
|as| = |cs|

|ds| < 1, we use
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α := |bs|
|as| for parametrizing the affine type of our trapezoid and write T (α) for the

respective class. We call 1 the affine quotient of T (α) (motivated by α
α
= 1).

Clearly, all choices of 0 < α < 1 give rise to mutually different classes T (α), and
this way all trapezoids are covered except for parallelograms. Note that the ratio
of the lengths of the parallel sides of trapezoids of type T (α) is α, too.

Finally, we write P for the class of all parallelograms and call 1 their affine quotient.

In the sequel we will sometimes write Q(α, β), T (γ) and P for particular represen-
tatives of these classes of quadrangles.

5. Parameters of compositions of two quadrangles

When studying a gc-dissection of a disc D, we associate a (not necessarily unique)
binary dissection tree to its (not necessarily unique) process of dissection. The
original disc D is its root. In a first step D is dissected into two discs, the children
of D. Similarly, if a disc is cut further into two discs, these appear as children of
that disc. Accordingly, the leafs of the tree are the tiles of the final dissection of D.

Lemma 10. All vertices of a dissection tree associated to the gc-dissection repre-
senting a gc-self-affinity of a quadrangle are quadrangles. In particular, in every
step of dissection the cut is made between relative inner points of opposite sides of
the respective quadrangle.

Proof. Suppose in one step a quadrangle is not cut into two quadrangles. Then one
of its children is a triangle. However, every further cut of a triangle produces at
least one triangle. So, finally, one leaf of the tree is a triangle, a contradiction. �

As we know that a qc-self-affinity of a quadrangle is obtained by successively cut-
ting parent quadrangles into two descending quadrangles, we study now how two
quadrangles can be glued together along a common side to obtain a qc-dissection
of a parent quadrangle.

Lemma 11. All possible affine types of parent quadrangles admitting a gc-dissection
into two descending quadrangles of prescribed affine types are the following.
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(i) Combinations of Q(α1, β1) with Q(α2, β2), 0 < αi < βi < 1 for i = 1, 2

(with the notation
(

ᾱi, β̄i

)

= 1−βi

(1−αi)βi
(αi, βi) as in (9)):

notation (one) parametrization affine
quotient

Q(α1, β1) ·Q(α2, β2) Q(α1α2, β1β2)
α1

β1
· α2

β2

Q(α1, β1) : Q(α2, β2) • if α1

β1
< α2

β2
: Q(α1β2, β1α2)

α1

β1
: α2

β2

• if α1

β1
= α2

β2
: T (α1β2) = T (β1α2) 1

• if α1

β1
> α2

β2
: Q(β1α2, α1β2)

α2

β2
: α1

β1

Q(α1, β1) ·Q(α2, β2)
F Q

(

α1ᾱ2, β1β̄2

)

α1

β1
· α2

β2

= Q(α1, β1) ·Q
(

ᾱ2, β̄2

)

Q(α1, β1) : Q(α2, β2)
F • if α1

β1
< α2

β2
: Q

(

α1β̄2, β1ᾱ2

)

α1

β1
: α2

β2

= Q(α1, β1) : Q
(

ᾱ2, β̄2

)

• if α1

β1
= α2

β2
: T

(

α1β̄2

)

= T (β1ᾱ2) 1

• if α1

β1
> α2

β2
: Q

(

β1ᾱ2, α1β̄2

)

α2

β2
: α1

β1

Q(α1, β1)
F ·Q(α2, β2) Q

(

ᾱ1α2, β̄1β2

)

α1

β1
· α2

β2

= Q
(

ᾱ1, β̄1

)

·Q(α2, β2)

Q(α1, β1)
F : Q(α2, β2) • if α1

β1
< α2

β2
: Q

(

ᾱ1β2, β̄1α2

)

α1

β1
: α2

β2

= Q
(

ᾱ1, β̄1

)

: Q(α2, β2) • if α1

β1
= α2

β2
: T (ᾱ1β2) = T

(

β̄1α2

)

1

• if α1

β1
> α2

β2
: Q

(

β̄1α2, ᾱ1β2

)

α2

β2
: α1

β1

Q(α1, β1)
F ·Q(α2, β2)

F Q
(

ᾱ1ᾱ2, β̄1β̄2

)

α1

β1
· α2

β2

= Q
(

ᾱ1, β̄1

)

·Q
(

ᾱ2, β̄2

)

Q(α1, β1)
F : Q(α2, β2)

F • if α1

β1
< α2

β2
: Q

(

ᾱ1β̄2, β̄1ᾱ2

)

α1

β1
: α2

β2

= Q
(

ᾱ1, β̄1

)

: Q
(

ᾱ2, β̄2

)

• if α1

β1
= α2

β2
: T

(

ᾱ1β̄2

)

= T
(

β̄1ᾱ2

)

1

• if α1

β1
> α2

β2
: Q

(

β̄1ᾱ2, ᾱ1β̄2

)

α2

β2
: α1

β1

(ii) Combinations of Q(α, β), 0 < α < β < 1, with T (γ), 0 < γ < 1 (with the

notation
(

ᾱ, β̄
)

= 1−β
(1−α)β (α, β) as in (9)):

notation (one) parametrization affine
quotient

Q(α, β) · T (γ) Q(αγ, βγ) α
β

Q(α, β)F · T (γ) = Q
(

ᾱ, β̄
)

· T (γ) Q
(

ᾱγ, β̄γ
)

α
β

(iii) There are no possible combinations of Q(α, β), 0 < α < β < 1, with P .
(iv) Combinations of T (γ1) with T (γ2), 0 < γi < 1 for i = 1, 2:

notation possible parametrizations affine
quotient

T (γ1) · T (γ2) T (γ1γ2) 1

T (γ1)
F · T (γ2)F • if γ1 6= γ2 :

{

T (γ) : min{γ1, γ2} < γ < 1
}

∪ {P} 1
• if γ1 = γ2 :

{

T (γ) : min{γ1, γ2} ≤ γ < 1
}

∪ {P} 1

(v) Combinations of T (γ0), 0 < γ0 < 1, with P :

notation possible parametrizations affine quotient

T (γ0)
F · P

{

T (γ) : γ0 < γ < 1
}

1
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a1 b1 = a2 b2 s1 = s2 = s

d1
c1 = d2

c2

Q(α1, β1) Q(α2, β2)

a1 b1 = d2 c2 s1 = s2 = s

d1
c1 = a2

b2

Q(α1, β1)
Q(α2, β2)

Figure 4. Q(α1, β1) ·Q(α2, β2) and Q(α1, β1) : Q(α2, β2).

(vi) The only possible combination of P with P is P and has the affine quotient
1.

Proof. (i). Assume that, as in Figure 3, Q(αi, βi) is realized as the quadrangle
aibicidi with closing sides bici and cidi and with the intersection si of l(aibi) with
l(cidi), such that the parameters (over bici) are

αi =
|bisi|
|aisi|

and βi =
|cisi|
|disi|

.

When both Q(α1, β1) and Q(α2, β2) together form a gc-dissection of a third quad-
rangle, a closing side of one quadrangle must be glued together with an opening
side of the other one.

First, suppose that b1c1 is glued with a2d2. Then necessarily s1 = s2 =: s. There
are still two possibilities, namely either b1 = a2 and c1 = d2 or b1 = d2 and c1 = a2,
see Figure 4. In the former situation we obtain a quadrangle Q(α1, β1) ·Q(α2, β2)
with vertices a1b2c2d1 and parameters

0 < α =
|b2s|
|a1s|

=
|b1s1|
|a1s1|

· |b2s2||a2s2|
= α1α2 < β =

|c2s|
|d1s|

=
|c1s1|
|d1s1|

· |c2s2||d2s2|
= β1β2 < 1,

which yields the first line in the table of (i). In the latter situation we obtain
a quadrangle Q(α1, β1) : Q(α2, β2) with vertices a1c2b2d1. The parameters are
computed by

0 <
|c2s|
|a1s|

=
|b1s1|
|a1s1|

· |c2s2||d2s2|
= α1β2 < 1 and 0 <

|b2s|
|d1s|

=
|c1s1|
|d1s1|

· |b2s2||a2s2|
= β1α2 < 1.

Depending on whether α1β2
<
=
>

α2β1 we obtain the parametrization and the affine

quotient as in the second line in the table of (i).

Note that the resulting affine types are exactly the same if a1d1 is glued together
with b2c2. So we obtain

(10)
Q(α1, β1) ·Q(α2, β2) = Q(α2, β2) ·Q(α1, β1),
Q(α1, β1) : Q(α2, β2) = Q(α2, β2) : Q(α1, β1).

The remainder of (i) is obtained by glueing b1c1 with a2b2 (or, equivalently, a1b1
with b2c2), c1d1 with a2d2 (or a1d1 with c2d2), and c1d1 with a2b2 (or a1b1 with
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T (γ1) T (γ2) T (γ1) T (γ2)

1

γ1

λ

λγ2

1

γ1

λγ2

λ

Figure 5. Combining T (γ1) with T (γ2) along constant sides.

c2d2). The distinction of cases and the resulting affine quotient can be formulated

in terms of αi

βi
, since β̄i

ᾱi
= αi

βi
.

(ii). Here the arguments are as in (i). The situation simplifies, because T (γ) has
only one parameter and only one opening and one closing side.

(iii). Q(α, β) and P cannot be combined, since opposite sides of P are parallel,
whereas opposite sides of Q(α, β) are not.

(iv). The first line of the table of (iv), i.e. the quadrangle T (γ1) ·T (γ2), is obtained
by glueing the closing side of T (γ1) together with the opening side of T (γ2) or vice
versa.

Alternatively, T (γ1) and T (γ2) can be glued along constant sides, see Figure 5. This
type of glueing is called T (γ1)

F ·T (γ2)F . We can assume that, w.l.o.g., γ1 ≤ γ2 and
the parallel sides of T (γ1) have lengths 1 and γ1. Then the lengths of the parallel
sides of the combined trapezoids are either γ1+λγ2 and 1+λ or γ1+λ and 1+λγ2
with arbitrary λ > 0. Their respective ratios are

γ1 + λγ2

1 + λ
=

1

1 + λ
γ1 +

λ

1 + λ
γ2,

which is γ1 if γ1 = γ2 or ranges in the interval (γ1, γ2) if γ1 < γ2, and

γ1 + λ

1 + λγ2
=

1

1 + λγ2
γ1 +

λγ2

1 + λγ2

1

γ2
,

which ranges in
(

γ1,
1
γ2

)

⊇ (γ1, 1]. Consequently, the affine types obtained by

T (γ1)
F ·T (γ2)F are T (γ), γ1 ≤ γ < 1, and P if γ1 = γ2, and T (γ), γ1 < γ < 1, and

P if γ1 < γ2.

(v). This is obtained as (iv). Only glueing along constant sides is possible.

(vi). This is trivial. �

Remark 12. (i) The multiplicative operational notation comes with a multi-
plication of the parameters as well as of the affine quotients. The divisional
notation corresponds to a division of the affine quotients and to an exchange
of the parameters of one quadrangle.

(ii) We do not use a flip in our operational notation if the respective glueing
is made along the closing side over which the parametrization is made (or
along its opposite opening side). We use a flip if the glueing is made along
the neighbouring closing (or opening) side in case of a non-trapezoid or
along a constant side in case of a trapezoid.
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(iii) The operational notations T (γ1)
F · T (γ2)F and T (γ0)

F · P stand for infin-
itely many possible results, whereas the other notations produce a unique
outcome. The notations are commutative (see (10) in the proof of (i)).

(iv) Lemma 11 allows to classify all 2-gc-self-affine quadrangles (and all 2-self-
affine convex quadrangles, since this is equivalent). Indeed, every trapezoid
is 2-gc-self-affine, as follows from Lemma 11(iv) and (vi) (but in fact is
trivial, see Figure 1). On the other hand, non-trapezoids are not 2-gc-
self-affine, because Lemma 11(i) shows that a combination of two copies of

Q(α, β), 0 < α < β < 1, has an affine quotient
(

α
β

)2
or 1, which is different

from the quotient α
β
of Q(α, β).

6. n-gc-self-affine quadrangles with even n are trapezoids

Lemma 13. Suppose that a quadrangle Q has a gc-dissection into n copies of

Q(α, β), 0 < α < β < 1. Then the affine quotient of Q is of the form
(

α
β

)k
with

k ∈ {0, 1, . . . , n}, where k is even if n is even and k is odd if n is odd.

Proof. This is obtained by mathematical induction over the number n of tiles (or of
leafs in the dissection tree). The claim is trivial for the trivial dissection (n = 1). In
case of a finer dissection Q is split into two quadrangles Q∗ and Q∗∗ who themselves
are dissected into n1 and n2 tiles with n1 + n2 = n and 0 < n1, n2 < n. By

the induction hypothesis, their affine quotients are
(

α
β

)k1
and

(

α
β

)k2
with ki ∈

{0, 1, . . . , ni} and ki ≡ ni mod 2, i = 1, 2. Now Lemma 11 shows that Q =

Q∗ ∪ Q∗∗ has an affine quotient
(

α
β

)k
with k ∈ {k1 + k2, |k1 − k2|}. Accordingly,

k ∈ {0, 1, . . . , k1 + k2} ⊆ {0, 1, . . . , n1 + n2} and k ≡ k1 + k2 ≡ n1 + n2 = n

mod 2. �

Proof of Theorem 1(iii). It is clear that every trapezoid is n-gc-self-affine by re-
peated application of Lemma 11(iv) and (vi), see also Figure 1. On the other hand,
a non-trapezoid Q(α, β), 0 < α < β < 1, cannot be gc-dissected into an even
number n of copies of Q(α, β), because then Lemma 13 implied that Q(α, β) had

an affine quotient
(

α
β

)k
with even k, which is different from the actual quotient

(

α
β

)1
. �

7. n-gc-self-affine quadrangles for odd n ≥ 5

Lemma 14. Let 0 < α < β < 1.

(i) T (αβ) has a gc-dissection into two copies of Q(α, β).

(ii) For every real number γ with αβmin
{

1−β
(1−α)β , 1

}

≤ γ < 1 and every even

integer k ≥ 4, T (γ) has a gc-dissection into k copies of Q(α, β).

Proof. (i). This comes from Q(α, β) : Q(α, β) in Lemma 11(i).

(ii). First suppose that 1−β
(1−α)β ≥ 1. By (i), we can produce k

2 copies of T (αβ), each

composed of two copies of Q(α, β). Repeated use of the first part of Lemma 11(iv)

shows that T
(

(αβ)
k
2−1

)

can be obtained from k
2 − 1 copies of T (αβ), that is,
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from k − 2 copies of Q(α, β). Finally, we use the second part of Lemma 11(iv) for

writing T (γ) with αβ ≤ γ < 1 as T
(

(αβ)
k
2−1

)F

· T (αβ)F , this way obtaining a

gc-dissection into (k − 2) + 2 = k copies of Q(α, β).

If 1−β
(1−α)β < 1, we recall that Q(α, β) represents the same quadrangles as

Q(α, β)F = Q

(

1− β

(1− α)β
(α, β)

)

= Q
(

ᾱ, β̄
)

,

where 0 < ᾱ < β̄ < 1 and 1−β̄

(1−ᾱ)β̄
=

(

1−β
(1−α)β

)−1

< 1. As above, we see that T (γ)

has a gc-dissection into k copies of Q
(

ᾱ, β̄
)

whenever γ is in the interval

[

ᾱβ̄, 1
)

=

[

(

1− β

(1 − α)β

)2

αβ, 1

)

⊇
[

1− β

(1− α)β
αβ, 1

)

.

�

In the sequel affine images of (convex) kites turn out to be crucial. We call them
affine kites for short. Of course, a trapezoid is an affine kite if and only if it is a
parallelogram.

Lemma 15. Let 0 < α < β < 1. The following are equivalent.

(i) Q(α, β) is an affine kite.

(ii) 1−β
(1−α)β = 1 (or, equivalently, α = 2− 1

β
or β = 1

2−α
).

(iii) The parametrization Q(α, β) is invariant under flipping: Q(α, β)F = Q(α, β).

In particular, every affine kite has a unique parametrization.

Proof. We refer to the representation of Q(α, β) given in Figure 3. Then Q(α, β) is
an affine kite if and only if the diagonal ac meets the midpoint of bd. Equivalently,
the linear map given by a 7→ a, s 7→ t and t 7→ s maps c =

(

1− β, 1− β̄
)

onto itself.
Since that map is nothing but the reflection exchanging the coordinates, Q(α, β) is

an affine kite if and only if β̄ = β. Taking into account that
(

ᾱ, β̄
)

= 1−β
(1−α)β (α, β),

we see the equivalence of (i), (ii) and (iii). �

Lemma 16. (i) If Q(α, β), 0 < α < β < 1, is no affine kite, then Q(α, β) is
n-gc-self-affine for every odd n ≥ 5.

(ii) Every affine kite is n-gc-self-affine for every odd n ≥ 7.

Proof. (i). By Lemma 15, 1−β
(1−α)β 6= 1. As in the proof of Lemma 14, we can

assume that 1−β
(1−α)β < 1, since otherwise we consider Q(α, β)F instead of Q(α, β).

By Lemma 14(ii), T
(

1−β
(1−α)β

)

has a gc-dissection into n− 1 copies of Q(α, β). Now

Lemma 11(ii) shows that

Q(α, β)F = Q

(

1− β

(1− α)β
(α, β)

)

= Q(α, β) · T
(

1− β

(1− α)β

)

has a gc-dissection into n copies of Q(α, β), which yields (i).

(ii). The claim is trivial for trapezoidal affine kites (i.e., for parallelograms). It
remains to consider a kite Q(α, β), 0 < α < β < 1. By Lemma 15, β = 1

2−α
. An
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:

? ·

?

F F

F?

R

Q1

Q2 Q3

L L
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Necessities

:

· ·

·

F F

Case I.a

:

· ·

·

F F

F

Case I.b

:

: ·

·

F F

Case I.c

:

: ·

·

F F

F

Case I.d

:

· ·

:

F F

Case II

Figure 6. Particular extended dissection trees for the proof of Lemma 17.

easy calculation shows that the number γ = (1−α2β)β
1−αβ2 satisfies αβ ≤ γ < 1. Then

Lemma 14 shows that T (αβ) has a gc-dissection into two copies of Q(α, β) and
T (γ) has a gc-dissection into n − 3 copies of Q(α, β). Another simple calculation
gives

Q(α, β) = (Q(α, β) · T (αβ))F · T (γ),
which in turn yields that Q(α, β) has a gc-dissection into (1 + 2) + (n − 3) = n

copies of Q(α, β). �

Lemma 17. If Q(α, β), 0 < α < β < 1, is an affine kite, then Q(α, β) is not
5-gc-self-affine.

Proof. Suppose that some affine kite Q
(

α, 1
2−α

)

, 0 < α < 1 (cf. Lemma 15), is

5-gc-self-affine.

Step 1. Reduction to five extended dissection trees. The dissection tree has five

leafs, called L, and a root R. L and R have the unique parametrizationQ
(

α, 1
2−α

)

,

see Lemma 15(iii). We extend the tree as follows. Given a vertex Q that is not
a leaf, a parametrization of Q is obtained from the parametrizations of its two
children C1 and C2 by an operation · or :, possibly preceded by a flip on C1 and/or
C2, see Lemma 11. We mark the operation · or : at the vertex Q and flips, in case
they exist, at the corresponding edges between Q and its children, see Figure 6.

We collect necessary properties of the extended dissection tree.

(A) W.l.o.g., no edge emanating from a leaf has a flip.
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(B) On the path between any leaf L and the root R there is at least one flip.

For (A), note that leafs represent kites, that are invariant under flips.

For (B), suppose that there is no flip on the path from some L to R, both with

unique parametrizationQ
(

α, 1
2−α

)

. Then, by Lemma 11, in each operation · or : on
the path from L to R, the smaller parameter of the respective quadrangle decreases
strictly, since it is multiplied by some positive number less than one. Consequently,
the smaller parameter of R is smaller than that of L, contradicting that both have

the same unique parametrization Q
(

α, 1
2−α

)

.

It follows from (A) and (B) that no child of R is a leaf. Hence there are two sub-
trees below R, one with 3 and one with 2 leafs. Using the commutativity of · and
: (cf. (10)), the root R, leafs L, additional vertices Q1, Q2, Q3 and the edges of
the tree are as in the upper left illustration in Figure 6. Moreover, by (A) and (B)
we have no flips on the edges emanating from leafs and we have flips on both edges
emanating from R.

(C) The extended dissection tree has the structure displayed under Necessities
in Figure 6. In particular, we have the operations : at R and · at Q3, and
only for the edge between Q1 and Q2 it is not yet determined if there is a
flip.

The situation for flips is already shown.

For the operations at R and Q3, suppose first that we have · at R. By Lemma 13,
the affine quotient of Q2 and Q3 are [α(2− α)]k2 with k2 ∈ {1, 3} and [α(2− α)]k3

with k3 ∈ {0, 2}, respectively. Since R = QF
2 ·QF

3 , we have the quotient α(2−α) =
[α(2 − α)]k2 · [α(2 − α)]k3 by Lemma 11, which yields k2 + k3 = 1 and in turn
k2 = 1 and k3 = 0. By k3 = 0, we have : at Q3 and Q3 = T is a trapezoid. But
then the equation R = QF

2 · TF implies that QF
2 must be a flipped trapezoid or

a parallelogram, since these are the only partners for multiplication with flipped
trapezoids by Lemma 11. However QF

2 cannot be of that type, because its affine
quotient is [α(2− α)]1 6= 1. This contradiction shows that the operation at R is :.

Finally, to see that we have · at Q3, assume to the contrary that there is : at Q3.
But then Q3 is a trapezoid T , and an operation R = QF

2 : TF does not exist. So
(C) is verified.

Now we discuss cases depending on the operations at Q1 and Q2 and on the exis-
tence of a flip between Q1 and Q2.

Case I, there is · at Q1. Then we get Case I.a, . . . , Case I.d from Figure 6.

Case II, there is : at Q1. Then Q1 is a trapezoid T , which does not allow : at Q2.
So there is · at Q2. Moreover, there is no flip between Q1 = T and Q2, because this
would give the impossibility Q2 = TF · L, since L is neither a parallelogram nor a
flipped trapezoid. We obtain the last situation illustrated in Figure 6.

Step 2. Discussion of the five remaining cases. For every case we compute the

parametrization of R along the extended dissection tree, based on L = Q
(

α, 1
2−α

)

,

and we analyse the condition R = Q
(

α, 1
2−α

)

. The computations can be made by

hand or by some computer algebra system.
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Case I.a. Here R = ((L · L) · L)F : (L · L)F gives

R = Q

(

(α2 − 5α+ 7)(3− α)α2

(α2 + α+ 1)(α+ 1)(2− α)2

(

α,
1

2− α

))

.

The condition R = Q
(

α, 1
2−α

)

amounts to 1 = (α2−5α+7)(3−α)α2

(α2+α+1)(α+1)(2−α)2 . Subtraction

of 1, multiplication by the denominator and division by the non-zero term 2(1−α)
yields the contradiction

0 = α4 − 4α3 + 6α2 − 4α− 2 = (1− α)4 − 3 < 1− 3 = −2,

because 0 < α < 1. Therefore Case I.a does not give a 5-gc-self-affinity of an affine
kite.

Case I.b. Here R = ((L · L)F · L)F : (L · L)F gives

R = Q

(

(−α3 + 4α2 − 2α− 5)(3− α)α2

(α3 − 2α2 − 2α− 1)(α+ 1)(2− α)2

(

α,
1

2− α

))

.

The condition R = Q
(

α, 1
2−α

)

reads as 1 = (−α3+4α2−2α−5)(3−α)α2

(α3−2α2−2α−1)(α+1)(2−α)2 . Subtracting

1, multiplying by the denominator and dividing by 2(1−α) gives the contradiction

0 = α4 − 4α3 + α2 + 6α+ 2 = α2(2 − α)2 − 3(1− α)2 + 5 > 0− 3 + 5 = 2

for 0 < α < 1.

Case I.c. Here R = ((L · L) : L)F : (L · L)F gives

R = Q

(

(4 − α)(3 − α)α

(α+ 2)(α+ 1)(2− α)

(

α,
1

2− α

))

.

The condition R = Q
(

α, 1
2−α

)

is now 1 = (4−α)(3−α)α
(α+2)(α+1)(2−α) . Subtracting 1, multi-

plying by the denominator and dividing by 2(1− α) gives the contradiction

0 = −α2 + 2α− 2 = −(1− α)2 − 1 < −1

for 0 < α < 1.

Case I.d. Here R = ((L · L)F : L)F : (L · L)F gives

R = Q

(

(α2 − α− 4)(3− α)α

(α2 − 3α− 2)(α+ 1)(2− α)

(

α,
1

2− α

))

.

Now R = Q
(

α, 1
2−α

)

amounts to 1 = (α2−α−4)(3−α)α
(α2−3α−2)(α+1)(2−α) . Subtracting 1, multi-

plying by the denominator and dividing by 2(1− α) gives the contradiction 0 = 2.

Case II. Here R = ((L : L) · L)F : (L · L)F gives

R = Q

(

(4− α)(3 − α)α

(α+ 2)(α+ 1)(2− α)

(

α,
1

2− α

))

as in Case I.c. �

Proof of Theorem 1(iv) and (v). Clearly, every trapezoid is n-gc-self-affine for all
n ≥ 2, see the rightmost illustration in Figure 1. The positive claims of The-
orem 1(iv) and (v) for non-trapezoids are given by Lemma 16. The remaining
negative result for kites in Theorem 1(v) is the claim of Lemma 17. �
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Figure 7. Particular extended dissection trees for the proof of Theorem 18.

8. 3-gc-self-affine quadrangles

Theorem 18. A convex quadrangle is 3-gc-self-affine if and only if it belongs to
one of the following families.

(I) {T (α) : 0 < α < 1} ∪ {P} (the family of all trapezoids including parallelo-
grams).

(II)
{

Q
(

α, −1+
√
1+4α−4α2

2α(1−α)

)

: 0 < α < 1
}

.

Here α < −1+
√
1+4α−4α2

2α(1−α) < 1 whenever 0 < α < 1.

(III)
{

Q
(

α, 1−3α+α2+
√
1−2α+7α2−6α3+α4

2(1−α)

)

: 0 < α < 1
}

.

Here α < 1−3α+α2+
√
1−2α+7α2−6α3+α4

2(1−α) < 1 whenever 0 < α < 1.

(IV)
{

Q(α, β) : 0 < α < β < 1,
(

α− α2
)

β3 +
(

1− 2α+ 2α2
)

β2 +
(

−1 + 2α− 4α2 + α3
)

β + α2 = 0
}

.

Here
{

(α, β) : 0 < α < β < 1,
(

α− α2
)

β3+
(

1− 2α+ 2α2
)

β2+
(

−1 + 2α− 4α2 + α3
)

β+α2 = 0
}

is the graph of a function β : (0, 1) → (0, 1) with α < β(α) < 1 whenever
0 < α < 1.

Proof. We restrict our consideration to the classes Q(α, β), 0 < α < β < 1, because
the situation is trivial for trapezoids.

Step 1. Reduction to nine extended dissection trees. If R is the root of a dissection
tree with leafs L = Q(α, β) of a 3-gc-self-affinity, then one child of R is a leaf and the
other child is a quadrangle Q whose both children are leafs. By the commutativity
of the operations · and :, w.l.o.g., Q is the left child of R. Moreover, the following
are satisfied for the extended dissection tree, see the left-hand part of Figure 7.
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(A) W.l.o.g., there is no flip on the edge directly connecting R with a leaf L.
(B) If there is : at Q then there is no flip between Q and R.
(C) If there is exactly one flip below Q then, w.l.o.g., it is on the left edge below

Q.
(D) There is · at R if and only if there is : at Q.

For (A), note that if there is a dissection tree with leafs L = Q(α, β), then the same
dissection is described by leafs L = Q(α, β)F when flips on edges emanating from
leafs are replaced by non-flips and vice versa.

For (B), if there is : at Q and a flip between Q and R, then Q = T (γ) is a trapezoid
and the operation at R combines T (γ)F with a non-trapezoid. This is impossible.

Claim (C) follows from the commutativity of · and :.

For (D), assume first that we have · at R and Q simultaneously. Then R has the

affine quotient
(

α
β

)3
and cannot be of the same affine type as L, whose quotient is

α
β
, a contradiction. If there is : at both R and Q, then Q = T (γ) is a trapezoid.

By (A) and (B), there are no flips directly below R. Thus R = T (γ) : Q(α, β) =
Q(α, β) : T (γ), which does not make sense.

The restrictions (A), (B), (C) and (D) reduce the dissection trees to Cases I.a-c if
there is · at R (whence there is : at Q) and to Cases II.a-f in the opposite situation,
see Figure 7.

Step 2. Discussion of the nine trees.

(E) Any of the remaining trees with leafs L = Q(α, β) describes a 3-gc-self-
affinity of a quadrangle if and only if the parametrization of its root R

obtained by computation along the tree from L = Q(α, β) coincides with

Q(α, β)F = Q
(

1−β
(1−α)β (α, β)

)

.

We have a 3-gc-self-affinity if and only if R is of the same affine type as L = Q(α, β);
that is, if the parametrization of R is one of Q(α, β) or Q(α, β)F . In all cases the
parametrization ofR is obtained by either · or : with one operand being L = Q(α, β).
This way we obtain a parameter by multiplication of α with some positive number
less than one. But then the parametrization of R is not Q(α, β), because its smaller
parameter is smaller than α. Consequently, R and L have the same affine type if
and only if the parametrization of R is Q(α, β)F .

In the following we compute the parametrization of R from L = Q(α, β) for all trees
determined in Step 1 and analyse criterion (E). Support by a computer algebra
system is useful, but not necessary.

Case I.a. Here R = Q(αβ(α, β)) and (E) amounts to αβ = 1−β
(1−α)β . This is

equivalent to pα(β) := β2 + 1
α(1−α)β − 1

α(1−α) = 0. For every α ∈ (0, 1), the

quadratic function pα(β) has a unique root β ∈ (α, 1), because pα(α) = α3−1
α

<

0 < 1 = pα(1). That root is β(α) =
−1+

√
1+4α−4α2

2α(1−α) , and we obtain family (II) from

Theorem 18.

Case I.b. Now R = Q
(

(1−β)α
1−α

(α, β)
)

and (E) reads as (1−β)α
1−α

= 1−β
(1−α)β . This is

equivalent to αβ = 1, contradicting 0 < α < β < 1.
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Case I.c. We getR = Q
(

(1−β)2α
(1−α)2β (α, β)

)

and (E) gives (1−β)2α
(1−α)2β = 1−β

(1−α)β . Multipli-

cation with (1−α)2β
1−β

and subtraction of the right-hand side yields (1−β)α−(1−α) =

−
(

(1− α)2 + α(β − α)
)

= 0, again contradicting 0 < α < β < 1.

Case II.a. We have R = Q(αβ(α, β)) as in Case I.a.

Case II.b. Here R = Q
(

(1−β2)α
(1−α2)β (α, β)

)

and (E) is (1−β2)α
(1−α2)β = 1−β

(1−α)β . Multiplying

with (1−α2)β
1−β

and subtracting α we obtain αβ = 1, contradicting 0 < α < β < 1.

Case II.c. We get R = Q
(

(1−β)α
1−α

(α, β)
)

as in Case I.b.

Case II.d. Here R = Q
(

((1−α)−(1−β)β)α
(1−α)β−(1−β)α2 (α, β)

)

and (E) is ((1−α)−(1−β)β)α
(1−α)β−(1−β)α2 =

1−β
(1−α)β . Note that the left-hand denominator is positive, because 1−α > 1−β > 0

and β > α2 > 0. By multiplying with the denominators and subtracting the
right-hand side, (E) is equivalent to

(11)
(

α− α2
)

β3 +
(

1− 2α+ 2α2
)

β2 +
(

−1 + 2α− 4α2 + α3
)

β + α2 = 0.

This describes family (IV) from Theorem 18. To see that, for every α ∈ (0, 1),
equation (11) has a unique solution β = β(α) ∈ (α, 1), we denote the left-hand
side of (11) by hα(β). There is a solution, since hα(α) = −α(1 − α)4 < 0 <

α(1 − α)2 = hα(1). The solution is unique, because hα is convex on the interval
(α, 1) by h′′

α(β) = 6α(1− α)β + 2
(

(1− α)2 + α2)
)

> 0.

Case II.e. We have R = Q
(

(1−β)2α
(1−α)2β (α, β)

)

as in Case I.c.

Case II.f. Here R = Q
(

(2−α−β)αβ
(1−α)β+(1−β)α (α, β)

)

and (E) reads as (2−α−β)αβ
(1−α)β+(1−β)α =

1−β
(1−α)β . By subtracting the right-hand side and multiplying with the denominators

and the positive term 1
(1−α)(1−αβ) , we arrive at the equivalent formulation qα(β) :=

β2 − 1−3α+α2

1−α
β − α

1−α
= 0. For every α ∈ (0, 1), the quadratic function qα(β) has

a unique root β ∈ (α, 1), because qα(α) = −2α(1 − α) < 0 < α = qα(1). Noting

that the smaller root β1 =
1−3α+α2−

√
(1−3α+α2)2+4α(1−α)

2(1−α) is negative, the above

mentioned relevant root is β2 =
1−3α+α2+

√
(1−3α+α2)2+4α(1−α)

2(1−α) . This way we get

family (III) from Theorem 18. �

Simple numerical computations show that all families in Theorem 18 are relevant:
not all quadrangles represented by one of the families (II), (III) and (IV) are con-
tained in the other families.

9. An observation on self-affine convex quadrangles

Proof of Theorem 2. By Theorem 1(iv), it remains to consider the case n = 5 and
the cases with even n ≥ 6. Moreover, the situation for trapezoids is trivial, so that
we restrict our consideration to quadrangles Q(α, β), 0 < α < β < 1.

The case n = 5. This dissection can be found in [7, Proposition 1] and goes back
to Attila Pór: Let Q(α, β) be represented by a quadrangle Q = abcd with a = (0, 0)
as in Figure 3, and let ̺ be a contraction with centre a and ratio αβ. Then Q
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Figure 8. n-self-affinity for even n ≥ 6.

splits into the contracted quadrangle ̺(Q) and two trapezoids T1 = ̺(b)bc̺(c) and
T2 = ̺(c)cd̺(d). T1 and T2 are of affine type T (αβ) and can be gc-dissected into
two copies of Q(α, β) by Lemma 14(i). This way Q(α, β) is dissected into five affine
copies of itself.

The case of even n ≥ 6. Let the quadrangle Q∗ = abcd represent Q(α, β) as in
Figure 3. Now let ϕ be the affine map defined by ϕ(a) = c, ϕ(b) = b and ϕ(d) = d.
Note that ϕ(c) is between a and c and, in particular, ϕ(Q∗) ⊆ Q∗; see the left-hand
part of Figure 8. Next let σ be a homothety with centre a such that σ(ϕ(c)) = c;
see the right-hand part of Figure 8. Then σ(Q∗) is dissected into the quadrangles
Q∗ and Q∗∗ = σ(ϕ(Q∗)) and two triangles T1 = bσ(b)c and T2 = cσ(d)d. Finally,

let τν denote a homothety with centre a and ratio ν with |ac|
|aσ(c)| < ν < 1. Then the

quadrangle τν(σ(Q
∗)) (dashed in Figure 8) is of affine type Q(α, β) and dissected

into the quadranglesQ∗ andQ∗∗∩τν(σ(Q∗)) of type Q(α, β) and into two trapezoids
T1 ∩ τν(σ(Q

∗)) and T2 ∩ τν(σ(Q
∗)) of the same type T (µ(ν)). Here the parameter

µ(ν) depends continuously on ν with lim
ν↓ |ac|

|aσ(c)|

µ(ν) = 1 and limν↑1 µ(ν) = 0. So

we find ν0 such that µ(ν0) = αβ. Consequently, the quadrangle Q = τν0(σ(Q
∗)) of

type Q(α, β) splits into two quadrangles of type Q(α, β) and two trapezoids of type
T (αβ). By Lemma 14, one of the trapezoids can be dissected into two quadrangles
of type Q(α, β) and the other one can be dissected into n− 4 quadrangles of type
Q(α, β). This proves the n-self-affinity of Q. �
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