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Abstract. Existing image restoration approaches typically employ ex-
tensive networks specifically trained for designated degradations. Despite
being effective, such methods inevitably entail considerable storage costs
and computational overheads due to the reliance on task-specific net-
works. In this work, we go beyond this well-established framework and
exploit the inherent commonalities among image restoration tasks. The
primary objective is to identify components that are shareable across
restoration tasks and augment the shared components with modules
specifically trained for individual tasks. Towards this goal, we propose
AdaIR, a novel framework that enables low storage cost and efficient
training without sacrificing performance. Specifically, a generic restora-
tion network is first constructed through self-supervised pre-training us-
ing synthetic degradations. Subsequent to the pre-training phase, adapters
are trained to adapt the pre-trained network to specific degradations.
AdaIR requires solely the training of lightweight, task-specific modules,
ensuring a more efficient storage and training regimen. We have con-
ducted extensive experiments to validate the effectiveness of AdaIR and
analyze the influence of the pre-training strategy on discovering shareable
components. Extensive experimental results show that AdaIR achieve
outstanding results on multi-task restoration while utilizing significantly
fewer parameters (1.9 MB) and less training time (7 hours) for each
restoration task. The source codes and trained models will be released.

1 Introduction

Image restoration is a long-standing problem in low-level vision, with the objec-
tive of reconstructing high-quality (HQ) images from degraded low-quality (LQ)
counterparts. This field has witnessed substantial progress with the emergence
of deep learning approaches. Current methods achieve considerable success by
training models tailored for a specific degradation, as presented in Fig. 1(a).
Although the single-task approaches have achieved significant success in a wide
range of tasks, they are well-known to be confined to the degradations present
during the training phase, resulting in limited generalizability.

While image restoration covers a spectrum of degradation types, the pri-
mary objective remains to eliminate artifacts caused by degradations and re-
cover a high-quality image. By understanding learned latent representations of
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Fig. 1: Comparison of different approaches. An illustration of different strategies to deal with
multiple image restoration tasks. (a) Training separate models for each specific task, e.g., denoising,
deraining, and supre-resolution. (b) Appending multiple heads and tails, which are respectively
tailored to different tasks, on a shared backbone model. (c) Designing special blocks within the all-
in-one model to encode and utilize degradation information without specifying the task explicitly.
(d) Our proposed AdaIR exploiting task-specific adapters to address different restoration tasks.

different degradations, it is discovered that there are intersecting latent repre-
sentations across different tasks [43, 90]. Therefore, a flexible and cost-efficient
approach to image restoration can be realized through a common foundation
complemented by compact, task-specific modules. Straightforward strategies for
multi-task image restoration involve directly training a shared backbone Fig. 1(b)
or a all-in-one model Fig. 1(c) on multiple degradations. These methods enhance
the versatility of the trained network and reduces the storage costs of multiple
single-task models. However, they still exhibit limited generalizability to degra-
dations beyond those included in the training set, ultimately constraining the
scalability of existing methods.

In this work, we explore and exploit the shareable components among dif-
ferent restoration tasks with parameter-efficient tuning. This approach divides
the training process into pre-training and fine-tuning phases. The pre-training
phase aims to uncover shareable components, while the fine-tuning phase fa-
cilitates easy adaptation to different tasks. Although parameter-efficient tuning
has been extensively studied in natural language processing (NLP) [4, 6, 13, 25,
27, 29, 41, 47, 56, 61, 65, 84] and high-level vision tasks [8, 11, 32, 34–36, 97], its
application in the low-level vision domain remains under explored. The bene-
fits of parameter-efficient tuning are twofold. Firstly, the relationship between
various restoration tasks is difficult to discern when training a single multi-
task model from scratch. The two-phase transfer learning mechanism allows for
learning shareable components during the pre-training phase. This allows us to
analyze pre-training schemes instead of training restoration models from scratch,
further investigating generalizability. Secondly, efficient fine-tuning enables the
lightweight task-specific extensions of the model to address unseen degradations
not covered in the pre-training phase, thereby reducing memory and computa-
tional time. Combining the above insights and the merits of parameter-efficient
tuning, we aim to advance research this approach for multi-task image restora-
tion. To achieve this, we design a novel adapter module as our parameter-efficient
tuning method.

We introduce AdaIR, a framework that leverages adapters for efficient adap-
tation to previously unseen degradations through pre-training and fine-tuning
phases. Our framework initiates a self-supervised pre-training phase that em-
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ploys synthetic degradations. To integrate new tasks, lightweight adapters are
inserted into the foundation model. During the fine-tuning phase, the pre-trained
model remains unchanged, and only the adapters undergo training. Our approach
enables the utilization of a shared foundation model across various tasks, result-
ing in reduced training time compared to training from scratch. Additionally,
we only need to store adapters for different tasks rather than multiple models,
thereby reducing storage costs.

As our objective is to investigate the how to explore shareable components
across diverse restoration tasks, our focus is on the effect of various pre-training
schemes employed during the pre-training phase on the performance of down-
stream tasks in the fine-tuning phase. We perform multiple experiments with
various pre-training schemes tailored to the downstream tasks. The extensive
studies on pre-training schemes not only assist us in training a generic model
but also provide valuable insights for future advancements.

Moreover, we provide comparisons with existing multi-task restoration meth-
ods, which reveals that AdaIR could achieve comparable performance against
existing works with lightweight parameters and corresponding training strategy,
thereby confirming the efficacy of our approach.

The main contributions of our work are:

– We propose AdaIR, a framework that integrates adapter modules into a
shareable foundation model for efficient adaptation to novel restoration tasks.

– Our detailed analysis studies the influence of the pre-training strategy and
adapter modules on the performance, offering guidance for future research.

– Extensive experiments demonstrate that AdaIR achieves favorable perfor-
mance with efficiency on various restoration tasks.

2 Related Work

Single-Task Restoration. Existing image restoration methods mainly focus
on the setting of a single task to recover high-quality images from low-quality
images that endured specific degradation. Numerous restoration tasks benefit
from the emergence of a deep learning-based model and achieve huge improve-
ment. These tasks involve super-resolution (SR) [12,16,17,37,40,49,53,77,95,96],
denoising [15,74,91–93], deraining [22,23,33,46,66,79,83,88], dehazing [7,18,19,
26,42,50,63,64,67,80], and deblurring [24,38,39,44,59,60,68,69,73,89,94].

Multi-Task Restoration. Recently, image restoration has developed toward
extending the restoration model to multiple-task restoration. Some approaches
introduce unified model architecture to address various types of degradation,
such as HINet [10], MPRNet [86], SwinIR [48], Uformer [78], and Restormer [85].
Despite significant success, these methods are still limited to applying a single
model to multiple degradations. Each restoration model is typically trained for
each specific degeneration with the same architecture. However, the requirement
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of training and storing several copies of the restoration model incurs extra mem-
ory and time consumption. Alternatively, several approaches [9,21,43,45,54,62,
75, 82] propose to remove different degradations with a single model. IPT [9]
introduces several head and tail modules into a shared backbone as demon-
strated in Fig. 1(b), where each pair of head and tail is responsible for one task.
AirNet [43] projects degenerated input images into latent space and utilizes con-
trastive learning to separate different degradations. Then, these features guide
the restoration toward the specific tasks. PromptIR [62] proposes a prompt block
to encode degradation-specific knowledge to lead the restoration model to mul-
tiple tasks. Despite these advancements, numerous challenges remain as these
methods require retraining when encountering new types of image degradation.
To tackle this issue, our approach involves pre-training a compact model designed
to adapt to any image degradation via parameter-efficient tuning.

Parameter-Efficient Tuning. In the Natural Language Process (NLP) do-
main, transferring a large-scale pre-trained model, such as the Transformer-
based [76] model, to multiple downstream tasks is now prevailing. The most
intuitive manner is to fine-tune all the parameters in the pre-trained model
to the specific task. However, this kind of approach inevitably entails the de-
mands for additional memory and training costs. Thus, methods that efficiently
adapt the pre-trained model to various tasks are proposed to mitigate the prob-
lem. These efficient tuning methods could be roughly categorized into three
groups: (1) Prompt-Tuning [6,41,47], (2) Adapter [4,13,25,27,56,61,65], and (3)
Low-Rank Adaptation (LoRA) [29]. Furthermore, some works attempt to apply
parameter-efficient tuning techniques on the vision tasks [8,11,32,34–36,97]. In
this work, we develop a novel adapter optimized for image restoration to deal
with multi-task restoration effectively.

3 Methodology

This section provides an overview of our proposed AdaIR framework, followed
by the details of adapter modules within the framework. We then further discuss
our training scheme, including pre-training and fine-tuning phases.

3.1 AdaIR

AdaIR is a framework designed to integrate adapter modules AR into a foun-
dation model, thereby enabling the generalization of the foundation model to
multiple specific image restoration tasks. Fig. 2 presents an overview of the
proposed AdaIR framework, which focuses on recovering high-quality (HQ) im-
ages IrHQ ∈ RH×W×3 from the low-quality images (LQ) IrLQ ∈ RH×W×3, where
r ∈ {1, 2, 3, . . . , R} denotes the index of the restoration task and R represents
the total number of restoration tasks, with H and W referring to the height and
width of the images, respectively. AdaIR tunes lightweight adapter modules Ar

to learn task-specific knowledge for restoring IrHQ by eliminating the artifacts



AdaIR 5

Frozen

Trainable

Element-wise Addition
LN

Feed-Forward Network

MDTA

GDFN

Multi-DConv Head

Layer Normalization

PConv Point-wise 1x1 Convolution
DConv Depth-wise 3x3 Convolution

Feature

Extraction

Image

Restoration

A
da

pt
er

 B
lo

ck

Adapter Block

PM

AL

PM

AL

(a) AdaIR

L
N

G
D

FN

M
D

TA

L
N

(b) Adapter Layer (AL)
(c) Pre-trained

DConv PConv

PConv

(d) Adapter Module

A
da

pt
er

 B
lo

ck

A
da

pt
er

 B
lo

ck

A
da

pt
er

 B
lo

ck

Module (PM)

Transposed Attention

Gated-DConv

Fig. 2: Overview. The proposed AdaIR framework. Our foundation model comprises feature ex-
traction, pre-trained, and image restoration modules. The adapter modules interact with pre-trained
modules to form adapter layers. When fine-tuning, the parameters of the foundation model are frozen;
only the parameters in the adapter module are tunable.

present in the IrLQ. While keeping most of the foundation model’s parameters
frozen, we can efficiently address several restoration tasks without needing mul-
tiple separate restoration models.

3.2 Instantiations

Backbone. In AdaIR, the foundation model is designed to be flexible, which al-
lows for the substitution of different underlying architectures. We have selected
the architecture proposed in Restormer [85] as our foundation model for this
study. Restormer is a unified architecture suitable for various image restoration
tasks, which effectively demonstrate the capabilities of our proposed framework.
It features a multi-level hierarchical encoder-decoder structure. The input image
is initially projected into a latent embedding space through a feature extraction
module, such as a 3x3 convolutional layer. Each level of the hierarchical archi-
tecture comprises several transformer blocks that serve as pre-trained modules.
The Restormer progressively reduces the spatial resolution in the encoder. Con-
versely, the decoder incrementally upscales the spatial resolution until it matches
the input image’s. Ultimately, a convolutional layer processes the refined features
to generate the residual image within the image restoration module. This residual
image is then added to the input to produce the final restored image.

Adapter Module. To facilitate the learning of task-specific knowledge while
leveraging a shareable foundation model, adapter modules are introduced, which
play a crucial role in generalizing the foundation model to multiple restoration
tasks. Our approach incorporates adapters into a sequence of layers as [11,25,27].
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We design an adapter architecture tailored for image restoration, as illustrated in
Fig. 2(d). Considering the characteristics of image restoration tasks in the low-
level vision domain, it is essential to effectively harness nearby information for
reconstructing LQ images. To this end, our adapter design utilizes convolutional
layers to integrate nearby pixel information for restoration effectively. However,
the direct implementation of traditional convolutional layers with a kernel size of
g would substantially increase parameters, growing quadratically with g2 com-
pared to the original fully connected (FC) layers. To mitigate this increase in pa-
rameters without significantly altering the architecture, we adopt a multi-branch
structure featuring depthwise separable convolutional layers [28] and residual
connections, which draw inspiration from networks with an inception-like struc-
ture [14,31,70–72]. Furthermore, empirical evidence suggests that layer normal-
ization [3] and non-linear functions marginally diminish performance. Therefore,
we exclude them from our adapter modules.

3.3 Adapter Layer

The adapter layer is developed for adapting the original pre-trained module to
a specific image restoration task. As demonstrated in Fig. 2(b), each adapter
layer mainly consists of two types of sub-modules: a pre-trained module and
an adapter module. Since we utilize Restormer as our foundation model, the
pre-trained module is the Transformer block introduced in [85], which involves
multi-DConv head transposed attention (MDTA), gated-DConv feed-forward
network (GDFN), and two layers of layer normalization (LN). An input hr

b,l is
processed through LN and MDTA, then combined with the original input to form
the feature xr

b,l. This feature then passes through another LN and GDFN with
a residual connection to create h′r

b,l. In specific, the process in the pre-trained
module is described as follows:

xr
b,l = hr

b,l + MDTA(LN(hr
b,l)), (1)

h′r
b,l = xr

b,l + GDFN(LN(xr
b,l)), (2)

where b = {1, 2, ...n, ..., N} denotes the index of the adapter block, l = {1, 2, ..., Lb}
represents the index of adapter layers in each adapter block. Since each restora-
tion task has its corresponding adapter module, in Fig. 2(b), we illustrate the
process with r = 1 to make it clear.

On the other hand, the adapter module is integrated into the pre-trained
module in parallel. In adapter module Ar

b,l, inception structure with 3x3 depth-
wise separable convolutional layer (DConv) [28] and 1x1 pointwise convolutional
layer (PConv) are employed. Finally, h′r

b,l and ∆hr
b,l are added together to pro-

duce the adapted output zrb,l. The overall procedure of adapter layers is formu-
lated as follows:

∆hr
b,l = Ar

b,l(h
r
b,l) = PConv(DConv(hr

b,l) + PConv(hr
b,l)), (3)

zrb,l = h′r
b,l +∆hr

b,l, (4)
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Integrating the adapter module into the transformer block provides the flexi-
bility needed for the framework to adapt to different tasks, improving its overall
performance and versatility.

3.4 Training Scheme

To extend the foundation model further to multiple degradations, a two-phase
training strategy with a pre-training phase and a fine-tuning phase is employed.

Pre-Training Phase. In the pre-training phase, we adopt a self-supervised
training strategy to enhance the model’s generalizability to low-quality (LQ) in-
put images. This strategy involves the generation of training pairs by augmenting
ground truth images with various synthetic distortions, thereby creating a self-
supervised learning environment. In this work, we concentrate on the influence
of different pre-training schemes on the performance of downstream tasks. Our
goal is to explore the shareable components across various restoration tasks. We
observed that effective pre-training markedly benefits the fine-tuning process.
A detailed analysis of the pre-training schemes and their effects is presented in
Section 5.

Fine-Tuning Phase. During the pre-training phase, the foundation model is
trained to extract features from a diverse array of images, effectively reducing
artifacts in degraded input images. However, the foundation model may not de-
liver optimal performance for specific types of degradation, as its training in
the pre-training phase may not be focused on those particular degradations. We
incorporate adapter modules Ar into the model to address this limitation and
bolster the foundation model’s capabilities for specialized tasks. These adapter
modules add task-specific parameters that are fine-tuned to meet the unique
challenges of each task. In the fine-tuning phase, only the parameters within
the adapter modules are trained, while most of the foundation model remains
unchanged. This approach allows for efficient training of the AdaIR framework.
After fine-tuning, a single copy of the foundation model can be stored alongside
multiple lightweight adapter modules. This setup facilitates the restoration of
images affected by various types of degradation without necessitating multiple
large-scale models, thereby reducing both storage requirements and computa-
tional complexity.

4 Experiments

In this section, we present experimental results and discuss their implications.
We start with an introduction to our experimental setup in Section 4.1. Then,
we evaluate our AdaIR with different restoration tasks in Section 4.2. Finally,
we compare different parameter-efficient tuning methods in Section 4.3.
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4.1 Experimental Setups

Restoration Tasks. We conduct experiments on four different restoration
tasks, including denoising, Gaussian deblurring (GD), deraining, and super-
resolution (SR). We divide LQ images of each restoration task into easy subset
E and hard subset H to evaluate the generalizability. The datasets we use are
summarized as follows:

– Denoising In alignment with previous studies [43, 62], we conduct our ex-
periments using a combined dataset consisting of BSD400 [2] and WED [55],
totaling 4,744 images for training the model. To evaluate the denoising ef-
fectiveness of our model, we perform assessments on the BSD68 [57] and
Urban100 [30] datasets. Specifically, we generate noisy images through a
synthetic process that adds Gaussian noise to clean images. We respec-
tively set the noise levels σ ∈ {15, 25, 50} to generate the easy subset, and
σ ∈ {70, 100} to generate the hard subset.

– Deblurring We have devised our experimental environment due to the
limited number of studies focusing on Gaussian deblurring. We utilize the
DIV2K [1] dataset for training, comprising 1,000 high-resolution 2K images.
Out of these, 800 images are designated for the training set. The model’s per-
formance is then evaluated on the BSD68 [57] and Urban100 [30] datasets.
The LQ images are synthetically generated by applying blur degradations.
Specifically, we use convolution with isotropic Gaussian filters to create the
input images. For the Gaussian blur kernel, the kernel size k and the stan-
dard deviation σ along the two principal axes are sampled from a proba-
bility distribution to produce paired training data. We create the easy LQ
images with kernel sizes k ∈ {7, 9, 11, 13, 15} and standard deviations sam-
pled from a uniform distribution s ∼ U(0.2, 3.0). As for hard LQ images, we
use kernels of sizes k ∈ {17, 19, 21} and standard deviations sampled from
s ∼ U(3.0, 5.0).

– Deraining For the deraining task, our model is trained using 200 train-
ing pairs from the Rain100L [81] dataset and 1,800 training pairs from the
Rain100H [81] dataset, corresponding to light and heavy rain streaks. To as-
sess the effectiveness of our proposed method, evaluations are conducted on
100 testing pairs from both Rain100L [81] and Rain100H [81]. We categorize
light and heavy rain streaks as easy subsets and hard subsets, respectively.

– Super-Resolution We use 800 images in DIV2K [1] to train our model
to be similar to the Gaussian deblurring task. In contrast, we assess the
model’s performance on the Set5 [5], Set14 [87], B100 [58], and Urban100 [30]
datasets. To align the image resolution with other restoration tasks and
maintain a unified architecture, we initially downsample the high-resolution
(HR) images to low-resolution (LR) images using bicubic interpolation. These
LR images are then upscaled back to their original resolution, employing
bicubic interpolation. The final outputs are merged with the input images
to create the dataset for training and evaluation. We form the easy subset
by sampling its scaling factor from a uniform distribution U(1, 4). Simulta-
neously, larger scaling factors of ×6 and ×8 are used for the hard subset.
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Method
Gaussian Denoising Gaussian Deblurring Deraining

BSD68 [57] Urban100 [30] BSD68 [57] Urban100 [30] Rain100H [81]
σ = 70 σ = 100 σ = 70 σ = 100 k19s4 k21s5 k19s4 k21s5 heavy

RestormerE 24.22 18.85 24.44 18.72 23.33 22.26 20.02 19.19 14.48
RestormerE+H 26.96 25.53 27.51 25.87 27.25 26.21 25.68 24.12 31.79
PromptIRE+H 26.94 25.51 27.50 25.86 27.26 26.20 25.72 24.11 31.91
AdaIR (Ours) 26.98 25.54 27.54 25.86 27.29 26.11 25.73 23.91 30.93

Table 1: The average PSNR (dB) over the hard subsets of the restoration tasks including Gaussian
denoising, Gaussian deblurring, and deraining. The best and second-best performing results are
highlighted by the red and blue colors, respectively.

Method Trainable
Param.

Training
Time

Set5 [5] Set14 [87] B100 [58] Urban100 [30]
×6 ×8 ×6 ×8 ×6 ×8 ×6 ×8

Bicubic - - 24.75 23.09 22.87 21.64 22.88 22.05 19.40 18.48
RestormerE 26.1M 43hr 24.20 23.85 23.11 22.76 22.67 23.21 20.95 20.49
RestormerE+H 26.1M 61hr 29.22 26.99 26.61 25.00 25.97 24.94 24.13 22.49
PromptIRE+H 35.6M 67hr 29.03 26.76 26.58 24.86 25.93 24.93 24.07 22.23
AdaIR (Ours) 1.9M 7hr 29.15 26.85 26.51 24.83 25.92 24.87 24.02 22.31

Table 2: The average PSNR (dB) on Set5 [5], Set14 [87], B100 [58], and Urban100 [30] of super-
resolution with scaling factor ×6 and ×8. Additionally, an analysis of the training time and the
number of trainable parameters during training. The best and second-best performing results are
highlighted by the red and blue colors, respectively.

Implemantation. In this work, the training process is divided into two distinct
phases: the pre-training phase and the fine-tuning phase. During the pre-training
phase, we pre-train the foundation model using a collective dataset of the easier
subsets, denoted as E, from all four restoration tasks to train the shareable pa-
rameters. This approach allows us to seamlessly employ any pre-trained compact
foundation model, potentially eliminating the need for a dedicated pre-training
phase. Subsequently, in the fine-tuning phase, we fine-tune the parameters of the
task-specific adapter modules Ar using the more challenging subset Hr for each
restoration task.
During the training, the inputs are size 128 × 128 images, which are randomly
cropped from the training set images. These images are further augmented with
random horizontal and vertical flips. The batch size is set to 8, and the AdamW
optimizer [52] is used with the L1 loss function for training. The model undergoes
training for 200 epochs, with an initial learning rate of 2e−4. The learning rate
is also adjusted according to a cosine annealing schedule [51].
Please note that the performance is evaluated in terms of peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM). For the super-
resolution (SR) task, the PSNR and SSIM evaluations are computed on the Y
channel from the YCbCr color space. Conversely, for the Gaussian denoising,
Gaussian deblurring, and deraining tasks, all three channels of the RGB color
space are used to calculate PSNR and SSIM. The forthcoming experimental
results will be presented in terms of PSNR; the SSIM results will be included in
the supplementary materials.

4.2 Validation of AdaIR

Quantitative results. We compare our proposed AdaIR to existing methods
for image restoration, including Restormer [85] and PromptIR [62]. Specifically,
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Fig. 3: The qualitative results of RestormerE+H [85], PromptIRE+H [62], and our AdaIR in the
denoising task with two noisy levels.

we retrain Restormer and PromptIR using LQ images from four restoration tasks
simultaneously. We exploit RestormerE , trained exclusively on easy LQ images
E, as the baseline and the foundation model of AdaIR . Furthermore, we train
RestormerE+H and PromptIRE+H on a combined dataset of easy and hard LQ
images.

Table 1 and Table 2 summarize the quantitative results in terms of PSNR(dB)
on Gaussian denoising, Gaussian deblurring, deraining, and super-resolution.
Overall, RestormerE performs poorly on the hard subsets containing degrada-
tions not seen during its training. Notably, AdaIR fine-tunes RestormerE to
handle the hard subsets better, significantly enhancing performance by 15.8dB
PSNR on deraining task. Moreover, AdaIR achieves comparable performance
with RestormerE+H and PromptIRE+H . It is important to note that AdaIR can
adapt to unseen degradations, unlike Restormer and PromptIR, which are lim-
ited to predefined degradations. This comparison substantiates AdaIR ’s adapt-
ability and ability to generalize well across different types of image degradations.

As shown in Table 2, the adaptation training time for AdaIR is merely 7
hours, which is relatively short compared to training Restormer and PromptIR
from scratch. Meanwhile, AdaIR requires only 1.9 MB of tunable parameters,
which is less than 8% of the parameters of Restormer. This demonstrates the
effectiveness and efficiency of our AdaIR framework.

Qualitative results. Fig. 3 compares the qualitative results of our proposed
AdaIR with the baseline method RestormerE+H [85] and PromptIRE+H [62], on
datasets BSD68 [57] and Urban100 [30] with variant noisy level, such as σ = 70
and σ = 100. The visualization result of reconstructing a noisy image with σ = 70
is displayed in the first row. The legs of the zebra are transparent or even dis-
appear in the baseline methods. However, our proposed AdaIR restore the legs
and the stripes on it. In the second row, RestormerE+H and PromptIRE+H [62]
struggle to reconstruct the mesh pattern on the image, whereas the AdaIR result
demonstrate the pattern. These visualization results demonstrate the effective-
ness of our method.
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Fig. 4: The qualitative results of our AdaIR in the SR task with two upscaling factors.

Fig. 5: The qualitative results of our AdaIR in the Gaussian deblurring and deraining tasks.

Fig. 4 demonstrates the restoration results of AdaIR on the SR task with two
upscaling factors. The results of reconstructing the LQ images in the upscaling
factor ×6 are illustrated in the first row. When the lines on the LQ image are
blurry or even exhibit the wrong patterns, i.e., the horizontal lines are turned
into diagonal lines. However, our method can still restore the correct pattern.
On the other hand, the result of ×8 is shown in the second row. Note that the
rectangle windows are reconstructed by our proposed method.
Fig. 5 demonstrates the restoration results of AdaIR on the Gaussian deblurring
and deraining task on the Urban100 [30] and Rain100H [81] datasets. As shown
in the first row, rain streaks are removed even when most scenes are the same
color as rain streaks. In the second row, the numbers are distorted in the LQ
images, but our method can still correctly restore the numbers, such as ’44’ and
’45’.
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Method
Gaussian Denoising Super-Resolution

BSD68 [57] Urban100 [30] B100 [58] Urban100 [30]
σ = 70 σ = 100 σ = 70 σ = 100 ×6 ×8 ×6 ×8

VPT-add [32] 27.03 25.55 27.83 26.07 25.76 24.56 23.64 21.88
AdaptFormer [11] 27.04 25.59 27.87 26.21 25.88 24.80 24.01 22.20
AdaIR (Ours) 27.04 25.60 27.88 26.23 25.92 24.85 24.10 22.32

Table 3: The average PSNR (dB) over the hard subsets of the restoration tasks including Gaussian
denoising and super-resolution. The best and second-best performing results are highlighted by the
red and blue colors, respectively.

4.3 Comparison of Transfer Learning Approaches

We compare the proposed adapter module and other parameter-efficient tun-
ing methods, including VPT [32] and AdaptFormer [11]. It is important to note
that ViT [20] and AdaptFormer [11] were originally designed for high-level vi-
sion tasks, but we have re-implemented them for image restoration and evaluated
their effectiveness. Specifically, we adopted the prepend setting of VPT, modify-
ing it to the add setting as VPT-add, where 8× 8 learnable prompts of length 4
are added to each hidden feature in every layer. Table 3 presents the quantitative
results in terms of PSNR(dB) on Gaussian denoising and super-resolution. As
shown in Table 3, our adapter-based approach outperforms the prompt-based
VPT-add, indicating that adapter-based methods may be more suitable for the
image restoration domain. Compared to AdaptFormer, while our method does
not exhibit a significant enhancement in the denoising task, it outperforms the
super-resolution task. The discrepancy can be attributed to the differences in the
degradation processes. Noisy images are created by adding independent Gaus-
sian noise to each pixel, whereas LR images are produced through window-based
operations, such as bicubic interpolation, which incorporate nearby pixel infor-
mation. As convolutional layers excel at processing local information, our method
demonstrates superior performance in the super-resolution task compared to the
fully connected layers used in AdaptFormer.

5 Analysis

Shareable components play a crucial role in solving multi-task image restoration.
In this study, we analyze pre-training strategies to train shareable parameters in
two directions. Firstly, we investigate an inter-task scheme, which involves using
different types of degradations between the pre-training and fine-tuning phases.
For example, Gaussian noise may be used during pre-training, while Gaussian
blur is applied during fine-tuning. Secondly, we explore an intra-task scheme,
where the same type of degradation is present in both the pre-training and fine-
tuning phases, but with varying levels of severity. An instance of this would be
employing Gaussian noise with a small standard deviation during pre-training
and a larger standard deviation during fine-tuning.

5.1 Inter-Tasks Pre-Training Schemes

Table 4 presents the quantitative results of the inter-task scheme, where the
pre-training scheme and the restoration tasks consider their respective types
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Schemes
Tasks Denoise SR GD Derain

σ = 70 σ = 100 ×6 ×8 k19s4 k21s5 heavy
None 25.83 24.54 23.03 21.76 26.05 24.73 25.81
Denoise 27.04 25.60 23.76 22.19 26.79 25.37 29.13
SR 26.62 25.15 24.10 22.32 26.90 25.47 27.95
GD 26.46 25.00 23.47 21.99 27.09 25.68 26.77
Derain 26.47 25.04 23.33 21.93 26.53 25.13 29.40
All 26.98 25.54 24.02 22.31 27.29 26.11 30.93

Table 4: The average PSNR (dB) over the hard subsets
of the restoration tasks including Gaussian denoising,
super-resolution, Gaussian deblurring, and deraining.
The best and second-best performing results are high-
lighted by the red and blue colors, respectively.
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Fig. 6: Heatmap visualization of Ta-
ble 4. Please note that the brighter the
grid is, the larger the PSNR (dB) value.

of degradation. The types of degradation in the pre-training scheme and the
restoration tasks may be either the same or different. From the data in Table 4,
it is evident that models pre-trained with any type of degradation consistently
outperform those without pre-training. This observation suggests the existence of
shareable components among these restoration tasks that facilitate performance
in the fine-tuning phase. For the denoising and SR tasks, the best performance is
achieved when the degradation types in the pre-training scheme and the restora-
tion tasks are the same. Conversely, for the Gaussian deblurring and deraining
tasks, the best results are obtained when all types of degradations are included
in the pre-training scheme. In summary, a greater correlation between the types
of degradation in the pre-training scheme and the restoration tasks tends to
yield better results. Figure 6 visualizes the data from Table 4 in heatmap form,
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Fig. 7: Performance comparison by using different pre-training schemes within the inter-tasks scope.
The y-axis represents the PSNR (dB) values and the x-axis denotes the training iterations.

clearly illustrating that pre-training is indeed beneficial for any restoration task.
To further investigate the impact of pre-training schemes on restoration tasks,
we evaluate the proposed method at every 8K iteration interval during fine-
tuning. As illustrated in Fig.7, we observe that when pre-training schemes more
closely related to the restoration tasks are employed, the convergence speed in-
creases. For instance, in Fig.7(c), the ’SR’ and ’All’ pre-training schemes, which
are closely aligned with the restoration task SR ×6, provide the pre-trained
foundation model with an adequate initial performance at 0 iteration. As fine-
tuning progresses, these schemes exhibit a substantial performance improvement
compared to other pre-training schemes. Notably, our proposed method requires
only 8K iterations to converge to satisfactory results.



14 H.-W. Chen, Y.-S. Xu, K.-C.K. Chan et al .

Schemes
Tasks Denoise on BSD68 [57] SR on Urban100 [30]

σ = 55 σ = 60 σ = 70 σ = 100 ×4.5 ×5 ×6 ×8

None 26.87(-1.20) 26.55(-1.14) 25.83(-1.21) 24.54(-1.06) 24.33(-1.59) 23.81(-0.89) 23.03(-0.73) 21.76(-0.43)
Denoise 28.07 27.69 27.04 25.60 25.29(-0.63) 24.70(-0.52) 23.76(-0.34) 22.19(-0.13)
SR 27.65(-0.42) 27.27(-0.42) 26.62(-0.42) 25.15(-0.45) 25.92 25.22 24.10 22.32
GD 27.50(-0.57) 27.12(-0.57) 26.46(-0.58) 25.00(-0.60) 25.04(-0.88) 24.41(-0.81) 23.47(-0.63) 21.99(-0.33)
Derain 27.49(-0.58) 27.12(-0.57) 26.47(-0.57) 25.04(-0.56) 24.80(-1.12) 24.20(-1.02) 23.33(-0.77) 21.93(-0.39)

Table 5: The average PSNR (dB) of the restoration tasks including Gaussian denoising and SR. The
best and second-best performing results are highlighted by the red and blue colors, respectively.

5.2 Intra-Tasks Pre-Training Schemes

In Table 4, we observe that the best result for the SR ×8 task does not signifi-
cantly outperform the results obtained when other pre-training schemes are em-
ployed. To investigate the underlying cause, we introduce the intra-task scheme.
Table 5 presents the quantitative results of this scheme. Various pre-training
schemes are utilized to train the foundation model, which is then fine-tuned with
a lightweight adapter module for different levels of severity within the restoration
tasks. For the denoising task, regardless of the values of σ used in the restoration
tasks, the disparity in results between the best setting and other settings remains
similar. However, in the SR task, as the severity level increases from ×4.5 to
×8, the performance gaps between the best setting and other settings diminish.
These observations suggest that a closer relationship between the degradation
type in the pre-training scheme and the restoration tasks can lead to improved
performance on the restoration tasks. The consistent performance gaps in the
denoising task may be attributed to the task’s inherent simplicity, resulting in a
smaller distribution range across different levels of σ. Conversely, the decreasing
performance gaps in the SR task as the restoration tasks become more challeng-
ing suggest that even within the same type of degradation, different levels of
severity can introduce a significant domain shift.

6 Conclusion

In this study, we address the limitations of current methods by exploring the per-
spective of shareable components across multiple restoration tasks. To reach the
goal, we propose the AdaIR framework, which integrates adapter modules into a
common foundation model for image restoration. To enhance the generalizability
of a foundation model, we employ a self-supervised strategy and diverse training
data during the pre-training phase. We integrate lightweight adapter modules
into the foundation model in the fine-tuning phase. These adapter modules are
designed to adapt the foundation model to individual tasks. During fine-tuning,
the foundation model’s parameters are frozen, which allows the adapter modules
to learn task-specific knowledge while preserving the general knowledge captured
by the foundation model. Based on the experimental results, both quantitative
and qualitative assessments demonstrate that AdaIR achieves comparable per-
formance to current methods with fewer parameters and reduced training time.
Furthermore, our comprehensive analyses of pre-training strategy assist in ad-
dressing multi-task image restoration more directly and decisively.



AdaIR 15

References

1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-
resolution: Dataset and study. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition Workshop (CVPRW). pp. 1122–1131 (2017) 8

2. Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: Contour detection and hierarchi-
cal image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence
(TPAMI)pp. 898–916 (2011) 8

3. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR (2016) 6
4. Bapna, A., Firat, O.: Simple, scalable adaptation for neural machine translation.

In: Proc. Conf. on Empirical Methods in Natural Language Processing and Int.
Joint Conf. on Language Processing (EMNLP-IJCNLP). pp. 1538–1548 (2019) 2,
4

5. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In: Proc.
British Machine Vision Conf. (BMVC). pp. 1–10 (2012) 8, 9

6. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners. In: Proc. Conf. on Neural Information Processing
Systems (NeurIPS)(2020) 2, 4

7. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system for
single image haze removal. IEEE Trans. Image Processing (TIP)pp. 5187–5198
(2016) 3

8. Chavan, A., Liu, Z., Gupta, D., Xing, E., Shen, Z.: One-for-all: Generalized lora
for parameter-efficient fine-tuning (2023) 2, 4

9. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu,
C., Gao, W.: Pre-trained image processing transformer. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 12294–12305 (2021) 4

10. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: Hinet: Half instance normalization
network for image restoration. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). pp. 182–192 (2021) 3

11. Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., Luo, P.: Adaptformer:
Adapting vision transformers for scalable visual recognition. In: Proc. Conf. on
Neural Information Processing Systems (NeurIPS)(2022) 2, 4, 5, 12

12. Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-
resolution transformer. CoRR abs/2205.04437 (2022) 3

13. Chen, Z., Chen, B., Chen, L., Yu, K., Lou, J.: Adaptershare: Task correlation
modeling with adapter differentiation. In: Proc. Conf. on Empirical Methods in
Natural Language Processing (EMNLP). pp. 10645–10651 (2022) 2, 4

14. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp.
1800–1807 (2017) 6

15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Color image denoising
via sparse 3d collaborative filtering with grouping constraint in luminance-
chrominance space. IEEE Int. Conf. on Image Processing (ICIP)pp. 313–316 (2007)
3



16 H.-W. Chen, Y.-S. Xu, K.-C.K. Chan et al .

16. Dai, T., Cai, J., Zhang, Y., Xia, S., Zhang, L.: Second-order attention network
for single image super-resolution. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). pp. 11065–11074 (2019) 3

17. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep con-
volutional networks. IEEE Trans. Pattern Analysis and Machine Intelligence
(TPAMI)pp. 295–307 (2016) 3

18. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.: Multi-scale
boosted dehazing network with dense feature fusion. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 2154–2164 (2020) 3

19. Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: FD-GAN: generative adversarial
networks with fusion-discriminator for single image dehazing. In: Proc. AAAI Conf.
on Artificial Intelligence (AAAI). pp. 10729–10736 (2020) 3

20. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
Proc. Int. Conf. on Learning Representations (ICLR)(2021) 12

21. Fan, Q., Chen, D., Yuan, L., Hua, G., Yu, N., Chen, B.: A general decoupled learn-
ing framework for parameterized image operators. IEEE Trans. Pattern Analysis
and Machine Intelligence (TPAMI)pp. 33–47 (2021) 4

22. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.W.: Clearing the skies: A deep
network architecture for single-image rain removal. IEEE Trans. Image Processing
(TIP)pp. 2944–2956 (2017) 3

23. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.W.: Lightweight pyramid net-
works for image deraining. IEEE Trans. Neural Networks Learn. Syst. pp. 1794–
1807 (2020) 3

24. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter
selective sharing and nested skip connections. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). pp. 3848–3856 (2019) 3

25. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view
of parameter-efficient transfer learning. In: Proc. Int. Conf. on Learning Represen-
tations (ICLR)(2022) 2, 4, 5

26. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous
task imitation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 3459–3468 (2020) 3

27. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for NLP.
In: Proc. Int. Conf. on Machine Learning (ICML). pp. 2790–2799 (2019) 2, 4, 5

28. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR (2017) 6

29. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen,
W.: Lora: Low-rank adaptation of large language models. In: Proc. Int. Conf. on
Learning Representations (ICLR)(2022) 2, 4

30. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 5197–5206 (2015) 8, 9, 10, 11, 12, 14

31. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proc. Int. Conf. on Machine Learning (ICML).
pp. 448–456 (2015) 6



AdaIR 17

32. Jia, M., Tang, L., Chen, B., Cardie, C., Belongie, S.J., Hariharan, B., Lim, S.:
Visual prompt tuning. In: Proc. European Conf. on Computer Vision (ECCV).
pp. 709–727 (2022) 2, 4, 12

33. Jiang, K., Wang, Z., Yi, P., Chen, C., Huang, B., Luo, Y., Ma, J., Jiang, J.: Multi-
scale progressive fusion network for single image deraining. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). pp. 8343–8352 (2020) 3

34. Jie, S., Deng, Z.: Fact: Factor-tuning for lightweight adaptation on vision trans-
former. In: Proc. AAAI Conf. on Artificial Intelligence (AAAI). pp. 1060–1068
(2023) 2, 4

35. Jie, S., Wang, H., Deng, Z.: Revisiting the parameter efficiency of adapters from
the perspective of precision redundancy. In: Proc. IEEE Int. Conf. on Computer
Vision (ICCV). pp. 17171–17180 (2023) 2, 4

36. Khattak, M.U., Rasheed, H.A., Maaz, M., Khan, S.H., Khan, F.S.: Maple: Multi-
modal prompt learning. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 19113–19122 (2023) 2, 4

37. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 1646–1654 (2016) 3

38. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind
motion deblurring using conditional adversarial networks. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 8183–8192 (2018) 3

39. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: Deblurring (orders-
of-magnitude) faster and better. In: Proc. IEEE Int. Conf. on Computer Vision
(ICCV). pp. 8877–8886 (2019) 3

40. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A.P., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR). pp. 105–114 (2017) 3

41. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Proc. Conf. on Empirical Methods in Natural Language Pro-
cessing (EMNLP). pp. 3045–3059 (2021) 2, 4

42. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network.
In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). pp. 4780–4788 (2017) 3

43. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-In-One Image Restoration
for Unknown Corruption. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 17431–17441 (2022) 2, 4, 8

44. Li, D., Zhang, Y., Cheung, K.C., Wang, X., Qin, H., Li, H.: Learning degradation
representations for image deblurring. In: Proc. European Conf. on Computer Vision
(ECCV). pp. 736–753 (2022) 3

45. Li, R., Tan, R.T., Cheong, L.: All in one bad weather removal using architec-
tural search. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 3172–3182 (2020) 4

46. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context
aggregation net for single image deraining. In: Proc. European Conf. on Computer
Vision (ECCV). pp. 262–277 (2018) 3

47. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Proc. Annual Meeting of the Association for Computational Linguistics and
Int. Joint Conf. on Natural Language Processing (ACL/IJCNLP). pp. 4582–4597
(2021) 2, 4



18 H.-W. Chen, Y.-S. Xu, K.-C.K. Chan et al .

48. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image
restoration using swin transformer. In: Proc. IEEE Int. Conf. on Computer Vision
Workshop (ICCVW). pp. 1833–1844 (2021) 3

49. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition Workshop (CVPRW). pp. 1132–1140 (2017) 3

50. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: Attention-based multi-scale
network for image dehazing. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).
pp. 7313–7322 (2019) 3

51. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: Proc. Int. Conf. on Learning Representations (ICLR)(2017) 9

52. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proc. Int.
Conf. on Learning Representations (ICLR)(2019) 9

53. Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T.: Transformer for single
image super-resolution. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition Workshop (CVPRW). pp. 456–465 (2022) 3

54. Ma, J., Cheng, T., Wang, G., Zhang, Q., Wang, X., Zhang, L.: Prores: Ex-
ploring degradation-aware visual prompt for universal image restoration. CoRR
abs/2306.13653 (2023) 4

55. Ma, K., Duanmu, Z., Wu, Q., Wang, Z., Yong, H., Li, H., Zhang, L.: Waterloo
exploration database: New challenges for image quality assessment models. IEEE
Trans. Image Processing (TIP)pp. 1004–1016 (2017) 8

56. Mahabadi, R.K., Henderson, J., Ruder, S.: Compacter: Efficient low-rank hyper-
complex adapter layers. In: Proc. Conf. on Neural Information Processing Systems
(NeurIPS). pp. 1022–1035 (2021) 2, 4

57. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).
pp. 416–425 (2001) 8, 9, 10, 12, 14

58. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).
pp. 416–425 (2001) 8, 9, 12

59. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for
dynamic scene deblurring. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 257–265 (2017) 3

60. Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural net-
works for progressive non-uniform single image deblurring with incremental tempo-
ral training. In: Proc. European Conf. on Computer Vision (ECCV). pp. 327–343
(2020) 3

61. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: Adapterfusion: Non-
destructive task composition for transfer learning. In: Proc. Conf. of the European
Chapter of the Association for Computational Linguistics (EACL). pp. 487–503
(2021) 2, 4

62. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: Promptir: Prompting for all-
in-one blind image restoration. In: Proc. Conf. on Neural Information Processing
Systems (NeurIPS)(2023) 4, 8, 9, 10

63. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: Feature fusion attention
network for single image dehazing. In: Proc. AAAI Conf. on Artificial Intelligence
(AAAI). pp. 11908–11915 (2020) 3



AdaIR 19

64. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 8160–8168
(2019) 3

65. Rebuffi, S., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. In: Proc. Conf. on Neural Information Processing Systems (NeurIPS).
pp. 505–516 (2017) 2, 4

66. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks:
A better and simpler baseline. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). pp. 3937–3946 (2019) 3

67. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.: Single image dehazing via
multi-scale convolutional neural networks. In: Proc. European Conf. on Computer
Vision (ECCV). pp. 154–169 (2016) 3

68. Rim, J., Kim, G., Kim, J., Lee, J., Lee, S., Cho, S.: Realistic blur synthesis for
learning image deblurring. In: Proc. European Conf. on Computer Vision (ECCV).
pp. 487–503 (2022) 3

69. Suin, M., Purohit, K., Rajagopalan, A.N.: Spatially-attentive patch-hierarchical
network for adaptive motion deblurring. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). pp. 3603–3612 (2020) 3

70. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Proc. AAAI Conf. on Ar-
tificial Intelligence (AAAI). pp. 4278–4284 (2017) 6

71. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (2015) 6

72. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). pp. 2818–2826 (2016) 6

73. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image
deblurring. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 8174–8182 (2018) 3

74. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with batch renormal-
ization. Neural Network pp. 461–473 (2020) 3

75. Valanarasu, J.M.J., Yasarla, R., Patel, V.M.: Transweather: Transformer-based
restoration of images degraded by adverse weather conditions. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). pp. 2343–2353 (2022) 4

76. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Proc. Conf. on Neural Information
Processing Systems (NeurIPS). pp. 5998–6008 (2017) 4

77. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Loy, C.C.: Esrgan:
Enhanced super-resolution generative adversarial networks. In: Proc. European
Conf. on Computer Vision Workshop (ECCVW). pp. 63–79 (2018) 3

78. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped
transformer for image restoration. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). pp. 17662–17672 (2022) 3

79. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning
for image rain removal. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 3877–3886 (2019) 3

80. Wu, H., Qu, Y., Lin, S., Zhou, J., Qiao, R., Zhang, Z., Xie, Y., Ma, L.: Contrastive
learning for compact single image dehazing. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). pp. 10551–10560 (2021) 3



20 H.-W. Chen, Y.-S. Xu, K.-C.K. Chan et al .

81. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network
for image super-resolution. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 5790–5799 (2020) 8, 9, 11

82. Yang, Z., Huang, J., Chang, J., Zhou, M., Yu, H., Zhang, J., Zhao, F.: Visual
recognition-driven image restoration for multiple degradation with intrinsic seman-
tics recovery. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 14059–14070 (2023) 4

83. Yasarla, R., Patel, V.M.: Uncertainty guided multi-scale residual learning-using a
cycle spinning CNN for single image de-raining. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). pp. 8405–8414 (2019) 3

84. Zaken, E.B., Goldberg, Y., Ravfogel, S.: Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In: Proceedings of the An-
nual Meeting of the Association for Computational Linguistics (ACL). pp. 1–9
(2022) 2

85. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.: Restormer:
Efficient transformer for high-resolution image restoration. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). pp. 5718–5729 (2022) 3,
5, 6, 9, 10

86. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.:
Multi-stage progressive image restoration. In: Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 14821–14831 (2021) 3

87. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-
representations. In: Curves and Surfaces. Lecture Notes in Computer Science,
vol. 6920, pp. 711–730 (2010) 8, 9

88. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream
dense network. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 695–704 (2018) 3

89. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch net-
work for image deblurring. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 5978–5986 (2019) 3

90. Zhang, J., Huang, J., Yao, M., Yang, Z., Yu, H., Zhou, M., Zhao, F.: Ingredient-
oriented multi-degradation learning for image restoration. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 5825–5835 (2023) 2

91. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Trans. Image Processing
(TIP)pp. 3142–3155 (2017) 3

92. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image
restoration. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 2808–2817 (2017) 3

93. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for cnn-
based image denoising. IEEE Trans. Image Processing (TIP)pp. 4608–4622 (2018)
3

94. Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., Li, H.: Deblurring by
realistic blurring. In: Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 2734–2743 (2020) 3

95. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. In: Proc. European Conf. on
Computer Vision (ECCV). pp. 294–310 (2018) 3

96. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for
image super-resolution. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 2472–2481 (2018) 3



AdaIR 21

97. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language
models. Int. J. Comput. Vis. (IJCV) pp. 2337–2348 (2022) 2, 4


	AdaIR: Exploiting Underlying Similarities ofImage Restoration Tasks with Adapters

