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Abstract. We address the problem of the weak asymptotic behavior of zeros of families of
generalized hypergeometric polynomials as their degree tends to infinity. The main tool is the
representation of such polynomials as a finite free convolution of simpler elements; this represen-
tation is preserved in the asymptotic regime, so we can formally write the limit zero distribution
of these polynomials as a free convolution of explicitly computable measures. We derive a simple
expression for the S-transform of the limit distribution, which turns out to be a rational function,
and a representation of the Kampé de Fériet polynomials in terms of finite free convolutions.

We apply these tools, as well as those from [38], to the study of some well-known families of
multiple orthogonal polynomials (Jacobi-Piñeiro and multiple Laguerre of the first and second
kinds), obtaining results on their zeros, such as interlacing, monotonicity, and asymptotics.
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1. Introduction

The definition of the generalized hypergeometric function iFj with i numerator and j denomi-
nator parameters is well known. If one of the numerator parameters is equal to a negative integer,
say −n, with n ∈ N, then the series terminates and is a polynomial of degree ≤ n. If all its
zeros are real, we usually want to know their properties, such as positivity/negativity, interlacing,
and monotonicity with respect to the parameters. In the case of a sequence of such polynomials,
enumerated by their degree n, we also want to investigate their asymptotic behavior as n → ∞.

For small values of i and j, the answer to these questions can usually be obtained by exploiting
their connection to some classical families of polynomials, in many cases orthogonal, or using their
other properties, such as the differential equation or integral representation. But when i, j ≥ 2,
the problem becomes more difficult due to the limited number of tools that allow us to investigate
their behavior.

The finite free convolutions (that in this paper come in two flavors, multiplicative ⊠n and
additive ⊞n), are binary operations on polynomials, studied already by Szegő, Schur, Walsh, and
others, although under different names. They behave especially well when applied to real-rooted
polynomials, preserving zero interlacing and monotonicity. Recently, such convolutions have been
rediscovered as expected characteristic polynomials of a multiplication (or addition) of random
matrices [36], and were also interpreted as finite analogs of the free probability [35] (thus, named
generically as finite free convolution of polynomials).

The connection between these polynomial convolutions and free probability is revealed in the
asymptotic regime, when we consider the zero-counting measure (also known in this context as
the empirical root distribution) of a sequence of polynomials whose degree tends to infinity. Then
the finite free convolution of polynomials turns into a free convolution of limiting distributions of
their zeros [4, 5].

In a recent paper [38], the authors illustrated the power of finite free convolution of polynomials
to prove the real-rootedness, interlacing, or monotonicity of zeros with respect to the parameters.
The key tool was the representation of generalized hypergeometric polynomials as finite free con-
volutions of simpler “building blocks”, much easier to study. We also briefly explained the potential
of this approach in the study of asymptotic behavior.

This work is, in a certain sense, a natural continuation of [38]. Here, the main focus is precisely
on the weak asymptotic behavior of zeros of families of generalized hypergeometric polynomials
as their degree tends to infinity. Using the representation of a generalized hypergeometric poly-
nomial as a finite free convolution of some simpler elements, we can formally write the limit zero
distribution of these polynomials as a free convolution of simpler measures. In order to convert
this observation into an effective computational tool, we derive in Section 3.3 an expression for
the so-called S-transform of the limit zero-counting measures of the original polynomials. Unlike
the case of the Cauchy transform of such a measure, which is normally an algebraic function, the
S-transform turns out to be a rational function, easily expressible in terms of the main parameters
of the problem.

In the second part of the article, we apply these tools, as well as those from [38], to the study
of some well-known families of multiple orthogonal polynomials. While writing the paper, we
became aware that the recent contribution [55] mentions some connections of multiple orthogonal
polynomials and finite free convolution using the results from [38].
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Multiple, also known as Hermite-Padé, orthogonal polynomials (MOPs), are polynomials
of one variable that satisfy the orthogonality conditions with respect to several measures. They
are a very useful extension of orthogonal polynomials and have recently received renewed interest
because tools have become available to investigate their asymptotic behavior, and they do appear
in a number of fascinating applications, see [40].

In this paper, we consider only the case of absolutely continuous orthogonality measures on the
real line. Thus, let r be a positive integer and w1, w2, . . . , wr be non-negative integrable functions
(“weights”) on R for which all the moments are finite. Let n = (n1, n2, . . . , nr) ∈ Nr be a multi-
index of size |n| = n1 + n2 + · · · + nr. There are two types of multiple orthogonal polynomials.
Type I multiple orthogonal polynomials are given as a vector (An,1, An,2, . . . , An,r) of r
polynomials, where An,j has degree ≤ nj − 1, for which the function

Qn(x)
def
==

r∑
j=1

An,j(x)wj(x) (1)

is orthogonal to all polynomials of degree ≤ |n| − 2:∫
xkQn(x) dx =

r∑
j=1

∫
xkAn,j(x)wj(x) dx = 0, 0 ≤ k ≤ |n| − 2. (2)

One usually adds the normalization ∫
x|n|−1Qn(x) dx = 1. (3)

The Type II multiple orthogonal polynomial Pn is the monic polynomial of degree |n|
that satisfies the orthogonality conditions∫

Pn(x)x
kwj(x) dx = 0, 0 ≤ k ≤ nj − 1, (4)

for 1 ≤ j ≤ r. Both conditions (2)–(3) and condition (4) yield a corresponding linear system of |n|
equations in the |n| unknowns, either coefficients of polynomials (An,1, . . . , An,r) or coefficients
of the monic polynomial Pn. The matrices of these linear systems are each other’s transpose and
contain moments of the r weights (w1, . . . , wr). A solution of these linear systems may not exist
or may not be unique. One needs extra assumptions on the weights (w1, . . . , wr) for a solution
to exist and to be unique. If a unique solution exists for a multi-index n then the multi-index is
said to be normal. If all multi-indices are normal, then the system (w1, . . . , wr) is said to be a
perfect system.

The weights (w1, . . . , wr) form an AT-system on an interval ∆ ⊂ R for a multi-index n ∈ Nr

if for any polynomials An,j , j = 1, . . . , r, in (1), satisfying the mentioned degree constraints and
not all equal to 0, the function Qn has at most |n| − 1 zeros on ∆, see, e.g. [21, Chapter 23]. It is
known that if (w1, . . . , wr) is an AT-system for every multi-index n ∈ Nr, the system is perfect.
An example of such systems are the Nikishin systems, fact proved in [13, 14]. Since this is not
central to our discussion, for the definition of such systems we refer the reader to [34, 32, 31].

For every AT-system and for any n ∈ Nr, the Type I function for Qn defined by (1) and satisfying
(2), has exactly |n| − 1 sign changes in ∆, while the Type II multiple orthogonal polynomial Pn,
satisfying (4), has |n| simple zeros on ∆. These zeros exhibit an interlacing property, meaning
that there is always a zero of Pn between two consecutive zeros of Pn+ek , for each 0 ≤ k ≤ r − 1,
where ek ∈ Nr is the multi-index that has all entries equal to 0 except the entry of index k which
is equal to 1.
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Various families of special MOPs have been found, extending the classical orthogonal polyno-
mials, but also related to completely new special functions [1], [21, Ch. 23].

One of the well-known AT-systems is given by the weights

wj(x) = xαj (1− x)β, j = 1, 2, . . . , r, (5)

on the interval ∆ = [0, 1]. Here α1, . . . , αr, β > −1 and αi − αj /∈ Z for i ̸= j. The corresponding
polynomials are known as the Jacobi-Piñeiro polynomials, and are studied in Sections 4.1 and
5.1.

Two different AT-systems correspond to multiple Laguerre weights on [0,+∞), see, e.g. [21,
§23.4]. First, we can take

wj(x) = xαje−x, j = 1, 2, . . . , r, (6)
where again α1, . . . , αr > −1 and αi − αj /∈ Z for i ̸= j. The corresponding polynomials are
known as multiple Laguerre polynomials of the first kind, and their behavior is discussed
in Sections 4.2 and 5.2.

Another option is to define the weights

wj(x) = xαe−cjx, j = 1, 2, . . . , r, (7)

where α > −1, with all ci > 0, and such that ci ̸= cj for i ̸= j. The corresponding polynomials
are known as multiple Laguerre polynomials of the second kind, and their properties are
discussed in Sections 4.3 and 5.3. For Type I, they are a special case of the Kampé de Fériet
polynomials, so, in Section 3.1, we prove the more general fact that they can be represented as a
finite free additive convolution of hypergeometric polynomials.

The asymptotic behavior of MOPs is a highly non-trivial subject. Although the study of the
Hermite-Padé polynomials goes back to the original works of Hermite, see [19, 20], as well as
[45], the first important asymptotic result appeared in the work of Kalyagin [22]. In the 1980s,
the ground-breaking works of Aptekarev, Gonchar, Rakhmanov, and Stahl, made clear that the
asymptotics of the Type I form (1) (but not of the individual entries An,i) and of the Type
II polynomials Pn can be described in terms of a vector equilibrium problem for logarithmic
potentials, [3, 15, 16]. However, solving such a problem is usually a formidable task.

Another approach is via the higher-order nearest-neighbor recurrence relations by MOPs, es-
tablished in the work of Van Assche [51] (see also [21, Ch. 23]) that allow to derive an algebraic
equation on a weighted distribution of zeros. An important ingredient of this method is the ex-
pression (or, at least, the behavior) of the recurrence coefficients. A systematic study of a large
number of classical and semi-classical families of orthogonality weights for MOP, and in particular,
of their recurrence coefficients, was carried out in a number of contributions by Van Assche and
his collaborators in recent years; see, e.g. [2]. A limitation of this approach is that it allows one to
address only the quasi-diagonal case (step line) for the multi-indices n.

Finally, another recent and formidable tool for asymptotic analysis is the non-linear steepest
descent method of Deift and Zhou, applied to the Riemann-Hilbert characterization of MOPs [52].
This technique renders extremely precise asymptotic information (see, e.g. [6, 9, 40, 39], to mention
a few), but at a very high cost of being technically challenging.

In this paper, we address the problem of the asymptotic zero distribution of the three families
of MOP mentioned above, when the degree |n| → ∞, also allowing a linear dependence of the
parameters α’s and β’s on n. As recent investigations show, these polynomials are hypergeometric,
so we can use the free convolution approach at a relatively low cost. We stress that one of the
appeals of this technique is its simplicity. Alternatives such as the general methods described
above, or using the differential equation or the integral representation [56] of these MOPs are
usually much more involved.
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Since a representation of a real-rooted polynomial in terms of free convolution can involve
polynomials with complex zeros, the results on the asymptotic regime from [4, 5] cannot be directly
applied. Taking advantage of the fact the proofs in those references are essentially algebraic, based
on the behavior of moments and cumulants, we adapt these arguments to analyze the finite free
convolutions in the asymptotic regime for measures compactly supported on the complex plane
and not necessarily on the real line; see Section 3.2 and Appendix A.

As a by-product of the representation of the hypergeometric polynomials in terms of finite free
convolutions, we also derive some zero monotonicity and interlacing properties for the mentioned
families of MOP. They appear to be new in the majority of cases; they are especially interesting
for the polynomials An,i in (1), where not much is known.

2. Preliminaries

2.1. Notation.
In what follows, Pn stands for all algebraic polynomials of degree ≤ n, and P def

== ∪n≥0Pn. Also,
for K ⊂ C, we denote by Pn(K) the subset of polynomials of degree ≤ n with all zeros in K. In
particular, Pn(R) denotes the family of real-rooted polynomials of degree ≤ n, and Pn(R≥0) is the
subset of Pn(R) of polynomials having only roots in R≥0

def
== [0,+∞), e.g real and non-negative.

The rising factorial (also, Pochhammer’s symbol1) for a ̸= 0 and j ∈ Z≥0
def
== N ∪ {0} is

(a)j
def
== a(a+ 1) . . . (a+ j − 1) =

Γ(a+ j)

Γ(a)
, (a)0

def
== 1,

while the falling factorial is defined as

(a)j
def
== a(a− 1) . . . (a− j + 1) = (a− j + 1)j , (a)0

def
== 1.

If a = (a1, . . . , ai) ∈ Ri is a vector (tuple), we understand by

(a)k =
i∏

s=1

(as)
k .

For n ∈ N, we will use the notation

Zn
def
== {0, 1, 2, . . . , n− 1}, (−Zn)

def
== {0,−1,−2, . . . ,−n+ 1}. (8)

Finally, we will write

p ≃ q

to indicate that polynomials p and q coincide up to a non-zero multiplicative constant. We will
also use the standard notation of the theory of orthogonal polynomials,

p∗(z)
def
== zn p(1/z)

for the reversed polynomial of p. Clearly, for polynomials p with real coefficients, p∗(x) =
xn p(1/x), in which case p∗ is usually called the reciprocal of p.

1 Another standard notation for the raising factorial is (a)j . We prefer to use the notation defined here.
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2.2. Hypergeometric polynomials.
For a = (a1, . . . , ai) ∈ Ri and b = (b1, . . . , bj) ∈ Rj , a generalized hypergeometric series

[23, 46] is an expression

i+1Fj

(
a0, a

b
;x

)
=

∞∑
k=0

(a0)
k (a)k

(b)k
xk

k!
.

In the particular case when a0 is a negative integer, the series is terminating:

i+1Fj

(
−n, a

b
;x

)
=

n∑
k=0

(−n)k (a)k

(b)k
xk

k!
(9)

is a (generalized) hypergeometric polynomial of degree ≤ n, as long as

b1, . . . bj /∈ (−Zn+1) . (10)

Additionally, the polynomial in (9) is of degree exactly n if and only if

a1, . . . , ai /∈ (−Zn) . (11)

In what follows, we always assume that conditions (10)–(11) hold. From a direct computation, we
get the following equation for the derivative of a hypergeometric polynomial,

d

dx

(
i+1Fj

(
−n, a

b
;x

))
≃ i+1Fj

(
−n+ 1, a+ 1

b+ 1
;x

)
. (12)

We will also make use of hypergeometric series of two variables (or Kampé de Fériet series, see,
e.g. [47, Section 1.3]): with a ∈ Rp, b ∈ Rr, c ∈ Rs, α ∈ Rq, β ∈ Rn, and γ ∈ Rk,

F p:r;s
q:n;k

[
a : b ; c
α : β ; γ

∣∣∣∣ x, y

]
def
==

∞∑
i=0

∞∑
j=0

(a)i+j (b)i (c)j

(α)i+j (β)i (γ)j
xi

i!

yj

j!
,

along with the Kampé de Fériet polynomials: for n ∈ Z≥0,

F p+1:r;s
q:n;k

[
−n, a : b ; c
α : β ; γ

∣∣∣∣ x, y

]
def
==

n∑
i=0

n−i∑
j=0

(−n)i+j (a)i+j (b)i (c)j

(α)i+j (β)i (γ)j
xi

i!

yj

j!
. (13)

2.3. Finite free convolutions.

Definition 2.1 ([36]). Given two polynomials, p and q, of degree at most n, the n-th multiplicative
finite free convolution of p and q, denoted as p⊠n q, is a polynomial of degree at most n, which
can be defined in terms of the coefficients of polynomials written in the form

p(x) =

n∑
j=0

xn−j(−1)jej(p) and q(x) =

n∑
j=0

xn−j(−1)jej(q). (14)

Namely,

[p⊠n q](x)
def
==

n∑
k=0

xn−k(−1)kek(p⊠n q),

with

ek(p⊠n q)
def
==

(
n

k

)−1

ej(p)ej(q). (15)



ZEROS VIA FINITE FREE CONVOLUTION AND MOP 7

In particular, if p, q are of degree n and monic, then also p⊠n q has the same property.
The multiplicative finite free convolution is a bi-linear operator from Pn×Pn to Pn: if p, q, r ∈ Pn,

and α ∈ R, then
(αp+ q)⊠n r = α(p⊠n r) + q ⊠n r.

From Definition 2.1 it easily follows that multiplicative convolution with the polynomial (x−α)n

is equivalent to a dilation of the roots by α:

Dilα(p)
def
== αnp

(
x

α

)
= p(x)⊠n (x− α)n, α ̸= 0. (16)

In consequence,
(Dilαp)⊠n q = p⊠n (Dilαq) = Dilα [p⊠n q] , α ̸= 0, (17)

and
DilαDilβ(p) = Dilαβ(p), α, β ̸= 0. (18)

The following result was proved in [38, Theorem 3.1]:

Theorem A. If n ∈ Z≥0, and

p(x) = i1+1Fj1

(
−n,a1

b1
;x

)
, q(x) = i2+1Fj2

(
−n,a2

b2
;x

)
,

where the parameters a1,a2, b1, b2 are tuples (of sizes i1, i2, ji, j2, respectively), then their n-th free
multiplicative convolution is given by

[p⊠n q](x) = i1+i2+1Fj1+j2

(
−n,a1,a2

b1, b2
;x

)
.

Definition 2.2 ([36]). Given two polynomials, p and q, of degree at most n, the n-th additive
finite free convolution of p and q, denoted as p⊞n q, is a polynomial of degree at most n, defined
in terms of the coefficients of polynomials written in the form

p(x) =
n∑

j=0

xn−j(−1)jej(p) and q(x) =
n∑

j=0

xn−j(−1)jej(q). (19)

Namely,

[p⊞n q](x)
def
==

n∑
k=0

xn−k(−1)kek(p⊞n q),

with
ek(p⊞n q)

def
== (n)k

∑
i+j=k

ei(p)

(n)i
ej(q)

(n)j
(20)

(and thus, e0(p⊞n q) = e0(p)e0(q)).

The additive finite free convolution is a bi-linear operator from Pn × Pn to Pn: if p, q, r ∈ Pn,
and α ∈ R, then

(αp+ q)⊞n r = α(p⊞n r) + q ⊞n r.

Moreover,
p(x)⊞n (x− α)n = p(x− α), p ∈ Pn. (21)

and p⊞n q = 0 if and only if deg(p)+deg(q) < n, or if deg p = n then q ≡ 0. This also shows that
the inverse of any p ∈ Pn under the additive (finite free) convolution ⊞n is unique.

In analogy to (17), we have

(Dilαp)⊞n (Dilαq) ≃ Dilα (p⊞n q) , α ̸= 0. (22)
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The following result appears, although in a slightly different form, in [38, Theorem 3.4]:
Theorem B. Let p and q be hypergeometric polynomials of the following form:

p(x) = i1+1Fj1

(
−n, a1

b1
; (−1)l1x

)
, q(x) = i2+1Fj2

(
−n, a2

b2
; (−1)l2x

)
,

where l1, l2 ∈ {0, 1} the parameters a1,a2, b1, b2 are tuples (of sizes i1, i2, ji, j2, respectively). Then,
with the notation d = d/dx,

[p⊞n q](x) ≃ j1Fi1

(
−b1 − n+ 1

−a1 − n+ 1
; (−1)i1+j1+l1+1d

)
j2Fi2

(
−b2 − n+ 1

−a2 − n+ 1
; (−1)i2+j2+l2+1d

)
[xn].

From here, an immediate consequence is the following auxiliary result:
Lemma 2.3. Assume that a polynomial p of degree n can be represented as a product of hyperge-
ometric functions,

p(x) = i1Fj1

(
−b1 − n+ 1

−a1 − n+ 1
; (−1)i1+j1+l1+1x

)
i2Fj2

(
−b2 − n+ 1

−a2 − n+ 1
; (−1)i2+j2+l2+1x

)
,

where l1, l2 ∈ {0, 1}. Then, for the reciprocal polynomial p∗,

p∗(x) ≃ 2F0

(
−n, 1

·
;x

)
⊠n

[
i1+1Fj1

(
−n, a1

b1
; (−1)l1x

)
⊞n i2+1Fj2

(
−n, a2

b2
; (−1)l2x

)]
.

Proof. From the hypothesis viewed as a differential function we get

p(d) = i1Fj1

(
−b1 − n+ 1

−a1 − n+ 1
; (−1)i1+j1+l1+1d

)
i2Fj2

(
−b2 − n+ 1

−a2 − n+ 1
; (−1)i2+j2+l2+1d

)
.

By Theorem B,

p (d) [xn] ≃ i1+1Fj1

(
−n, a1

b1
; (−1)l1x

)
⊞n i2+1Fj2

(
−n, a2

b2
; (−1)l2x

)
. (23)

On the other hand, for a polynomial

q(x) =

n∑
j=0

xn−j(−1)jej(q)

it holds that

q (d) [xn] =
n∑

k=0

(−1)k (n)n−k ek(q)x
k = (−1)nn!

n∑
k=0

(−1)k
ek(q

∗)

(n− k)!
xn−k. (24)

Applying the multiplicative convolution by

2F0

(
−n, 1

·
;x

)
=

n∑
k=0

(−1)k
(
n

k

)
(n− k)!xn−k

on both sides of (24) and using the definition (15), we get the identity

2F0

(
−n, 1

·
;x

)
⊠n q (d) [xn] ≃ q∗.

Applying it to (23) it yields

p∗ ≃ 2F0

(
−n, 1

·
;x

)
⊠n

[
i1+1Fj1

(
−n, a1

b1
; (−1)l1x

)
⊞n i2+1Fj2

(
−n, a2

b2
; (−1)l2x

)]
,

which concludes the proof. □
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2.4. Real roots, interlacing, and free finite convolution.
A very important fact is that in many circumstances the finite free convolution of two poly-

nomials with real roots also has all its roots real. Here, we use the notation introduced at the
beginning of Section 2.

Proposition 2.4 (Szegő [48], Walsh [54], see also [38]). Let p, q ∈ Pn. Then
(i) p, q ∈ Pn(R) ⇒ p⊞n q ∈ Pn(R).
(ii) p ∈ Pn(R), q ∈ Pn(R≥0) ⇒ p⊠n q ∈ P(R).
(iii) p, q ∈ Pn(R≥0) ⇒ p⊠n q ∈ P(R≥0).
(iv) p, q ∈ Pn(R≤0) ⇒ p⊠n q ∈ P(R≥0)
(v) p ∈ Pn(R≤0), q ∈ Pn(R≥0) ⇒ p⊠n q ∈ P(R≤0).

If we replace above the sets R≥0 and R≤0 by strict inclusions, R>0 and R<0, respectively, the
statements of Proposition 2.4 remain valid.

Definition 2.5 (Interlacing). Let

p(x) = e0(p)

n∏
j=1

(
x− λj(p)

)
∈ Pn(R), λ1(p) ≤ · · · ≤ λn(p),

and

q(x) = e0(q)
m∏
j=1

(
x− λj(q)

)
∈ Pm(R), λ1(q) ≤ · · · ≤ λm(q).

We say that q interlaces p (or, equivalently, that zeros of q interlace zeros of p, see, e.g., [10]),
and denote it p ≼ q, if

m = n and λ1(p) ≤ λ1(q) ≤ λ2(p) ≤ λ2(q) ≤ · · · ≤ λn(p) ≤ λn(q), (25)

or if

m = n− 1 and λ1(p) ≤ λ1(q) ≤ λ2(p) ≤ λ2(q) ≤ · · · ≤ λn−1(p) ≤ λn−1(q) ≤ λn(p). (26)

Furthermore, we use the notation p ≺ q when all inequalities in (25) or (26) are strict.

From the real-root preservation and the linearity of the free finite convolution one easily obtains
the following interlacing-preservation property:

Proposition 2.6 (Preservation of interlacing). If p, p̃ ∈ Pn(R) be of degree exactly n such that
p ≼ p̃, then for a polynomial q of degree n,

q ∈ Pn(R) ⇒ p⊞n q ≼ p̃⊞n q

and
q ∈ Pn(R≥0) ⇒ p⊠n q ≼ p̃⊠n q.

The same statements hold if we replace all ≼ by ≺.

For a proof of this result, see, for instance, [27, Theorems 1.7 and 1.8].

Remark 2.7. Noticing that p ≼ q if and only if q(−x) ≼ p(−x) and that p(x) ⊠n q(−x) =
[p ⊠n q](−x), we can easily extend Proposition 2.6 to include polynomials with negative real
roots. Namely, if p, p̃ ∈ P∗

n(R) and p ≼ p̃, then for a polynomial q of degree n,

q ∈ Pn(R≤0) ⇒ p̃⊠n q ≼ p⊠n q.
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2.5. Integral transforms and free convolution of measures.
We follow the standard notation from the literature on free probability (see, e.g. [4, 36, 41, 43])

and define several transforms for a Borel measure µ.
The Cauchy transform of µ,

Gµ(z)
def
==

∫
dµ(y)

z − y
, (27)

is well defined and analytic on C\ supp(µ), even in the case of a signed measure. If µ is compactly
supported, then Gµ has a Laurent expansion

Gµ(z) =
∞∑
k=0

mk

zk+1
, (28)

convergent in a neighborhood of infinity, where

mj =

∫
zj dµ(z), j = 0, 1, 2, . . .

are the moments of the measure µ. Unless specified otherwise, we assume in what follows that µ
is a compactly supported positive probability measure, so that

m0 = 1. (29)

The K-transform of the compactly supported probability measure µ is the functional inverse
of its Cauchy transform, that is,

Kµ(w)
def
== G−1

µ (w),

analytic in a punctured neighborhood of the origin, while its R-transform

Rµ(w)
def
== Kµ(w)−

1

w
=

∞∑
n=0

κn+1w
n,

is analytic in a neighborhood of the origin2. The coefficients κn are called the free cumulants of
µ. Notice that Rµ ≡ 0 if and only if

Gµ(z) = 1/z

in a neighborhood of infinity; this is the case of µ = δ0, the Dirac delta or unit mass point at the
origin, but not only: any unit Lebesgue measure on a circle or a disk centered at the origin has
this property.

Closely related to the Cauchy transform is the generating function of the moments (for
short, the M-transform) of a compactly-supported probability measure µ,

Mµ(z)
def
==

1

z
Gµ

(
1

z

)
− 1 =

∫
zy dµ(y)

1− zy
, (30)

for which the expansion

Mµ(z) =

∞∑
k=1

mk z
k (31)

converges in a neighborhood of the origin. We finally define the S-transform of µ as

Sµ(w)
def
==

w + 1

w
M−1

µ (w), (32)

where M−1
µ is the functional inverse of Mµ (when it exists). Notice that once again Mµ ≡ 0 if

and only if Gµ(z) = 1/z; furthermore, if µ is compactly supported and m1 ̸= 0 then Sµ is analytic

2 Clearly, the analyticity of Rµ at the origin for a compactly supported measure is equivalent to condition (29).
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in a neighborhood of origin and non-vanishing at w = 0, with Sµ(0) = 1/m1. We can guarantee
that m1 ̸= 0 if µ is a positive probability measure supported on the positive (or negative) semiaxis.

All these transforms determine each other via the identities(
zMµ(z) + z

)
Rµ

(
zMµ(z) + z

)
= Mµ(z), Gµ

(
z + 1

zSµ(z)

)
= zSµ(z), (33)

which follow directly from the definitions above. Combining (32) and (33) we obtain also a direct
relation between the R-transform and the S-transforms (see for instance [43, Definition 18.15 and
Remark 18.16]):

Sµ(w) =
1

w
R−1

µ (w), (34)

where R−1
µ is the functional inverse of Rµ (when it exists).

We will later use the well-known fact, see for instance [17, Proposition 3.13], that for a measure
µ such that µ({0}) = 0 it holds that

Sµ(z)Sµ∗(−z − 1) = 1, (35)

where µ∗ is the reversed measure of µ (equivalently, the push-forward measure under the map-
ping t 7→ 1/t), so that its density is dµ∗(t) = t−2dµ(t−1)). The identity (35) is valid in a punctured
neighborhood of origin, in the domain of analyticity of both functions on the left-hand side.

Remark 2.8. When µ is not compactly supported, expressions (27) and (30) make sense and define
analytic functions in the open set C \ supp(µ) and in its image by z 7→ 1/z, respectively. Formula
(32) is also well-posed, at least where Mµ is locally invertible. In this case, we cannot expect the
series in (28) and (31) to converge.

On the other hand, the formulas in (28) and (31) can be considered as formal power series
associated with a “moment” sequence m0,m1, . . . , of complex numbers. In that case, if we denote
the sequence by µ, we can use these formulas as a definition of Gµ and Mµ, as well as define Rµ

and Sµ through (33). In other words, all the transforms can be defined for any complex sequence
but only as formal power series (also called moment series), with no analyticity or convergence
assumed a priori.

As we will see in Section 3.2, the advantage of this approach is that many asymptotic results
can be established even for formal moment sequences, without assuming any underlying measure.

Using these definitions, we can introduce two important operations on compactly supported
probability measures µ and ν (or, as we have just discussed, on their moment sequences):

(i) the free additive convolution µ⊞ ν via the identity

Rµ⊞ν(w) = Rµ(w) +Rν(w); (36)

(ii) the free multiplicative convolution µ⊠ ν via the identity

Sµ⊠ν(w) = Sµ(w)Sν(w). (37)

Clearly, identities (36)–(37) do not define the resulting measures µ⊞ ν and µ⊠ ν uniquely, unless
they are determined by the analytic expression of their R− and S−transforms, respectively. This
is the case of probability measures compactly supported on R.

3. General results

3.1. Kampé de Fériet polynomials and finite free convolution. Recall the definition of the
Kampé de Fériet polynomials in (13). The following factorization holds:
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Theorem 3.1. For ik, jk ∈ N and multi-indices ak ∈ Rik , bk ∈ Rjk , k = 1, 2, 3, and a non-zero
constant c,

F i1+1:i2;i3
j1:j2;j3

[
−n,a1 : a2;a3

b1 : b2; b3

∣∣∣∣ c, x] ≃ (p(x)⊞n q(x)
)
⊠n r(x),

where

p(x)
def
== i1+1Fj1

(
−n,a1

b1
;−x

)
, q(x)

def
== i2+1Fj2

(
−n,−b2 − n+ 1

−a2 − n+ 1
;
x

c

)
,

r(x)
def
== i3+1Fj3

(
−n,a3

b3
;−x

)
.

The proportionality constant can be computed explicitly in terms of all the parameters.

Proof. Using the notation in (14), we can write the coefficients of p, q, and r (up to a multiplicative
constant) as

ek(p) =

(
n

k

)
(−1)k

(a1)
n−k

(b1)
n−k

, ek(q) =

(
n

k

)
(a2)

k

(b2)
k
ck,

ek(r) =

(
n

k

)
(−1)k

(a3)
n−k

(b3)
n−k

.

By (20),

ek(p⊞n q) =
∑

i+j=k

(n)k
(−1)i (a1)

n−i

i! (b1)
n−i

(a2)
j

j! (b2)
j
cj

and by (15),

ek((p⊞n q)⊠n r) = (−1)k
(a3)

n−k

(b3)
n−k

∑
i+j=k

(n)k
(−1)i (a1)

n−i

i! (b1)
n−i

(a2)
j

j! (b2)
j
cj .

Thus,

(p⊞n q)⊠n r ≃
n∑

k′=0

∑
i′+j=k′

xn−k′ (a3)
n−k′

(b3)
n−k′

n!

(n− k′)!

(−1)i
′
(a1)

n−i′

i′! (b1)
n−i′

(a2)
j

j! (b2)
j
cj

=

n∑
i=0

∑
j+k=i

(−1)i
n!

k!

(a1)
i

(n− i)! (b1)
i

(a2)
j

(b2)
j

(a3)
k

(b3)
k

cjxk

j!

=

n∑
i=0

∑
j+k=i

(−n)i (a1)
i

(b1)
i

(a2)
j

(b2)
j

(a3)
k

(b3)
k

cjxk

j!k!
= F i1+1:i2;i3

j1:j2;j3

[
−n,a1 : a2;a3

b1 : b2; b3

∣∣∣∣ c, x] ,
where in the second line, we did the change of variables i = n− i′ and k = n− k′ and changed the
order of summation. □

3.2. Finite free convolutions in the asymptotic regime.
We have already seen that free finite convolution is useful when studying the zeros of polyno-

mials. An additional crucial advantage is that finite free convolutions tend to free convolution in
the asymptotic regime when the degree n → ∞.

The connection between the convolutions of polynomials and free probability (reason for the
name of “finite free” convolutions) was first noticed by Marcus, Spielman, and Srivastava in [36]
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when they used Voiculescu’s R- and S-transform to improve the bounds on the largest root of a
convolution of two real-rooted polynomials. This connection was explored further in [35], where
Marcus defined a finite analog of the R- and S-transform that are related to Voiculescu’s transforms
in the limit. Using finite free cumulants, Arizmendi and Perales [5] showed that in the asymptotic
regime, a finite free additive convolution becomes a free additive convolution. This was later
extended to the multiplicative convolution by Arizmendi, Garza-Vargas and Perales [4].

Since the proofs of these facts in [5, 4] are essentially algebraic, it turns out that they are
applicable in a broader context of moment sequences instead of measures; see Remark 2.8. More
precisely, we need to consider the normalized zero-counting measures for a sequence of polynomials,
real-rooted or not, under the only assumptions that their moments converge.

Given a polynomial p of degree n and roots λj(p), j = 1, . . . , n (not necessarily all distinct or
real), its (normalized) zero counting measure (or empirical root distribution of p) is

χ(p)
def
==

1

n

n∑
j=1

δλj(p), (38)

where δz is the Dirac delta (unit mass) placed at the point z. The corresponding moments of χ(p)
(which we also call the moments of p, stretching the terminology a bit) are

mk(p)
def
==

1

n

n∑
j=1

λk
j (p) =

∫
xk dχ(p), k = 0, 1, 2, . . .

As mentioned above, the connection between finite and standard free probability is revealed in
the asymptotic regime, when we let the degree n → ∞. We say that the sequence of polynomials
p = (pn)

∞
n=1 such that each pn is real-rooted and of degree exactly n converges in moments if

all finite limits
mk = lim

n→∞
mk(pn), k = 0, 1, 2, . . . (39)

exist. If the supports of χ(pn) are contained in a compact set of the complex plane, then the
sequence χ(pn) is weakly compact and m0,m1, . . . are the moment of any of its accumulation
points. In this case, (39) is equivalent to existence of a probability measure ν(p), compactly
supported on C, with all its moments finite such that

lim
n→∞

mk(pn) = mk(ν(p)), k = 0, 1, 2, . . .

If we know additionally that χ(pn) are on R, with their supports contained in the same compact,
and if the moment problem for ν(p) is determined, then (39) is equivalent to the weak-* convergence
of the sequence χ(pn) to ν(p).

For real-rooted polynomials, the following proposition is a direct consequence of [5, Corollary
5.5] and [4, Theorem 1.4]:

Proposition 3.2. Let p := (pn)
∞
n=1 and q := (qn)

∞
n=1 be two sequences of real-rooted polynomials

as above, and let ν(p) and ν(q) be two compactly supported probability Borel measures on R such
that p (respectively, q) converges in moments to ν(p) (respectively, ν(q)). Then

(i) the sequence (pn ⊞n qn)
∞
n=1 converges in moments to ν(p)⊞ ν(q);

(ii) if, additionally, for all sufficiently large n, pn, qn ⊂ Pn(R>0) (or if pn, qn ⊂ Pn(R<0)) then
the sequence (pn ⊠n qn)

∞
n=1 converges in moments to ν(p)⊠ ν(q).

In other words, in the case of real-rooted polynomials, as n → ∞, we can replace the finite
free convolution of polynomials by the standard free convolution of measures supported on R. The
motivation to consider only real-rooted polynomials is given by their application in free probability.
However, the proof of Proposition 3.2 is basically algebraic, based on the notion of convergence in
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moments, and can be easily extended to more general cases, such as polynomials with uniformly
bounded, but not necessarily real, roots.

Namely, we have the following result:

Theorem 3.3. Let p := (pn)
∞
n=1 and q := (qn)

∞
n=1 be two sequences of polynomials, such that

deg pn = deg qn = n, n ∈ Z≥0, and all zeros of both p and q are uniformly bounded.
If, additionally, all finite limits

lim
n→∞

mk(pn) = αk ∈ C and lim
n→∞

mk(qn) = βk ∈ C, k = 0, 1, 2, . . . ,

exist, then
(i) all moments of the sequence of polynomials (pn ⊞n qn)

∞
n=1 have a finite limit,

γk
def
== lim

n→∞
mk(pn ⊞n qn) ∈ C k = 0, 1, 2, . . . ,

and the R-transform associated to the sequence (γk)
∞
k=1 satisfies

Rγ(z) = Rα(z) +Rβ(z).

(ii) All moments of the sequence (pn ⊠n qn)
∞
n=1 have a limit

θk := lim
n→∞

mk(pn ⊠n qn) ∈ C k = 0, 1, 2, . . . ,

and the S-transform associated to the sequence (θk)
∞
k=1 satisfies

Sθ(z) = Sα(z)Sβ(z).

Remark 3.4. For the notion of the S- and R-transforms associated to a sequence, see Remark 2.8.

This theorem can be established following the arguments leading to Proposition 3.2. As noted,
the proofs of the results in [5, 4] rely on the fact that the combinatorial structure behind the
finite convolutions of polynomials tends (as n → ∞) to the combinatorial formulas that relate
the coefficients of the series in the M -, R-, and S-transforms of the limit sequence. This fact
is established regardless of whether this sequence is in fact a moment sequence of a probability
measure. When this is the case, the notions of the R- and other transforms for a sequence and for
the underlying measure match, see, for instance, [43, Lectures 16 and 18].

The reader interested in further details can check Appendix A.

3.3. S-transform for a hypergeometric polynomial. In this section, we show that although
the Cauchy transform of any limit of zero-counting measures of hypergeometric polynomials
are, generally speaking, algebraic functions whose explicit expressions are not available, their
S-transforms are straightforward rational functions.

Let us first discuss the case of 2F1 polynomials.

Proposition 3.5. Let

pn(x) = 2F1

(
−n, αn

βn
;x

)
,

be a sequence of hypergeometric polynomials such that the finite limits

lim
n

αn

n
= A, lim

n

βn
n

= B

exist. If additionally
A /∈ [−1, 0), B ̸= −1, and A ̸= B, (40)



ZEROS VIA FINITE FREE CONVOLUTION AND MOP 15

then any weak-* limit µ of the normalized zero-counting measures χ(pn) is a positive probability
measure compactly supported on C, for which in a neighborhood of the origin,

Sµ(z) =
z +A+ 1

z +B + 1
. (41)

Proof. Denote by µn = χ(pn) the probability zero-counting measure of pn.
We use well-known identities expressing 2F1 polynomials in standard normalization in terms of

Jacobi polynomials,

(β)n 2F1

(
−n, α

β
;x

)
= n!P (β−1,−n+α−β)

n (1− 2x) = (−1)nn!P (−n+α−β,β−1)
n (2x− 1). (42)

Jacobi polynomials also exhibit several transformation formulas in the cases when they can have
multiple zeros (at ±1) or have a degree reduction, such as

P (−k−1,β)
n (z) =

Γ(n+ β + 1)

Γ(n+ β − k)

(n− k − 1)!

n!

(
z − 1

2

)k+1

P
(k+1,β)
n−k−1 (z), k ∈ Zn,

and several more. For a more detailed discussion, see [49, §4.22] or [25]. From these identities it
follows that the assumption A /∈ [−1, 0) is sufficient to guarantee that the zeros of pn are uniformly
bounded, while with B ̸= −1, its zero-counting measures µn do not collapse to δ0.

Thus, standard arguments on weak compactness of the sequence µn show that under these
assumptions, there exist Λ ⊂ N and a unit measure µ ̸= δ0 such that

µn
∗−→ µ, n ∈ Λ.

As a consequence, Gχ(pn) → Gµ, n ∈ Λ, in a neighborhood of infinity.
Polynomials pn satisfy the ODE

z(1− z)p′′n(z) +
(
βn − (αn − n+ 1)z

)
p′n(z) + nαnpn(z) = 0.

Rewriting it in terms of hn = p′n/pn and noticing that hn/n → G = Gµ, we get an equation for G,

z(1− z)G2(z) +
(
B − (A− 1)z

)
G(z) +A = 0. (43)

Observe again that for B ̸= −1, G(z) ̸= 1/z.
With the notation w = Sµ(z), the second identity in (33) takes the form

G

(
z + 1

zw

)
= zw. (44)

Thus, making the change of variable z 7→ (z + 1)/(wz) in (43) and using the identity above, we
arrive at

z(w(z +B + 1)− (z +A+ 1)) = 0,

or
w =

z +A+ 1

z +B + 1
,

which proves (41). □

Remark 3.6. It is interesting to observe that expression (41) is meaningful even if we drop the
assumptions (40). It is worth discussing then the possible consequences of relaxing these restric-
tions.

As we have seen in the proof, if B = −1, then Gµ(z) = 1/z, which happens, for instance, if
µ = δ0. If the zeros of pn’s are real, it means that they asymptotically collapse to the origin.

The consequence of dropping the assumption A ̸= B is also clear: if A = B, we have Gµ(z) =
1/(z − 1), which happens, for example, if µ = δ1.
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If −1 < A < 0, the explicit formula (9) shows that selecting the sequence αn appropriately, we
can make the degree of pn be of O(−An). This would mean that non-trivial part of the measures
µn “escapes” to infinity. Any possible weak-* limit could have a bounded support, but it will be
of a total mass |A|. Notice that it would mean that for this µ, m0 = −A < 1, which is compatible
with the algebraic equation (43).

Finally, if A = −1, the S-transform in (41) is still rational, but now it vanishes at z = 0. In this
case, one of the branch points of the Cauchy transform Gµ, solution of (43), is at infinity. This
shows that if the limit measure µ exists, it is a probability measure with unbounded support.

Now we formulate the general result of this section:

Theorem 3.7. For s, t ∈ Z≥0, let an ∈ Rs, bn ∈ Rt be such that finite limits

lim
n

an

n
= A = (A1, . . . As) ∈ Rs, lim

n

bn
n

= B = (B1, . . . , Bt) ∈ Rt (45)

exist. Assume additionally that

Aj /∈ [−1, 0), Bk ̸= −1, Aj ̸= Bk, j ∈ {1, . . . , s}, k ∈ {1, . . . , t}. (46)

Then any weak-* limit µ of the normalized zero-counting measures χ(pn) of the sequence

pn(x) = s+1Ft

(
−n,an

bn
;nt−sx

)
(47)

is a positive probability measure compactly supported on C, for which in a neighborhood of the
origin,

Sµ(z) =

∏s
i=1(z +Ai + 1)∏t
j=1(z +Bj + 1)

. (48)

Proof. Consider the sequence

qn(x) = 1F1

(
−n

βn
;x

)
,

such that
lim
n

βn
n

= B.

Polynomials qn are, in fact, Laguerre polynomials,

qn(x) =
n!

(βn)
n
L(βn−1)
n (x).

We are interested in the sequence µn = χ(q̂n) of probability zero-counting measures for rescaled
polynomials

q̂n(x) = 1F1

(
−n

βn
;nx

)
.

It is well known that for each fixed β, the sequence of monic Laguerre polynomials
{
L̃
(β)
n

}
, n ∈ N,

satisfies the three-term recurrence relation

L̃
(β)
n+1(x) =

(
x− (2n+ β + 1)

)
L̃(β)
n (x) + n(n+ β)L̃

(β)
n−1(x).

In particular, the monic polynomials

n−nL̃(β−1)
n (nx)

satisfy

n−n−1L
(β−1)
n+1 (nx) =

(
x− 2n+ β

n

)
n−nL(β−1)

n (nx) +
n+ β − 1

n

(
n−n+1L

(β−1)
n−1 (nx)

)
.
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Writing these relations as an eigenvalue problem for a Jacobi matrix and applying Gershgorin’s
theorem, it is easy to prove that under the assumption that the finite limit B of βn/n exists, the
zeros of q̂n are uniformly bounded. Moreover, the well-known identity

L(−k)
n (x) =

(n− k)!

n!
(−x)kL

(k)
n−k(x), k ∈ Zn,

see e.g. [46, Section 18.5] or [38, Section 2.3], indicates that µn’s do not converge to δ0, unless
B ̸= −1. This is indeed the case; see the discussion in [37] or [26].

Polynomials qn are solution of Kummer’s differential

zq′′n(z) + (βn − z)q′n(z) + nqn(z) = 0,

see, e.g. [24, Chapter 7]. Hence, q̂n satisfy

zq̂′′n(z) + (βn − nz)q̂′n(z) + n2q̂n(z) = 0. (49)

As before, by weak compactness there exist Λ ⊂ N and a unit measure µ such that

µn
∗−→ µ, n ∈ Λ.

As a consequence, Gχ(qn) → Gµ, n ∈ Λ, in a neighborhood of infinity. Rewriting (49) in terms of
hn = q̂′n/q̂n and using that hn/n → G = Gµ, we get an equation for G,

zG2(z) + (B − z)G(z) + 1 = 0

(notice again that for B ̸= −1, G(x) ̸= 1/x). Now we proceed as in the proof of Proposition 3.5:
making the change of variable z 7→ (z + 1)/(wz) in this quadratic equation on G and using (44),
we get for w = Sµ(z) the equation

z
(
w(z +B + 1)− 1

)
= 0,

and we conclude that
Sµ(z) =

1

z +B + 1
. (50)

Same arguments, or using identity (35) and the fact that

2F0

(
−n, αn

·
;x

)
= (−x)n (αn)

n
1F1

(
−n

−n− αn + 1
;−1/x

)
(see, e.g., [38, Lemma 2.1]) allows us to derive that for the rescaled polynomials

q̂n(x) = 2F0

(
−n, αn

·
;x/n

)
under assumption

lim
n

αn

n
= A /∈ [−1, 0),

for any accumulation point µ of the normalized zero-counting measures χ(q̂n) it holds that

Sµ(z) = z +A+ 1. (51)

We “assemble” the general case (47), using Proposition 3.5 and the building blocks above,
appealing to the identity (16) and Theorem A.

Indeed, the polynomial in (47) can be written as

pn(x) = s+1Ft

(
−n,an

bn
;nt−sx

)
≃ Dilnt−s

[
s+1Ft

(
−n,an

bn
;x

)]
.
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Denote an =
(
a
(n)
1 , . . . , a

(n)
s

)
, bn =

(
b
(n)
1 , . . . , b

(n)
t

)
. If s = t, by Theorem A,

pn(x) = 2F1

−n, a
(n)
1

b
(n)
1

;x

⊠n 2F1

−n, a
(n)
1

b
(n)
1

;x

⊠n · · ·⊠n 2F1

−n, a
(n)
s

b
(n)
s

;x

, (52)

and in this case, (48) follows from (41) and Theorem 3.3.
Assume that s < t. Then

pn(x) ≃ qn,1(x)⊠n qn,2(x),

where qn,1(x) is the polynomial in the right hand side of (52), while

qn,2(x) = Dilns−t

 1Ft−s

(
−n

b
(n)
s+1, . . . , b

(n)
t

;x

)
= Diln−1

 1F1

(
−n

b
(n)
s+1

;x

)⊠n · · ·⊠n Diln−1

 1F1

(
−n

b
(n)
t

;x

)
= 1F1

(
−n

b
(n)
s+1

;nx

)
⊠n · · ·⊠n 1F1

(
−n

b
(n)
t

;nx

)
.

It remains to use (41), (50), and Theorems A and 3.3 to obtain (48).
The case s > t is analyzed in the same way, using (51). □

Remark 3.8. From the proof above it is clear that (48) follows directly from (50)–(51) and Theo-
rem A. However, we found the analysis of the case of 2F1 polynomials illuminating and having an
independent interest.

We can analyze the “pathological” situations of Theorem 3.7 that arise if we relax the conditions
(46) using the arguments from Remark 3.6.

Theorem 3.9. Under the assumptions of Theorem 3.7, the Cauchy transform Gµ(u) of the limit
measure µ in a neighborhood of infinity is an algebraic function y/u, where y = y(u) satisfies the
equation

y
t∏

j=1

(y +Bj) = u(y − 1)
s∏

i=1

(y +Ai), (53)

whose Riemann surface is a ramified covering of C of genus 0.

Proof. By (32) and (48) we can find z = Mµ(u) by solving

u =
z

z + 1

∏s
i=1(z +Ai + 1)∏t
j=1(z +Bj + 1)

.

Recalling the definition (30) of the M -transform in terms of the Cauchy transform Gµ of µ, we
have that

z =
1

u
Gµ

(
1

u

)
− 1,

and we can rewrite the equation above as

u =
u−1Gµ

(
u−1

)
− 1

u−1Gµ

(
u−1

) ∏s
i=1(u

−1Gµ

(
u−1

)
+Ai)∏t

j=1(u
−1Gµ

(
u−1

)
+Bj)

.
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Replacing u 7→ 1/u and denoting y = uGµ(u) we arrive at equation (53). Since it defines u as a
rational function of y, the Riemann surface of y = y(u) (and hence, of w = w(u)) has genus 0. □

For future reference, it will be convenient to formulate the following immediate consequence:

Corollary 3.10. Let c, d ∈ R, c ̸= 0. Then, under the assumptions of Theorem 3.7, any weak-*
limit µ of the normalized zero-counting measures χ(pn) of the sequence

pn(x) = s+1Ft

(
−n,an

bn
;nt−s(cx+ d)

)
is a positive probability measure µ compactly supported on C, whose S-transform w = Sµ(z) satisfies
the equation

w
t∏

j=1

[
duw + c(u+ 1 +Bj)

]
= ct−s [dw + c]

s∏
i=1

(
duw + c(u+ 1 +Ai)

)
. (54)

Proof. Let

pn(x) = s+1Ft

(
−n,an

bn
;nt−sx

)
and let µ̃ be a weak-* limit of the normalized zero-counting measures χ(qn). It is easy to see that
the Cauchy transforms of µ̃ and µ are related by

Gµ(z) = cGµ̃(cz + d).

Hence, using (53), we find that G = Gµ satisfies the equation

G
t∏

j=1

(
(cu+ d)G+ cBj

)
= ct−s

(
(cu+ d)G− c

) s∏
i=1

(
(cu+ d)G+ cAi

)
.

The change of variable u 7→ (u + 1)/(wu), along with the identity (44), yield (54) with w =
Sµ(z). □

4. Type I Multiple orthogonal polynomials

Recall that Type I multiple orthogonal polynomials are defined by the orthogonality and normal-
ization conditions (1)–(3). The potential-theoretic techniques allow to describe the asymptotics of
the zeros of function Qn in (1). The recently obtained expressions for the actual type I polynomials
allow us to perform this analysis for polynomial coefficients of Qn.

4.1. Type I Jacobi-Piñeiro polynomials.
The AT-system of Jacobi-Piñeiro weights was introduced in (5): for β > −1, n = (n1, . . . , nr) ∈

Nr, α = (α1, . . . , αr) such that, without loss of generality,

α1 > α2 > · · · > αr > −1 and αi − αj ̸∈ Z for i ̸= j, (55)

the Type I Jacobi-Piñeiro polynomials of Type I, P (α;β)
n,i , degP (α;β)

n,i ≤ nj − 1, i = 1, . . . , r, are
given by the orthogonality conditions on the function

Q
(α;β)
n (x)

def
==

r∑
j=1

P
(α;β)
n,i (x)wj(x), wj(x)

def
== xαj (1− x)β, (56)

namely, ∫ 1

0
Q

(α;β)
n (x)xk dx = 0, 0 ≤ k ≤ |n| − 2, (57)
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together with the normalization ∫ 1

0
Q

(α;β)
n (x)x|n|−1 dx = 1.

Recently, it was shown that these are hypergeometric polynomials. In order to write the explicit
expression, we borrow notation from [8]: for a ∈ Rr, let a(i) ∈ Rr−1 stand for the vector obtained
from a by deleting its i-th entry; also, in a slight abuse of notation, we also understand that adding
a scalar to a multi-index means adding this scalar to each one of its components. Then, see [8],

P
(α;β)
n,i (x) = c

(α;β)
n,i r+1Fr

(
−ni + 1, αi + β + |n|, αi + 1−α(i) − n(i)

αi + 1, αi + 1−α(i)
;x

)
, (58)

where

c
(α;β)
n,i

def
== (−1)|n|−1 Γ(αi + β + |n|)

∏r
k=1

(
αk + β + |n|

)nk

(ni − 1)! Γ(β + |n|)Γ(αi + 1)
∏

1≤k≤r
k ̸=i

(αk − αi)
nk

is just a normalizing constant that does not affect the zeros of the polynomial. For r = 2, this
formula was obtained first in [7].

Using this expression and Theorem A, we get the following representation for polynomials (57)
for i = 1, . . . , r:

P
(α;β)
n,i = c

(α;β)
n,i pi,1 ⊠ni−1 pi,2 ⊠ni−1 · · ·⊠ni−1 pi,r, (59)

where

pi,j(x) =


2F1

(
−ni + 1, αi − αj − nj + 1

αi − αj + 1
;x

)
, j ∈ {1, · · · , r} \ {i},

2F1

(
−ni + 1, αi + β + |n|

αi + 1
;x

)
, j = i.

(60)

4.1.1. Real zeros: monotonicity and interlacing.
Since the Jacobi-Piñeiro weights with α satisfying (55) form an AT-system, it is known that

the corresponding function Q
(α;β)
n in (56) has |n| − 1 zeros on (0, 1) for every multi-index n, see,

e.g. [50, Theorem 2.3]. Although the potential-theoretic description of the asymptotics of Q(α;β)
n is

relatively well studied, the behavior of the zeros of the Type I Jacobi-Piñeiro polynomials P
(α;β)
n,i ,

i = 1, . . . , r, is much less known.
Let us denote the open intervals ∆1, . . . ,∆r, with

∆1 = (0, 1), ∆k =

{
R<0, if 2 ≤ k ≤ r is even,
R>0, if 2 ≤ k ≤ r is odd.

(61)

A simple calculation shows that for −1 < α < 0,∫
∆k

|t|α

t− x
dt = (−1)k

π

sin(πα)
|x|α, x ∈ ∆k−1, k ≥ 2. (62)

Let
sk(x)

def
== |x|αk−αk−1 , x ∈ ∆k−1, 2 ≤ k ≤ r.

If together with (55) we assume that

α1 − 1 < αr = min
1≤k≤r

αk, (63)
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then by (62), each sk is equal, up to a constant factor, to its Cauchy transform on ∆k:

sk(x) = constk
∫
∆k

|t|αk−αk−1

t− x
dt, x ∈ ∆k−1, 2 ≤ k ≤ r,

which means that the weights wj in (56) form a Nikishin system. By [34], under the additional
constraint that if the sequence of multi-indices n = (n1, . . . , nr) is such that(

max
1≤k≤r

nk

)
−
(

min
1≤k≤r

nk

)
is uniformly bounded, then the number of zeros of each P

(α;β)
n,i , i = 1, . . . , r, outside ∆r is also

uniformly bounded, and the zeros accumulate on ∆r ∪ {∞} as |n| → ∞.
If we drop the restriction (63), the weights wi still form a generalized Nikishin system, with

wj+1(x) = xmjsj(x)wj(x), j = 1, . . . , r − 1,

for some mj ∈ Z. Such a situation is considered in [33]; the results therein are not immediately
applicable due to the assumptions the authors impose on the polynomial factors. However, we
conjecture that the zeros of the Jacobi-Piñeiro polynomials P

(α;β)
n,i accumulate on ∆r ∪ {∞} as

|n| → ∞ under very mild assumptions on the sequence n.
Using the approach that we have already described in [38], we can give some additional sufficient

conditions for real-rootedness of Jacobi-Piñeiro polynomials, as well as deduce the interlacing and
monotonicity of zeros of polynomials with respect to the parameters.

Theorem 4.1. Let β > −1 and α = (α1, . . . , αr) satisfy (55). Assume that for a multi-index
n ∈ Nr and for a specific index i ∈ {1, 2, . . . , r},

α1 − 1 < αi < min
1≤j≤r

{αj + nj} − ni + 1. (64)

Then P
(α;β)
n,i ∈ Pni−1(∆r).

Additionally, for 0 < t ≤ 2,
(i) P

(α+t;β)
n,i ≺ P

(α;β)
n,i and P

(α;β)
n,i ≺ P

(α;β+t)
n,i , if r is even,

(ii) P
(α;β)
n,i ≺ P

(α+t;β)
n,i and P

(α;β+t)
n,i ≺ P

(α;β)
n,i , if r is odd.

Observe that if condition (64) is satisfied for certain multi-indices α and n ∈ Nr, it is also
satisfied for α+ t, with t > 0.

Proof. Let us show first that

pi,i ∈ P(R>0) and pi,j(x) ∈ P(R<0), j ∈ {1, . . . , r}\{i}.
We can establish it using some results from [11], many of them re-proved in [38]. Indeed, since by
assumptions, αi, β > −1, n ∈ Nr, and thus,

αi + β + |n| > αi + ni − 1,

we have by [11, Theorem 1, (ii)] that pi,i ∈ Pni−1((0, 1)).
Similarly, by (55) and (64), for every j ∈ {1, . . . , r}\{i},

αj − 1 < αi < αj + nj − ni + 1,

or equivalently,
−ni + 2 > αi − αj − nj + 1, αi − αj + 1 > 0.

It remains to use [11, Theorem 1, (i)] to conclude that pi,j ∈ Pni−1(R<0). By Proposition 2.4, for

qi := pi,1 ⊠ni−1 · · ·⊠ni−1 pi,i−1 ⊠ni−1 pi,i+1 ⊠ni−1 · · ·⊠ni−1 pi,r, (65)
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we have that

qi ∈

{
P(R>0) for r odd,
P(R<0) for r even.

(66)

Since the decomposition (59) of P (α;β)
n,i can be written as

P
(α;β)
n,i = c

(α;β)
n,i pi,i ⊠ni−1 qi, (67)

it remain to Proposition 2.4 again to establish the first assertion of the theorem (about the location
of the zeros).

A key observation to prove interlacing is that polynomials pi,j in (60), with j ̸= i, are indepen-
dent of the parameter β > −1, and invariant with respect to the scalar shift α 7→ α + t, t > 0.
Thus, the same property is shared by the polynomial qi in (65).

On the other hand, by [38, Eq. (61)], for 0 ≤ t1, t2 ≤ 2 and t1 + t2 ̸= 0.

2F1

(
−ni + 1, αi + β + |n|+ t1

αi + 1
;x

)
≺ 2F1

(
−ni + 1, αi + β + |n|+ t2

αi + 1 + t2
;x

)
. (68)

For r odd, using (66) and Proposition 2.6, we get that

2F1

(
−ni + 1, αi + β + |n|+ t1

αi + 1
;x

)
⊠ni−1 qi

≺ 2F1

(
−ni + 1, αi + β + |n|+ t2

αi + 1 + t2
;x

)
⊠ni−1 qi,

(69)

while for r even, using now Remark 2.7, we obtain

2F1

(
−ni + 1, αi + β + |n|+ t2

αi + 1 + t2
;x

)
⊠ni−1 qi

≺ 2F1

(
−ni + 1, αi + β + |n|+ t1

αi + 1
;x

)
⊠ni−1 qi.

(70)

In particular, setting in (69)-(70), t1 = 0 and t2 = t, and noticing that a multiplicative constant
does not affect interlacing, we conclude that

P
(α;β)
n,i ≺ P

(α+t;β)
n,i for r even and P

(α+t;β)
n,i ≺ P

(α;β)
n,i for r odd,

while taking t1 = t and t2 = 0 in (69)-(70) yields

P
(α;β+t)
n,i ≺ P

(α;β)
n,i for r even and P

(α;β)
n,i ≺ P

(α;β+t)
n,i for r odd.

□

Remark 4.2. The statement about zero interlacing contained in Theorem 4.1 implies that for r

even, the zeros of the polynomial P (α+t;β)
n,i are decreasing with respect to t and increasing with

respect to β; this monotonicity is exactly the opposite if r is odd.
As it follows from the proof of Theorem 4.1, conditions (64) can be weakened. For instance, if

instead of (64) we assume the existence of an index j ̸= i such that

αj − 2 < αi < αj + nj − ni + 2, max
k ̸=i,j

{αk} − 1 < αi < min
k ̸=i,j

{αk + nk} − ni + 1, (71)

then we arrive at a weaker conclusion that P
(α;β)
n,i ∈ Pni−1(R).
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Notice that additionally to (i)–(ii) we could state that P
(α;β)
n,i ≼ P

(α+ei;β+1)
n−ei,i

, where ei ∈ Nr is
the multi-index that has all entries equal to 0 except the entry of index i which is equal to 1. This
observation is based on the simple fact that, by (12),

d

dx

(
P

(α;β)
n,i (x)

)
≃ P

(α+ei;β+1)
n−ei,i

(x).

If we try to enforce the assumptions (64) to be valid for every index i, we obtain the following
simple consequence of Theorem 4.1:

Corollary 4.3. Let β > −1, α = (α1, . . . , αr) satisfy (55) and (63). Then for any multi-index
n ∈ Nr of the form

n = (n, . . . , n, n+ 1, . . . , n+ 1) (72)
(that is, such that for i < j, 0 ≤ nj−ni ≤ 1), conclusions of Theorem 4.1 hold for all i ∈ {1, . . . , r}.

From our discussion above it is clear that the assumptions of Corollary 4.3 reduce the situation
to a step-line (as the one studied already in [44]) for a Nikishin system of weights. In this sense,
the reality of zeros is not surprising, although the interlacing properties seem to be new even in
this case.

Proof. Fix i ∈ {1, . . . , r}. Taking into account (55), condition (63) implies that α1 − 1 < αi.
On the other hand, for any index j < i, by (72), ni ≤ nj + 1, and

−1 < αi − αj < 0 ≤ nj − ni + 1.

Analogously, for any index j > i, by (72), ni ≤ nj , and

0 < αi − αj < 1 ≤ nj − ni + 1.

These two sets of inequalities are equivalent to (64). On the other hand, they hold for every
i ∈ {1, . . . , r} if and only if 0 ≤ nj − ni ≤ 1 for i < j, and the assertion follows. □

4.1.2. Zero asymptotics of Jacobi-Piñeiro polynomials of Type I.
We can describe the weak zero asymptotics of a sequence of Type I Jacobi-Piñeiro polynomials,

pn,i = P
(αn;βn)
n,i , i = 1, . . . , r,

where αn =
(
α
(n)
1 , . . . , α

(n)
r

)
, n = (n1, . . . , nr) ∈ Nr, under assumption

lim
|n|→∞

α
(n)
i

|n|
= Ai ≥ 0, lim

|n|→∞

β(n)

|n|
= B ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, . . . , r. (73)

Clearly, θ1 + · · ·+ θr = 1. Formula (58) indicates that we need to consider the parameters

a
(i)
j

def
==

{
(Ai +B + 1)/θi, if j = i,

(Ai −Aj − θj)/θi if j ̸= i,
and b

(i)
k

def
==

{
Ai/θi, if k = i,

(Ai −Ak)/θi if k ̸= i.
(74)

Restrictions a
(i)
j /∈ [−1, 0) and b

(i)
k ̸= −1 imply that additionally to (73) we need to assume that

Aj ̸= Ai + θi, Aj + θj /∈ (Ai, Ai + θi], j ∈ {1, . . . , r} \ {i}. (75)

Notice that the assumption that a
(i)
j ̸= b

(i)
k holds automatically.

By Theorem 3.7, for any weak-* accumulation point µ of the normalized zero-counting measures
χ(pn,i),

Sµ(z) =
r∏

j=1

z + a
(i)
j + 1

z + b
(i)
j + 1

, (76)
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and by Theorem 3.9, its Cauchy transform Gµ(u) in a neighborhood of infinity is an algebraic
function y/u, where y = y(u) satisfies the equation

y
r∏

j=1

(y + b
(i)
j ) = u(y − 1)

r∏
i=1

(y + a
(i)
j ).

Let us discuss the case when α and β do not depend on n, so that

a
(i)
j

def
==

{
1/θi, if j = i,

−θj/θi if j ̸= i,
and b

(i)
j = 0, (77)

and constrains (75) boil down to

θj /∈ (0, θi], j ∈ {1, . . . , r} \ {i}. (78)

If we assume that there exists an index i ∈ {1, . . . , r} such that

θi < min
{
θj : j ∈ {1, . . . , r} \ {i}

}
,

then for all sufficiently large values of |n|, the inequality in the right-hand side of (64) holds. Thus,
imposing additionally that |αi − αj | < 1 for all j’s, we conclude that any weak-* accumulation
point µ of the normalized zero-counting measures χ(pn,i) is a compactly supported probability
measure on R≥0, if r is odd, and on R≤0, otherwise, and such that

Sµ(z) =
z + 1 + 1/θi
(z + 1)r

∏
j ̸=i

(z + 1− θj/θi),

while y = uGµ(u) is a solution of

yr+1 = u

(
y +

1

θi

) r∏
j=1

(
y − θj

θi

)
.

In the asymptotically diagonal situation, when all θj = 1/r, we have a
(i)
j = −1 if j ̸= i, which is

one of the degenerate cases discussed in Remark 3.6. However, the expression for the S-transform
of the limit measure is still valid:

Sµ(z) =
zr−1

(z + 1)r
(z + 1 + 1/r),

as well as for the Cauchy transform Gµ(u) = y/u, where y = y(u) solves

yr+1 = u(y − 1)r (y + r) . (79)

We conjecture that, in this case, the support of any limit measure µ is unbounded. If the parameters
α satisfy (64), it follows from Theorem 4.1 that all zeros of the corresponding polynomial P (α;β)

n,i

are on ∆r. Furthermore, as follows from the method of proof of [33, Theorem 3.2], even when (64)
is not satisfied, the zeros still accumulate on ∆r ∪ {∞}.

Example 4.4. If r = 2 and θ1 = θ < 1/2, the Cauchy transform Gµ(u) of the limit measure µ is
given by y/u, where y = y(u) solves the equation

y3 = u(y − 1)

(
y +

1

θ

)(
y − 1

θ
+ 1

)
= u

(
y3 − (1 + ν) y + ν

)
, ν =

1

θ

(
1

θ
− 1

)
> 0. (80)
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We can take advantage that this is a depressed cubic and use the Cardano formula for its solution,
selecting the correct branch noticing that, by the definition of the Cauchy transform, y(u) > 0 for
u > 0. Namely, consider the functions

f(u) =

(
u

1− u

)1/3

,

analytic in C \
[
(−∞, 0] ∪ [1,+∞)

]
, whose single-valued branch is fixed by requiring f(x) > 0 for

x ∈ (0, 1). Then we can write

y(u) = 3

√
ν

2
f(u)

(√1 +
κu

1− u
+ 1

)1/3

−

(√
1 +

κu

1− u
− 1

)1/3
 ,

where

κ = κ(ν) =
4

27

(1 + ν)3

ν2

and with the branches of the roots taken always positive for u ∈ (1, 1 + ε) for a sufficiently small
ε > 0. Notice that κ(ν) is a strictly increasing function on [2,+∞), with κ(2) = 1.

In particular, for u = −x < 0, denote by y± the boundary values of y on R<0. By the symmetry
principle, y− = y+ on R<0.

By the Sokhotski-Plemelj Formula (or Stieltjes’ inversion theorem), the density of the limit
measure µ can be recovered as

µ′(−x) =
1

2πi(−x)

(
y−(−x)− y+(−x)

)
=

1

πx
Im
(
y+(−x)

)
.

We have that(√
1 +

κu

1− u
+ 1

)1/3

+

∣∣∣∣
u=−x

=

(√
1− κx

1 + x
+ 1

)1/3

> 0 for x ∈ (−c∗, 0),

where c∗ = c∗(ν) > 0 solves κ c∗/(1 + c∗) = 1, that is,

c∗ =
1

κ− 1
= 27

(
θ(1− θ)

(1− 2θ)(2− θ)(1 + θ)

)2

. (81)

Analogously,(√
1 +

κu

1− u
− 1

)1/3

+

∣∣∣∣
u=−x

=

(
1−

√
1− κx

1 + x

)1/3

e2πi/3 for x ∈ (−c∗, 0).

Finally,

f+(−x) = 3

√
x

1 + x
e2πi/3, x < 0.

Putting all together, we get that µ is supported on [−c∗, 0], β given in (81), with

µ′(−x) =

√
3

2π
3

√
ν

2

(√
1 + x+

√
(c∗ − x)/c∗

)1/3
−
(√

1 + x−
√

(c∗ − x)/c∗
)1/3

x2/3
√
1 + x

.
(82)

Symbolic integration allows us to check that µ′(−x) is the density of a positive probability measure
on [−β, 0], and that µ′(−x) =

√
3ν1/3

2πx2/3 (1+o(1)) as x → 0+, and with a square root decay as x → c∗−.
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Figure 1. Left: histogram of the zeros of the polynomial P
(α;β)
n,1 , with α =

(1/2, 3/7), β = 1, and n = (300, 600), along with the corresponding density (82).
Notice that for θ = 1/3, measure µ is supported on [−2.43, 0]. The smallest zero
of P (α;β)

n,1 in this case is approximately −2.2. Right: histogram of the cube roots of
the same zeros.

As an illustration, we plot the histogram of the zeros, all real and negative, of the polynomial
P

(α;β)
n,1 , with α = (1/2, 3/7), β = 1, and n = (300, 900), along with the corresponding density (82),

see Figure 1. For θ = 1/3, the asymptotic distribution of zeros is supported on [−2.43, 0].
The diagonal case can be considered taking θ → (1/2)−, when (82) becomes

µ′(−x) =

√
3

2π

(√
1 + x+ 1

)1/3
−
(√

1 + x− 1
)1/3

x2/3
√
1 + x

, x > 0.

This is the density of a positive probability measure on R>0, such that µ′(−x) =
√
3

π(2x)2/3
(1+ o(1))

as x → 0+.

4.2. Type I Multiple Laguerre polynomials of the first kind.
Let α = (α1, . . . , αr) be a multi-index satisfying conditions (55). Then for n = (n1, . . . , nr) ∈

Nr, the type I multiple Laguerre polynomials of the first kind, L(α)
n,i , degL

(α)
n,i ≤ nj−1, i = 1, . . . , r,

are given by the orthogonality conditions on the function

Q
(α)
n (x)

def
==

r∑
j=1

L
(α)
n,i (x)x

αje−x, (83)

namely, ∫ +∞

0
Q

(α)
n (x)xk dx = 0, 0 ≤ k ≤ |n| − 2, (84)

together with the normalization ∫ +∞

0
Q

(α)
n (x)x|n|−1 dx = 1.

In [8], it was shown that these are hypergeometric polynomials: using the notation introduced
before (58),

L
(α)
n,i (x) = c

(α)
n,i rFr

(
−ni + 1, αi + 1−α(i) − n(i)

αi + 1, αi + 1−α(i)
;x

)
(85)
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where

c
(α)
n,i = (−1)|n|−1

(ni − 1)!Γ(αi + 1)
∏

1≤i≤r
j ̸=i

(
αj − αi

)nj


−1

.

For r = 2, this formula was previously derived in [7]).
Using this expression and Theorem A, we get the following representation for polynomials (85)

for i = 1, . . . , r:
L
(α)
n,i = c

(α)
n,i pi,1 ⊠ni−1 pi,2 ⊠ni−1 · · ·⊠ni−1 pi,r, (86)

where

pi,j(x) =


2F1

(
−ni + 1, αi − αj − nj + 1

αi − αj + 1
;x

)
, j ∈ {1, · · · , r} \ {i},

1F1

(
−ni + 1

αi + 1
;x

)
, j = i.

(87)

Notice that for i ̸= j the pi,j are exactly the same polynomials appearing in (60), thus we have
the relation

L
(α)
n,i ≃

(
vi(x)⊠ni−1 P

(α;β)
n,i

)
(88)

with

vi(x) = 1F1

(
−ni + 1

αi + β + |n|
;x

)
=

(ni − 1)!(
αi + β + |n|

)ni−1
L
(αi+β+|n|−1)
ni−1 (x), (89)

where L
(α)
n is the Laguerre polynomial. In other words, the Type I multiple Laguerre polynomial

of the first kind can be obtained as a finite multiplicative convolution of the Type I Jacobi-Piñeiro
polynomials with the same parameters and a standard Laguerre polynomial.

4.2.1. Real zeros: monotonicity and interlacing.
The discussion about real zeros carried out in Section 4.1.1 applies to Type I multiple Laguerre

polynomials, with the only modification that now in (61), ∆1 = (0,+∞). In particular, under
assumption (63), these polynomials form a Nikishin system, and thus, for close-to-diagonal multi-
indices n their zeros will be on ∆r.

In addition, we have the following

Theorem 4.5. Let α = (α1, . . . , αr) satisfy (55). Assume that for a multi-index n ∈ Nr and for
a specific index i ∈ {1, 2, . . . , r}, condition (64) is satisfied. Then L

(α)
n,i ∈ Pni−1(∆r).

Additionally, for 0 < t ≤ 2,

(i) L
(α+t)
n,i ≺ L

(α)
n,i , if r is even, and

(ii) L
(α)
n,i ≺ L

(α+t)
n,i , if r is odd.

Proof. The statement follows immediately from representation (88) and Theorem 4.1, and the fact
that all zeros of the Laguerre polynomial in (89) are positive. □

Additionally, as for the Jacobi-Piñeiro polynomials, from (12) it follows that L
(α)
n,i ≼ L

(α+ei)
n−ei,i

.

Corollary 4.6. Let α = (α1, . . . , αr) satisfy (55) and (63). Then for any multi-index n ∈ Nr on
the step-line, i.e., of the form (72), conclusions of Theorem 4.5 hold for all i ∈ {1, . . . , r}.
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4.2.2. Zero asymptotics of Type I Multiple Laguerre polynomials of first kind.
As we did for the Type I Jacobi-Piñeiro polynomials, we can describe the weak zero asymptotics

of a sequence of rescaled Type I Multiple Laguerre polynomials of first kind, namely,

pn,i(x) = L
(αn)
n,i (ni x), i = 1, . . . , r,

where αn =
(
α
(n)
1 , . . . , α

(n)
r

)
, n = (n1, . . . , nr) ∈ Nr, under assumption

lim
|n|→∞

α
(n)
i

|n|
= Ai ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, . . . , r. (90)

Clearly, θ1 + · · ·+ θr = 1. Formula (85) indicates that with the parameters a(i)j and b
(i)
j defined in

(74), satisfying the same restrictions (75), namely,

Aj ̸= Ai + θi, Aj + θj /∈ (Ai, Ai + θi], j ∈ {1, . . . , r} \ {i},

Theorem 3.7 implies that for any weak-* accumulation point µ of the normalized zero-counting
measures χ(pn,i),

Sµ(z) =

∏r
j=1, j ̸=i

(
z + a

(i)
j + 1

)
∏r

j=1

(
z + b

(i)
j + 1

) , (91)

and by Theorem 3.9, the Cauchy transform Gµ(u) of the limit measure µ in a neighborhood of
infinity is an algebraic function y/u, where y = y(u) satisfies the equation

y
r∏

j=1

(y + b
(i)
j ) = u(y − 1)

r∏
i=1, j ̸=i

(y + a
(i)
j ).

Let us discuss the case when α does not depend on n, so that identities (77) hold, and constrains
(75) once again boil down to (78). If we assume that there exists an index i ∈ {1, . . . , r} such that

θi < min
{
θj : j ∈ {1, . . . , r} \ {i}

}
,

imposing additionally that |αi − αj | < 1 for all j’s, then as in Section 4.1.2 we conclude that
any weak-* accumulation point µ of the normalized zero-counting measures χ(pn,i) is a compactly
supported probability measure on R≥0, if r is odd, and on R≤0, otherwise, and such that

Sµ(z) =
1

(z + 1)r

∏
j ̸=i

(z + 1− θj/θi).

Example 4.7. Like in Example 4.4, if r = 2, and θ1 = θ < 1/2, the Cauchy transform Gµ(u) of the
limit measure µ is given by y/u, where y = y(u) solves the equation

y3 = u(y − 1)

(
y − 1

θ
+ 1

)
.

With the change y = 3w − u/3 we get

27w3 +

(
3

θ
− u

)
uw +

(
u

3θ
+ 1− 1

θ
− 2u2

27

)
u = 0.

Proceeding as in Example 4.4, we can use Cardano’s formula and select the right branch of the
solution observing that w > 0 for u > 0. The Sokhotski–Plemelj formula shows then that the limit
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Figure 2. Values of the smallest zeros (marked with ∗) and of the corresponding
values of −c∗ (left end-point of the limit zero distribution, marked with ’o’) for
L
(α)
(n1,n2),1

, with α = (1/2, 3/7), n1 = 250, and different values of n2/n1.

measure µ lives on the interval [−c∗, 0], with

c∗ =
9(1− θ)θ − 2 + 2

√
(1− 3(1− θ)θ)3

θ(1− 2θ)2
> 0.

See Figure 2 for a comparison of some actual values of the smallest zeros with the predicted value
of −c∗.

4.3. Type I Multiple Laguerre of the second kind.
Let α > −1 and c = (c1, . . . , cr) ∈ Rr

>0 be a multi-index such that ci ̸= cj for i ̸= j. Then,
for n = (n1, . . . , nr) ∈ Nr, the type I multiple Laguerre polynomials of the second kind, L(α,c)

n,i ,

degL(α,c)
n,i ≤ nj − 1, i = 1, . . . , r, are given by the orthogonality conditions on the function

Q
(α,c)
n (x)

def
==

r∑
j=1

L(α,c)
n,i (x)xαe−cjx,

namely, ∫ +∞

0
Q

(α,c)
n (x)xk dx = 0, 0 ≤ k ≤ |n| − 2, (92)

together with the normalization ∫ +∞

0
Q

(α,c)
n (x)x|n|−1 dx = 1.

Notice that in this case, the weights wj in (7) no longer form a Nikishin system, although they are
an AT-system, see, e.g. [21, §23.4].



30 A. MARTÍNEZ-FINKELSHTEIN, R. MORALES, AND D. PERALES

We are aware of an explicit formula for these polynomials only in the case of r = 2: it was
shown in [7, Proposition 8.1] that the Type I Laguerre polynomials of the second kind are also
Kampé de Fériet polynomials3: for c = (c1, c2) and i ∈ {0, 1},

L(α,c)
n,i (x) ≃ F 2:0;0

1:0;1

[
(−ni + 1, α+ 1) : · ; ·
−n1 − n2 + 2 : · ;α+ 1

∣∣∣∣ di,−cidix

]
, di

def
== 1− ci

c2−i
̸= 0. (93)

Hence, as an application of Theorem 3.1 we conclude that

Proposition 4.8. The Type I Laguerre polynomials of the second kind can be expressed as a
multiplicative convolution of a Jacobi polynomial with a Laguerre polynomial

L(α,c)
n,i (x) ≃ 2F1

(
−ni + 1, α+ 1

−n1 − n2 + 2
;−x+ di

)
⊠ni−1 1F1

(
−ni + 1

α+ 1
; cidix

)
. (94)

Proof. By Theorem 3.1,

F 2:0;0
1:0;1

[
(−ni + 1, α+ 1) : · ; ·
−n1 − n2 + 2 : · ;α+ 1

∣∣∣∣ di, y] ≃ (p⊞ni−1 q
)
⊠ni−1 r,

where

p(y) = 2F1

(
−ni + 1, α+ 1

−n1 − n2 + 2
;−y

)
, q(y) = 1F0

(
−ni + 1

·
; y/di

)
,

r(y) = 1F1

(
−ni + 1

α+ 1
;−y

)
.

Thus, by (17),

F 2:0;0
1:0;1

[
(−ni + 1, α+ 1) : · ; ·
−n1 − n2 + 2 : · ;α+ 1

∣∣∣∣ di,−cidix

]
≃ Dil 1

−cidi

[(
p⊞ni−1 q

)
⊠ni−1 r

]
=
(
p⊞ni−1 q

)
⊠ni−1 Dil 1

−cidi

(r) ≃
[
p⊞ni−1 q

]
(x)⊠ni−1 r(−cidix).

Notice that q(x) = 1F0

(
−ni+1

· ;x/di

)
≃ (x− di)

ni−1, so that by (21),[
p⊞ni−1 q

]
(x) = p (x− di) ,

and formula (94) follows. □

4.3.1. Zero asymptotics of Type I Multiple Laguerre polynomials of the second kind.
Unfortunately, the decomposition in Proposition 4.8 does not allow us to conclude that the

zeros of L(α,c)
n,i are real. However, using the arguments of Section 3.2, we can find at least the

S-transform (and, eventually, an equation on the Cauchy transform) of any accumulation point of
the normalized zero-counting measures of these polynomials.

Let n = (n1, n2) ∈ N2 and αn > −1 be such that

lim
|n|→∞

αn

|n|
= A ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, 2. (95)

Moreover, assume that cn =
(
c
(n)
1 , c

(n)
2

)
∈ R2

>0, with c
(n)
1 ̸= c

(n)
2 , depends on the multi-index n

in such a way that the limit

lim
n

cn = c = (c1, c2) ∈ R2
>0, c1 ̸= c2, (96)

3 For convenience, we changed the order of second and third vectors of parameters with respect to the notation
used therein.



ZEROS VIA FINITE FREE CONVOLUTION AND MOP 31

exists. Let us also define

d
(n)
1

def
== 1− c

(n)
1

c
(n)
2

, d
(n)
2

def
== 1− c

(n)
2

c
(n)
1

,

so that d
(n)
i → di, i = 1, 2, with di defined in (93).

Remark 4.9. It is easy to see that a simple re-scaling x 7→ x/N , N = N(n), in (92) allows us to
tackle the zero asymptotics also in the case of parameters c satisfying

lim
n

cn
N

= c = (c1, c2) ∈ R2
>0, c1 ̸= c2.

Notice that under this assumption, the limits d
(n)
i → di, i = 1, 2, still hold.

Theorem 4.10. Under the assumptions (95)–(96), the Cauchy transform y = Gµ(u) of any lim-
iting zero distribution µ of polynomials L(αn,cn)

n,i (nix/(cidi)) satisfies the cubic equation

di(di − 1)θiu y
3 +

(
Aidi(di − 1) + θi(1− 2di)u

)
y2 +

(
−Aidi + θi(di + u)− 1

)
y − θi = 0. (97)

Notice that for the case Ai = 0, (97) simplifies to

di(di − 1)u y3 + (1− 2di)u y
2 +

(
u+ di − 1/θi

)
y − 1 = 0.

Proof. By (94),

L(αn,cn)
n,i (nix/(cidi)) ≃ 2F1

(
−ni + 1, α+ 1

−n1 − n2 + 2
;−x+ di

)
⊠ni−1 1F1

(
−ni + 1

α+ 1
;nix

)
(98)

(for the sake of brevity, we have omitted writing the super-index n in ci and di; recall that under
assumption (95) they all have finite and non-zero limits).

By Theorem 3.7, the S-transform for a limiting zero-counting measure of the 1F1 polynomials
on the right-hand side of (98) is

1

z +Ai/θi + 1
.

It means that if we denote by µ̃ the limiting zero distribution of the 2F1 polynomials on the
right-hand side of (98), then the S-transforms of µ̃ and the limiting zero distribution µ of the
polynomials L(αn,cn)

n,i (nix/(cidi)) are related by

Sµ(z) =
Sµ̃(z)

z +A/θi + 1
.

By Corollary 3.10, w̃ = Sµ̃(z) satisfies (with c = −1, A = Ai/θi and B = −1/θi)

w̃
[
dizw̃ − (z + 1− 1/θi)

]
= (diw̃ − 1)

(
dizw̃ − (z + 1 +Ai/θi)

)
.

Taking w̃ = (z +A/θi + 1)w above and simplifying, we get that w = Sµ(z) is a solution of

di(di − 1)(Ai + θi(z + 1))zw2 +
(
−Aidi + θi(−di(2z + 1) + z + 1)− 1

)
w + θi = 0. (99)

We can get an equation on z = Mµ(u) by replacing zw 7→ (z + 1)u in (99):

di(di − 1)(Ai + θi(z + 1))(z + 1)2u2 +
(
−Aidi + θi(−di(2z + 1) + z + 1)− 1

)
(z + 1)u+ θiz = 0.

Recalling the definition (30) of the M -transform in terms of the Cauchy transform Gµ of µ, we
have that

z =
1

u
Gµ

(
1

u

)
− 1,
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and replacing u 7→ 1/u, we can rewrite the equation above to obtain a cubic equation on y = Gµ(u):

di(di − 1)(Ai + θiuy) y
2 +

(
−Aidi + θi(−di(2uy − 1) + uy)− 1

)
y + θi(uy − 1) = 0,

which is equivalent to (97). □

5. Type II Multiple orthogonal polynomials

Recall that Type II multiple orthogonal polynomial Pn are monic polynomial of degree |n| that
satisfy the orthogonality conditions (4), namely,∫

Pn(x)x
kwj(x) dx = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ r.

These polynomials are better studied than their Type I counterparts. In particular, it is known
that their asymptotic zero distribution can be described via a solution of a vector equilibrium
problem. Now we can perform this analysis using our free probability tools.

5.1. Type II Jacobi-Piñeiro polynomials.
We consider again the AT-system of Jacobi-Piñeiro weights on [0, 1] that satisfy the conditions

α1, . . . , αr > −1 and αi − αj ̸∈ Z for i ̸= j. (100)

The Type II (monic) Jacobi-Piñeiro polynomials, P (α;β)
n , degP (α;β)

n = |n|, are given by the or-
thogonality conditions∫ 1

0
P

(α;β)
n (x)xαj+k(1− x)β dx = 0, 0 ≤ k ≤ nj − 1, j = 1, . . . , r. (101)

Once again, these are hypergeometric polynomials (see [21, §23.3.2]):

(−1)|n|
r∏

j=1

(
|n|+ αj + β + 1

)nj(
αj + 1

)nj
(1− x)βP

(a;β)
n (x) = r+1Fr

(
−|n| − β,α+ n+ 1

α+ 1
;x

)
. (102)

Taking β ∈ Z≥0 on (102) and using Theorem A from Section 2.3, we obtain the following
representation:

(1− x)βP
(a;β)
n (x) ≃ p1(x)⊠|n|+β · · ·⊠|n|+β pr(x), (103)

where

pj(x) =

(
αj + 1

)nj

(nj)!
2F1

(
−|n| − β, αj + nj + 1

αj + 1
;x

)

= (1− x)|n|+β−nj
2F1

(
−nj , |n|+ β + αj + 1

αj + 1
;x

)
, j = 1, . . . , r.

(104)

These identities allow us to follow the methodology described above to find the asymptotic zero
distribution of these polynomials. To deal with the case of noninteger β, we appeal to an alternative
expression for the reciprocals of the Type II Jacobi-Piñeiro polynomials, consequence of Lemma
2.3:

Proposition 5.1. For the Type II Jacobi-Piñeiro polynomials,

P
(a;β)
n (x) ≃ p∗(x)⊠|n|

 1F1

(
−|n|

−β − |n|+ 1
; |n|x

)
⊞|n|

(
1F1

(
−|n|
β + 1

; |n|x
)
⊠|n| q

)∗

, (105)
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where

p(x) = 2F0

(
−|n|, 1

·
;− x

|n|

)
, q(x) = r+1Fr

(
−|n|, −|n| −α

−|n| − n−α
;−x

)
. (106)

Proof. By (102), and using the hypergeometric representation of (1− x)β , we have that

P
(a;β)
n (x) ≃ 1F0

(
β

·
;x

)
r+1Fr

(
−|n| − β, α1 + n1 + 1, . . . , αr + nr + 1

α1 + 1, . . . , αr + 1
;x

)
.

Notice that P
(α;β)
n (0) ̸= 0, so its reciprocals has the same degree. Applying Lemma 2.3, we get

that(
P

(a;β)
n

)∗
(x) ≃ 2F0

(
−|n|, 1

·
;x

)
⊠|n|

[
1F1

(
−|n|

−β − |n|+ 1
;−x

)
⊞|n| r+1Fr+1

(
−|n|, −|n| −α

β + 1,−|n| − n−α
;−x

)]
.

Using that (x − 1)|n| = (x + |n|)|n| ⊠|n| (x + |n|−1)|n| is an identity under the finite free multi-

plicative convolution (see (16)), we can rewrite
(
P

(a;β)
n

)∗
as the multiplicative convolution of two

polynomials,

p(x) = 2F0

(
−|n|, 1

·
;x

)
⊠|n| (x+ |n|)|n| ≃ 2F0

(
−|n|, 1

·
;−|n|−1x

)
and

p̃(x) = (x+ |n|−1)|n| ⊠|n|

[
1F1

(
−|n|

−β − |n|+ 1
;−x

)
⊞|n| r+1Fr+1

(
−|n|, −|n| −α

β + 1,−|n| − n−α
;−x

)]

= 1F1

(
−|n|

−β − |n|+ 1
; |n|x

)
⊞|n| r+1Fr+1

(
−|n|, −|n| −α

β + 1,−|n| − n−α
; |n|x

)
= 1F1

(
−|n|

−β − |n|+ 1
; |n|x

)
⊞|n|

[
1F1

(
−|n|
β + 1

; |n|x
)
⊠|n| q(x)

]
,

where q was defined in (106).
It remains to observe that by the definition (15), the operation ∗ acts distributively on the

multiplicative convolution ⊠|n|. □

5.1.1. Real zeros: monotonicity and interlacing.

Theorem 5.2. Let a multi-index n ∈ Nr, β ∈ Z≥0 and α = (α1, . . . , αr) satisfy (100). For each
i ∈ {1, . . . , r} and 0 ≤ t ≤ 2 such that

αi − αj + t ̸∈ Z, j ̸= i, (107)

the following interlacing holds:

P
(α,β)
n+ei

(x) ≼ P
(α,β)
n ≼ P

(α+tei,β)
n . (108)

Recall that ei ∈ Nr is the multi-index whose only non-zero entry (equal to 1) is in the position
i.
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Proof. Take i ∈ {1, . . . , r} and define the following polynomial,

Q(αi,β)
ni

(x) = 2F1

(
−ni, |n|+ β + αi + 1

αi + 1
;x

)
(109)

and using the decomposition (104) of P (α,β)
n define the following polynomial,

qi(x) := p1 ⊠|n|+β · · ·⊠|n|+β pi−1 ⊠|n|+β pi+1 ⊠|n|+β · · ·⊠|n|+β pr (110)

By hypothesis, we have, αj , β > −1 and n ∈ Nr, thus

αj + β + |n| > αj + nj − 1, j ∈ {1, . . . , r}

then we have by [11, Theorem 1, (ii)] that Qαi,β
ni , pj ∈ P|n|+β((0, 1)). Applying Proposition 2.4 to

polynomials qi defined in (110), we get that qi ∈ P|n|+β((0, 1)).
Using the the interpretation of Jacobi Polynomials as 2F1, we can extract from [12, Theorem

2.2] that for 0 < t ≤ 2,
Qαi,β

ni+1 ≺ Qαi,β
ni

≺ Qαi+t,β
ni

Using Proposition 2.6, we get that

(1− x)|n|+β−ni−1Qαi,β
ni+1 ⊠|n|+β qi ≼ (1− x)|n|+β−niQαi,β

ni
⊠|n|+β qi

≼ (1− x)|n|+β−niQαi+t,β
ni

⊠|n|+β qi.

For 0 < t ≤ 2 satisfying (107), we conclude that

P
(α,β)
n+ei

(x) ≼ P
(α,β)
n ≼ P

(α+tei,β)
n .

□

Remark 5.3. From [12, Theorem 2.2], the polynomial defined in (109) satisfies

Qαi,β
ni+1 ≺ Qαi,β+s

ni
≺ Qαi,β

ni
for 0 ≤ s ≤ 2.

Using similar ideas from the proof of Theorem 5.2, we can obtain

P
(α,β)
n+ei

(x) ≼ P
(α,β+s)
n ≼ P

(α,β)
n and s = 0, 1, 2. (111)

The restriction of s to entire numbers is necessary in order to use (103). The interlacing stated in
Theorem 5.2 and in (111) was partially proved in [18, Theorem 2.2], where it was shown that

P
(α,β)
n+ei

(x) ≼ P
(α,β)
n .

5.1.2. Zero asymptotics of Type II Jacobi-Piñeiro polynomials.
We can describe the weak zero asymptotics of a sequence of Type II Jacobi-Piñeiro polynomials,

pn = P
(a;β)
n (x),

where αn =
(
α
(n)
1 , . . . , α

(n)
r

)
, n = (n1, . . . , nr) ∈ Nr, under assumption (100), that is,

lim
|n|→∞

α
(n)
i

|n|
= Ai ≥ 0, lim

|n|→∞

β(n)

|n|
= B ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, . . . , r.

(112)
Let us suppose initially that for all n,

β(n) ∈ Z≥0. (113)

Representation (102) indicates that we need to consider the parameters

aj
def
== (Aj + θj)/(1 +B), and bj

def
== Aj/(1 +B), j = 1, . . . , r. (114)
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Restrictions aj /∈ [−1, 0) and bj ̸= −1 and the assumption that ai ̸= bj for i ̸= j hold automatically.
Let µ be a weak-* accumulation point µ of the normalized zero-counting measures χ(pn,i), and

denote

µ̃ =
1

1 +B
(Bδ0 + µ) .

By Theorem 3.7, the S-transform of µ̃ is

Sµ̃(z) =

r∏
j=1

z + a
(i)
j + 1

z + b
(i)
j + 1

=

r∏
j=1

(1 +B)z + θj +Aj +B + 1

(1 +B)z +Aj +B + 1
, (115)

while, by Theorem 3.9,

y = uGµ̃(u) =
u

1 +B

(
B

u
+ Gµ(u)

)
=

1

1 +B

(
B + uGµ(u)

)
is a solution of

y
r∏

j=1

(
y +

Aj

1 +B

)
= u(y − 1)

r∏
j=1

(
y +

Aj + θj
1 +B

)
.

Let us discuss the case when α and β do not depend on n, so that A = B = 0 and µ̃ = µ. In
this case,

Sµ(z) =
1

(z + 1)r

r∏
j=1

(
z + θj + 1

)
,

and y = uGν(u) is a solution of

yr+1 = u(y − 1)

r∏
j=1

(
y + θj

)
.

In the asymptotically diagonal situation, when all θj = 1/r, this equation boils down to

yr+1 = u(y − 1)
(
y + 1/r

)r
(compare it to (79); these equations can be reduced to each other with the change y 7→ −y/r; an
equivalent equation appeared in [42]). By the Sokhotski-Plemelj Formula, the density µ′ of µ on
(0, 1) can be recovered as

µ′(x) =
1

2πix

(
y−(x)− y+(x)

)
= − 1

πx
Im
(
y+(x)

)
, x ∈ (0, 1).

Example 5.4. If r = 2, and θ1 = θ ≤ 1/2, the Cauchy transform Gµ(u) of the limit measure µ is
given by y/u, where y = y(u) solves the equation

y3 = u(y − 1) (y + θ) (y + 1− θ) = u
(
y3 − (1 + ν) y + ν

)
, ν = θ(θ − 1) ∈ (−1/4, 0). (116)

This is the same cubic equation (80) we obtained in Example 4.4, up to the modification θ 7→ 1/θ,
and the corresponding change of the value of ν. Thus, we can use our previous calculations,
selecting the branch such that y(u) > 0 for u < 0. Namely, if now

f(u) =

(
θ(θ − 1)u

2(1− u)

)1/3
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is taken analytic in C \ [0,+∞), whose single-valued branch is fixed by requiring f(x) > 0 for
x < 0, then the desired solution of (116) is

y(u) = f(u)

(1 +√1 +
κu

1− u

)1/3

+

(
1−

√
1 +

κu

1− u

)1/3
 ,

where

κ = κ(ν) =
4

27

(1 + ν)3

ν2
=

4(1 + (θ − 1)θ)3

27θ2(1− θ)2
≥ 1

and with the branches of the roots taken always positive for u ∈ (−ε, 0) for a sufficiently small
ε > 0. Notice that κ(ν) is a strictly increasing function on (−1/4, 0)), with κ(−1/4) = 1.

For u = x > 0, denote by y± the boundary values of y on (0, 1). As before, the Sokhotski-Plemelj
Formula gives us the density of the limit measure µ as

µ′(x) =
1

2πix

(
y−(x)− y+(x)

)
= − 1

πx
Im
(
y+(x)

)
.

We have that(√
1 +

κu

1− u
+ 1

)1/3

+

∣∣∣∣
u=x

=

(√
1 +

κx

1− x
+ 1

)1/3

> 0 for x ∈ (0, 1),

and, taking into account that 1−
√
1 + u = −u

2

(
1 +O(u)

)
as u → 0,(

1−
√

1 +
κu

1− u

)1/3

+

∣∣∣∣
u=x

=

(√
1 +

κx

1− x
− 1

)1/3

e−πi/3 for x ∈ (0, 1).

Since

f+(x) = 3

√
−νx

2(1− x)
e−πi/3, x ∈ (0, 1),

we get that on (0, 1),

y+(x) = 3

√
−νx

2(1− x)
e−πi/3

(√1 +
κx

1− x
+ 1

)1/3

+

(√
1 +

κx

1− x
− 1

)1/3

e−πi/3

 .

Putting all together, we conclude that µ is supported on [0, 1], with

µ′(x) =

√
3

2π

3

√
θ(1− θ)

2

(√
1 + (κ− 1)x+

√
1− x

)1/3
+
(√

1 + (κ− 1)x−
√
1− x

)1/3
x2/3

√
1− x

.
(117)

Symbolic integration allows us to check that µ′(x) is the density of a positive probability measure
on [0, 1], and that

µ′(x) =

√
3 3
√

θ(1− θ))

2π x2/3
(1+o(1)) as x → 0+, and µ′(x) =

√
1− θ(1− θ)

π
√
1− x

(1+o(1)) as x → 1−.

See Figure 3 for a histogram of the zeros for θ = 1/3.
In the diagonal case, when θ = 1/2 (and κ = 1), this formula coincides with the expression

µ′(x) =

√
3

4π

(
1 +

√
1− x

)1/3
+
(
1−

√
1− x

)1/3
x2/3

√
1− x

, (118)
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Figure 3. Histogram of the zeros of the polynomial P (α;β)
n , with α = (1/2, 3/7),

β = 1, and n = (300, 600), along with the corresponding density.

found in [42], see also [28, §8.4]. On the other hand, as θ → 0+ or θ → 1−, µ converges to the
equilibrium measure (arcsine distribution) on [0, 1].

Example 5.5. Still in the case of r = 2 and asymptotically diagonal multi-indices (θ1 = θ2 = 1/2),
similar ideas allow us to tackle the case of varying parameters αn and β(n), satisfying (112). We
avoid performing cumbersome calculations here. Instead, we point out that if the case of B = 0
and A1 = A2 = A ≥ 0, the support of the limit measure µ is [a∗, 1], with

a∗ =
A3(A+ 1)(

A+ 3
2

)3 (
A+ 1

2

) ∈ [0, 1). (119)

On the other hand, if A1 = A2 = 0 and B ≥ 0, the measure is supported on [0, b∗], with

b∗ =
27(B + 1)2

(2B + 3)3
∈ (0, 1]. (120)

See Figure 4 for the result of some numerical experiments.

All considerations above have been carried out under the assumption (113) that all β’s are
integers. Consider the representation (105) from Proposition 5.1. We observe that for both poly-
nomials in its right-hand side depending on β, their limit zero distribution depends only on the
value of the limit β/|n|, and not on the concrete values of β. Hence, the same is true for the ex-
pression of the S-transforms of the limit measures for p and for the polynomial within the brackets
on the right-hand side of (105). Finally, using (35), we can conclude that the asymptotic zero
distribution of P (a;β)

n depends only on the limits (112) but not on the actual values of β. In other
words, expression (117) is valid under the general assumptions (112).

5.2. Type II Multiple Laguerre polynomials of the first kind.
For n ∈ Nr, the Type II Multiple Laguerre polynomials of the first kind, Lα

n, corresponding to
the weights (6), are polynomial of degree |n| − 1, satisfying∫ ∞

0
Lα
n(x)x

αje−xxkdx = 0, k = 0, 1, . . . , nj − 1, j = 1, . . . , r,
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Figure 4. Left: plot of the smallest zeros of the polynomial P
(α;β)
n , with n =

(300, 300), β = 0, and α = (600A, 600A), for A = 1, . . . , 15, along with the pre-
dicted leftmost end-point of the support, given by (119). Right: plot of the largest
zeros of the polynomial P (α;β)

n , with α = (0, 3/2), n = (300, 300), and β = 600B,
for B = 1, . . . , 15, along with the predicted rightmost end-point of the support,
given by (120).

where parameters α1, . . . , αr > −1 are such that αi − αj /∈ Z whenever i ̸= j. These are hyperge-
ometric polynomials (see [21, §23.4.2]):

(−1)|n|e−xLα
n(x) =

r∏
j=1

(
αj + 1

)nj
rFr

(
α+ n+ 1

α+ 1
;−x

)
. (121)

Notice that in this identity, neither the left-hand nor the right-hand side is a polynomial. However,
the polynomials Lα

n do not vanish at the origin, and we can write their reciprocal as a finite
convolution:

Proposition 5.6. For the reciprocal p∗ of the Type II Multiple Laguerre polynomials of the first
kind p(x) = Lα

n,

p∗ ≃ 2F0

(
−|n|, 1

·
;x

)
⊠|n| r+1Fr

(
−|n|, −|n| −α

−|n| − n−α
;x+ 1

)
. (122)

Proof. Since

ex = 0F0

(
·
·
;x

)
,

we can rewrite (121) as

p(x) ≃ 0F0

(
·
·
;x

)
rFr

(
α+ n+ 1

α+ 1
;−x

)
.

Applying the Lemma 2.3 we get that

p∗ ≃ 2F0

(
−|n|, 1

·
;x

)
⊠|n|

(
1F0

(
−|n|
·

;−x

)
⊞|n| r+1Fr

(
−|n|, −|n| −α

−|n| − n−α
;x

))
.
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On the other hand,

1F0

(
−|n|
·

;−x

)
≃ (x+ 1)|n|,

and from (21) we get (122). □

5.2.1. Real zeros: monotonicity and interlacing.
The Type II Multiple Laguerre polynomials of the first kind Lα

n can be obtained from the
Jacobi-Piñeiro polynomials P

(α;β)
n by the limit process,

Lα
n(x) ≃ lim

β→+∞
β|n|P

(α;β)
n (x/β),

which can be easily established by taking the limit directly in the orthogonality relations (101).
In consequence, interlacing properties of the zeros of Lα

n follow from Theorem 5.2:

Theorem 5.7. Let a multi-index n ∈ Nr, and α = (α1, . . . , αr) satisfy (100). For each i ∈
{1, . . . , r} and 0 ≤ t ≤ 2 satisfying (107), the following interlacing holds,

L
(α)
n+ei

(x) ≼ L
(α)
n ≼ L

(α+tei)
n ,

where ei ∈ Nr is the multi-index whose only non-zero entry (equal to 1) is in the position i.

5.2.2. Zero asymptotics of Type II Multiple Laguerre polynomials of the first kind.
We can use Proposition 5.6 to describe the asymptotic zero distribution of the rescaled polyno-

mials L
(αn)
n (|n|x), under assumptions (90), that is,

lim
|n|→∞

α
(n)
i

|n|
= Ai ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, . . . , r, (123)

where αn =
(
α
(n)
1 , . . . , α

(n)
r

)
, n = (n1, . . . , nr) ∈ Nr.

Theorem 5.8. Under the assumptions (123), function y = uGµ(u), where Gµ is the Cauchy
transform of any limiting zero distribution µ of polynomials L

(αn)
n (|n|x), satisfies the algebraic

equation

u
r∏

i=1

(y +Ai + θi − u) = (u− y)
r∏

i=1

(y +Ai − u) . (124)

In the particular case of α independent on n, so that all Aj = 0, it simplifies to

u
r∏

i=1

(y + θi − u) = − (y − u)r+1 . (125)

Proof. If
pn(x) = L

(αn)
n (x),

then (
L
(αn)
n (|n|x)

)∗
≃ p∗n(x/|n|).

By (122),

p∗(x/|n|) ≃ 2F0

(
−|n|, 1

·
;x/|n|

)
⊠|n| r+1Fr

(
−|n|, −|n| −αn

−|n| − n−αn
;x+ 1

)
. (126)
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By Corollary 3.10, the S-transform w̃ = Sµ̃(z) of a weak-* limit µ̃ of the normalized zero-counting
measures of the r+1Fr polynomial on the right-hand side satisfies the equation

w̃
r∏

i=1

(zw̃ + z −Ai − θi) = (w̃ + 1)
r∏

i=1

(zw̃ + z −Ai) . (127)

Taking into account (51) and the representation (126), we see that the S-transform w = Sµ∗(z)

of the normalized zero-counting measure of reversed scaled polynomials
(
L
(αn)
n (|n|x)

)∗
is

Sµ∗(z) = (z + 1)Sµ̃(z).

Thus, making the change of variables w̃ = w/(z + 1) in (127), we get an equation for w = Sµ∗(z):

w
r∏

i=1

(
zw + (z + 1) (z −Ai − θi)

)
= (w + z + 1)

r∏
i=1

(
zw + (z + 1) (z −Ai)

)
. (128)

In particular, the equation for the shifted S-transform w = Sµ∗(−z − 1) is

w
r∏

i=1

(
−(z + 1)w + z (z + 1 +Ai + θi)

)
= (w − z)

r∏
i=1

(
−(z + 1)w + z (z + 1 +Ai)

)
.

By (35), the S-transform w = Sµ(z) of the normalized zero-counting measure of the scaled poly-
nomials L

(αn)
n (|n|x) satisfies the equation
r∏

i=1

(
(z + 1 +Ai + θi) zw − (z + 1)

)
= (1− zw)

r∏
i=1

(
(z + 1 +Ai) zw − (z + 1)

)
.

By (32), the equation for u = M−1
µ (z) is

r∏
i=1

(
(z + 1 +Ai + θi)u− 1

)
=
(
1− (z + 1)u

) r∏
i=1

(
(z + 1 +Ai)u− 1

)
.

Recalling the definition (30) of the M -transform in terms of the Cauchy transform Gµ of µ, we
have that

z =
1

u
Gµ

(
1

u

)
− 1;

with u 7→ 1/u, we arrive at the algebraic equation (124) for y = uGµ(u). □

Example 5.9. For r = 1 (so that θ1 = 1) and α independent on n, we get the equation

y2 − uy + u = 0,

which yields that

Gµ(u) =
1

2

(
1−

√
u− 4

u

)
,

which corresponds to the Marchenko-Pastur distribution, supported on [0, 4].
For r = 2 and α independent of n, denoting θ1 = θ, the equation (125) reduces to

y3 − 2uy2 + (u+ 1)uy + u
(
θ(1− θ)− u

)
= 0.

The support of µ in this case is the interval [0, c∗], where c = c∗ is the positive solution of the
equation

(1− 2θ)2c2 − 2(2− 9(1− θ)θ)c− 27(θ − 1)2θ2 = 0,

that is
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Figure 5. Graph of the predicted end-point c∗, given in (129), as function of θ,
along with the largest zero of the polynomial L(α)

n (500x), with α = (0, 1/3) and
n = (500 θ, 500 (1− θ)), for θ = k/10, k = 0, 1, . . . , 10.

c∗ = c∗(θ) =
27θ2(1− θ)2

9θ(1− θ)− 2 + 2(1− 3θ(1− θ))3/2
∈ [27/8, 4], (129)

see Figure 5.

5.3. Type II Multiple Laguerre of the second kind.
Let α > −1 and c = (c1, . . . , cr) ∈ Rr

>0 be such that ci ̸= cj for i ̸= j. For n ∈ Nr, the Type
II Multiple Laguerre polynomials of the second kind, Lα,c

n , corresponding to the weights (7), are
polynomial of degree |n| − 1, satisfying∫ ∞

0
Lα,c
n (x)xk+αe−cjx dx = 0, k = 0, 1, . . . , nj − 1, j = 1, . . . , r.

Explicitly, see [21, §23.4.2],

L(α,c)
n (x) =

n1∑
k1=0

· · ·
nr∑

kr=0

(−1)|k|
(
|n|+ α

|k|

) r∏
j=1

(
nj

kj

)
|k|!

ck11 · · · ckrr
x|n|−|k|. (130)

Alternatively, we can express them in terms of the finite free convlution of simpler polynomials:

Theorem 5.10. For n ∈ Nr, α > −1 and c1, . . . , cr > 0 such that ci ̸= cj for i ̸= j. The Laguerre
polynomials of second kind of Type II have the following equivalent representations:

L(α,c)
n (x) = q(α) ⊠|n| (p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr) (131)

=
(
α+ |n|

)|n|
1F1

(
−|n|
α+ 1

;x

)
⊠|n|

 r∏
j=1

(
x− 1/cj

)nj

 , (132)

where

pj =

(
nj

)|n|

c
|n|
j

1F1

(
−|n|

nj − |n|+ 1
; cjx

)
= (−x)|n|−nj

(
|n|
)nj

c
nj

j

1F1

(
−|n|

|n| − nj + 1
; cjx

)
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and

q(α)(x) =

(
α+ |n|

)|n|

|n|! 2F1

(
−|n|, 1

α+ 1
;x

)
.

Proof. For (131), notice that in the notation (14),

ek(pj) =


(
|n|
)k (

nj

)k
k!ckj

for 0 ≤ k ≤ nj ,

0 for nj < k ≤ |n|.
(133)

Therefore, by (20),

ek(p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr) =
(
|n|
)k ∑

k1+···+kr=k

r∏
j=1

(
|n|
)kj (nj

)kj(
|n|
)kj kj !ckjj

=
(
|n|
)k ∑

k1+···+kr=k

r∏
j=1

(
nj

kj

)
1

c
kj
j

.

(134)

For the polynomial q(α), we have

ek(q
(α)) =

(
|n|
k

)(|n|+ α
)k(

|n|
)k .

By the formula (15), for the coefficients of the finite free multiplicative convolution, we obtain
after some simplifications

ek(q
(α) ⊠|n| (p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr)) =

(
|n|+ α

)k ∑
k1+···+kr=k

r∏
j=1

(
nj

k

)
1

c
kj
j

.

It remains to compare these expressions with (130) to get (131).
For (132), we use the decomposition for q(α),

q(α) =

(
α+ |n|

)|n|

|n|! 1F1

(
−|n|
α+ 1

;x

)
⊠|n| 2F0

(
−|n|, 1

·
;x

)
,

and substitute it in (131):

L(α,c)
n (x) =

(
α+ |n|

)|n|
1F1

(
−|n|
α+ 1

;x

)
⊠|n|[

1

|n|! 2F0

(
−|n|, 1

·
;x

)
⊠|n| (p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr)

]
.

(135)

Observe that

ek

(
1

|n|! 2F0

(
−|n|, 1

·
;x

))
=

(
|n|
k

)
1(

|n|
)k .

Using it with (134) and (15), we get that

ek

(
1

|n|! 2F0

(
−|n|, 1

·
;x

)
⊠|n| (p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr)

)
=

∑
k1+···+kr=k

r∏
j=1

(
nj

kj

)
1

c
kj
j

. (136)
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By (133), the non-vanishing coefficients of the sum in the right side correspond to the indices such
that 0 ≤ kj ≤ nj . Additionally,

ek

 r∏
j=1

1

c
nj

j

1F0

(
−nj

·
; cjx

) =
∑

k1+···+kr=k

r∏
j=1

(
nj

kj

)
1

c
kj
j

.

Thus,

1

|n|! 2F0

(
−|n|, 1

·
;x

)
⊠|n| (p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr) =

r∏
j=1

1

c
nj

j

1F0

(
−nj

·
; cjx

)
,

and it remains to use it in (135) to obtain (132). □

Theorem 5.11. Let a multi-index n ∈ Nr, α > −1 and c = (c1, . . . , cr) ∈ Rr
>0 be such that ci ̸= cj

for i ̸= j. For 0 < t ≤ 2, the following interlacing holds:

L(α,c)
n (x) ≺ L(α+t,c)

n (x). (137)

Proof. By [38, Eq. (55)], we have the following interlacing for 0 < t ≤ 2,

1F1

(
−|n|
α+ 1

;x

)
≺ 1F1

(
−|n|

α+ 1 + t
;x

)
, (138)

Since ci > 0 for each i = 1, . . . , r,
r∏

j=1

(
x− 1/cj

)nj ∈ Pn(R>0). (139)

Hence, by Proposition 2.6, the multiplicative finite free convolution of the polynomials in (138) by
(139) preserves the interlacing, so that

1F1

(
−|n|
α+ 1

;x

)
⊠|n|

r∏
j=1

(
x− 1/cj

)nj ≺ 1F1

(
−|n|

α+ 1 + t
;x

)
⊠|n|

r∏
j=1

(
x− 1/cj

)nj , (140)

which, by (132), is equivalent to L(α,c)
n (x) ≺ L(α+t,c)

n (x). □

5.3.1. Zero asymptotics of Type II Multiple Laguerre polynomials of the second kind.
Let n = (n1, . . . , nr) ∈ Nr and αn > −1 be such that

lim
|n|→∞

αn

|n|
= A ≥ 0, and lim

|n|→∞

ni

|n|
= θi > 0, i = 1, 2. (141)

Moreover, as in in Section 4.3.1, assume that cn =
(
c
(n)
1 , . . . , c

(n)
r

)
∈ Rr

>0, with c
(n)
i ̸= c

(n)
j for

i ̸= j, depends on the multi-index n in such a way that the limit

lim
n

cn = c = (c1, . . . , cr) ∈ Rr
>0 (142)

exists, with all ci ̸= cj for i ̸= j. Recall (see Remark 4.9) that we can also easily handle the case
when cn depend linearly on |n|.

Theorem 5.12. Under the assumptions above, function y = uGµ(u), where Gµ is the Cauchy
transform of the limiting distribution of zeros of the rescaled polynomials L(αn,cn)

n (|n|x), satisfies
the equation

y − 1 =

r∑
j=1

θju

u− cj(y +A)
. (143)
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We can prove this assertion using any of the representations from Theorem 5.10. Although
(132) is more straightforward (a multiplicative convolution of a Marchenko-Pasture distribution
with a discrete measure, supported at the points 1/cj ’s), we opted for using (131) to illustrate
how to obtain asymptotics from an expression involving both multiplicative and additive finite
convolutions.

Proof. By the representation (131),

L(αn,cn)
n (|n|x) = q(αn)(x)⊠|n|

[
(p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr)(|n|x)

]
,

while from (22) it follows that

Dil 1
|n|

(p1 ⊞|n| p2 ⊞|n| · · ·⊞|n| pr) ≃ (Dil 1
|n|

p1)⊞|n| (Dil 1
|n|

p2)⊞|n| · · ·⊞|n| (Dil 1
|n|

pr).

Now,

[Dil 1
|n|

pj ](x) = pj(|n|x) ≃ 1F1

(
−|n|

nj − |n|+ 1
; c

(n)
j |n|x

)
,

or, equivalently, by (16),

pj(|n|x) ≃

x− 1

c
(n)
j

|n|

⊠|n| 1F1

(
−|n|

nj − |n|+ 1
; |n|x

)
, j = 1, . . . , r.

Under assumptions (141)–(142), the normalized zero-counting measure of the first polynomial in
the right-hand side tends to δ1/cj , whose S-transform is the constant cj ̸= 0. Thus, applying
Theorem 3.7, we conclude that the weak-* limit νj of the normalized zero-counting measures of
the scaled polynomials pj(|n|x) is a positive probability measure, compactly supported on the real
line, for which

Sνj (z) =
cj

z + θj
. (144)

From (34) it follows that its R-transform is given by,

Rνj (z) =
θjcj

1− cjz
.

In the terminology of the free probability, νj is a free Poisson (or Marchenko-Pastur) distribution
of rate θj and jump of size cj (see [43, Definition 12.12]).

Applying (36), we see that the normalized zero-counting measure of (p1 ⊞|n| p2 ⊞|n| · · · ⊞|n|
pr)(|n|x) converges to a measure νp, whose R-transform is4

Rνp(z) =
r∑

j=1

θjcj
1− cjz

=

r∑
j=1

θj
1
cj

− z
. (145)

Using (34) again, we conclude that the S-transform w = Sνp(z) of νp satisfies the algebraic equation

z =
r∑

j=1

θj
1
cj

− zw
. (146)

4 Notice that we can identify −Rνp with the Cauchy transform of the discrete measure
∑r

j=1 θjδ1/cj . Moreover,
in the diagonal case, when all θj = 1/r, (145) takes the form Rµ(z) =

1
r

∑r
j=1

cj
1−cjz

, which can be interpreted as
compound free Poisson of rate 1 and discrete distribution with equal masses placed at cj ’s, see [43, Definition 12.16].



ZEROS VIA FINITE FREE CONVOLUTION AND MOP 45

On the other hand, for the polynomial

q(αn)(x) ≃ 2F1

(
−|n|, 1

αn + 1
;x

)
we can use Proposition 3.5 to assure that for its limiting zero-counting measure νq,

Sνq(z) =
z + 1

z +A+ 1
. (147)

Since the weak-* limit µ of the normalized zero-counting measure of the scaled polynomials
L(αn,cn)
n (|n|x) is given by

µ = νp ⊠ νq,

we have that its S-transform is

Sµ(z) = Sνp(z)Sνq(z) =
z + 1

z(z +A+ 1)
Sνp(z). (148)

Substituting it into (146), we get an algebraic equation for the S-transform w = Sµ(z):

z =
r∑

j=1

θj
1
cj

− z(z+A+1)
z+1 w

. (149)

With the definition (32) we can write it as

z =
r∑

j=1

θj
1
cj

− (z +A+ 1)R−1
µ (z)

.

Finally, proceeding as in the proof of Theorem 3.9, we arrive at the equation (143). □

6. Further examples

Recent research has revealed other (although not so many) families of multiple orthogonal
polynomials that can be expressed in terms of generalized hypergeometric functions, to which the
methodology explained here can be applied.

For instance, in [30] Type II MOP with respect to a pair of weights (r = 2) on [0, 1],

wj(x) = W(x; a, b+ j − 1; c+ j − 1, d), j = 1, 2,

where

W(x; a, b; c, d) =
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ)
xa−1(1− x)δ−1

2F1

(
c− b, d− b

δ
; 1− x

)
, δ = c+ d− a− b.

Note that W(x; a, b; c, d) is a positive function on the interval (0, 1), whenever a, b, c, d ∈ R>0 with
c > b, d > b, and δ > 0. It was shown that the corresponding polynomial Pn(x) := Pn(x; a, b; c, d),
such that ∫ 1

0
xkPn(x)W(x; a, b+ j; c+ j, d)dx

{
= 0, if n ≥ 2k + j + 1,

̸= 0, if n = 2k + j,

is hypergeometric (see [30, Theorem 6]):

Pn(x) ≃ 3F2

(
−n, c+

⌊
n
2

⌋
, d+

⌊
n−1
2

⌋
a, b

;x

)
.

This means that we could use the arguments above to establish some monotonicity and interlacing
properties of the zeros of Pn (all real, simple, and on the interval (0, 1)). As for the zero asymptotics,
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the authors in [30] observe that Pn’s share it with the Type II Jacobi-Piñeiro polynomials on the
step line, i.e., is given by (118).

Another example of Type II MOP appears in [29], this time with respect to two weights on
[0,+∞) from the family

w(x; a, b; c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−1U(c− b, a− b+ 1;x),

expressed in terms of the confluent hypergeometric function of the second kind, U(α, β;x), also
known as the Tricomi function: for Re(α) > 0 and | arg(x)| < π

2 ,

U(α, β;x) =
1

Γ(α)

∫ ∞

0
tα−1(t+ 1)β−α−1e−tx dt.

Then, for two weights from this family, we can define Type II MOP as follows: for a, b, c > 0 such
that c > max{a, b} > 0 and d ∈ {0, 1}, let Pn = P

[d]
n satisfy∫ ∞

0
xkP [d]

n (x)w(x; a, b; c+ d) dx

{
= 0, if n ≥ 2k + 1,

̸= 0, if n = 2k,

and ∫ ∞

0
xkP [d]

n (x)w(x; a, b; c+ 1− d) dx

{
= 0, if n ≥ 2k + 2,

̸= 0, if n = 2k + 1.

We can identify Pn with Type II MOP on the step-line by defining

P(n,n)(x) = P2n(x) and P(n+1,n)(x) = P2n+1(x).

From [29, Theorem 3.1],

P [d]
n (x) ≃ 2F2

−n, c+
⌊
n+d
2

⌋
a, b

;x

.

Hypergeometric polynomials arise also when considering multiple orthogonality, this time of
both Type I and Type II, with respect to an exponential integral. Namely, [53] considered two
weights on [0,∞),

w1(x) = xαe−x, w2(x) = xαEν+1(x),

where

Eν(x) =

∫ ∞

1

e−xt

tν
dt,

α > −1 and α+ ν > −1. This pair of weights was shown to form a Nikishin system on [0,∞).
If we consider the Type I MOP for (w1, w2) that corresponds to the multi-index n = (n1, n2),

that is, a vector of r = 2 polynomials
(
An,1, An,2

)
with degAn,j ≤ nj − 1, for which the function

(1),

Qn(x)
def
==

r∑
j=1

An,j(x)wj(x)

is orthogonal to all polynomials of degree ≤ |n| − 2,∫ +∞

0
xkQn(x) dx = 0, 0 ≤ k ≤ |n| − 2,
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then it was proved in [53, §2.2] that, provided that for n1 + 1 ≥ n2 and ν /∈ Z,

An,2(x) ≃ 2F2

(
−n2 + 1, |n|+ α+ ν

ν + 1, α+ ν + 1
;−x

)
.

On the other hand, for the corresponding Type II MOP Pn of degree |n|, for the two weight
functions (w1, w2), satisfying∫ ∞

0
Pn(x)x

kwj(x) dx = 0, k = 0, . . . , nj − 1, j = 1, 2,

it is established that

Pn,m(x) ≃ 2F2

(
−|n|, n2 + α+ ν + 1
α+ 1, α+ ν + 1

;x

)
, (150)

see [53, §3.2].
Finally, a general class of weights for which the moment-generating functions are hypergeometric

series has been considered in the recent publication [55]. In particular, it was shown that in this
setting, Type II MOPs have the general form

p+1Fq

(
−|n|,n+α+ 1

β + 1
;x

)
, (151)

and thus, can be represented as the finite free multiplicative convolution of simpler building blocks.
In all these examples, the corresponding MOP are suitable for analyzing their zeros using this

paper’s methodology. For instance, the algebraic equation for the Cauchy transform of the limiting
zero distribution of the appropriately rescaled polynomials (150) (see [53, Lemma 6]) or (151) (see
[55, Theorem 2.17 and Corollary 3.15]) are just a straightforward application of Theorem 3.9 of
this paper.

Appendix A. Outline of the proof of Theorem 3.3

Theorem 3.3 is a key result for some of our applications and it was implicitly proved in [5, 4].
The connection between the results proved in those papers and the theorem written here uses the
established theory of combinatorics in free probability that can be consulted in [43]. The purpose
of this section is to further clarify this connection.

First, recall from [5, Remark 3.5] that given a polynomial p ∈ Pn one can define its degree n

finite free cumulants (κ
(n)
j (p))nj=1 as the values uniquely determined by the formulas:

ej(p) =
(n)j

djj!

∑
π∈P(k)

n|π|µ(0j , π)κ
(n)
π (p).

where P(j) is family of set partitions of {1, . . . , k}, µ is the Möbius function on the lattice P(k)

(with the reversed refinement order), |π| is the number of blocks in the partition π, and κ
(n)
π (p) :=∏

V ∈π κ
(n)
|V |(p). Finite free cumulants have the remarkable property that in the limit they tend to

free cumulants, see [5, Theorem 5.4], since the proof only relies in the combinatorial structure, the
result can be readily updated as follows:

Let (pn)n≥0 be a sequence of polynomials such that pn ∈ Pn for n ≥ 0. And let (rj)j≥1, (mj)j≥1

two sequences of complex numbers that satisfy the formulas:

mk =
∑

π∈NC(k)

rπ, for k = 1, 2, . . . , (152)
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where NC(k) is family of non-crossing set partitions of {1, . . . , k}, and rπ :=
∏

V ∈π r|V |. Then, we
have the equivalence:

lim
n→∞

mj(pn) = mj , for j = 1, 2, . . . if and only if lim
n→∞

κ
(n)
j (pn) = rj for j = 1, 2, . . .

Notice that the only difference with [5, Theorem 5.4] is that we do not require that (mj)j≥1 is
the sequence of moments of some measure. If this was the case, then (rj)j≥1 would be the sequence
of free cumulants of the given measure.

Moreover, from [5, Proposition 3.6] we know that finite free cumulants linearize the finite free
additive convolution:

κ
(n)
j (p⊞n q) = κ

(n)
j (p) + κ

(n)
j (q) for j = 1, . . . , n.

Furthermore, [4, Theorem 1.2] asserts that finite free cumulants of the multiplicative convolution
satisfy the same relation as the free cumulants of a product in the limit:

κ
(n)
j (p⊠n q) =

∑
π∈NC(j)

κ(n)π (p)κ
(n)
Kr(π)(q) +O(1/n) for j = 1, 2, . . . ,

where, Kr(π) denotes the Kreweras complement of a non-crossing partition and O(1/n) is a term
that tends to 0 when n → ∞. When turning to the limiting behaviour, the previous results imply
the following:

Let p = (pn)n≥0, q = (pn)n≥0 be a sequence of polynomials such that pn, qn ∈ Pn for n ≥ 0.
And assume that for all j = 1, 2, . . . it holds that

αj := lim
n→∞

mj(pn) ∈ C, and βj := lim
n→∞

mj(qn) ∈ C.

Then for all j = 1, 2, . . . one has that

γj := lim
n→∞

mj(pn ⊞n qn) ∈ C and,

θj := lim
n→∞

mj(pn ⊠n qn) ∈ C.

Furthermore, the sequences (γj)j≥1 and (θj)j≥1 can be computed as follows. For µ = α, β, γ, θ we
let (rj(µ))j≥1 be the sequences such that:

µk =
∑

π∈NC(k)

rπ(µ), for k = 1, 2, . . . . (153)

Then

rj(γ) = rj(α) + rj(β) for j = 1, 2, . . . , and (154)

rj(θ) =
∑

π∈NC(j)

rπ(α)rK(π)(β) for j = 1, 2, . . . , r. (155)

It is a well-known fact that the previous relations between sequences are equivalent to the
formal power series relations between the R-transform, S-transform and Cauchy transform. More
specifically, Theorem 3.3 follows from the following facts:

• Equation (153) is true for every k ≥ 1 if and only if the rj(µ) are the coefficients of the
R-transform series Rµ associated to the sequence (µj)j≥1, see [43, Remark 16.18]

• The equation Rγ(z) = Rα(z) +Rβ(z) at the level of formal power series is equivalent the
same equality at each coefficient, namely Equation (153).

• If (αj)j≥1, (βj)j≥1, (θj)j≥1 are sequences such that their associated S-transform satisfy
Sθ(z) = Sα(z)Sβ(z), this is equivalent to the coefficients of their corresponding R-transforms
satisfying Equation (155) for all j ≥ 1, see [43, Corollary 18.17].
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