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BSDE-BASED STOCHASTIC CONTROL FOR OPTIMAL REINSURANCE IN

A DYNAMIC CONTAGION MODEL

CLAUDIA CECI AND ALESSANDRA CRETAROLA

Abstract. We investigate the optimal reinsurance problem in the risk model with jump clustering

features introduced in [7]. This modeling framework is inspired by the concept initially proposed in

[15], combining Hawkes and Cox processes with shot noise intensity models. Specifically, these pro-

cesses describe self-exciting and externally excited jumps in the claim arrival intensity, respectively.

The insurer aims to maximize the expected exponential utility of terminal wealth for general rein-

surance contracts and reinsurance premiums. We discuss two different methodologies: the classical

stochastic control approach based on the Hamilton-Jacobi-Bellman (HJB) equation and a back-

ward stochastic differential equation (BSDE) approach. In a Markovian setting, differently from

the classical HJB-approach, the BSDE method enables us to solve the problem without imposing

any requirements for regularity on the associated value function. We provide a Verification Theo-

rem in terms of a suitable BSDE driven by a two-dimensional marked point process and we prove

an existence result relaying on the theory developed in [27] for stochastic Lipschitz generators.

After discussing the optimal strategy for general reinsurance contracts and reinsurance premiums,

we provide more explicit results in some relevant cases. Finally, we provide comparison results

that highlight the heightened risk stemming from the self-exciting component in contrast to the

externally-excited counterpart and discuss the monotonicity property of the value function.

Keywords: Stochastic control; BSDEs; Optimal reinsurance; Hawkes processes; Cox processes.
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1. Introduction

Optimal reinsurance and optimal investment problems for various risk models have gained a lot of

interest in the actuarial literature in recent years. Thanks to the development of effective strate-

gies, insurers can reduce potential claim risk (insurance risk) and optimize capital investments.

Indeed, acquiring reinsurance serves as a safeguard for insurers against unfavorable claim experi-

ences, while investing also enables insurers to diversify risks and potentially achieve higher returns

on the cash flows within their insurance portfolio. Within the extensive body of literature devoted

to risk theory, a classical task is to deal with optimal risk control and optimal asset allocation

for an insurer. Mainly in the case of classical reinsurance contracts such as proportional and
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excess-of-loss, different decision criteria have been adopted in the study of these problems, e.g.,

ruin probability minimization, dividend optimization, and expected utility maximization. Here,

we focus on the latter approach (see [20, 25, 6] and references therein). Earlier seminal papers

on the topic adopt a diffusive dynamics for the surplus process, whereas more recent literature

explores surplus processes that incorporate jumps.

The first risk model specification incorporating jumps in nonlife insurance is represented by the

classical Cramér-Lundberg model, in which the claim arrival process follows a Poisson process

with constant intensity. Since it is an assumption which is seriously violated in a large number of

insurance contexts (e.g., climate risks), many researchers have suggested to employ a stochastic

intensity for the claim arrival dynamics. For instance, clustering features due to exogenous (exter-

nally excited) factors, such as earthquakes, flood, and hurricanes, might be captured using a Cox

process; see, e.g. [2, 5, 18]. Moreover, clustering effects due to endogenous (self-excited) factors,

such as aggressive driving habits and poor health conditions, can be effectively described by a

Hawkes process, see e.g. [19]. A dynamic contagion model was introduced in [15] by generalizing

both the Cox process with shot noise intensity and the Hawkes process.

In recent years, [8] analyzed the optimal reinsurance-investment problem for the compound dy-

namic contagion process introduced by [15] via the time-consistent mean–variance criterion. Very

recently, [7] investigated the optimal reinsurance strategy for a risk model with jump clustering

characteristics similar to that proposed by [15] under partial information.

In this work, we study the optimal reinsurance problem by maximizing the expected utility in the

risk model with jump clustering properties introduced in [7] with complete information for general

reinsurance contracts. Note that, the problem considered in [7] is the same but analyzed in a partial

information setting. The study of the problem in the case of complete information is not addressed

in the literature, and furthermore, it allows for comparative analyses in a more tractable context

than that of partial information. We discuss two different methodologies: the classical stochastic

control approach based on the Hamilton-Jacobi-Bellman (HJB) equation and a backward stochas-

tic differential equation (BSDE) approach. It is important to stress that proving the existence of

a classical solution to the HJB equation corresponding to the optimal stochastic control problem

under investigation is challenging due to its inherent complexity. This difficulty stems from the

equation’s nature as a partial integro-differential equation, compounded by an optimization compo-

nent embedded within the associated integro-differential operator. This motivated the application

of an alternative approach based on BSDEs. Several works (see, e.g. [17, 16, 13, 24, 12] and

references therein) deal with stochastic optimization problems in Finance and Insurance by means

of BSDEs. This approach is well suited to solve stochastic control problems in non-Markovian

settings or under partial information in the presence of an infinite-dimensional filter process, see

e.g. [10, 26, 11, 12].

It should be noted that the resulting BSDE, whose unique solution characterizes the value process,

differs from that studied [7], due to the presence of an additional jump component. We provide a

Verification result (see Theorem 5.5) by proving that any solution to a suitable BSDE driven by

two pure jump processes coincides with the Snell Envelope associated to null reinsurance. Next, we
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discuss existence of solution to our BSDE in Theorem 5.6. Most of the literature on BSDEs with

jumps requires the Lipschitz property of the generator (see e.g. [23, 21, 22, 14, 1] and references

therein). It is important to note that due to the unboundedness of the claim arrival intensity, our

BSDE satisfies only a stochastic Lipschitz condition. Therefore, we apply the theory developed in

[27] for multidimensional BSDEs driven by a general martingale assuming a stochastic Lipschitz

generator. The application of the aforementioned result also requires one to show the validity of

the martingale representation property, see Proposition 5.3. Theorems 5.5, 5.6 are summarized

in Corollary 5.7, where we characterize the value process and optimal strategies. In a Markovian

setting we provide more insight into the structure of optimal strategies aligning with the results

obtained via the HJB-approach under the additional regularity assumption of the value function.

Our findings suggest that mitigating the risk stemming from externally-excited jumps can only

be accomplished through adjusting the premium rate. While, mitigating the self-exciting effect

requires adjustments to both the premium rate and the reinsurance strategy. Finally, we discuss the

monotonicity property of the value function, which indicates a more conservative stance adopted

by the insurer in the contagion model compared to the Cox model whether employing proportional

reinsurance or limited excess of loss reinsurance with a fixed maximum coverage.

The paper is organized as follows. Section 2 introduces the mathematical framework including the

dynamic contagion process. Section 3 formally introduces the problem under investigation, which

involves the controlled surplus process and the objective function. In Section 4 we discuss the HJB

approach in order to solve the resulting optimal stochastic control problem. The characterization of

the value process and the optimal strategy via a suitable BSDE can be found in Section 5. Section

6 provides the representation of the optimal reinsurance strategy in a Markovian framework for

general premiums and more explicit results in some special cases. In Section 7 we perform a

comparison analysis which confirms the risk due to the self-exciting component and discuss the

monotonicity property of the value function. Finally, all technical proofs and some auxiliary results

are collected in Appendix A.

2. The mathematical framework

Let (Ω,F ,P;F) be a filtered probability space and assume that the filtration F = {Ft, t ∈ [0, T ]}
satisfies the usual conditions of completeness and right-continuity. Here, T > 0 is a fixed time

horizon that represents the maturity of a reinsurance contract.

We consider the dynamic contagion process proposed in [7], which generalizes the Hawkes and Cox

processes with shot noise intensity introduced by [15]. More precisely, the claim counting process

N (1) = {N (1)
t , t ∈ [0, T ]} has the (F,P)-stochastic intensity process Λ = {λt, t ∈ [0, T ]} given by

λt = β + (λ0 − β)e−αt +

N
(1)
t∑

j=1

e−α(t−T
(1)
j )ℓ(Z

(1)
j ) +

N
(2)
t∑

j=1

e−α(t−T
(2)
j )Z

(2)
j , t ∈ [0, T ], (2.1)

where

• β > 0 is the constant reversion level;
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• λ0 > 0 is the initial value of Λ;

• α > 0 is the constant rate of exponential decay;

• N (2) = {N (2)
t , t ∈ [0, T ]} is a Poisson process with constant intensity ρ > 0;

• {T (1)
n }n≥1 are the jump times of N (1), i.e., the time instants when claims are reported;

• {T (2)
n }n≥1 are the jump times of N (2), i.e., when exogenous/external factors make intensity

jump;

• N (1) and N (2) do not have common jump times;

• {Z(1)
n }n≥1 represent the claim size and they are modeled as a sequence of i.i.d. R

+-valued

random variables with distribution function F (1) : (0,+∞) → [0, 1] such that E[Z(1)] <

+∞;

• ℓ : [0,+∞) → [0,+∞) is a measurable function (for instance we could take ℓ(z) = az, a > 0,

and the self-exciting jumps would be proportional to claims sizes) such that E[ℓ(Z(1))] <

+∞;

• {Z(2)
n }n≥1 are the externally-excited jumps and they are modeled as a sequence of i.i.d.

R
+-valued random variables with distribution function F (2) : (0,+∞) → [0, 1], such that

E[Z(2)] < +∞.

Note that the counting process N (1) is defined via its intensity Λ in equation (2.1), which in turn

depends on the history of N (1). So, an apparent logical loop seems to arise concerning the existence

of Λ. For more details, refer to [7]. The following assumption will hold from now on:

Assumption 2.1. We assume N (2), {Z(1)
n }n≥1 and {Z(2)

n }n≥1 to be independent of each other.

We introduce the cumulative claim process C = {Ct, t ∈ [0, T ]} defined at time t as

Ct =

N
(1)
t∑

j=1

Z
(1)
j , t ∈ [0, T ]. (2.2)

and the integer-valued random measures m(i)(dt, dz), i = 1, 2

m(i)(dt, dz) =
∑

n≥1

δ
(T

(i)
n ,Z

(i)
n )

(dt, dz)11{T (i)
n <+∞}, (2.3)

where δ(t,z) denotes the Dirac measure in (t, z). We recall from [7] the change of measure which

allows to introduce the dynamic contagion model via a rigorous construction, starting from two

Poisson processes N (1), N (2) with intensity 1 and ρ on a given probability space (Ω,F ,Q;F) and

two sequences of {Z(1)
n }n≥1, {Z(2)

n }n≥1 of i.i.d. positive random variables with distribution functions

F (1) and F (2), respectively. We assume N (1), N (2), {Z(1)
n }n≥1 and {Z(2)

n }n≥1 to be independent of

each other under Q. Specifically, under the following assumption:

Assumption 2.2. There exists ε > 0 such that

E
Q
[
eεℓ(Z

(1))
]
< +∞, E

Q
[
eεZ

(2)
]
< +∞,
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it is possible to define the equivalent probability measure P via

dP

dQ

∣∣∣
FT

= LT ,

where LT is the final value of the (F,Q)-martingale L = {Lt, t ∈ [0, T ]} given by

Lt = e−
∫ t

0
(λs−1)ds+

∫ t

0
ln(λ

s−
)dN

(1)
s , t ∈ [0, T ]. (2.4)

In view of the model construction, we can safely introduce the (F,P)-compensator measures of

m(i)(dt, dz), i = 1, 2.

Remark 2.3. By the Girsanov Theorem the (F,P)-predictable projections measures (the so-called

compensator measures) of m(1)(dt, dz) and m(2)(dt, dz) (see (2.3)) are given respectively by

ν(1)(dt, dz) = λt−F
(1)(dz)dt, ν(2)(dt, dz) = ρF (2)(dz)dt. (2.5)

In particular, N (1) is a point process with (F,P)-predictable intensity {λt− , t ∈ [0, T ]}, while N (2)

remains a point process with constant (F,P)-intensity ρ > 0.

It turns out that for any F-predictable nonnegative random field {H(t, z), t ∈ [0, T ], z ∈ [0,+∞)}
and i = 1, 2

E

[∫ t

0

∫ +∞

0

H(s, z)m(i)(ds, dz)

]
= E

[∫ t

0

∫ +∞

0

H(s, z)ν(i)(ds, dz)

]
, t ∈ [0, T ],

where ν(i)(ds, dz), i = 1, 2, are defined in (2.5). Moreover, under the condition

E

[∫ T

0

∫ +∞

0

|H(s, z)|ν(i)(ds, dz)

]
< +∞,

the process {∫ t

0

∫ +∞

0

H(s, z)
(
m(i)(ds, dz)− ν(i)(ds, dz)

)
, t ∈ [0, T ]

}
,

is an (F,P)-martingale.

Now, we recall the Markov structure of the intensity Λ. Equation (2.1) reads as

dλt = α(β − λt)dt+

∫ +∞

0

ℓ(z)m(1)(dt, dz) +

∫ +∞

0

zm(2)(dt, dz). (2.6)

Proposition 2.4. The process Λ is an (F,P)-Markov process with generator

Lf(λ) = α(β − λ)f ′(λ) +

∫ +∞

0

[f(λ+ ℓ(z))− f(λ)]λF (1)(dz) +

∫ +∞

0

[f(λ+ z)− f(λ)]ρF (2)(dz).

The domain of the generator L contains the class of functions f ∈ C1(0,+∞) such that

E

[∫ t

0

∫ +∞

0

|f(λs + ℓ(z))− f(λs)|λsF
(1)(dz)ds

]
< +∞,

E

[∫ t

0

∫ +∞

0

|f(λs + z)− f(λs)|F (2)(dz)ds

]
< +∞,
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and

E

[∫ t

0

λs|f ′(λs)|ds
]
< +∞.

Proof. It is a direct application of Itô’s formula. �

We introduce the following assumption, which is needed to prove Proposition 2.6 below.

Assumption 2.5.

E[(ℓ(Z(1))k] < +∞, E[(Z(2))k] < +∞, ∀k = 1, 2, . . . .

Proposition 2.6. Under Assumption 2.5, for any t ∈ [0, T ]

E

[∫ t

0

λk
sds

]
< +∞, ∀k = 1, 2, . . . .

For the proof, see [7, Proposition 2.10].

3. Problem formulation

We introduce the optimal reinsurance problem from the primary insurer point of view. The primary

insurer aims to subscribe to a reinsurance contract in order to optimally manage her wealth. The

dynamics of the surplus process R = {Rt, t ∈ [0, T ]} without reinsurance is given by

dRt = ct dt−
∫ +∞

0

z m(1)(dt, dz), R0 ∈ R
+,

where c = {ct, t ∈ [0, T ]} denotes the insurance premium, which is assumed to be an F-predictable

process and such that E
[∫ T

0
ctdt

]
< +∞ and R0 > 0 is the initial capital. The insurer can choose

any reinsurance arrangement in a given class of admissible contracts, which are parametrized by a

n-uple u (the control) taking values in U ⊆ R
n
, with n ∈ N and R denoting the compactification

of R. Under an admissible strategy u ∈ U (the definition of admissibility set U will be given in

Definition 3.4 below), it retains the amount Φ(Z
(1)
j , u

T
(1)
j

) of the j-th claim, while the remaining

Z
(1)
j −Φ(Z

(1)
j , u

T
(1)
j

) is paid by the reinsurer. Specifically, under an admissible strategy u = {ut, t ∈
[0, T ]} the aggregate losses process covered by the insurer, denoted by Cu = {Cu

t , t ∈ [0, T ]}, reads

as

Cu
t =

N
(1)
t∑

j=1

Φ(Z
(1)
j , u

T
(1)
j

), t ∈ [0, T ],

so that the remaining losses (C−Cu), with C defined by (2.2), will be undertaken by the reinsurer.

We suppose that Φ(z, u) the retention function is continuous in u and there exist at least two points

uN , uM ∈ U such that

0 ≤ Φ(z, uM) ≤ Φ(z, u) ≤ Φ(z, uN ) = z ∀(z, u) ∈ [0,+∞)× U,
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so that u = uN corresponds to null reinsurance, while u = uM represents the maximum reinsurance

protection. Note that uM corresponds to full reinsurance when applicable.

Example 3.1. For the reader’s convenience, we recall [7, Example 4.2], which shows how standard

reinsurance contracts fit our modeling framework.

(1) Under proportional reinsurance, the insurer transfers a percentage (1 − u) of any future

loss to the reinsurer, so we set

Φ(z, u) = uz, u ∈ [0, 1].

Selecting the scalar u ∈ [0, 1] =: U is equivalent to choosing the retention level of the

contract. Notice that here uN = 1 means no reinsurance and uM = 0 corresponding to full

reinsurance.

(2) Under an excess-of-loss reinsurance policy, the reinsurer covers all the losses exceeding a

retention level u, hence we fix the class of all the functions with this form:

Φ(z, u) = u ∧ z, u ∈ [0,+∞].

So, here U := [0,+∞], uN = +∞ and uM = 0 corresponds, to full reinsurance.

(3) Under a limited excess of loss reinsurance, for any claim the reinsurer covers the losses

exceeding a threshold u1, up to a maximum level u2 > u1, so that the maximum loss is

limited to (u2 − u1) on the reinsurer’s side. In this case:

Φ(z, u) = z − (z − u1)
+ + (z − u2)

+,

so that U = {(u1, u2) : u1 ≥ 0, u2 ∈ [u1,+∞]} and u = (u1, u2). Clearly, we have that

uM = (uM,1, uM,2) = (0,+∞) and uN can be any point on the line u1 = u2. A special case

is the so-called limited excess of loss with fixed reinsurance coverage, in which u2 = u1+βM ,

with βM > 0. Here, U = [0,+∞], uN = +∞ and uM = 0 corresponds to the maximum

reinsurance coverage βM . For βM = +∞ this case reduces to the excess-of-loss reinsurance.

The insurer will have to pay a reinsurance premium qu = {qut , t ∈ [0, T ]}, which depends on the

strategy u, satisfying the following assumptions.

Assumption 3.2. The reinsurance premium admits the following representation:

qut (ω) = q(t, ω, u) ∀(t, ω, u) ∈ [0, T ]× Ω× U,

for a given function q(t, ω, u) : [0, T ]× Ω × U → [0,+∞) continuous in u, F-predictable and with

continuous partial derivatives
∂q(t, ω, u)

∂ui

, i = 1, . . . , n. Moreover, for any (t, ω) ∈ [0, T ]× Ω,

q(t, ω, uN) = 0, q(t, ω, u) ≤ q(t, ω, uM), ∀u ∈ U,

since a null protection is not expensive and the maximum reinsurance is the most expensive.
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In the following qu will denote the reinsurance premium associated with the dynamic reinsurance

strategy {ut, t ∈ [0, T ]}. Notice that both insurance and reinsurance premiums are assumed to be

F-predictable, since the insurer and the reinsurer share the same information. Finally, we require

the following integrability condition:

E

[ ∫ T

0

quM
t dt

]
< +∞,

which ensures that for any u ∈ U , we have E

[∫ T

0
qus ds

]
< +∞.

Summarizing, the surplus process Ru = {Ru
t , t ∈ [0, T ]} with reinsurance evolves according to

dRu
t =

(
ct − qut

)
dt− dCu

t = (ct − qut ) dt−
∫ +∞

0

Φ(z, ut)m
(1)(dt, dz), Ru

0 = R0 ∈ R
+.

Moreover, the insurer invests her surplus in a risk-free asset with constant interest rate r ∈ R
+, so

that for any reinsurance strategy u ∈ U the wealth Xu = {Xu
t , t ∈ [0, T ]} satisfies the following

SDE

dXu
t = dRu

t + rXu
t dt, Xu

0 = R0 ∈ R
+,

whose solution is given by

Xu
t = R0e

rt +

∫ t

0

er(t−s) (cs − qus ) ds−
∫ t

0

∫ +∞

0

er(t−s)Φ(z, us)m
(1)(ds, dz), t ∈ [0, T ].

Remark 3.3. Notice that the stochastic wealth Xu can possibly take negative values, due to the

possibility of borrowing money from the bank account.

As mentioned earlier, the insurer aims at optimally controlling her wealth using reinsurance. More

formally, she aims at maximizing the expected exponential utility of terminal wealth over the class

U , that is,

sup
u∈U

E
[
1− e−ηXu

T

]
,

which turns out trivially to be equivalent to the minimization problem

inf
u∈U

E
[
e−ηXu

T

]
, (3.1)

where η ∈ R
+ denotes the insurer risk aversion.

Definition 3.4. We denote by U the class of admissible strategies, which are all the U-valued and

predictable processes, {ut, t ∈ [0, T ]}, such that E
[
e−ηXu

T

]
< +∞. Given t ∈ [0, T ], we will denote

by Ut the class U restricted to the time interval [t, T ].

The next assumptions are required in the sequel.

Assumption 3.5. We assume that for every a > 0

i) E

[
eaℓ(Z

(1))
]
< +∞, E

[
eaZ

(1)
]
< +∞, E

[
eaZ

(2)
]
< +∞;

ii) E

[
ea

∫ T

0
q
uM
t dt

]
< +∞.
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Proposition 3.6. Under Assumption 3.5, we have that

(a) for every a > 0, E[eaCT ] < +∞ and E[ea
∫ T
0 λsds] < +∞;

(b) any U-valued and F-predictable process is admissible according to Definition 3.4.

Proof. (a) It is proved in [7, Lemma 4.6 and Lemma B.1].

(b) Since for each u ∈ U , t ∈ [0, T ], qut ≤ quM
t , and using the inequality (a + b)2 ≤ 1

2
(a2 + b2),

a, b ∈ R, we have for any u ∈ U

E
[
e−ηXu

T

]
= E

[
e−ηR0e

rT

e−η
∫ T
0 er(T−s)(cs−qus ) dseη

∫ T
0

∫+∞

0 er(T−s)Φ(z,us)m(1)(ds,dz)
]

≤ E

[
eη

∫ T
0 er(T−s)q

uM
s dseηe

rT
∫ T
0

∫+∞

0 zm(1)(ds,dz)
]

≤ 1

2

(
E

[
e2ηe

rT
∫ T

0
q
uM
s ds

]
+ E

[
e2ηe

rTCT

])
,

which is finite in view of Assumption 3.5 and (a).

�

Remark 3.7. Insurance companies usually apply a maximum policy D > 0, i.e., they only repay

claims up to the amount D to the policyholders. In this setting, claims’ sizes are of the form

min{Z(1)
n , D} ≤ D, hence condition E

[
eaZ

(1)
]
< +∞ in Assumption 3.5 is trivially satisfied.

We conclude the section by presenting the most commonly used premium principles.

Example 3.8 (Premium principles). Under any admissible reinsurance strategy u ∈ U , the expected

cumulative losses covered by the reinsurer in the interval [0, t], with t ≤ T , are given by

E

[∫ t

0

∫ +∞

0

(z − Φ(z, us))m
(1)(ds, dz)

]
= E

[∫ t

0

∫ +∞

0

(z − Φ(z, us)) λs−F
(1)(dz)ds

]
.

(i) According to the expected value principle (EVP), the insurance premium c is given by

ct = (1 + θI)λt−

∫ +∞

0

zF (1)(dz),

where θI > 0 denotes the safety loading applied by the insurer, and the reinsurance premium qu

has to satisfy

E

[∫ t

0

qus ds

]
= (1 + θR)E

[∫ t

0

∫ +∞

0

(z − Φ(z, us)) λs−F
(1)(dz)ds

]
, ∀u ∈ U , ∀t ∈ [0, T ],

where θR > 0 denotes the safety loading applied by reinsurer. Thus,

qut = (1 + θR)λt−

∫ +∞

0

(z − Φ(z, ut))F
(1)(dz). (3.2)
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(ii) Under the variance premium principle (VPP), the insurance and reinsurance premiums are

given by

ct = λt−

{∫ +∞

0

zF (1)(dz) + ηI

∫ +∞

0

z2F (1)(dz)

}
,

qut = λt−

{∫ +∞

0

(z − Φ(z, ut))F
(1)(dz) + ηR

∫ +∞

0

(z − Φ(z, ut))
2
F (1)(dz)

}
,

respectively, where ηI > 0 and ηR > 0 are the variance loadings applied by insurer and reinsurer,

respectively.

(iii) Recently, a more general premium has been considered in the literature (see e.g. [9]), the mean-

variance principle (MVP) for which both the mean and variance loadings are allowed to depend on

both time and loss

ct = λt−

∫ +∞

0

{
(1 + θI(t, z))z + ηI(t, z)z

2
}
F (1)(dz),

qut = λt−

∫ +∞

0

{
(1 + θR(t, z)) (z − Φ(z, ut)) + ηR(t, z) (z − Φ(z, ut))

2
}
F (1)(dz),

for some non-negative loading factors θI(t, z) and ηI(t, z), θR(t, z) and ηR(t, z), applied by the

insurer and the reinsurer, respectively.

4. The Hamilton-Jacobi-Bellman equation

In the sequel, we work in a Markovian setting, then making the following assumption.

Assumption 4.1. The premium rates for insurance and reinsurance are described by the functions

c : [0, T ]× (0,+∞) → (0,+∞), with (t, λ) 7→ c(t, λ), and q : [0, T ]× (0,+∞)×U → [0,+∞), with

(t, λ, u) 7→ q(t, λ, u), respectively.

Remark 4.2. Assumption 4.1 is satisfied for the premium principles described in Example 3.8.

Then, the wealth Xu of the insurer associated with the reinsurance strategy u evolves as

dXu
t = [c(t, λt)− q(t, λt, ut) + rXu

t ] dt−
∫ +∞

0

Φ(z, ut)m
(1)(dt, dz), Xu

0 = R0 ∈ R
+. (4.1)

Note that under Assumption 4.1 the pair (Xu,Λ), for any u ∈ U , is a Markov process.

Definition 4.3. The set D denotes the class of functions f ∈ C1([0, T ]× R× (0,+∞)) such that

for every constant u ∈ U we have

E

[∫ t

0

∫ +∞

0

|f(s,Xu
s − Φ(z, u), λs + ℓ(z))− f(s, x,Xu

s , λs)|λsF
(1)(dz)ds

]
< +∞,

E

[∫ t

0

∫ +∞

0

|f(s,Xu
s , λs + z))− f(s,Xu

s , λs)|ρF (2)(dz)ds

]
< +∞,
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and

E

[∫ t

0

λs

∣∣∣∂f
∂λ

(s,Xu
s , λs)

∣∣∣ds
]
< +∞,

E

[∫ t

0

|c(s, λs)− q(s, λs, u) + rXu
s |
∣∣∣∂f
∂x

(s,Xu
s , λs)

∣∣∣ds
]
< +∞.

Lemma 4.4. The Markov generator of the the pair (Xu,Λ) for all constant controls u ∈ U is

given by

LX,λ,uf(t, x, λ) =
∂f

∂t
(t, x, λ) +

∂f

∂x
(t, x, λ) {c(s, λ)− q(s, λ, u) + rx}+ ∂f

∂λ
(t, x, λ)α(β − λ)

+

∫ +∞

0

[f(t, x− Φ(z, u), λ+ ℓ(z))− f(t, x, λ)]λF (1)(dz)

+

∫ +∞

0

[f(t, x, λ+ z)− f(t, x, λ)] ρF (2)(dz).

The domain of the generator LX,λ,u contains D.

Proof. Recalling (2.6) and (4.1), the proof is a direct application of Itô’s formula. �

Let us introduce the value function v : [0, T ] × R × (0,+∞) → [0,+∞) corresponding to the

optimization problem (3.1)

v(t, x, λ) = inf
u∈Ut

Et,x,λ

[
e−ηXu

T

]
, (t, x, λ) ∈ [0, T )× R× (0,+∞), (4.2)

where the notation Et,x,λ[·] stands for the expectation when (Xu,Λ) starts from (x, λ) at time t.

If the value function v(t, x, λ) is sufficiently smooth, it is expected to solve the Hamilton-Jacobi-

Bellman (HJB) equation
{

infu∈U LX,λ,uv(t, x, λ) = 0, ∀(t, x, λ) ∈ [0, T ]× R× (0,+∞),

v(T, x, λ) = e−ηx, ∀(x, λ) ∈ R× (0,+∞).
(4.3)

Notice that the explicit solution to SDE (4.1) with initial data (t, x), is given by

Xu
T = xer(T−t) +

∫ T

t

er(T−s) (c(s, λs)− q(s, λs, us)) ds−
∫ T

t

∫ +∞

0

er(T−s)Φ(z, us)m
(1)(ds, dz),

so we can write (4.2) as follows

v(t, x, λ) = e−ηxer(T−t)

ϕ(t, λ),

where we have set for any (t, λ) ∈ [0, T ]× (0,+∞)

ϕ(t, λ) = inf
u∈Ut

Et,λ

[
e−η

∫ T

t
er(T−s)(c(s,λs)−q(s,λs,us)) ds+η

∫ T

t

∫+∞

0
er(T−s)Φ(z,us)m(1)(ds,dz)

]
, (4.4)

and the notation Et,λ[·] stands for the expectation computed when the intensity process Λ starts

from λ at time t.
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Remark 4.5. It is easy to prove that ϕ(t, λ) is a strictly positive function. Indeed, for any u ∈ Ut

we have

Et,λ

[
e−η

∫ T

t
er(T−s)(c(s,λs)−q(s,λs,us)) ds+η

∫ T

t

∫+∞

0
er(T−s)Φ(z,us)m(1)(ds,dz)

]

≥ Et,λ

[
e−η

∫ T
t

er(T−s)c(s,λs) ds
]
.

Thus, for any (t, λ) ∈ [0, T ]× (0,+∞), we get ϕ(t, λ) ≥ Et,λ

[
e−η

∫ T
t

er(T−s)c(s,λs) ds
]
> 0.

Now, we compute all partial derivatives of v(t, x, λ):

∂v

∂t
(t, x, λ) = e−ηxer(T−t)

(
∂ϕ

∂t
(t, λ) + rηxer(T−t)ϕ(t, λ)

)
,

∂v

∂x
(t, x, λ) = −ηer(T−t)e−ηxer(T−t)

ϕ(t, λ),

∂v

∂λ
(t, x, λ) = e−ηxer(T−t) ∂ϕ

∂λ
(t, λ).

Then,

LX,λ,uv(t, x, λ)

= e−ηxer(T−t)

{(
∂ϕ

∂t
(t, λ) + rηxer(T−t)ϕ(t, λ)

)
− ηer(T−t)ϕ(t, λ) (c(t, λ)− q(t, λ, u) + rx)

+
∂ϕ

∂λ
(t, λ)α(β − λ)

}
+

∫ +∞

0

e−ηxer(T−t)
[
eηΦ(z,u)er(T−t)

ϕ(t, λ+ ℓ(z))− ϕ(t, λ)
]
λF (1)(dz)

+

∫ +∞

0

e−ηxer(T−t)

[ϕ(t, λ+ z)− ϕ(t, λ)] ρF (2)(dz)

= e−ηxer(T−t)

{
∂ϕ

∂t
(t, λ)− ηer(T−t)ϕ(t, λ) (c(t, λ)− q(t, λ, u)) +

∂ϕ

∂λ
(t, λ)α(β − λ)

+

∫ +∞

0

[
eηΦ(z,u)er(T−t)

ϕ(t, λ+ ℓ(z))− ϕ(t, λ)
]
λF (1)(dz)

+

∫ +∞

0

[ϕ(t, λ+ z)− ϕ(t, λ)] ρF (2)(dz)

}
,

and the HJB-equation (4.3) reduces to

∂ϕ

∂t
(t, λ) + α(β − λ)

∂ϕ

∂λ
(t, λ) +

∫ +∞

0

[ϕ(t, λ+ z)− ϕ(t, λ)] ρF (2)(dz)

− ηer(T−t)ϕ(t, λ)c(t, λ) + inf
u∈U

Ψu(t, λ) = 0,
(4.5)

with final condition

ϕ(T, λ) = 1, λ ∈ (0,+∞), (4.6)
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where the function Ψu(t, λ) is given by

Ψu(t, λ) = ηer(T−t)ϕ(t, λ)q(t, λ, u) +

∫ +∞

0

[
eηΦ(z,u)er(T−t)

ϕ(t, λ+ ℓ(z))− ϕ(t, λ)
]
λF (1)(dz). (4.7)

We now provide a verification result in terms of the reduced HJB-equation (4.5), whose proof is

postponed to Appendix A.

Theorem 4.6 (Verification Theorem).

(i) Let ϕ̃(t, λ) ∈ C1((0, T ) × (0,+∞)) ∩ C([0, T ] × (0,+∞)) be a classical solution of the HJB-

equation (4.5) that meets the final condition (4.6).

(ii) Let ṽ(t, x, λ) = e−ηxer(T−t)
ϕ̃(t, λ) and assume that for any u ∈ U the family

{ṽ(τ,Xu
τ , λτ ); τ stopping time, τ ≤ T} is uniformly integrable.

Then, the function ṽ(t, x, λ) coincides with the value function v(t, x, λ) given in (4.2). Further-

more, let u∗(t, λ) be a minimizer of infu∈U Ψu(t, λ). Then, {u∗
t = u∗(t, λt−), t ∈ [0, T ]} ∈ U is an

optimal strategy.

In the one-dimensional case the function Φ(z, u) is increasing in u ∈ [uM , uN ] ⊂ R and under

suitable assumptions we can obtain an explicit representation of the optimal reinsurance strategy.

Proposition 4.7 (The optimal strategy). Under the assumptions of Theorem 4.6, suppose that

Φ(z, u) is differentiable in u ∈ [uM , uN ] for almost every z ∈ (0,+∞) and Ψu(t, λ) given in (4.7) is

strictly convex in u ∈ [uM , uN ]. Then, the optimal reinsurance strategy u∗
t = {u∗(t, λt−), t ∈ [0, T ]}

is given by

u∗(t, λt−) =





uM (t, λt−) ∈ A0

uN (t, λt−) ∈ A1

ū(t, λt−) otherwise,

where

A0 = {(t, λ) ∈ [0, T ]× (0,+∞) : h(t, λ, uM) < 0} ,
A1 = {(t, λ) ∈ [0, T ]× (0,+∞) : h(t, λ, uN) > 0} ,

h(t, λ, u) = −ϕ(t, λ)
∂q

∂u
(t, λ, u)−

∫ ∞

0

ϕ(t, λ+ ℓ(z))eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz), (4.8)

the function ϕ(t, λ) is given in (4.4) and ū(t, λ) ∈ (uM , uN) solves the following equation with

respect to u:

−ϕ(t, λ)
∂q

∂u
(t, λ, u) =

∫ ∞

0

ϕ(t, λ+ ℓ(z))eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz). (4.9)

Proof. By the Verification Theorem (see Theorem 4.6) we have that ϕ(t, λ) given in (4.4) solves the

reduced HJB-equation (4.5) with final condition (4.6) and in order to obtain an optimal strategy

we have to find a minimizer of infu∈U Ψu(t, λ). Since Ψu(t, λ) given in (4.7) is continuous and
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strictly convex in u ∈ [uM , uN ], we see that there exists a unique minimizer. We write down the

first order condition
∂Ψu

∂u
(t, λ) = −ηer(T−t)h(t, λ, u) = 0,

where the function h(t, λ, u) is defined in (4.8). Recalling that
∂Ψu

∂u
(t, λ) is an increasing function

in u ∈ [uM , uN ] we have three possible cases:

(i) for (t, λ) ∈ A0,
∂Ψu

∂u
(t, λ) > 0, so Ψu(t, λ) is increasing in u ∈ [uM , uN ], hence u∗(t, λ) = uM ;

(ii) for (t, λ) ∈ A1,
∂Ψu

∂u
(t, λ) < 0, so Ψu(t, λ) is decreasing in u ∈ [uM , uN ], hence u∗(t, λ) = uN ;

(iii) otherwise there exists ū(t, λ) ∈ (uM , uN) such that
∂Ψu

∂u
(t, λ)

∣∣∣
u=ū

= 0 and u∗(t, λ) = ū(t, λ).

Finally, from Theorem 4.6 the stochastic process {u∗
t = u∗(t, λt−), t ∈ [0, T ]} provides an optimal

strategy. �

Remark 4.8. If q(t, λ, u) and Φ(z, u) are linear or convex in u ∈ [uM , uN ], then Ψu(t, λ) is strictly

convex in u ∈ [uM , uN ], and Proposition 4.7 applies.

The method based on the Verification Theorem in the contagion model outlined in Section 2 is

challenging due to the inherent complexity in establishing the existence of a classical solution to

Equation (4.5). This difficulty arises from the nature of (4.5) as a Partial Integro-Differential Equa-

tion (PIDE) coupled with an optimization component embedded within the associated integro-

differential operator. For this reason we develop in Section 5 an alternative approach based on

BSDEs. This method enables us to obtain the result given in Proposition 4.7 without imposing

any requirements for regularity on the value function ϕ(t, λ), see Proposition 6.1 below.

Now, we discuss the special case of the Cox process with shot noise intensity, which does not

exhibit the self-exciting effect.

4.1. Cox process with shot noise intensity. Notice that the case of the Cox process with shot

noise intensity corresponds to ℓ(z) = 0 in (2.1) and the reduced HJB-equation (4.5) reads as

∂ϕ

∂t
(t, λ) + α(β − λ)

∂ϕ

∂λ
(t, λ) +

∫ +∞

0

[ϕ(t, λ+ z)− ϕ(t, λ)] ρF (2)(dz)− ηer(T−t)ϕ(t, λ)c(t, λ)

+ ϕ(t, λ) inf
u∈U

{
ηer(T−t)q(t, λ, u) +

∫ +∞

0

(
eηΦ(z,u)er(T−t) − 1

)
λF (1)(dz)

}
= 0,

(4.10)

with final condition

ϕ(T, λ) = 1, λ ∈ (0,+∞).

By continuity of q(λ, u) with respect to u ∈ U and since U is compact, as in the general case, there

exists u∗(t, λ) which realizes the infimum in (4.10). Denoting by

H∗(t, λ) = inf
u∈U

{
ηer(T−t)q(t, λ, u) +

∫ +∞

0

(
eηΦ(z,u)er(T−t) − 1

)
λF (1)(dz)

}
,
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equation (4.10) reads as

∂ϕ

∂t
(t, λ) + α(β − λ)

∂ϕ

∂λ
(t, λ) +

∫ +∞

0

[ϕ(t, λ+ z)− ϕ(t, λ)] ρF (2)(dz)

− ϕ(t, λ)
[
ηer(T−t)c(t, λ) +H∗(t, λ)

]
= 0.

(4.11)

If ϕ(t, λ) is a classical solution to (4.11) we can apply the Feymnan-Kac formula to get the prob-

abilistic representation

ϕ(t, λ) = Et,λ

[
e−

∫ T

t (ηer(T−t)c(s,λs)+H∗(s,λs))ds
]
, (4.12)

where the process Λ = {λt, t ∈ [0, T ]} solves (2.6) with ℓ(z) = 0. Note that, due to the fact that

the claim intensity Λ is an unbounded process, there are no results that we can apply directly to

prove existence of classical solutions to (4.11) or equivalently to prove that the function ϕ(t, λ)

given in (4.12) is sufficiently regular.

We remark that, under the assumptions of Proposition 4.7 we get the regions A0, A1 and the

optimal strategy do not depend explicitly on the function ϕ(t, λ). Precisely, (4.9) reads as

−∂q

∂u
(t, λ, u) =

∫ ∞

0

zeηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz).

5. A BSDE approach

In this section we follow an alternative method based on backward stochastic differential equations

(BSDEs). From now on we assume that

F = F
m(1) ∨ F

m(2)

, F = FT ,

where F
m(i)

= {Fm(i)

t , t ∈ [0, T ]} denotes the natural filtration generated by the integer-valued

random measures m(i)(dt, dz), i = 1, 2 given in (2.3), that is for any t ∈ [0, T ]

Fm(i)

t = σ{T (i)
n , Z(i)

n , t ≤ T (i)
n }.

Let us introduce the Snell envelope associated to the stochastic control problem in (3.1), defined

for any u ∈ U as

W u
t = ess inf

ū∈U(t,u)
E

[
e−ηXū

T

∣∣∣Ft

]
, ∀t ∈ [0, T ], (5.1)

where U(t, u) denotes the restricted class of controls almost surely equal to u over [0, t], i.e.

U(t, u) :=
{
ū ∈ U : ūs = us P− a.s. for all s ≤ t ≤ T

}
.

Denote by X̄u
t = e−rtXu

t , with t ∈ [0, T ], the discounted wealth:

X̄u
t = R0 +

∫ t

0

e−rs (cs − qus ) ds−
∫ t

0

∫ +∞

0

e−rsΦ(z, us)m
(1)(ds, dz), (5.2)

and introduce the value process V = {Vt, t ∈ [0, T ]} associated to the problem in (3.1) as follows,

Vt = ess inf
ū∈Ut

E

[
e−ηerT (X̄ū

T−X̄ū
t )
∣∣∣Ft

]
, ∀t ∈ [0, T ]; (5.3)
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then, we can show that, for every u ∈ U
W u

t = e−ηX̄u
t e

rT

Vt,

and, in turn, choosing null reinsurance, i.e. ut = uN , for any t ∈ [0, T ], we get

Vt = eηX̄
N
t erTWN

t , (5.4)

where X̄N = {X̄N
t , t ∈ [0, T ]} and WN = {WN

t , t ∈ [0, T ]} denote the discounted wealth and

the Snell envelope associated to null reinsurance, given in equations (5.2) and (5.1), respectively.

Under Assumption 4.1, that is, premiums have a Markovian structure, we get for all t ∈ [0, T ]

Vt = ϕ(t, λt), (5.5)

where ϕ(t, λ) is given in (4.4). Our aim is to develop a BSDE characterization for the process WN

which also provides a complete description of the value process V in (5.3). The following sets of

stochastic processes will play a key role for our BSDE characterization and its solution.

Definition 5.1. We define the following three classes of stochastic processes:

• S2 denotes the space of càdlàg F-adapted processes Y such that:

E



(

sup
t∈[0,T ]

|Yt|
)2

 < +∞.

• L2 denotes the space of càdlàg F-adapted processes Y such that:

E

[∫ T

0

|Yt|2dt
]
< +∞.

• L̂(1) (L̂(2)) denotes the space of [0,+∞)-indexed F-predictable random fields Θ = {Θt(z), t ∈
[0, T ], z ∈ [0,+∞)} such that:

E

[∫ T

0

∫ +∞

0

Θ2
t (z)λt−F

(1)(dz) dt

]
< +∞,

(
E

[∫ T

0

∫ +∞

0

Θ2
t (z)ρF

(2)(dz) dt

]
< +∞, respectively

)
.

Firstly, we provide some preliminary results.

Proposition 5.2. Under Assumption 3.5 i), we have that

0 < M
(1)
t ≤ WN

t ≤ M
(2)
t , t ∈ [0, T ],

where M (i) = {M (i)
t , t ∈ [0, T ]}, i = 1, 2, are the following (F,P)-martingales

M
(1)
t = e−ηR0e

rT

E

[
e−η

∫ T

0
er(T−s)cs ds

∣∣∣Ft

]
, M

(2)
t = E

[
eηe

rTCT

∣∣∣Ft

]
, t ∈ [0, T ].

Moreover,

E



(

sup
t∈[0,T ]

WN
t

)2

 < ∞.
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Proof. The proof is similar to that of [7, Proposition 5.4]. �

We now introduce the two-dimensional step process Z = (C(1), C(2)) where

C
(1)
t = Ct =

N
(1)
t∑

n=1

Z(1)
n , C

(2)
t =

N
(2)
t∑

n=1

Z(2)
n .

Let m(dt, dz1, dz2) be the integer-valued measure associated to Z = (C(1), C(2)). Recalling that

C(1) and C(2) have not common jump times, the following equality holds

m(dt, dz1, dz2) = m(1)(dt, dz1)δ0(dz2) +m(2)(dt, dz2)δ0(dz1). (5.6)

Moreover, by [3, Theorem 4.1] the F-dual predictable projection of m(dt, dz1, dz2) is given by

ν(dt, dz1, dz2) =ν(1)(dt, dz1)δ0(dz2) + ν(2)(dt, dz2)δ0(dz1)

=λt−F
(1)(dz1)δ0(dz2) + ρF (2)(dz2)δ0(dz1). (5.7)

Let us denote by L̂ the space of F-predictable random field Θ = {Θt(z1, z2), t ∈ [0, T ], zi ∈
[0,+∞), i = 1, 2} such that:

E

[∫ T

0

∫ +∞

0

∫ +∞

0

Θ2
t (z1, z2)ν(dt, dz1, dz2)

]
< +∞.

Clearly, Θ = {Θt(z1, z2), t ∈ [0, T ], zi ∈ (0,+∞), i = 1, 2} ∈ L̂ if and only if

{Θt(z1, 0), t ∈ [0, T ], z1 ∈ [0,+∞)} ∈ L̂(1) and {Θt(0, z2), t ∈ [0, T ], z2 ∈ [0,+∞)} ∈ L̂(2).

We are now in the position to provide an F-martingale representation theorem.

Proposition 5.3. Any square-integrable (F,P)-martingale M = {Mt, t ∈ [0, T ]} has the following

representation

Mt = M0 +

∫ t

0

∫ +∞

0

Γ(1)
s (z)m̃(1)(ds, dz) +

∫ t

0

∫ +∞

0

Γ(2)
s (z)m̃(2)(ds, dz),

where Γ(i) ∈ L̂(i), i = 1, 2, m̃(1)(dt, dz) and m̃(2)(dt, dz) are the compensated integer-valued random

measures defined as

m̃(1)(dt, dz) = m(1)(dt, dz) − λt−F
(1)(dz) dt, m̃(2)(dt, dz) = m(2)(dt, dz) − ρF (2)(dz) dt.

Proof. Since F
m = F = F

m(1) ∨ F
m(2)

we can apply [3, Theorem 3.1]. Hence, any (F,P)-local

martingale M can be represented as

Mt = M0 +

∫ t

0

∫ +∞

0

∫ +∞

0

Γs(z1, z2)m̃(ds, dz1, dz2), t ∈ [0, T ],

with Γ = {Γt(z1, z2), t ∈ [0, T ], zi ∈ [0,+∞), i = 1, 2} an F-predictable random field such that:
∫ T

0

∫ +∞

0

∫ +∞

0

|Γt(z1, z2)|ν(dt, dz1, dz2) < +∞, P− a.s..



18 C. CECI AND A. CRETAROLA

If in addition M is square integrable, Γ ∈ L̂ because for any t ∈ [0, T ]

E
[
M2

t

]
= E

[∫ t

0

∫ +∞

0

∫ +∞

0

|Γt(z1, z2)|2ν(dt, dz1, dz2)
]
.

Finally, the statement follows taking the structure of m̃(dt, dz1, dz2) into account, see (5.6) and

(5.7). �

We give below a general verification result.

Proposition 5.4. Suppose there exists an F-adapted process D = {Dt, t ∈ [0, T ]} such that:

• {Dte
−ηX̄u

t e
rT

, t ∈ [0, T ]} is an (F,P)-sub-martingale for any u ∈ U and an (F,P)-

martingale for some u∗ ∈ U ;

• DT = 1.

Then, Dt = Vt P-a.s. for each t ∈ [0, T ] and u∗ is an optimal control.

Proof. In view of the terminal condition and the sub-martingale property, for every t ∈ [0, T ] we

have

E

[
e−ηX̄u

T erT
∣∣∣Ft

]
≥ Dte

−ηX̄u
t e

rT

, for each u ∈ U ,
so that

Dt ≤ E

[
e−ηerT (X̄u

T−X̄u
t )
∣∣∣Ft

]
,

which implies Dt ≤ Vt P-a.s. for each t ∈ [0, T ]. On the other hand, for u∗ ∈ U , we have that

Dt = E

[
e−ηerT (X̄u∗

T
−X̄u∗

t )
∣∣∣Ft

]
≥ Vt,

and the thesis follows. �

The first main result is as follows.

Theorem 5.5. Let Assumption 3.5 be in force. Let (Y,ΘY,(1),ΘY,(2)) ∈ L2×L̂(1)×L̂(2) be a solution

to the BSDE

Yt = ξ −
∫ T

t

∫ +∞

0

ΘY,(1)
s (z)m̃(1)(ds, dz)−

∫ T

t

∫ +∞

0

ΘY,(2)
s (z)m̃(2)(ds, dz)

−
∫ T

t

ess sup
u∈U

f̃(s, Ys,Θ
Y,(1)
s (·), us) ds,

(5.8)

with terminal condition ξ = e−ηXN
T , where

f̃(t, Yt,Θ
Y,(1)
t (·), ut) = −Yt−ηe

r(T−t)qut

+

∫ +∞

0

[Yt− +Θ
Y,(1)
t (z)]

[
1− e−ηer(T−t)(z−Φ(z,ut))

]
λt−F

(1)(dz). (5.9)
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Then, Yt = WN
t P-a.s. and the process u∗ ∈ U which satisfies

f̃(t, Yt,Θ
Y,(1)
t (·), u∗

t ) = ess sup
u∈U

f̃(t, Yt,Θ
Y,(1)
t (·), ut) ∀t ∈ [0, T ] (5.10)

provides an optimal control.

Proof. First, let us observe that there exists u∗ ∈ U which satisfies Equation (5.10): by hypothesis

qut (λ, u) and Φ(z, u) are continuous on u ∈ U and U is compact, hence measurability selection

results (see e.g. [4]) ensure that the maximizer is an (F,P)-predictable process and Proposition

3.6(b) holds.

Let (Y,ΘY,(1),ΘY,(2)) ∈ L2×L̂(1) ×L̂(2) be a solution to the BSDE (5.8) and u∗ ∈ U be the process

satisfying Equation (5.10). Define Dt := eηX̄
N
t erT Yt, t ∈ [0, T ], and observe that DT = eηX

N
T ξ = 1.

We will prove that

i) {Dte
−ηX̄u

t e
rT

, t ∈ [0, T ]} is an (F,P)-sub-martingale for any u ∈ U ;

ii) {Dte
−ηX̄u∗

t erT , t ∈ [0, T ]} is an (F,P)-martingale,

then the statement will follow by Proposition 5.4.

i) By Itô’s product rule, for any u ∈ U

d(Dt e
−ηX̄u

t e
rT

) = d(eη(X̄
N
t −X̄u

t )e
rT

Yt)

= eη(X̄
N

t−
−X̄u

t−
)erT dYt + Yt− d(eη(X̄

N
t −X̄u

t )e
rT

) + d

(
∑

s≤t

∆Ys ∆
(
eη(X̄

N
s −X̄u

s )e
rT )
)
.

Recalling (5.2), we notice that

X̄N
t − X̄u

t =

∫ t

0

e−rsqus ds−
∫ t

0

∫ +∞

0

e−rs(z − Φ(z, us))m
(1)(ds, dz), (5.11)

and applying Itô’s formula we obtain

d(eη(X̄
N
t −X̄u

t )e
rT

) = ηerT eη(X̄
N
t −X̄u

t )e
rT

e−rt qut dt

+ eη(X̄
N
t−−X̄u

t−)erT
∫ +∞

0

(
e−ηer(T−t)(z−Φ(z,ut)) − 1

)
m(1)(dt, dz).

Finally, in view of

dYt =

∫ +∞

0

Θ
Y,(1)
t (z)m̃(1)(dt, dz) +

∫ +∞

0

Θ
Y,(2)
t (z)m̃(2)(dt, dz) + ess sup

w∈U
f̃(t, Yt,Θ

Y,(1)
t (·), wt)dt,

after some calculations we get, for any u ∈ U

d(Dte
−ηX̄u

t e
rT

) = dMu
t + eη(X̄

N
t −X̄u

t )e
rT

(
ess sup

w∈U
f̃(t,W Y

t ,Θ
(1)
t (·), wt) − f̃(t,W Y

t ,Θ
(1)
t (·), ut)

)
dt,

(5.12)
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where for all t ∈ [0, T ]

Mu
t =

∫ t

0

∫ +∞

0

eη(X̄
N

s−
−X̄u

s−
)erT ΘY,(1)

s (z) e−ηer(T−s)(z−Φ(z,us)) m̃(1)(ds, dz)

+

∫ t

0

∫ +∞

0

Ys− eη(X̄
N

s−
−X̄u

s−
)erT
(
e−ηer(T−s)(z−Φ(z,us)) − 1

)
m̃(1)(ds, dz)

+

∫ t

0

∫ +∞

0

eη(X̄
N

s−
−X̄u

s−
)erTΘY,(2)

s (z) m̃(2)(ds, dz).

It remains to verify that, for any u ∈ U , the process {Mu
t , t ∈ [0, T ]}, is an (F,P)-martingale. To

this end, it is sufficient to prove that the following three integrability conditions hold,

E

[∫ T

0

∫ +∞

0

eη(X̄
N
t −X̄u

t )e
rT ∣∣ΘY,(1)

t (z)
∣∣e−ηer(T−t)(z−Φ(z,ut))λtF

(1)(dz)dt

]
< +∞,

E

[∫ T

0

∫ +∞

0

eη(X̄
N
t −X̄u

t )e
rT |Yt|

∣∣e−ηer(T−t)(z−Φ(z,ut)) − 1
∣∣λtF

(1)(dz)dt

]
< +∞,

E

[∫ T

0

∫ +∞

0

eη(X̄
N
t −X̄u

t )e
rT ∣∣ΘY,(2)

t (z)
∣∣ρF (2)(dz)dt

]
< +∞.

Using (5.11), Φ(z, ut) ≤ z, the well known inequality 2ab ≤ a2 + b2, ∀a, b ∈ R with the choice

a = eηe
rT

∫ T

0
e−rtq

uM
t dt and b = Θ

Y,(1)
t (z) the first expectation above is dominated by

E

[
eηe

rT
∫ T
0 e−rtq

uM
t dt

∫ T

0

∫ +∞

0

∣∣ΘY,(1)
t (z)

∣∣λtF
(1)(dz)dt

]

≤ 1

2

{
E

[
e2ηe

rT
∫ T

0
e−rtq

uM
t dt

∫ T

0

λtdt

]
+ E

[∫ T

0

∫ +∞

0

∣∣ΘY,(1)
t (z)

∣∣2λtF
(1)(dz)dt

]}
.

Now, applying again inequality 2ab ≤ a2+ b2, for all a, b ∈ R, with the choice a = eηe
rT

∫ T
0 e−rtq

uM
t dt

and b = λt we obtain

E

[∫ T

0

∫ +∞

0

eη(X̄
N
t −X̄u

t )e
rT ∣∣ΘY,(1)

t (z)
∣∣e−ηer(T−t)(z−Φ(z,ut))λtF

(1)(dz)dt

]

≤ 1

4
E

[
e4ηe

rT
∫ T
0 e−rtq

uM
t dt

]
T +

1

4
E

[∫ T

0

λ2
tdt

]

+
1

2
E

[∫ T

0

∫ +∞

0

∣∣ΘY,(1)
t (z)

∣∣2λtF
(1)(dz)dt

]
< +∞,

which is finite in view of Assumption 3.5 ii), Proposition 2.6 and recalling that ΘY,(1) ∈ L̂(1).

Similarly, the second expectation is lower than

E

[
eηe

rT
∫ T
0 e−rtq

uM
t dt

∫ T

0

|Yt| λtdt

]

≤ 1

2
E

[∫ T

0

|Yt|2dt
]
+

1

4
E

[
e4ηe

rT
∫ T

0
e−rtq

uM
t dt

]
T +

1

4
E

[∫ T

0

λ4
tdt

]
< +∞,
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where the first term is finite because Y ∈ L2, the second is finite by Assumption 3.5 ii) and the

third follows by Proposition 2.6. Finally, the third expectation is lower than

E

[∫ T

0

∫ +∞

0

eη(X̄
N
t −X̄u

t )e
rT ∣∣ΘY,(2)

t (z)
∣∣ρF (2)(dz)dt

]

≤ 1

2

{
E

[
e2ηe

rT
∫ T
0 e−rtq

uM
t dt

]
+ E

[∫ T

0

∫ +∞

0

∣∣ΘY,(2)
t (z)

∣∣2ρF (2)(dz)dt

]}
< +∞.

ii) Choosing u = u∗ in (5.12) we get

d(Dte
−ηX̄u∗

t erT ) = dMu∗

t ,

that is, {Dte
−ηX̄u∗

t erT , t ∈ [0, T ]} is an (F,P)-martingale. �

We discuss existence of solution to BSDE (5.8). Due to unboundedness of the claim arrival intensity,

the generator of the BSDE is not Lipschitz and then we rely on [27], where existence results for

BSDEs with stochastic Lipschitz generators are provided.

Theorem 5.6. Let Assumption 3.5 be in force. There exists a unique solution (Y,ΘY,(1),ΘY,(2)) ∈
L2 × L̂(1) × L̂(2) to the BSDE (5.8).

Proof. In order to apply [27, Theorem 3.5] we start by rewriting the BSDE in terms of the integer-

valued random measure m(dt, dz1, dz2) defined in (5.6),

Yt = ξ −
∫ T

t

∫ +∞

0

∫ +∞

0

ΘY
s (z1, z2)m̃(ds, dz1, dz2)−

∫ T

t

ess sup
u∈U

F̃ (s, Ys,Θ
Y
s (·, ·), us) ds (5.13)

where

F̃ (t, Yt,Θ
Y
t (·, ·), ut) = f̃(t, Yt,Θ

Y
t (·, 1), ut)

and f̃(t, Yt,Θ
Y
t (·, 1), ut) is given in (5.9).

BSDE (5.13) is a special case of that considered in [27]. Precisely, it is only driven by an integer-

valued random measure with F-predictable compensator absolutely continuous with respect to

the Lebesgue measure and the orthogonal martingale term is not present thanks to the (F,P)-

martingale representation property in Proposition 5.3.

We now verify that assumptions (F1)-(F5) in [27, Theorem 3.5] are satisfied.

(F1) The process Z̃ = {Z̃t = (C̃
(1)
t , C̃

(2)
t ), t ∈ [0, T ]} where

C̃
(i)
t =

∫ t

0

∫ +∞

0

zim̃
(i)(ds, dzi), i = 1, 2

is a two-dimensional pure jump (F,P)-martingale (see Proposition 2.6) such that

supt∈[0,T ] E [‖Z‖2] < +∞. Hence [27, Assumption 2.10] is satisfied.
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Indeed, for any t ∈ [0, T ]

E

[
(C̃

(1)
t )2

]
=E

[∫ t

0

∫ +∞

0

z2λs−F
(1)(dz)ds

]
= E

[
(Z(1))2

]
E

[∫ T

0

λsds

]

E

[
(C̃

(2)
t )2

]
=E

[∫ t

0

∫ +∞

0

z2ρF (2)(dz)ds

]
= E

[
(Z(2))2

]
ρT,

thus

sup
t∈[0,T ]

E

[
‖Z̃t‖2

]
= sup

t∈[0,T ]

(
E

[
(C̃

(1)
t )2

]
+ E

[
(C̃

(2)
t )2

])

≤ E
[
(Z(1))2

]
E

[∫ T

0

λsds

]
+ E

[
(Z(2))2

]
ρT,

which is finite thanks to Proposition 2.6.

The disintegration property is fulfilled because

ν(ω, dt, dz1, dz2) = Kω(dz1, dz2)dt,

where the transition kernel Kω on (Ω× [0, T ],P) (here P denotes the F-predictable sigma-algebra

on Ω× [0, T ]) is given by

Kω(dz1, dz2) = λt−(ω)F
(1)(dz1)δ0(dz2) + ρF (2)(dz2)δ0(dz1).

(F2) The terminal condition of the BSDE ξ = e−ηXN
T has finite moments for any order. Indeed,

since Φ(z, uN ) = z and quN
t ≡ 0 for every t ∈ [0, T ], we have

E [ξp] = E

[
e−pηXN

T

]

= E

[
e−pηR0e

rT

e−pη
∫ T

0
er(T−s)cs dsepη

∫ T

0

∫+∞

0
er(T−s)zm(1)(ds,dz)

]

≤ E

[
epηe

rT
∫ T
0

∫+∞

0 z m(1)(ds,dz)
]
= E

[
epηe

rTCT

]
< +∞, (5.14)

for every p > 0, in view of Proposition 3.6 (a). See also (F4) below for additional details.

(F3) The generator F (t, ω, y, θ(·, ·)) := ess supu∈U F̃ (t, ω, y, θ(·, ·)), u) defined on the space

M = {(t, ω, y, θ(·, ·) : (t, ω, y) ∈ [0, T ]× Ω× (0,+∞) and θ(·, ·) : [0,+∞)2 → R, measurable}
satisfies a stochastic Lipschitz condition, i.e., there exist two positive F-predictable processes γ, γ̄

such that
∣∣F (t, ω, y, θ(·, ·))− F (t, ω, y′, θ′(·, ·))

∣∣2 ≤ γt(ω)|y − y′|2 + γ̄t(ω) (|||θ(·, ·)− θ′(·, ·)|||t(ω))2 , (5.15)

where:

(|||θ(·, ·)|||t(ω))2 :=
∫ +∞

0

∫ +∞

0

θ2(z1, z2)K
ω
t (dz1, dz2)

=

∫ +∞

0

θ2(z1, 0)λt−(ω)F
(1)(dz1) +

∫ +∞

0

θ2(0, z2)ρF
(2)(dz2).



BSDE-BASED STOCHASTIC CONTROL FOR OPTIMAL REINSURANCE IN A DYNAMIC CONTAGION MODEL23

Exploiting the definition of F , we first need to deal with the essential supremum:

∣∣F (t, ω, y, θ(·, ·))− F (t, ω, y′, θ′(·, ·))
∣∣2 ≤

(
ess sup

u∈U

∣∣F̃ (t, ω, y, θ(·, ·), u)− F̃ (t, ω, y′, θ′(·, ·), u)
∣∣
)2

,

and we preliminarily work on the absolute value difference involving F̃ :

∣∣F̃ (t, ω, y, θ(·, ·), u)− F̃ (t, ω, y′, θ′(·, ·), u)
∣∣ =

∣∣∣∣(y − y′)ηer(T−t)qut (ω)

+

∫ +∞

0

(y − y′ + θ(z1, 0)− θ′(z1, 0))
(
e−ηer(T−t)(z−Φ(z,u)) − 1

)
λt−F

(1)(dz1)

∣∣∣∣

≤
∣∣y − y′

∣∣ηer(T−t)quM
t (ω) + |y − y′|λt− +

∫ +∞

0

|θ(z1, 0)− θ′(z1, 0)|λt−F
(1)(dz1)

since |e−ηeR(T−t)(z−Φ(z,u)) − 1| ≤ 1 and qut ≤ quM
t for any u ∈ U . Now, since the inequality above

does not depend on u we also have that the ess supu∈U satisfies it and we can take its square (we

use here the trivial relation (a + b+ c)2 ≤ 3(a2 + b2 + c2)), finding:
(
ess sup

u∈U

∣∣F̃ (t, ω, y, θ(·, ·), u)− F̃ (t, ω, y′, θ′(·, ·), u)
∣∣
)2

≤ 3
∣∣y − y′

∣∣2η2e2r(T−t)(quM
t (ω))2

+ 3 |y − y′|2 λ2
t− + 3

(∫ +∞

0

|θ(z1, 0)− θ′(z1, 0)|λt−F
(1)(dz1)

)2

.

We now use the following inequality, for an integrable function ϑ:
(∫ +∞

0

|ϑ(ω, z1)|λt−(ω)F
(1)(dz1)

)2

≤
∫ +∞

0

|ϑ(ω, z1)|2λ2
t−(ω)F

(1)(dz1) ·
∫ +∞

0

F (1)(dz1)

︸ ︷︷ ︸
=1

.

So, we find:
(
ess sup

u∈U

∣∣F̃ (t, ω, y, θ(·, ·), u)− F̃ (t, ω, y′, θ′(·, ·), u)
∣∣
)2

≤ 3
∣∣y − y′

∣∣2η2e2r(T−t)(quM
t (ω))2 + 3 |y − y′|2 λ2

t−(ω)

+ 3

∫ +∞

0

|θ(z1, 0)− θ′(z1, 0)|2 λ2
t−(ω)F

(1)(dz1)

= 3
∣∣y − y′

∣∣2 (η2e2r(T−t) (quM
t (ω))2 + λ2

t−(ω)
)
+ 3λt−(ω) (|||θ(·, ·)− θ′(·, ·)|||t(ω))2 .

So, the target, being Equation (5.15), is reached and we have the following values for the stochastic

Lipschitz coefficients γt and γ̄t:

γt = 3η2e2r(T−t)(quM
t )2 + 3λ2

t−,

γ̄t = 3λt−,

which, as expected, are independent of the control u.
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(F4) Since by definition α2
· = max{√γ·, γ̄·}, here we find:

α2
s = max

{√
3η2e2r(T−s)(quM

s )2 + 3λ2
s−
, 3λs−

}

and also At =
∫ t

0
α2
s ds, so that we can easily verify that the inequality ∆At ≤ Φ,P−a.s. holds

true for any Φ > 0 since A has no jumps. Notice that (F2) requires that the terminal condition

ξ = e−ηXT
N belongs to the set of FT−measurable random variables such that E

[
eβ̂AT ξ2

]
< ∞, for

some β̂ > 0. This is true for any β̂ > 0, since α2
s ≤

√
3ηer(T−s)quM

s + 3λs− and so

E

[
eβ̂AT ξ2

]
≤ 1

2
E

[
e2β̂AT

]
+

1

2
E
[
ξ4
]

=
1

2
E

[
e2β̂

√
3η

∫ T
0

er(T−s)q
uM
s dse6β̂

∫ T
0

λsds
]
+

1

2
E
[
ξ4
]

≤ 1

4
E

[
e4β̂

√
3η

∫ T
0 er(T−s)q

uM
s ds

]
+

1

4
E

[
e12β̂

∫ T
0 λsds

]
+

1

2
E
[
ξ4
]
.

Thus by Assumption 3.5 (ii), equation (5.14) and Proposition 3.6 (a), we get that for any β̂ > 0,

E

[
eβ̂AT ξ2

]
< +∞.

(F5) Finally, by using the same β̂ > 0 and A introduced to prove (F4), we find:

E

[∫ T

0

eβ̂At
|F (t, 0, 0, 0)|2

α2
t

dt

]
< ∞,

since here F (t, 0, 0) = − ess supu∈U F̃ (t, 0, 0, ut) = 0.

It now remains to prove that the quantity

MΦ(β̂) =
9

β̂
+

Φ2(2 + 9β̂)√
β̂2Φ2 + 4− 2

exp


 β̂Φ + 2−

√
β̂2Φ2 + 4

2




with Φ > 0 introduced in (F4) and β̂ > 0, satisfies MΦ(β̂) < 1
2
. Thanks to [27, Lemma 3.4], for

β̂ sufficiently large, we know that since lim
β̂→∞MΦ(β̂) = 9eΦ then it suffices to take Φ < 1

18e
.

According to [27, Theorem 3.5] there exists a unique solution (Y,ΘY ) to BSDE (5.13) such that

for any β̂ > 0

E

[∫ T

0

eβ̂Atα2
t |Yt|2 dt

]
< +∞, E

[∫ T

0

∫ t

0

∫ +∞

0

eβ̂At |ΘY
s (z1, z2)|2ν(ds, dz1, dz2)

]
< +∞.

We notice that α2
t ≥ 3λt− ≥ 3min{λ0, β} and this implies E

[∫ T

0
eβ̂At |Yt|2 dt

]
< +∞ and therefore

Y ∈ L2. By recalling the structure of ν(ds, dz1, dz2) we finally obtain that ΘY (·, 0) ∈ L̂(1) and

ΘY (0, ·) ∈ L̂(2) and this concludes the proof.

�

Gathering the results given in Theorem 5.5 and Theorem 5.6 yields the following.
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Corollary 5.7. Let Assumption 3.5 be in force. Then,

i) (WN ,Θ(1),Θ(2)) ∈ S2 × L̂(1) × L̂(2) is the unique solution to BSDE

WN
t = ξ −

∫ T

t

∫ +∞

0

Θ(1)
s (z)m̃(1)(ds, dz)−

∫ T

t

∫ +∞

0

Θ(2)
s (z)m̃(2)(ds, dz)

−
∫ T

t

ess sup
u∈U

f̃(s,WN
s ,Θ(1)

s (·), us) ds,

with terminal condition ξ = e−ηXN
T , where

f̃(t,WN
t ,Θ

(1)
t (·), ut) = −WN

t−ηe
r(T−t)qut

+

∫ +∞

0

[WN
t− +Θ

(1)
t (z)]

[
1− e−ηer(T−t)(z−Φ(z,ut))

]
λt−F

(1)(dz). (5.16)

This completely characterizes the value process {Vt = eηX̄
N
t erTWN

t , t ∈ [0, T ]} associated to

the optimal reinsurance problem (3.1);

ii) any process u∗ ∈ U which maximizes f̃(t,WN
t ,Θ

(1)
t (·), ut) furnishes an optimal reinsurance

strategy.

Remark 5.8. The process WN completely determines the predictable random fields Θ(1) and Θ(2)

outside a null set with respect to the measure F (1)(dz)dt and F (2)(dz)dt. Indeed, let Θ̃
(i)
t (z) an

F-predictable random field such that, for any i = 1, 2

∆WN

T
(i)
n

= Θ
(i)

T
(i)
n

(Z(i)
n ) = Θ̃

(i)

T
(i)
n

(Z(i)
n ).

Thus, for any t ∈ [0, T ], Borel set C of [0,+∞) and i = 1, 2

0 = E

[∫ t

0

∫

C

∣∣∣Θ(i)
t (z)− Θ̃

(i)
t (z)

∣∣∣m(i)(ds, dz)

]
= E

[∫ t

0

∫

C

∣∣∣Θ(i)
t (z)− Θ̃

(i)
t (z)

∣∣∣ ν(i)(ds, dz)

]

and, recalling equation (2.5), it implies that Θ
(i)
t (z)(ω) = Θ̃

(i)
t (z)(ω), F (i)(dz)dtP (dω)-a.e., for

i = 1, 2.

In the sequel, we will focus on a Markovian framework, that is, Assumption 4.1 holds and the

next result provides a more explicit representation for Θ(1) and Θ(2) in terms of the value function

ϕ(t, λ) given in (4.4).

Proposition 5.9. Under Assumption 4.1 the following equalities hold

Θ
(1)
t (z) = e−ηX̄N

t−erT
[
eηze

r(T−t)

ϕ(t, λt− + ℓ(z))− ϕ(t, λt−)
]
, F (1)(dz)dtdP − a.e. (5.17)

Θ
(2)
t (z) = e−ηX̄N

t−erT [ϕ(t, λt− + z)− ϕ(t, λt−)] F (2)(dz)dtdP − a.e. (5.18)



26 C. CECI AND A. CRETAROLA

Proof. Under Assumption 4.1 for any t ∈ [0, T ], Vt = ϕ(t, λt). From (5.4) and recalling that

X̄N
t = R0+

∫ t

0
e−rscs ds−

∫ t

0

∫ +∞
0

e−rsz m(1)(ds, dz) we get that X̄N

T
(1)
n

= X̄N

T
(1)−
n

−Z
(1)
n e−rT

(1)
n . Thus,

Θ
(1)

T
(1)
n

(Z(1)
n ) =WN

T
(1)
n

−WN

T
(1)−
n

= exp
(
−ηX̄N

T
(1)
n

erT
)
V
T

(1)
n

− exp
(
−ηX̄N

T
(1)−
n

erT
)
V
T

(1)−

n

=exp
(
−ηX̄N

T
(1)−
n

erT
) (

V
T

(1)
n
eηZ

(1)
n er(T−T

(1)
n ) − V

T
(1)−
n

)

=exp
(
−ηX̄N

T
(1)−

n

erT
) (

ϕ(T (1)
n , λ

T
(1)
n
)eηZ

(1)
n er(T−T

(1)
n ) − ϕ(T (1)−

n , λ
T

(1)−
n

)
)
.

Now taking (2.6) into account, we have that λ
T

(1)
n

= λ
T

(1)−
n

+ ℓ(Z
(1)
n ) and from Remark 5.8 we

obtain (5.17). Analogously, since ∆X̄N

T
(2)
n

= 0 and λ
T

(2)
n

= λ
T

(2)−

n

+ Z
(2)
n , we can write

Θ
(2)

T
(2)
n

(Z(2)
n ) =WN

T
(2)
n

−WN

T
(2)−
n

= e
−ηX̄N

T
(2)
n

erT (
V
T

(2)
n

− V
T

(2)−

n

)

=e
−ηX̄N

T
(2)
n

erT (
ϕ(T (2)

n , λ
T

(2)−
n

+ Z(2)
n )− ϕ(T (2)−

n , λ
T

(2)−
n

)
)
,

which implies (5.18). �

6. The optimal reinsurance strategy

The purpose of this section is to provide more insight into the structure of the optimal reinsurance

strategy and investigate some special cases. We focus on a Markovian setting, and so we make

Assumption 4.1 in force.

The following general result provides a characterization of the optimal reinsurance strategy in the

one-dimensional case, where Φ(z, u) is increasing in u, with u ∈ [uM , uN ] ⊂ R. In order to obtain

some definite results we need to introduce a concavity hypothesis for the function f̃ given in (5.16)

with respect to the variable u ∈ [uM , uN ].

Proposition 6.1. Under Assumption 3.5, suppose that Φ(z, u) is differentiable in u ∈ [uM , uN ]

for almost every z ∈ (0,+∞) and f̃ given in Equation (5.16) is strictly concave in u ∈ [uM , uN ].

Then, the optimal reinsurance strategy u∗
t = {u∗(t, λt−), t ∈ [0, T ]} is given by

u∗(t, λt−) =





uM (t, λt−) ∈ A0

uN (t, λt−) ∈ A1

ū(t, λt−) otherwise,

where

A0 = {(t, λ) ∈ [0, T ]× (0,+∞) : h(t, λ, uM) < 0}
A1 = {(t, λ) ∈ [0, T ]× (0,+∞) : h(t, λ, uN) > 0} ,

h(t, λ, u) = −ϕ(t, λ)
∂q

∂u
(t, λ, u)−

∫ ∞

0

ϕ(t, λ+ ℓ(z))eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz) (6.1)
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and ū(t, λ) ∈ (uM , uN) solves the following equation

−ϕ(t, λ)
∂q

∂u
(t, λ, u) =

∫ ∞

0

ϕ(t, λ+ ℓ(z))eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz). (6.2)

Proof. To stress the dependence of f̃ , given in (5.16), on λ and to explicitly feature

ϕ(t, λt−) into its expression, we introduce the function f̄(t, λ, u) by setting f̄(t, ω, λt−(ω), u) :=

f̃(t, ω,WN
t (ω),Θ

(1)
t (·)(ω), u), which is continuous and strictly concave in u ∈ [uM , uN ] by hypoth-

esis. Indeed, from (5.4), (5.5) and (5.17), f̄(t, λt− , u) can be written as

f̄(t, λt−, u) =− e−ηX̄N
t−erT

(
ϕ(t, λt−)ηe

r(T−t)q(t, λt− , ut)

−
∫ +∞

0

ϕ(t, λt− + ℓ(z))eηe
r(T−t)z[

1− e−ηer(T−t)(z−Φ(z,ut))
]
λt−F

(1)(dz)
)
.

Thus, the first order condition

∂f̄

∂u
(t, λ, u) = ηer(T−t)e−ηX̄N

t−erTh(t, λ, u) = 0,

reads as h(t, λ, u) = 0 and we obtain (6.2). Finally, recalling that ∂f̄

∂u
(t, λ, u) is a decreasing function

on u ∈ [uM , uN ] we have three possible cases:

(i) for (t, λ) ∈ A0,
∂f̄

∂u
(t, λ, u) < 0, so f̄(t, λ, u) is decreasing in u ∈ [uM , uN ], hence u∗(t, λ) = uM ;

(ii) for (t, λ) ∈ A1,
∂f̄

∂u
(t, λ, u) > 0, so f̄(t, λ, u) is increasing in u ∈ [uM , uN ], hence u∗(t, λ) = uN ;

(iii) otherwise there exists ū(t, λ) ∈ (uM , uN) such that
∂f̄

∂u
(t, λ, u)

∣∣∣
u=ū

= 0 and u∗(t, λ) = ū(t, λ).

�

Remark 6.2. If q(t, λ, u) and Φ(z, u) are linear or convex on u ∈ [uM , uN ] then f̃ is strictly

concave in u ∈ [uM , uN ] and Proposition 6.1 applies.

Let us observe that using the BSDEs approach we obtain a quasi-explicit expression for the optimal

reinsurance strategy aligning with Proposition 4.7, but without any regularity assumption on the

value function ϕ(t, λ), which is required in the HJB-equation approach.

In the case of Cox process with shot noise intensity, ℓ(z) = 0 for any z > 0, the function h(t, λ, u)

reads as

h(t, λ, u) = −ϕ(t, λ)γ(t, λ, u)

with

γ(t, λ, u) =
∂q

∂u
(t, λ, u) +

∫ +∞

0

eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz). (6.3)

Hence, since ϕ(t, λ) > 0 (see Remark 4.5) the two regions A0, A1 and the optimal control do not

depend on the function ϕ(t, λ) anymore. Precisely, we have the following result.
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Proposition 6.3 (Cox process with shot noise intensity). Under ℓ(z) = 0 for any z > 0, As-

sumption 3.5, suppose that Φ(z, u) is differentiable in u ∈ [uM , uN ] for almost every z ∈ (0,+∞)

and f̃ given in (5.9) is strictly concave in u ∈ [uM , uN ]. Then, the optimal reinsurance strategy

u
∗,cox
t = {u∗,cox(t, λt−), t ∈ [0, T ]} is given by

u∗,cox(t, λt−) =





uM (t, λt−) ∈ A0

uN (t, λt−) ∈ A1,

ūcox(t, λt−) otherwise,

where

A0 = {(t, λ) ∈ [0, T ]× (0,+∞) : γ(t, λ, uM) > 0}
A1 = {(t, λ) ∈ [0, T ]× (0,+∞) : γ(t, λ, uN) < 0} ,

with γ(t, λ, u) given in (6.3) and ūcox(t, λ) ∈ (uM , uN) solves the following equation

−∂q

∂u
(t, λ, u) =

∫ ∞

0

eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)λF (1)(dz).

Remark 6.4. When q(t, λ, u) = λd(t, u), with d(t, u) deterministic function in (t, u) ∈ [0, T ] ×
[uN , uM ], as for the premium considered in Example 3.8, we get that γ(t, λ, u) = λγ̄(t, u) with

γ̄(t, u) =
∂d

∂u
(t, u) +

∫ +∞

0

eηe
r(T−t)Φ(z,u)∂Φ

∂u
(z, u)F (1)(dz)

and the optimal strategy turns out to be a deterministic function on time. Precisely,

u∗,cox(t) =





uM t ∈ A0

uN t ∈ A1,

ūcox(t) otherwise,

where

A0 = {t ∈ [0, T ] : γ̄(t, uM) > 0}
A1 = {t,∈ [0, T ] : γ̄(t, uN) < 0} .

It is noteworthy that the optimal strategy remains independent of the claim arrival intensity or its

dynamics, thus aligning with the optimal strategy under a constant claim arrival intensity. This

implies that, within the considered premium principles (see Remark 3.8), mitigating the risk arising

from externally-excited jumps can be achieved solely by adjusting the premium rate. However,

addressing the self-exciting effect requires adjustments in both the premium rate and reinsurance

strategy, as outlined in Proposition 6.1. In essence, the self-exciting effect poses a greater challenge,

necessitating a more comprehensive array of risk management tools. A similar finding was reported

by [8] in a similar contagion model under EVP and the mean–variance criterion.



BSDE-BASED STOCHASTIC CONTROL FOR OPTIMAL REINSURANCE IN A DYNAMIC CONTAGION MODEL29

6.1. Optimal reinsurance under EVP. We discuss proportional reinsurance and limited

Excess-of-Loss with fixed reinsurance coverage, see Example 3.8, when the reinsurance premium

is computed according to the Expected Value Priniciple (EVP).

6.1.1. Proportional reinsurance. Let Φ(z, u) = zu, u ∈ [0, 1]. According to (3.2), the reinsurance

premium reads as:

qut = (1 + θR)E[Z
(1)]λt−(1− ut), ∀u ∈ U .

Notice that Assumption 3.5 ii) is automatically satisfied, since from Proposition 3.6 (a), for every

a > 0, E
[
ea

∫ T

0
λt dt
]
< +∞.

In this special case we have the following result.

Proposition 6.5. Under Assumption 3.5 i), there exist two stochastic thresholds θF (t, λt−) <

θN(t, λt−) such that the optimal retention level is given by:

u∗
t = u∗(t, λt−) =





0 if θR < θF (t, λt−)

1 if θR > θN (t, λt−)

ū(t, λt−) otherwise,

where

θF (t, λ) =
1

E[Z(1)]

∫ ∞

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
zF (1)(dz)− 1,

θN(t, λ) =
1

E[Z(1)]

∫ ∞

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
eηe

r(T−t)zzF (1)(dz)− 1

and where ū(t, λ) ∈ (0, 1) solves the following equation, with respect to u:

(1 + θR)E[Z
(1)] =

∫ +∞

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
zeηe

r(T−t)zuF (1)(dz).

Proof. It follows immediately from Proposition 6.1. �

Let us briefly comment the previous result. We can distinguish three cases, depending on the

stochastic intensity through the value function:

• if the reinsurer’s safety loading θR is smaller than the θF (t, λt−), then full reinsurance is

optimal;

• if θR is larger than θN(t, λt−), then null reinsurance is optimal and the contract is not

subscribed;

• lastly, if θF (t, λt−) ≤ θR ≤ θN(t, λt−), then the optimal retention level takes values in (0, 1),

that is, the ceding company transfers to the reinsurance a non null percentage of risk (not

the full risk).

If the value function ϕ(t, λ) is a strictly increasing function of λ ∈ (0,+∞) then θF (t, λ) > 0 for

any (t, λ) ∈ [0, T ]× (0,+∞). As a consequence, full reinsurance may be allowed. In Section 7 we

will discuss the monotonicity property of the value function.
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Remark 6.6 (Cox process with shot noise intensity). In case ℓ(z) = 0 we have that θF = 0

(i.e. full reinsurance is never optimal) and θN (t) = 1
E[Z(1)]

∫∞
0

eηe
r(T−t)zzF (1)(dz) − 1 > 0 for any

t ∈ [0, T ). Thus the optimal reinsurance strategy is a deterministic function on time given by

u∗,cox(t) =

{
1 if θR > θNt (t)

ūcox(t) if θR ≤ θNt (t),

where ūcox(t) ∈ (0, 1) is the solution to (1 + θR)E[Z
(1)] =

∫ +∞
0

zeηe
r(T−t)zuF (1)(dz). As already

observed in Remark 6.4 the same result is obtained when the claim arrival intensity is constant.

6.1.2. Limited Excess-of-Loss with fixed reinsurance coverage. The reinsurer’s loss function is (see

Example 3.1(3)):

z − Φ(z, u) = z − Φ(z, (u1, u2)) = (z − u1)
+ − (z − u2)

+ =





0 if z ≤ u1

z − u1 if z ∈ (u1, u2)

u2 − u1 if z ≥ u2,

with u1 < u2, so that the retention function is Φ(z, u) = z − (z − u1)
+ + (z − u2)

+, for every

(z, u) ∈ [0,+∞)× U .

To obtain explicit results we will reduce our analysis to the case where the control is u = u1, while

u2 = u1 + βM is unequivocally determined, with βM > 0 being the fixed maximum reinsurance

coverage. According to (3.2), the EVP becomes

q(λt−, ut) = (1 + θR)λt−

∫ ut+βM

ut

SZ(z)dz, u ∈ U , (6.4)

where SZ is the survival function SZ(z) = 1 − F (1)(z). Observe that the Assumption 3.5 ii) is

automatically satisfied since by Proposition 3.6 (a), for every a > 0, E
[
ea

∫ T
0 λt dt

]
< +∞.

Proposition 6.7. Under Assumption 3.5 i), there exists a stochastic threshold θL(t, λt−) such that

u∗
t = u∗(t, λt−) =

{
0 if θR < θL(t, λt−)

ū(t, λt−) if θR ≥ θL(t, λt−),

where

θL(t, λ) =
1

F (1)(βM)

∫ βM

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
F (1)(dz)− 1, (6.5)

and ū(t, λ) ∈ (0,+∞) solves the following equation with respect to u:

(1 + θR)
(
F (1)(u+ βM)− F (1)(u)

)
= eηe

r(T−t)u

∫ u+βM

u

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
F (1)(dz). (6.6)

Proof. It is immediate to verify that the assumptions of Proposition 6.1 are satisfied, because the

premium in (6.4) is convex in u an Φ(z, u) is differentiable in u ∈ (0,+∞) for any z 6= u, u+ βM .
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Moreover, ∂Φ(z,u)
∂u

= 1 for z ∈ (u, u + βM), while it is null elsewhere. Notice that the function

h(t, λ, u) given in (6.1) in this special case reads as

h(t, λ, u) = (1 + θR)λϕ(t, λ)
(
F (1)(u+ βM)− F (1)(u)

)
−
∫ u+βM

u

ϕ(t, λ+ ℓ(z))λe−ηer(T−t)uF (1)(dz).

Thus, h(t, λ, uM) = h(t, λ, 0) = (1 + θR)λϕ(t, λ)F
(1)(βM) −

∫ βM

0
ϕ(t, λ + ℓ(z))λF (1)(dz) and

h(t, λ, uN) = h(t, λ,+∞) = 0. As a consequence, null reinsurance is never optimal because A1 = ∅
and when θR < θL(t, λt−), with θL(t, λt−) given in (6.5), u∗

t = uM = 0, i.e. the maximal coverage

βM is optimal. On the other hand, if θR ≥ θL(t, λt−), u∗(t, λ) coincides with ū(t, λ) satisfying

equation (6.2), which corresponds to the solution of equation (6.6).

�

Let us briefly comment the previous result. Differently from the proportional reinsurance, null

reinsurance is never optimal and we can distinguish two cases, depending on the maximum coverage

βM and the ratio
ϕ(t, λt− + ℓ(z))

ϕ(t, λt−)
:

• if the reinsurer’s safety loading θR is smaller than θL(t, λt−) then the maximum reinsurance

coverage βM is optimal;

• if θR is larger than θL(t, λt−) then it is optimal purchasing reinsurance but not with maxi-

mum coverage.

If the value function ϕ(t, λ) is a strictly increasing function of λ ∈ (0,+∞) then θL(t, λ) > 0 for

any (t, λ) ∈ [0, T ]× (0,+∞). As a consequence, maximum reinsurance may be allowed.

Remark 6.8 (Cox process with shot noise intensity). In the case ℓ(z) = 0 we have that θL = 0

(i.e. maximal reinsurance is never optimal) and equation (6.6) reduces to

(1 + θR) = eηe
r(T−t)u.

Thus, for any βM > 0, the optimal strategy is an increasing function on time given by

u∗,cox(t) =
log(1 + θR)

η
e−r(T−t),

and coincides with that in the case of constant claim arrival intensity.

6.1.3. Excess-of-Loss Reinsurance. The excess of loss contract, that is, z−Φ(z, u) = (z−u)+ (see

Example 4.2(2)) can be easily obtained from the previous case by letting βM → ∞. The optimal

reinsurance strategy, under Assumption 3.5 i), becomes then:

u∗
t = u∗(t, λt−) =

{
0 if θR < θL(t, λt−)

ū(t, λt−) if θR ≥ θL(t, λt−),

where

θL(t, λ) =

∫ +∞

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
F (1)(dz)− 1
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and ū(t, λ) ∈ (0,+∞) solves the following equation with respect to u:

(1 + θR)SZ(u) =

∫ +∞

u

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
eηe

r(T−t)u

F (1)(dz).

As in the Limited Excess-of-Loss with fixed reinsurance coverage case, null reinsurance is never

optimal and two cases are possible, depending on
ϕ(t,λ

t−
+ℓ(z))

ϕ(t,λ
t−

)
.

• when θR < θL(t, λt−), the full reinsurance is optimal;

• otherwise, it becomes optimal to purchase an intermediate protection level.

In the case of Cox process with shot noise intensity, the optimal reinsurance strategy is the same

as the Limited Excess-of-Loss reinsurance contract given in Remark 6.8.

7. Comparison results and monotonicity of the value function

In this section, we assume that reinsurance premiums are computed under the EVP and compare

the optimal strategy in the contagion model with that in the case of Cox process with shot noise

intensity corresponding to ℓ(z) = 0 in equation (2.1). First, we focus on proportional reinsurance

by giving the following result.

Proposition 7.1 (Proportional Reinsurance). Suppose for any t ∈ [0, T ], ϕ(t, λ) is increasing in

λ ∈ (0,+∞). Then, under the EVP and proportional reinsurance, for any t ∈ [0, T ]

u∗
t = u∗(t, λt−) ≤ u∗,cox(t).

That is, in the contagion model the insurer transfers more risk to the reinsurer than in the case

without the self-exciting component.

Proof. First notice that under proportional reinsurance Φ(u, z) = uz and EVP from Proposition

6.5 and Remark 6.6, we get that ū(t, λ) and ūcox(t) solve

(1 + θR)E
[
Z(1)

]
=

∫ +∞

0

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
zeηe

r(T−t)zu

F (1)(dz) := g(t, λ, u),

(1 + θR)E
[
Z(1)

]
=

∫ +∞

0

zeηe
r(T−t)zuF (1)(dz) := gcox(t, u),

respectively. We fix t ∈ [0, T ] and λ > 0 and we consider the functions g(t, λ, u) and gcox(t, u)

defined for any u ∈ R. Since ϕ(t, λ) is increasing in λ > 0, we have g(t, λ, u) ≥ gcox(t, u) for any u ∈
R. Thus, we get that ū(t, λ) ≤ ūcox(t). Finally, observing that u∗(t, λ) = max{0,min{ū(t, λ), 1}}
and u∗,cox(t) = max{0,min{ūcox(t), 1}} we find that for any (t, λ) ∈ [0, T ]× (0,+∞)

u∗(t, λ) ≤ u∗,cox(t),

which implies that u∗
t = u∗(t, λt−) ≤ u∗,cox(t), for t ∈ [0, T ]. �

We now prove a similar result for limited Excess-of-Loss with fixed maximum reinsurance coverage

discussed in Subsection 6.1.2.



BSDE-BASED STOCHASTIC CONTROL FOR OPTIMAL REINSURANCE IN A DYNAMIC CONTAGION MODEL33

Proposition 7.2 (Limited excess of loss reinsurance). Suppose for any t ∈ [0, T ], ϕ(t, λ) increasing

in λ ∈ (0,+∞). Then, under the EVP and limited Excess-of-Loss reinsurance, for any t ∈ [0, T ]

u∗
t = u∗(t, λt−) ≤ u∗,cox(t).

That is, in the contagion model the insurer transfers more risk to the reinsurer than in the case

without the self-exciting component.

Proof. Firstly, recall that under limited Excess-of-Loss with fixed maximum reinsurance coverage,

we have Φ(u, z) = z− (z−u)++(z−u−βM )+, with βM > 0, for every (z, u) ∈ [0,+∞)× [0,+∞].

Hence, from Proposition 6.7 and Remark 6.8 we get that ū(t, λ) and ūcox(t) solve

(1 + θR) =
eηe

r(T−t)u

F (1)(u+ βM)− F (1)(u)

∫ u+βM

u

ϕ(t, λ+ ℓ(z))

ϕ(t, λ)
F (1)(dz) := g(t, λ, u)

and

(1 + θR) =
eηe

r(T−t)u

F (1)(u+ βM)− F (1)(u)

∫ u+βM

u

F (1)(dz) = eηe
r(T−t)u := gcox(t, u),

respectively. Since ϕ(t, λ) is increasing in λ > 0, we have g(t, λ, u) ≥ gcox(t, u), for each u ∈ [0,+∞].

This implies that ū(t, λ) ≤ ūcox(t). Finally, recalling Proposition 6.7 and Remark 6.8, we get

u∗
t ≤ ū(t, λt−) ≤ ūcox(t) = u∗,cox(t), for any t ∈ [0, T ]. �

In the following, we study the monotonicity property of the value function ϕ(t, λ) with respect

to λ ∈ (0,+∞), which is required for the validity of our comparison results. Now, we make the

assumption.

Assumption 7.3. The insurance and reinsurance premiums are respectively of the form: ct =

c(t)λt− and qut = λt−d(t, ut), for each t ∈ [0, T ], where c(t) > 0 and d(t, u) are deterministic

functions.

Remark 7.4. Note that, under the classical premiums described in Example 3.8, Assumption 7.3

is satisfied. Precisely, under proportional reinsurance, for the EVP, the VPP and the MVP, we

have

c = (1 + θI)E
[
Z(1)

]
, d(u) = (1 + θR)E

[
Z(1)

]
(1− u),

c = E
[
Z(1)

]
+ ηIE

[
(Z(1))2

]
, d(u) = E

[
Z(1)

]
(1− u) + ηRE

[
(Z(1))2

]
(1− u)2,

c(t) = E
[
(1 + θI(t, Z

(1)))Z(1)
]
+ E

[
ηI(t, Z

(1))(Z(1))2
]
,

d(t, u) = E
[
(1 + θR(t, Z

(1)))Z(1)
]
(1− u) + E

[
ηR(t, Z

(1))(Z(1))2
]
(1− u)2,

respectively.

We need first a preliminary result.
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Lemma 7.5. Under Assumption 7.3 we have that

ϕ(t, λ)

= inf
u∈Ut

E
Q

t,λ

[
e
∫ T
t
{
∫+∞

0 (e−A(s,u.)z−1)ρF (2)(dz)+λs

∫+∞

0 B(s,z,u.)F (1)(dz)−a(s,us)[β+(λ−β)e−α(s−t)]}ds
]
,

(7.1)

where Q is the probability measure equivalent to P defined in (2.4) and E
Q

t,x,λ[·] stands for the

expectation under Q when the claim intensity process Λ starts from λ at time t. Moreover, for any

u ∈ U
a(t, ut) := 1 + ηer(T−t)(c(t)− d(t, ut), t ∈ [0, T ], (7.2)

A(t, u.) :=

∫ T

t

a(s, us)e
−α(s−t)ds, t ∈ [0, T ],

B(t, z, u.) := eηe
r(T−t)Φ(z,ut)−A(t,u.)ℓ(z) t ∈ [0, T ], z > 0. (7.3)

The proof can be found in Appendix A. Note that, A(t, u.), and then B(t, z, u.), depend on the

path of u over [t, T ].

Next result furnishes a sufficient condition for the monotonicity property of the function ϕ(t, λ).

Proposition 7.6. Suppose Assumption 7.3 to be satisfied and for any t ∈ (0, T ) and u ∈ U
∫ +∞

0

B(t, z, u.)F (1)(dz)− a(t, ut) ≥ 0, P− a.s., (7.4)

where B(t, z, u.) and a(t, ut) are defined in (7.3) and (7.2), respectively. Then, ϕ(t, λ) is an in-

creasing function of λ ∈ (0,+∞).

Proof. Let us denote by ϕ̃(t, λ, u) the expectation in (7.1), that is

ϕ̃(t, λ, u)

:= E
Q

t,λ

[
e
∫ T
t
{
∫+∞

0 (e−A(s,u.)z−1)ρF (2)(dz)+λs

∫+∞

0 B(s,z,u.)F (1)(dz)−a(s,us)[β+(λ−β)e−α(s−t)]}ds
]
.

Denoting by {λt,λ
s ; s ∈ [t, T ]} the solution of (2.6) with the initial data (t, λ) ∈ [0, T ]× (0,+∞),

we have the following.

ϕ̃(t, λ, u)

= E
Q
[
e
∫ T
t
{
∫ +∞

0 (e−A(s,u.)z−1)ρF (2)(dz)+λ
t,λ
s

∫+∞

0 B(s,z,u.)F (1)(dz)−a(s,us)[β+(λ−β)e−α(s−t)]}ds
]
.

From (A.5) in Appendix A, we obtain

ϕ̃(t, λ, u) = E
Q
[
H(t, T, u.)eλ

∫ T
t

e−α(s−t){
∫+∞

0 B(s,z,u.)F (1)(dz)−a(s,us)}ds
]
, (7.5)

where H(t, T, u.) is given by

H(t, T, u.)

= e
∫ T
t
{
∫+∞

0 (e−A(s,u.)z−1)ρF (2)(dz)−a(s,us)β(1−e−α(s−t))}dse
∫ T
t

β(1−e−α(s−t))
∫+∞

0 B(s,z,u.)F (1)(dz)

× e
∫+∞

0
B(s,z,u.)F (1)(dz){

∫ s
t

∫+∞

0
e−α(s−v)ℓ(z)m(1)(dv,dz)+

∫ s
t

∫+∞

0
e−α(s−v)zm(2)(dv,dz)}
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and it does not depend on λ because under Q, m(1)(dv, dz) and m(2)(dv, dz) are Poisson random

measures with deterministic compensators F (1)(dz)dv and ρF (2)(dz)dv, respectively. Hence, by

(7.5) we have that for any 0 < λ1 < λ2

ϕ̃(t, λ1, u) ≤ ϕ̃(t, λ2, u), ∀u ∈ Ut.

Finally, taking the infimum over Ut we obtain the thesis. i.e.

ϕ(t, λ1) = inf
u∈Ut

ϕ̃(t, λ1, u) ≤ inf
u∈Ut

ϕ̃(t, λ2, u) = ϕ(t, λ2).

�

Remark 7.7. Let us observe that condition (7.4) involve both the insurance and reinsurance pre-

mium, the model’s parameters, as well as the jump size ℓ(z) and the claim size distribution F (1).

From Propositions 7.1 and 7.2 we have that, under the EVP for both, proportional reinsurance

and limited-excess of loss, if condition (7.4) is satisfied the insurer transfers more risk to reinsurer

in the contagion model than in the Cox one. This means that Insurance Company is not always

conservative. A similar behaviour is observed in [8] under the EVP and a Mean-Variance criterion.

Appendix A. Technical proofs and auxiliary results

First, we provide the proof of the Verification Theorem.

Proof of Theorem 4.6. First, observe that if ϕ̃(t, λ) ∈ C1((0, T )× (0,+∞)) ∩ C([0, T ]× (0,+∞))

solves (4.5) - (4.6) then ṽ(t, x, λ) = e−ηxer(T−t)
ϕ̃(t, λ) solves the HJB-equation (4.3). From Itô’s

formula we get that, for any 0 ≤ t ≤ T and u ∈ U , it holds

ṽ(T,Xu
T , λT ) = ṽ(t, Xu

t , λt) +

∫ T

t

LX,λ,uṽ(s,Xu
s , λs)ds+MT −Mt, (A.1)

where

Mt =

∫ t

0

∫

R+

[ṽ(s,Xu
s− − zus, λs− + ℓ(z))− ṽ(s,Xu

s−, λs−)] (m
(1)(ds, dz)− λs−FZ(dz)ds)

+

∫ t

0

∫ +∞

0

[ṽ(s,Xu
s−, λs− + z)− ṽ(s,Xu

s−, λs−)] (m
(2)(ds, dz)− ρF (2)(dz)ds),

for t ∈ [0, T ]. We introduce the non-decreasing sequence of stopping times defined as

τn = inf

{
t ∈ [0, T ] : |Xu

t | > n ∨ λt > n ∨ λt <
1

n

}
.

Since both Xu and Λ do not explode and Λ is strictly positive, we have n → ∞, τn → T . By

assumption, ṽ(t, x, λ) is continuous and hence bounded in compact sets. Therefore, the stopped
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process {Mt∧τn , t ∈ [0, T ]} is an (F,P)-martingale. Indeed, for every n ∈ N, denoting Rn =

[0, T ]× [−n, n]× [ 1
n
, n], the following conditions are satisfied:

E

[∫ τn

0

∫

R+

|ṽ(s,Xu
s− − zus, λs− + ℓ(z))− ṽ(s,Xu

s−, λs−)|λsF
(1)
Z (dz)ds

]

≤ sup
(t,x,λ)∈Rn

2|ṽ(t, x, λ)|nT < +∞

E

[∫ τn

0

∫

R+

|ṽ(s,Xu
s−, λs− + z)− ṽ(s,Xu

s−, λs−)| ρF (2)(dz)ds

]

≤ sup
(t,x,λ)∈Rn

2|ṽ(t, x, λ)|ρT < +∞,

which guarantee that {Mτn∧t, t ∈ [0, T ]} is an (F,P)-martingale.

From (4.3) it holds that for any u ∈ U , and s ∈ [t, T ], LX,λ,uṽ(s,Xu
s , λs) ≥ 0, P-a.s.. Therefore,

taking the conditional expectation of both sides of (A.1) with T replaced by T ∧ τn and t by t∧ τn,

we get that

Et,x,λ

[
ṽ(T ∧ τn, X

u
T∧τn , λT∧τn)

]
≥ Et,x,λ

[
ṽ(t ∧ τn, X

u
t∧τn , λt∧τn)

]
, (A.2)

where (t, x, λ) ∈ [0, T ]× R × (0,+∞). Letting n → +∞, and using the fact that the process Xu

and Λ do not have any deterministic jump time it holds that

ṽ(T ∧ τn, X
u
T∧τn, λT∧τn) → e−ηXu

T , P− a.s.,

and

ṽ(t ∧ τn, X
u
t∧τn , λt∧τn) → ṽ(t, Xu

t , λt), P− a.s.,

for any u ∈ U . From assumption (ii) we can now apply the limit under expectation in (A.2), thus

Et,x,λ

[
e−ηXu

T

]
≥ ṽ(t, x, λ), (A.3)

which implies v(t, x, λ) ≥ ṽ(t, x, λ). By the continuity of Φ(z, u) and q(λ, u) with respect to u ∈ U

and since U is compact, there exists a measurable function u∗(t, λ) which realizes the infimum of

(4.7). The control {u∗(t, λt−), t ∈ [0, T ]} ∈ U is admissible from Proposition 3.6 (b). Finally, by

computations similar to those above, we can prove that equality holds in (A.3) when taking the

control {u∗(t, λt−), t ∈ [0, T ]}. Consequently,

v(t, x, λ) = Et,x,λ

[
e−ηXu∗

T

]
= ṽ(t, x, λ),

which concludes the proof. �

Proof of Lemma 7.5. We perform a computation of the expectation in (4.4) by applying the change

of probability measure from P to Q defined by (2.4). Under Assumption 7.3 we have

Et,λ

[
e−η

∫ T

t
er(T−s)(c(s,λs)−q(s,λs,us)) ds+η

∫ T

t

∫+∞

0
er(T−s)Φ(z,us)m(1)(ds,dz)

]
=

E
Q

t,λ

[
e−

∫ T
t
(λs−1)ds+

∫ T
t

ln(λ
s−

)dN
(1)
s e−η

∫ T
t

er(T−s)λs(c(s)−d(s,us)) ds+η
∫ T
t

∫+∞

0 er(T−s)Φ(z,us)m(1)(ds,dz)
]

= eT−t
E
Q

t,λ

[
e−

∫ T

t
λsa(s,us)ds+

∫ T

t

∫+∞

0
[ln(λ

s−
)+ηer(T−s)Φ(z,us)]m(1)(ds,dz)

]
.

(A.4)
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Let us denote by {λt,λ
s ; s ∈ [t, T ]} the solution of Eq. (2.6) with initial data (t, λ) ∈ [0, T ]×(0,+∞).

By standard computations we have for any s ∈ [t, T ]

λt,λ
s = β + (λ− β)e−α(s−t) +

∫ s

t

∫ +∞

0

e−α(s−v)ℓ(z)m(1)(dv, dz) +

∫ s

t

∫ +∞

0

e−α(s−v)zm(2)(dv, dz).

(A.5)

As a consequence we get that
∫ T

t

a(s, us)λ
t,λ
s ds =

∫ T

t

a(s, us)(β + (λ− β)e−α(s−t))ds+

∫ T

t

∫ s

t

∫ +∞

0

a(s, us)e
−α(s−v)ℓ(z)m(1)(dv, dz)ds +

∫ T

t

∫ s

t

∫ +∞

0

a(s, us)e
−α(s−v)zm(2)(dt, dz)ds.

(A.6)

By applying Fubini’s Theorem, we can write
∫ T

t

∫ s

t

∫ +∞

0

a(s, us)e
−α(s−v)ℓ(z)m(1)(dv, dz)ds+

∫ T

t

∫ s

t

∫ +∞

0

a(s, us)e
−α(s−v)zm(2)(dt, dz)ds

=

∫ T

t

∫ +∞

0

{∫ T

v

a(s, us)e
−α(s−v)ds

}
ℓ(z)m(1)(dv, dz)

+

∫ T

t

∫ +∞

0

{∫ T

v

a(s, us)e
−α(s−v)ds

}
zm(2)(dv, dz).

Hence, (A.6) reads as
∫ T

t

a(s, us)λ
t,λ
s ds =

∫ T

t

a(s, us)(β + (λ− β)e−α(s−t))ds

+

∫ T

t

∫ +∞

0

A(v, u.)ℓ(z)m(1)(dv, dz) +

∫ T

t

∫ +∞

0

A(v, u.)zm(2)(dv, dz).

(A.7)

Plugging (A.7) into the last expectation in Eq. (A.4) we obtain that

ϕ(t, λ) = inf
u∈Ut

eT−t
E
Q

t,λ

[
e−

∫ T

t
a(s,us)(β+(λ−β)e−α(s−t))ds×

e−
∫ T
t

∫+∞

0 A(s,u.)zm(2)(ds,dz) e
∫ T
t

∫ +∞

0 (ln(λs−
)+ηer(T−s)Φ(z,us)−A(s,u.)ℓ(z))m(1)(ds,dz)

]
.

Finally, from Lemma A.2 below, we get the thesis. �

Before proving Lemma A.2, we recall the following results proved in [7].

Lemma A.1. Let (Ω,F ,P;F) be a filtered probability space and assume that the filtration F =

{Ft, t ∈ [0, T ]} satisfies the usual hypotheses. Let N(dt, dz) be a Poisson random measure on

[0, T ]×[0,+∞) with F-intensity kernel λF (dz) dt. Then, for any F-predictable and [0,+∞)-indexed

process {H(t, z), t ∈ [0;T ], z ∈ [0,+∞)} we have that

E

[
e
∫ T
0

∫+∞

0 H(t,z)N(dt,dz)
]
= E

[
e
∫ T
0

∫+∞

0 (eH(t,z)−1)λF (dz) dt
]
,

provided that the last expectation is finite.
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Lemma A.2. For any u ∈ Ut, (t, λ) ∈ [0, T ]× (0,+∞) the following equality holds

E
Q

t,λ

[
e−

∫ T

t

∫+∞

0
A(s,u.)zm(2)(ds,dz)e

∫ T
t

∫+∞

0 (ln(λs−
)+B(s,z,u.))m(1)(ds,dz)e−

∫ T

t
a(s,us)(β+(λ−β)e−α(s−t))ds

]
=

e−(T−t)
E
Q

t,λ

[
e−

∫ T
t

∫+∞

0 (e−A(s,u.)z−1)ρF (2)(dz)dse
∫ T
t

∫+∞

0 λse
B(s,z,u.) F (1)(dz)dse−

∫ T
t

a(s,us)(β+(λ−β)e−α(s−t))ds
]
.

Proof. Since the random measures m(1)(dt, dz) and m(2)(dt, dz) are independent Poisson random

measures with intensity kernel F (1)(dz) dt and F (2)(dz)ρ dt, respectively, under Q, by interponing

the conditioning on Gu ∨ Gλ, with Gu = σ{us, t ≤ s ≤ T} and Gλ = σ{λs, t ≤ s ≤ T}, we get

E
Q

t,λ

[
e−

∫ T

t

∫+∞

0
A(s,u.)zm(2)(ds,dz)e

∫ T
t

∫+∞

0 (ln(λs−
)+B(s,z,u.))m(1)(ds,dz)e−

∫ T

t
a(s,us)(β+(λ−β)e−α(s−t))ds

]

= E
Q

t,λ

[
e−

∫ T
t
a(s,us)(β+(λ−β)e−α(s−t))dsE

Q

t,λ

[
e−

∫ T
t

∫+∞

0 A(s,u.)zm(2)(ds,dz)|Gu ∨ Gλ
]

×E
Q

t,λ

[
e
∫ T

t

∫+∞

0 (ln(λs−
)+B(s,z,u.))m(1)(ds,dz)|Gu ∨ Gλ

] ]

= E
Q

t,λ

[
e−

∫ T
t
a(s,us)(β+(λ−β)e−α(s−t))ds

E
Q

t,λ

[
e
∫ T
t

∫+∞

0 (e−A(s,u.)z−1)ρF (2)(dz)ds|Gu ∨ Gλ
]

× E
Q
[
e
∫ T
t

∫+∞

0 (λse
B(s,z,u.)−1)F (1)(dz)ds|Gu ∨ Gλ

] ]
,

where the last equality holds in view of Lemma A.1. Finally, the thesis follows. �
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