
Multi-resolution Rescored ByteTrack for Video Object Detection
on Ultra-low-power Embedded Systems

*Luca Bompani1 Manuele Rusci2 Daniele Palossi3,4 Francesco Conti1 Luca Benini1,4
1 Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy

2 Department of Electrical Engineering, KU Leuven, Belgium
3Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Switzerland

4Integrated Systems Laboratory, ETH Zürich, Switzerland
*luca.bompani5@unibo.it

Abstract

This paper introduces Multi-Resolution Rescored Byte-
Track (MR2-ByteTrack), a novel video object detection
framework for ultra-low-power embedded processors. This
method reduces the average compute load of an off-the-shelf
Deep Neural Network (DNN) based object detector by up
to 2.25× by alternating the processing of high-resolution
images (320×320 pixels) with multiple down-sized frames
(192×192 pixels). To tackle the accuracy degradation due
to the reduced image input size, MR2-ByteTrack correlates
the output detections over time using the ByteTrack tracker
and corrects potential misclassification using a novel prob-
abilistic Rescore algorithm. By interleaving two down-sized
images for every high-resolution one as the input of differ-
ent state-of-the-art DNN object detectors with our MR2-
ByteTrack, we demonstrate an average accuracy increase
of 2.16% and a latency reduction of 43% on the GAP9 mi-
crocontroller compared to a baseline frame-by-frame in-
ference scheme using exclusively full-resolution images.
Code available at: https://github.com/Bomps4/
Multi_Resolution_Rescored_ByteTrack

1. Introduction
A Video Object Detection (VOD) algorithm identifies ob-
jects in a video stream by reporting their categories and
the corresponding coordinates in the image space. This
function is critical for various cyber-physical systems like
surveillance cameras [23] and miniaturized (as big as the
palm of a hand) drones [1, 8]. These systems typically in-
tegrate a camera with an ultra-low-power embedded pro-
cessor, i.e., a low-cost Microcontroller Unit (MCU). Com-
pared to other edge/mobile processors (e.g., Nvidia Tegra,
Raspberry Pi, Qualcomm Snapdragon, etc.), MCUs feature
a 10-100× power consumption to enable battery-powered

cat (0.7)

cat
(0.6)

dog
(0.7)

t t + 1 t + 2

MR2-ByteTrack
multi-res

full-res + 2 low-res
 + …

full-res
320×320

Conf. Thr = 0.1

Precision
Recall

F1
score

MMAC

12.5
59.7

20.7 463

62.2
47.7

54.0 463

62.3
36.0 45.6 167

64.5
49.3

55.9 265

cat
(0.3)

full-res
320×320

Conf. Thr = 0.35

low-res
192×192

Conf. Thr = 0.35

cat (0.7) cat
(0.3)

dog
(0.7)

cat (0.6)

cat (0.4)

cat
(0.5)

cat
(0.5)

More accurate than
single-resolution inferences

1.74×
faster

bear
(0.2)

Figure 1. Video object detection using NanoDet-Plus [16] object
detector under multiple thresholds and input size settings vs. the
proposed MR2-ByteTrack solution.

operations (also referred to as the extreme edge comput-
ing [15]). On the other side, these devices present a limited
on-chip memory (typically a few MB) and low computa-
tional power [19]. These severe limitations challenge the
design of high-throughput VOD systems using compute-
intensive accurate vision algorithms.

Recently, VOD was shown on multi-core MCUs [19] us-
ing lightweight (i.e., with a low memory budget) Deep Neu-
ral Network-based (DNN) object detectors with a simple
frame-by-frame analysis [1, 7, 8]. For every frame of the
image stream, the DNN inference task returns a list of out-
put detections with confidence scores between 0 and 1. For
example, Fig. 1 shows the output of the recent NanoDet-
Plus object detector [16] featuring 1.17 million parameters
when applied over three consecutive video frames. The
precision-recall tradeoff is adjusted by thresholding the con-
fidence scores, as shown in the figure: a higher threshold
value leads to fewer false positives (higher precision) or
undesired miss-detections (lower recall). From a compu-
tational cost perspective, a common strategy to reduce the
number of operations per frame, and thus increasing the

ar
X

iv
:2

40
4.

11
48

8v
1

 [
cs

.C
V

]
 1

7
A

pr
 2

02
4

https://github.com/Bomps4/Multi_Resolution_Rescored_ByteTrack
https://github.com/Bomps4/Multi_Resolution_Rescored_ByteTrack

processing throughput, consists of feeding the model with
low-resolution (low-res) input images [17, 30], e.g., -296M
Multiply-Accumulate (MAC) using 2.8× smaller images in
our example.

To tackle this problem, this paper proposes Multi-
Resolution Rescored ByteTrack (MR2-ByteTrack), a method
that transforms an image object detection model into a
full VOD algorithmic pipeline, simultaneously improving
the detection accuracy and reducing the overall computa-
tional cost with respect to a naı̈ve frame-by-frame process-
ing pipeline. MR2-ByteTrack combines an off-the-shelf
DNN object detector with an extended version of Byte-
Track [28]. This lightweight Kalman-filter-based tracker
updates the output detections based on the object instances
already detected by the DNN. Because the original Byte-
Track [28] lacks recovery mechanisms from misclassifica-
tion (e.g., a cat is tracked as a “dog” if wrongly predicted at
the beginning of the video sequence), we propose a novel
Rescore algorithm to refine classifications over time, ac-
cording to a probabilistic logic.

Our approach adopts a Multi Resolution Inference
scheme to reduce the per-frame workload, inserting low-
resolution (low-res) frames between full-resolution (full-
res). As shown at the bottom of Fig. 1, our MR2-ByteTrack
leverages the temporal correlation of detections in consec-
utive frames to recover the accuracy drop of low-resolution
inferences. When deployed on a multi-core MCU, this
method incurs no additional memory cost for parameter
storage compared to a single-resolution inference scheme,
as the same object detection DNN is applied to both full
and low-resolution frames.

In summary, this work makes the following novel
contributions:
• The MR2-ByteTrack framework, combining an off-the-

shelf DNN-based object detector for multi-resolution in-
ference, the ByteTrack Kalman-based tracker, and the
Rescore method to refine category assignment of tracked
frames, reducing misdetections and misclassifications;

• The first embodiment of a multi-resolution VOD pipeline
on an ultra-low-power MCU, Greenwaves Technologies
(GWT)’s GAP9, showing a better accuracy-throughput
tradeoff than single-resolution inference VOD systems.
We validate our proposed MR2-ByteTrack method using

three State-of-the-Art (SoA) tiny object detectors: YOLOX-
Nano [4], NanoDet-Plus [16], and EfficientDet-D0 [24], all
off-the-shelf pretrained on the COCO dataset [10]. Across
the ImageNetVid [20] validation set, MR2-ByteTrack im-
proves mean Average Precision (mAP) scores compared to
the object detector baselines by up to 5.17% and the F1
score by 3.58% if applied only on full-res frames. If, in-
stead, we interleave for each full-res frame two low-res
frames, the mAP improvement is +2.16% while the aver-
age MAC computational costs are reduced by up to 43%.

We deployed our multi-resolution VOD strategy, using
the on the GAP9 MCU processor featuring a 9-core com-
pute cluster at a peak power cost of up to 72mW, also
considering the external 32MB and 8MB MB FLASH and
RAM. Compared to the baseline object detectors [4, 16, 24],
MR2-ByteTrack achieves up to 1.76× lower inference la-
tency with no increase in the DNN’s parameters footprint
(2.24MB for the largest model) and only a modest increase
in code size (+186 kB), thus enabling high-accuracy VOD
on milliwatt-power extreme-edge devices. Also, when
compared to the SoA YOLOV method [22], our MR2-
ByteTrack shows the same F1 score but saves the memory
and computes overheads (14% and 21%) of the transformer-
based front-end that differently, from our ByteTrack mod-
ule, demands an ad-hoc training process.

2. Related Work

2.1. Lightweight Object Detection

DNN-based object detection algorithms can be grouped into
two main categories: two-stage and one-stage detectors.
The two-stage methods, e.g., Faster R-CNN [18], generate
a set of region proposals that are analyzed during a second
inference stage. This dynamic and unpredictable workload,
as it depends on the generated proposals, makes these meth-
ods unsuitable for resource-constrained embedded devices,
where low computation and predictable execution time are
crucial to optimally distribute the limited resources. Con-
sequently, many recent works focus on one-stage memory-
efficient DNNs, generally composed of a feature extractor
and multiple head blocks that predict the bounding box co-
ordinates [4, 16, 21, 24, 27].

SSDLite [21] adds detector heads on top of a Mo-
bileNetV2 backbone and achieves an mAP of 22.1 on the
COCO dataset [10] with a total memory and computational
cost of 4.3M parameters and 0.8GMAC, respectively. An
instance of this model has been successfully demonstrated
on an MCU device with a peak power of 150mW for ob-
ject detection aboard nano-drones [8] or license plate de-
tection for smart cameras [7], showing a peak throughput of
∼1 Frame Per Second (FPS). NanoDet-Plus [16] introduces
an “assign guidance module” and a dynamic soft label as-
signer to improve performance, reaching a mAP of 27 on
the COCO dataset with 0.45GMAC operations and 1.17M
parameters.

YOLOX-Nano [4] starts from the YOLOv3 architec-
ture and introduces depthwise convolutions and an anchor-
free decoupled head, which lead to a mAP of 25.4
on COCO with 0.8GMAC and 0.9M parameters. In-
stead, EfficientDet-D0 [24], leveraging a neural architecture
search technique, introduces a bidirectional feature pyra-
mid network to aggregate features that, in conjunction with
a decoupled head, pushes the mAP to 34.6 at the cost of

2.5GMAC and 3.9M parameters. Our work builds on
these recent frame-by-frame models to construct a novel
framework operating on video streams.

2.2. Video Object Detection

A first class of techniques for video object detection uses
3D convolutions instead of 2D ones [25]. This conceptu-
ally simple approach is not real-time and demands a large
memory footprint to store high-dimensional activation ten-
sors, exceeding the memory available on low-end MCU sys-
tems. An alternative line of research aggregates information
across frames from region proposals obtained by two-stage
detectors: in [31] using optical flow, or convolutional-based
trackers in [13, 29], and transformer-based memory layers
in [3]. However, the cost of region proposal aggregation
exceeds the available budget for MCUs.

A more lightweight group of techniques builds on top of
one-stage detectors by modeling the temporal correlation of
detections. [5] uses dynamic programming to link objects
across frames based on the Intersection over Union (IoU)
metric. Seq-Bbox [2] and Motion-based Seq-Bbox [9] refine
the outputs of the underlying object detector using the tem-
porally associated detection information, marking a mAP
of 80.9 and 72.7 , respectively, on the ImagenetVID dataset
(+6.9 and +5.5 mAP points more than frame-by-frame in-
ference). Conversely, our work introduces a novel proba-
bilistic algorithm for aggregating scores over time, while
these methods make the average and, differently from our
solution, do not achieve any thorough improvement con-
cerning the baseline.

More recently, transformer architectures have also been
widely adopted for VOD tasks. The TransVOD Lite [6]
uses Deformable DETR object detector [32] and scores a
mAP50 of 83.7 on ImagenetVID with a SwinT transformer
backbone [12]. The latter features a total of 45.9M param-
eters and a computational cost of 8.89GMAC per frame,
exceeding the resources of an MCU system. In the best
configuration, TransVOD Lite achieves +3.5 mAP score
vs. the object detector baseline by processing a batch of
15 frames. This setting requires 272MB to store the inter-
mediate features (15× memory increases compared to sin-
gle frame execution). If applied on individual frames, the
method, instead, reduces the mAP by 3.6 w.r.t. the De-
formable DETR detector. On the contrary, our method (i)
does not store multiple features across frames, but only the
bounding boxes (9.5 kB) and (ii) leads to an mAP increases
vs. the baseline when running frame-by-frame, i.e., it does
not require a batch of images for the inference.

YOLOV [22] uses a transformer on top of a YOLOX de-
tector to fuse the features extracted from multiple frames
and refine the produced detection. This approach reaches a
mAP of 85.5 on ImagenetVID. However, tuning the trans-
former requires a training stage, marking a significant dif-

ference w.r.t. our training-free method, which can be ap-
plied to any pre-trained model without additional computa-
tion.

2.3. Increasing VOD Throughput

A set of methods proposed data-dependent DNN execution
pipelines to skip part of the inference operations based on
the information carried by the input. The work of Zhu et
al. [30] introduces an auxiliary but lightweight network,
called dynamic-resolution network (DRNet), to determine
the resolution of the input image before running the infer-
ence. The policy predicts a higher downsize ratio for images
with “easy” objects to recognize. Concerning this work, we
adopt a static resize policy avoiding the 4.9M parameters
overhead introduced by their DRNet, while achieving simi-
lar efficiency gains (∼40%).

On the contrary, other works speed up the processing by
considering the temporal information and not only the con-
tent of a single frame. [26] avoids the computation of the
features from specific regions of the current frame by copy-
ing the features computed in previous frames. They use an
auxiliary lightweight ResNet-8 network to predict the accu-
racy gain of computing new features vs. copying the previ-
ous ones. Compared to this approach, we do not store the
activations but only preserve the detected bounding box co-
ordinates from the analysis of previous ones. In the case of
the NanoDet-Plus network with a 320×320 px input image,
this method would lead to a memory overhead of ∼50MB
vs. the 9.5 kB of our method. Furthermore, the ResNet-8
auxiliary network requires an extra training procedure using
reinforcement learning to learn an efficient policy.

Liu et al. [11] couple a large model with a small one
(4.4M vs. 0.5M parameters). Similar to our approach, they
also interleave the two models’ execution, and to recover
from accuracy losses due to the smaller model, they placed
an LSTM layer to connect the detection performed across
time. A similar idea is also employed in [14], where they
interleave different neural networks of varying complexity
to determine the pose of a person in front of a drone. These
methods deploy the two models on the target platforms, in-
creasing the memory cost compared to the baseline single-
model inference. On the contrary, our framework does not
require any extra parameters. It is applied to a pre-trained
model, saving the cost of training a family of scalable mod-
els for the interleaved execution.

3. Multi-resolution Rescored ByteTrack
The MR2-ByteTrack algorithm in Fig. 2 combines three dif-
ferent components: (i) a vision-based Convolutional Neural
Network (CNN) object detector that takes in input images of
different sizes; (ii) the ByteTrack tracking algorithm [28];
(iii) the novel Rescore algorithm to update the detection
scores returned by ByteTrack.

D0: (cl0, pos0, conf0)
D1: (cl1, pos1, conf1)
 ...
Di: (cli, posi, confi)
 ...

List of Detections: 𝑫𝒊 𝒊=𝟎
𝑵

𝑫𝒊 𝒊=𝟎
𝑵

𝑫𝒊 𝒊=𝟎
𝑵

𝑫𝒊 𝒊=𝟎
𝑵

𝑫𝒊 𝒊=𝟎
𝑵

𝑫𝒊 𝒊=𝟎
𝑵

ByteTrack

tim
e

P=3
low-res
frames

T0: (cl0, pos_kf0, conf0, conf0
𝑎𝑔𝑔)

T1: (cl1, pos_kf1, conf1 , conf1
𝑎𝑔𝑔)

...
Tj: (clj, pos_kfj, confj , conf𝑗

𝑎𝑔𝑔)
...

List of Tracker

Instances: 𝑻𝒋 𝒋=𝟎

𝑴

Rescore
match
(Di, Tj)

used to
rescore

updateTracker

tracked
object Tj

DNN Object
Detector

full-res
frame

full-res
frame

{D0 : (cl0 : ‘dog’,
 pos0 : [0.5, 0.6,0.4, 0.2],
 conf0 : 0.3), … }

D0
D1

D2D3

Figure 2. Overview of the proposed Multi-Resolution Rescaled ByteTrack algorithm for video object detection.

3.1. Multi-resolution Object Detector Backbone

We design our framework around existing pre-trained
single-shot object detectors. In our formulation, the de-
tection algorithm includes a lightweight CNN model, i.e.,
the backbone, to analyze the image frames of a video se-
quence in real-time. Given a frame F at time t, we indicate
the set of detections the processing task returns as {Di}Ni=1,
where N is the total number of objects detected within the
current frame. Each detection Di is described by a triplet
(bboxi, cli, confi): a bounding box bbox, a class index cl
and a confidence score conf < 1. Detections with a confi-
dence score lower than a low threshold are discarded, while
the others are retained for further processing.

Since we employ a CNN-based backbone, we can inter-
leave one full-res image (e.g., 320×320 px in our setup)
with P low-res ones (e.g., 192×192 px). This way, we can
trade detection accuracy for fewer MAC operations. Thus,
the average number of MAC operations per frame becomes:

MAC = ρ ·MACfr + (1− ρ) ·MAClr (1)

Where ρ = 1
1+P , MACfr and MAClr represent the

number of MAC operations required to execute the infer-
ence on one full-res and one low-res frame, respectively.
Because the inference task utilizes the same network pa-
rameters in both low and full-resolution cases, the weight
footprint remains the same as with single-sized frames. In
fact, the convolution layers of the CNN models can apply to
any scale of input images or feature maps. As an example,
a 3x3 filter can slide over a larger feature map to produce a
wider output tensor, corresponding, eventually, to a higher
number of detections.

3.2. ByteTrack Tracker

Naı̈ve frame-by-frame object detectors can not exploit any
temporal correlation between frames, i.e., detections in con-

secutive frames are likely to stay the same or similar. We
use the ByteTrack [28] tracker to exploit this correlation, re-
covering for performance losses due to down-scaling (i.e.,
low-res images) and possibly improving the precision and
recall of a frame-by-frame baseline (see Sec. 5.3). The
backbone’s detections {Di}Ni=1 are fed to the ByteTrack
algorithm based on a Kalman filter for every frame. In
its original formulation, at time-step t, ByteTrack operates
on a list of M instances: {Tj}Mj=1, i.e., one instance for
each tracked object. Like for detections, each tracker in-
stance (Tj) is described by a triplet (bbox kfj , clj , confj).
bbox kfj is the bounding box predicted by a Kalman filter
fed with the backbone’s detections. clj and confj are the
class index and confidence scores associated with tracked
objects, respectively.

To correlate the detection performed over time, Byte-
Track matches the bbox bounding boxes of {Di}Ni=1 and
the predicted bbox kf ones of {Tj}Mj=1, using a cost matrix
determined by Intersection-over-Union (IoU) scores. An
IoU threshold of 0.3, as proposed in the original paper, sets
the minimum value to determine a match between a detec-
tion and a tracker instance. Unlike the original implemen-
tation, we do not adopt any feature-matching criteria to as-
sociate tracker instances and detections: the spatial size of
the feature maps to match changes over time in our multi-
resolution framework. A tracker instance is marked active
after a minimum number of consecutive detections has oc-
curred (two in our setting). At the same time, it is removed
from the tracker list if it was never updated during the last
five time steps. After matching, the detection bbox updates
ByteTrack’s Kalman filter. The remaining detections not
matched with any existing tracker instance produce a new
one if their conf score is higher than a tuned high threshold.

In the original ByteTrack algorithm, the class index clj
and the confidence score confj of active tracker instances

Algorithm 1: Rescore algorithm
Inputs: Match
{Di = (cli, confi), Tj = (clj , confj , conf

agg
j)}

if clj == cli then
confaggj ← 1− ((1− confi) ∗ (1− confaggj))

else
if confaggj < confi then

(clj , confj , conf
agg

j)← (cli, confi, confi)
else

confaggj ← 1− ((1− confaggj)/(1− confi))

confaggj ← max(confaggj , 0)

if confaggj < confi then
(clj , confj , conf

agg
j)← (cli, confi, confi)

end
end

end
confaggj ← min(confaggj , 1− ϵ)

return Tj = (clj , confj , conf
agg
j)

are never updated after the match with a new detection. We
chose to modify this logic to better cope with the multi-class
nature of VOD: specifically, we update clj and confj if the
confidence score of the matched detection is higher than the
high threshold value.

3.3. Rescore Algorithm

We augment ByteTrack with the Rescore algorithm to im-
prove the estimation of the class index and confidence
scores of an active tracker instance by accounting for the
history of matched detections. To this aim, we extend the
tracker instance Tj with a class status attribute confaggj ,
which models the probability of the tracker’s class cl to be
correct. The confaggj value aggregates the confidence scores
conf of the detections assigned to the j-th tracker instance
until time t − 1. During this aggregation, the conf value
is interpreted as the probability that the object’s predicted
class is correct in the current-frame detection.

When a new detection Di is assigned to the tracker in-
stance Tj at time t, the class index clj is rescored based on
confaggj as shown in Algo. 1. If the class index cli is the
same as clj , we only update the confaggj value, as the match
confirms our confidence in the correctness of the classifi-
cation. We use the product of the opposites of confaggj and
confi as the new value for the status variable. If the class in-
dices do not match, we acknowledge this by decreasing our
aggregate confidence, i.e., we decrease the confaggj value
(the max guarantees a value >0). Then, we check for a
class index rescore: if the new detection’s confidence is
higher than the confaggj , we update the tracker class with
the new detection: clj ← cli. Additionally, we impose an
upper bound (i.e., 1− ϵ) to the confaggj to prevent overcon-
fident detections from blocking future rescores. Finally, the
Rescore algorithm also outputs the mean confidence score

during the tracking.

4. Multi-resolution Inference on MCUs

We target ultra-low-power embedded systems, such as tiny
MCUs, to deploy our pipeline. Since the end-to-end la-
tency of VOD applications is dominated by DNN infer-
ence, we extensively benefit from the throughput optimiza-
tion of Eq. 1. To demonstrate our approach’s real-time
performance and power consumption, we select a GWT
GAP9 MCU, which includes a parallel cluster of 9 general-
purpose RISC-V cores. The cores can access 4 shared float-
ing point units with vectorized half-precision instructions
(FP16 precision). GAP9 features a low-latency scratchpad
L1 memory of 128 kB within the cluster and a larger off-
cluster L2 memory (1.5MB).

A Direct Memory Access (DMA) controller is used to
copy data between L2 and L1 memories in the background
of the compute tasks offloaded to the cores. External
volatile and non-volatile memories are interfaced with the
GAP9 using the available octoSPI interface: a peripheral
DMA is then in charge of read and write operations between
the external components and the on-chip L2 memory.

The cluster also includes a convolution accelerator that
supports 8-bit operations. However, we only exploit the
floating-point multi-core support of the platform to avoid
any accuracy degradation of lossy 8-bit quantization, which
we leave for future work.

We use GWT’s GAPflow toolset to generate the target
platform’s inference C code. For every trained model with
a specific input size, the tool produces header files with the
model parameter and a source file with the graph-level and
layer-level routines. Following the automatically generated
memory management scheme, weight parameters are stored
within an external octoSPI Flash memory. At the same time,
the intermediate values of the inference tasks, i.e., the acti-
vation tensors, are allocated within the on-chip L2 mem-
ory and the external octoSPI RAM. To cope with our multi-
resolution scheme, we generate two C implementations, one
for the low-res case and a second for the full-res one. The
two network functions access the same weight data stored
in the Flash memory.

On GAP9, the latency cost to downscale the input image
is negligible with respect to the inference time. The over-
head for generating a low-res image of 192×192 px from
a 320×320 px image is 1.5ms. This corresponds to only
0.9% of the inference time in the case of NanoDet-Plus
(169ms). The Kalman filter also has low execution time
and requires only 9.5 kB of on-chip memory. While our
implementation of the MR2-ByteTrack method is specific
to the GAP9, we remark on the generality of the method
that can be easily applied to other MCUs.

Table 1. Baseline Object Detection Models

Model Params full-res (px) MMACfr low-res (px) MMAClr

YOLOX-Nano 0.9M 320×320 316 192×192 114
NanoDet–Plus 1.18M 320×320 463 192×192 167
EfficientDet-D0 3.93M 384×384 1440 256×256 640

Table 2. Impact of the Rescore Algorithm on ByteTrack using only
high-res frames (P = 0).

Method mAP Precision Recall F1 score
YOLOX-Nano 41.30 65.16 44.92 53.18
w/ Naı̈ve-ByteTrack 43.57 63.9 47.96 54.79
w/ MR2-ByteTrack 46.47 64.24 51.23 57.00
NanoDet–Plus 42.70 62.15 47.68 54.00
w/ Naı̈ve-ByteTrack 44.00 58.91 51.40 54.90
w/ MR2-ByteTrack 46.57 64.14 51.50 57.10
EfficientDet-D0 60.70 78.48 64.14 70.30
w/ Naı̈ve-ByteTrack 61.09 78.65 66.42 72.02
w/ MR2-ByteTrack 64.86 80.63 67.32 72.52

5. Results
5.1. Baseline Models and Metrics

We consider three State-of-the-Art object detectors trained
on the COCO dataset: YOLOX-Nano, NanoDet-Plus, and
EfficientDet-D0. Tab. 1 reports the number of parameters
and MMAC operations for the input frames’ considered
full-res and low-res sizes. For VOD experiments, we use
the ImageNetVID dataset, which shares 16 classes with the
COCO dataset. By extracting video sequences that share
common classes between the two datasets, we build our val-
idation set of 392 video samples. To distinguish from the
entire dataset, we indicate this subset as ImageNetVIDC .
To assess the detection performance, we use the mAP50
score, a widely used metric in literature, which we call mAP
in the rest of the paper. In addition, we report the preci-
sion, recall, and F1 score averaged over the classes. Differ-
ently from mAP, which expresses the mean value of the per-
class average-precision curves, these three additional met-
rics show the trade-off between true detections, false posi-
tives, and miss-detections. All metrics consider an IoU of
0.5 to mark a correct match between ground truths and pre-
dictions.

5.2. Single-resolution Trackers

Tab. 2 compares the results obtained with our MR2-
ByteTrack against the baseline object detection models and
the Naı̈ve-ByteTrack on the ImageNetVidC dataset. In this
initial experiment, we feed the inference models only with
full-res images. The confidence threshold of the base-
line models is set to 0.35, 0.3, and 0.4 for, respectively,
NanoDet-Plus, YOLOX-Nano, and EfficientDet-D0. These
values are optimally tuned to obtain the highest F1 score
on the testing dataset and reflected on the high threshold

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

46.5 46.541.4

41.3

44.9

42.6

64.9 61.2

60.7

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

low-res frames P

m
A
P

Av
er
ag

e
G
M
AC

GMAC MR2-
ByteTrack

mAP MR2-
ByteTrack

mAP Baseline
Object Detectors

0.33
-43%

0.46
-43%

1.4

-37%

YOLOX-Nano NanoDet-Plus EfficientDet-D0

Figure 3. mAP (blue) and GMAC (red) of MR2-ByteTrack at
varying low-res frames vs. the baseline.

value of the ByteTrackers. Using the same procedure, we
also set the low threshold of the trackers to 0.3, 0.25, 0.35
for NanoDet-Plus, YOLOX-Nano, and EfficientDet-D0, re-
spectively. By observing the results, we can see that, on av-
erage, the Naı̈ve-ByteTrack increases the mAP score mea-
sured on the baseline models by 1.55%. This is explained
by the capacity of the tracker to positively aggregate low-
confident detections, which the baseline models instead dis-
card.

Next, the Rescore algorithm of MR2-ByteTrack leads
to a further 3.08% improvement by turning false-positive
detection into correct classification, as can be observed
by the higher Precision, Recall, and F1 scores. Overall,
thanks to our MR2-ByteTrack, the smallest NanoDet-Plus
and YOLOX-Nano models can achieve up to 46.57 and
46.47 mAP on high-res frames, respectively, +3.9% and
+5.2% vs. the baselines.

5.3. Multi-resolution Performance

Fig. 3 plots the measured mAP of MR2-ByteTrack when
varying the amount of interleaved low-res images (P from
0 to 10) in the multi-resolution setup, and we benchmark
against the baseline models in the same setup. The bars on
the bottom show the average GMAC operations required by
each configuration (Eq. 1). For baseline models, the mAP
starts dropping at P=1, while MR2-ByteTrack decreases
performance with P ≥ 5 due to low-res images. This dif-
ference between methods arises from the greater robustness
of our MR2-ByteTrack approach. This effect is related to
the inertia of the trackers, which are kept alive for up to 5
timestamps without new detections in our setup.

Table 3. VOD solutions on the GAP9 MCU: Mr2-ByteTrack vs. frame-by-frame CNN object detectors with full-res or low-res inputs.

Method Input
Size

RAM
[MB]

Flash
Mem. [MB]

Code
[kB] [FPS] Energy

[mJ] mAP Precision Recall F1
score

NanoDet–Plus single full-res 1.6 2.3 186.0 3.3 21.8 42.7 62.2 47.7 54.0
NanoDet–Plus single low-res 0.6 2.3 186.0 9.8 7.5 27.4 62.9 31.3 41.8

w/ MR2-ByteTrack (our) multi-res P=2 1.6 2.3 373.0 5.9 12.3 44.9 61.5 49.3 54.7
YOLOX-Nano single full-res 1.4 1.8 103.0 3.3 19.2 41.3 65.2 44.9 53.2
YOLOX-Nano single low-res 0.5 1.8 103.0 8.6 7.0 25.7 63.2 28.8 39.6

w/ MR2-ByteTrack (our) multi-res P=2 1.4 1.8 205.0 5.5 11.1 41.4 64.0 45.7 53.3

Table 4. Comparison between VOD methods on ImagenetNetVID.

Method Object detector
Backbone Prec. Recall F1

score mAP Params
[M] GMAC vs. full-res object detetector

∆ mAP ∆ params ∆ MAC
YOLOV-S [22] 79.9 66.4 72.5 62.5 9.9 12.9 2.7 +14.0% +21.0%
MR2-ByteTrack 80.8 65.9 72.5 61.8 9.0 10.9 2.0 0 0
MR2-ByteTrack (P=2)

YOLOX-S[4]
77.5 64.3 70.3 60.3 9.0 6.2 0.5 0 -43.0%

Liu et. al [11] SSDLite-Mobilenetv2[21] n/a n/a n/a 61.4 4.9 0.2 0.91 +11.0 % 1 -84.0%
MR2-ByteTrack (P=2) EfficientDet-D03 [24] 80.0 64.1 71.1 61.22 3.9 0.9 0.52 0 -37.0%

1 w.r.t. large f0 non-interleaved model [11], 2 measured on ImageNetVIDC , 3 trained on the COCO dataset,

Overall, the mAP scores of the MR2-ByteTrack mod-
els using multiple low-res images are always better than the
baseline models operating on full-resolution frames. For
P=1 and P=2, on average, our approach marks a mAP im-
provement of 3% and 0.96%, while the number of MAC
operations is reduced by 32% and 43%, respectively, com-
pared with the baseline object detectors. For P ≥ 3, we
observe a progressive reduction of mAP below the original
object detection performance, which can be affordable for
some use cases. Finally, we chose the configuration P=2
for the remainder of our experiments as a good trade-off
between accuracy and computational load (i.e., MAC oper-
ations).

5.4. State of the Art Comparison

5.4.1 MCU-ready VOD Systems

Tab. 3 compares our MR2-ByteTrack solution with P=2
vs. frame-by-frame single-resolution baselines (e.g., used
by [7, 8]) with full-res and low-res inputs when running
on an MCU system. To this aim, we deploy the different
approaches on the GAP9 SoC, coupled with two external
memories: a Flash of 64MB and a RAM of 8MB. The ta-
ble reports the code size, the activation and weight memory
occupation in MB, denoted as RAM and FLASH memory,
the processing throughput in FPS, and the energy cost, mea-
sured when the MCU is clocked at 370MHz, together with
the detection metrics.

We show results for YOLOX-Nano and NanoDet-Plus,
while we leave out of this analysis the EfficientDet, as
its memory footprint is larger than the available budget.
The datatype of weights and activations is cast to half-
precision FP16 for a lossless deployment. On GAP9, our

multi-resolution instance features a double code size (up to
373 kB in total) vs. baseline models. The activation mem-
ory of the high-res model dominates the total cost of the
multi-res deployment; the weight storage is constant among
different resolutions. Our solutions can run at 5.9FPS
with NanoDet-Plus and 5.5FPS with YOLOX-Nano, 1.7×
faster than the high-res version. On the other side, the
cost of the ByteTrack algorithm is negligible (<0.2% than
the inference). The latency gains are reflected in the en-
ergy costs: the multi-resolution models consume 1.77×
and 1.72× less than the high-res versions for, respectively,
NanoDet-Plus and YOLOX-Nano. Thus, observing the
highest mAP and F1 scores, our MR2-ByteTraker shows
the best energy-accuracy trade-off for VOD applications on
MCU systems.

5.4.2 VOD Algorithms

Tab. 4 compares our approach with recent real-time meth-
ods not tailored for MCU deployment given the high num-
ber of parameters of the DNN backbones: 9M for YOLOX-
S in the YOLOV work [22] and 4.9M for SSDLite-
MobileNetV2 in the study by Liu et al. [11]. To fairly com-
pare vs. YOLOV, which uses a transformer to aggregate
the temporal detections of the YOLOX-S backbone, we ap-
ply our MR2-ByteTrack to the same CNN object detector
pre-trained on the ImageNetVid trainset, considering both
the high-res or the multi-resolution (P=2) scenarios. For
YOLOV, we test the real-time version in which only the de-
tections of the past frames are sent to the transformers. The
scores reported in the table adopt confidence threshold val-
ues that maximize the F1 score.

Our MR2-ByteTrack reaches a +0.9 higher precision

than the YOLOV due to the lower number of false positives.
At the same time, the lower recall (-0.5) acknowledges the
recognition ability of the transformer layer, which increases
the memory and computational cost by, respectively, 14%
and 21% compared to the baseline backbones. Our method
presents the same F1 score as the real-time YOLOV, saving
the transformer overhead costs. Additionally, with P=2, the
F1 score is reduced only by 2.2% with a computational cost
reduction of up to 43%.

On the other side, because the pre-trained SSDLite-
Mobilenetv2 model adopted by Liu et al. [11] is not openly
available, we take the EfficientDet-D0 model pre-trained
on COCO for comparison purposes (EfficientDet-D0 fea-
tures 1M parameters less than SSDLite-Mobilenetv2). Our
MR2-ByteTrack method achieves a substantial latency im-
provement (37% vs. 84% of [11] that uses P=10) while
slightly increasing the mAP score compared to the base-
line. However, our solution does not increase the memory
footprint (+11% in [11]) and does not require any training
of the tracker on the video sequence, highlighting the higher
flexibility of our approach.

6. Conclusions
This paper proposes the novel MR2-ByteTrack method that
(i) improves the accuracy of pre-trained object detection
for VOD benchmarks by using the ByteTrack tracker aug-
mented with the novel rescore algorithm and (ii) reduces the
computational cost by running multi-resolution inference at
no extra memory costs. Leveraging SoA memory-efficient
DNNs, we achieved equal or slightly increased mAP and up
to 1.76× improvement in throughput on the GAP9 MCU,
compared to full resolution single frame object detectors.
This result highlights the benefits of the proposed solution
for VOD in ultra-low-power embedded devices.

Acknowledgements
This work has been partially supported by the Swiss SNF
project 207913 TinyTrainer: On-chip Training for TinyML
devices.

References
[1] Eiman AlNuaimi, Elia Cereda, Rafail Psiakis, Suresh Sug-

umar, Alessandro Giusti, and Daniele Palossi. A deep
learning-based face mask detector for autonomous nano-
drones (student abstract). In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 12903–12904, 2022.
1

[2] Hatem Belhassen, Heng Zhang, Virginie Fresse, and El-
Bay Bourennane. Improving video object detection by seq-
bboxmatching. In VISIGRAPP(5:VISAPP), pages 226–233,
2019. 3

[3] Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. Mem-
ory enhanced global-local aggregation for video object de-

tection. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10334–10343, 2020.
3

[4] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXivpreprint-
arXiv:2107.08430, 2021. 2, 7

[5] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachan-
dran, Mohammad Babaeizadeh, Honghui Shi, Jianan Li,
Shuicheng Yan, and Thomas S. Huang. Seq-nms for video
object detection. CoRR, abs/1602.08465, 2016. 3

[6] Lu He, Qianyu Zhou, Xiangtai Li, Li Niu, Guangliang
Cheng, Xiao Li, Wenxuan Liu, Yunhai Tong, Lizhuang
Ma, and Liqing Zhang. End-to-end video object detection
with spatial-temporal transformers. In Proceedings of the
29th ACM International Conference on Multimedia, page
1507–1516, New York, NY, USA, 2021. Association for
Computing Machinery. 3

[7] Lorenzo Lamberti, Manuele Rusci, Marco Fariselli,
Francesco Paci, and Luca Benini. Low-power license plate
detection and recognition on a risc-v multi-core mcu-based
vision system. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021. 1, 2,
7

[8] Lorenzo Lamberti, Luca Bompani, Victor Javier Kartsch,
Manuele Rusci, Daniele Palossi, and Luca Benini. Bio-
inspired autonomous exploration policies with cnn-based ob-
ject detection on nano-drones. In 2023 Design, Automation
& Testin Europe Conference & Exhibition (DATE), pages 1–
6. IEEE, 2023. 1, 2, 7

[9] Min Li, Linghan Li, Ruwen Bai, Junxing Ren, Bo Meng, and
Yang Yang. A motion-based seq-bbox matching method for
video object detection. In 2021 IEEE Symposium on Com-
puters and Communications (ISCC), pages 1–7, 2021. 3

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision – ECCV 2014, pages 740–755, Cham,
2014. Springer International Publishing. 2

[11] Mason Liu, Menglong Zhu, Marie White, Yinxiao Li, and
Dmitry Kalenichenko. Looking fast and slow: Memory-
guided mobile video object detection. arXiv preprint
arXiv:1903.10172, 2019. 3, 7, 8

[12] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9992–10002,
Los Alamitos, CA, USA, 2021. IEEE Computer Society. 3

[13] Ye Lyu, Michael Ying Yang, George Vosselman, and Gui-
Song Xia. Video object detection with a convolutional re-
gression tracker. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 176:139–150, 2021. 3

[14] Beatrice Alessandra Motetti, Luca Crupi, Mustafa Omer
Mohammed Elamin Elshaigi, Matteo Risso, Daniele Jahier
Pagliari, Daniele Palossi, and Alessio Burrello. Adaptive
deep learning for efficient visual pose estimation aboard
ultra-low-power nano-drones. ArXiv, abs/2401.15236, 2024.
3

[15] Jorge Portilla, Gabriel Mujica, Jin-Shyan Lee, and Teresa
Riesgo. The extreme edge at the bottom of the internet of
things: A review. IEEE Sensors Journal, PP:1–1, 2019. 1

[16] RangiLyu. Nanodet-plus superfast and high accuracy
lightweight anchor-free object detection model. 2021. 1,
2

[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement, 2018. cite arxiv:1804.02767Comment: Tech
Report. 2

[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. pages 1137–1149, Los Alamitos, CA, USA, 2017.
IEEE Computer Society. 2

[19] Davide Rossi, Francesco Conti, Manuel Eggiman, Alfio Di
Mauro, Giuseppe Tagliavini, Stefan Mach, Marco Guer-
mandi, Antonio Pullini, Igor Loi, Jie Chen, Eric Flamand,
and Luca Benini. Vega: A ten-core soc for iot endnodes with
dnn acceleration and cognitive wake-up from mram-based
state-retentive sleep mode. IEEE Journal of Solid-State Cir-
cuits, 57(1):127–139, 2022. 1

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. 2

[21] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4510–4520, 2018. 2, 7

[22] Yuheng Shi, Naiyan Wang, and Xiaojie Guo. Yolov: Mak-
ing still image object detectors great at video object detec-
tion. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 37(2):2254–2262, 2023. 2, 3, 7

[23] Ernesto Sola-Thomas and Masudul Haider Imtiaz. An ultra-
low-power design of smart wearable stereo camera. In South-
eastCon 2021, pages 1–8, 2021. 1

[24] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and
efficient object detection. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
10778–10787, Los Alamitos, CA, USA, 2020. IEEE Com-
puter Society. 2, 7

[25] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 4489–4497, Los Alamitos, CA, USA,
2015. IEEE Computer Society. 3

[26] Thomas Verelst and Tinne Tuytelaars. Blockcopy: High-
resolution video processing with block-sparse feature propa-
gation and online policies. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5138–5147,
2021. 3

[27] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin
Akin, Gabriel Bender, Yongzhe Wang, Pieter-Jan Kinder-
mans, Mingxing Tan, Vikas Singh, and Bo Chen. Mo-
biledets:searching for object detection architectures for mo-

bile accelerators. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3825–3834, 2021. 2

[28] Yifu Zhang, Pei Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan,
Ping Luo, Wenyu Liu, and Xinggang Wang. Bytetrack:
Multi-object tracking by associating every detection box. In
European Conference on Computer Vision, 2021. 2, 3, 4

[29] Zheng Zhang, Dazhi Cheng, Xizhou Zhuand Stephen Lin,
and Jifeng Dai. Integrated object detection and tracking
with tracklet-conditioned detection. ArXiv, abs/1811.11167,
2018. 3

[30] Mingjian Zhu, Kai Han, Enhua Wu, Qiulin Zhang, Ying Nie,
Zhenzhong Lan, and Yunhe Wang. Dynamic resolution net-
work. In Neural Information Processing Systems, 2021. 2,
3

[31] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen
Wei. Flow-guided feature aggregation for video object detec-
tion. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 408–417, 2017. 3

[32] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable {detr}: Deformable transform-
ers for end-to-end object detection. In International Confer-
ence on Learning Representations, 2021. 3

	. Introduction
	. Related Work
	. Lightweight Object Detection
	. Video Object Detection
	. Increasing VOD Throughput

	. Multi-resolution Rescored ByteTrack
	. Multi-resolution Object Detector Backbone
	. ByteTrack Tracker
	. Rescore Algorithm

	. Multi-resolution Inference on MCUs
	. Results
	. Baseline Models and Metrics
	. Single-resolution Trackers
	. Multi-resolution Performance
	. State of the Art Comparison
	MCU-ready VOD Systems
	VOD Algorithms

	. Conclusions

