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It has been proposed that two-band superconductors exhibit a distinct phase characterized by
two correlation lengths, where one is smaller and the other larger than the magnetic field penetra-
tion length. This regime was coined type-1.5 superconductivity, with a number of unconventional
properties, such as vortex clustering. However a fully microscopic solution for vortex clusters has
remained challenging due to computational complexities beyond quasiclassical models. In this work,
we present numerical solutions obtained in a fully self-consistent two-band Bogoliubov-de-Gennes
model. We show the presence of discrepant correlation lengths leading to vortex clustering in two-
band superconductors.

The original work by Ginzburg and Landau introduced
the concept of coherence length ξGL [1] and classified
superconductors by a single Ginzburg-Landau parame-
ter: the ratio κGL = λ/ξGL of two fundamental length
scales: the magnetic field penetration length λ and the
coherence length ξGL. The latter is a fundamental length
scale that governs the asymptotic behavior of the modu-
lus of superconducting gap |∆|eiθ or equivalently, up to
a different prefactor [2], Ginzburg-Landau order param-
eter field |Ψ|eiθ. The existence of this order parameter
and, hence, the fundamental length, ξGL is guaranteed
by the fact that a superconductor breaks local U(1) sym-
metry [1]. Within Ginzburg-Landau’s (GL) theory, the
superconductor allows repulsively interacting vortices for
κGL > 1/

√
2, called type-2 superconductivity [3]. The

vortices form lattices when the magnetic field is larger
than the first critical magnetic field Hc1 and smaller than
the second critical magnetic field Hc2 [3]. These critical
magnetic fields were introduced in the series of experi-
mental works by Shubnikov et al. [4, 5]; hence the state
forming Hc1 < H < Hc2 also referred to as Shubnikov’s
phase. In what follows, we will absorb the factor

√
2 into

the definition of coherence length ξ ≡
√
2ξGL. Hence,

the GL criterion for type-2 superconductivity in these
notations is κ ≡

√
2κGL > 1. Each vortex has a current-

carrying area of radius λ around its core. At the vortex
core, the modulus of the order parameter is suppressed.
The exact definition of ξ is the characteristic exponent of
the gap decay far away from the center of the vortex core.
At low temperatures, the overall size of the vortex core
is smaller than ξ in the simplest models [6]. Note also
that in strongly type-2 superconductors, the long-range
asymptotic of a vortex is affected by nonlinearities [7].
When κ < 1, in an ordinary Ginzburg-Landau theory,
the vortex is too energetically expensive and thermody-
namically unstable. At κ = 1 vortices do not interact
[8–10] [11].

Ginzburg and Landau’s work [1] classified single-
component superconductors. Today, many of the super-
conducting states of interest break multiple symmetries,
for example, featuring a breakdown of time-reversal sym-

metry or translation symmetry or nematicity. Hence,
they require description in terms of multiple order pa-
rameter fields |Ψi|eiθi and hence must be characterized
by multiple coherence lengths. It was pointed out in [12]
that in multicomponent systems, a new regime is possi-
ble where some coherence lengths are shorter than the
magnetic field penetration length, and some are larger:
ξ1 < ξ2 < ...λ < ξn < ξn+1.... This regime was termed
type-1.5 in [13]. The vortex excitations there can be
viewed as composite objects. Namely, they are bound
states of elementary vortices with phase winding only in
one of the components

∮
dl∇θn = ±2π. Such elemen-

tary constituents each carry a fraction of flux quantum
and are much more energetically expensive than integer-
flux vortices [14]. Then, in an external field, the system
is expected to form composite vortices where all com-
ponents have phase winding around the common core,
which can also be viewed as bound states of fractional
vortices where fractions add up to one flux quantum.
The fractional vortices with phase winding only in the
single band have been recently experimentally observed
[15]. When some of the coherence lengths are larger than
the magnetic field penetration length, the density-density
interaction results in long-range attractive intervortex
forces, while the magnetic- and current- interaction gives
short-range repulsion [12, 16, 17]. Consequently, in a low
magnetic field, such a system exhibits vortex clustering
and phase separation in vortex droplets and the Meissner
domains [12, 16–19]. The concept of type-1.5 supercon-
ductivity was also generalized to other systems beyond
superconductivity, such as the typology of Quantum Hall
systems [20] and neutron stars [21].

In the above, we emphasized the case of multiple bro-
ken symmetries. The more nontrivial case for typology
is represented by the commonly occurring superconduct-
ing materials with multiband electronic structure. Such
systems have multiple superconducting gaps forming on
different bands |∆α|eiθα but where interband Josephson
interaction breaks symmetry down to single U(1). In
that case, symmetry does not guarantee multiple cor-
relation lengths, even when there are multiple bands.
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Nonetheless, in the simplest Landau theories, breaking
a symmetry explicitly does not prohibit the existence of
extra coherence length. It was discussed at the level of
two-band Ginzburg-Landau theory in [16–18, 22] that in
multiband U(1) systems, multiple coherence lengths arise
and are associated with different linear combinations of
the gaps fields [23]. However, the justification of multiple
coherence lengths is nontrivial: the two-band Ginzburg-
Landau model is an expansion in multiple small parame-
ters associated with multiple small gaps and correspond-
ing gradients. Such an expansion is not always justified
as it is based not on a small parameter guaranteed by
symmetry but depends on the structure of the intercom-
ponent interaction [24], such as strength and presence
or absence of frustration. The conditions and param-
eter range where two coherence lengths occur in two-
band U(1) systems were studied in microscopic quasi-
classical Eilenberger formalism in [24, 25], confirming, at
the level of quasiclassical theory the existence of length
scale hierarchy ξ1 <

√
2λ < ξ2 in two-band systems

that break only a single symmetry. In the simplest two-
band models, it requires having weak interband coupling
[24, 25]. These works also calculated asymptotic intervor-
tex forces in two-band Eilenberger formalism. Solutions
for vortex clusters in the type-1.5 regime were obtained in
several microscopically derived Ginzburg-Landau models
[24, 26, 27]. However, to date, no solutions for vortex
clusters in the type-1.5 regime were demonstrated in mi-
croscopic models. Vortex clusters were observed experi-
mentally in several multiband systems and attributed to
type-1.5 physics in [13, 28–35].

A microscopic approach that retains even the shortest-
length-scales physics is the Bogoliubov-de-Gennes (BdG)
formalism [36]. Within this formalism, fully microscopic
solutions, including self-consistent calculation of mag-
netic field, were obtained for an isolated Abrikosov vortex
in [6, 37, 38]. However, obtaining the solutions for vortex
clusters is significantly more challenging as one cannot
rely on an axially symmetric Anzats. Here, we report
solutions of vortex clusters in the fully self-consistent
numerical treatment of the multiband Bogoliubov–de-
Gennes model, including a self-consistent solution for the
magnetic field.

The two-band BdG model, that we consider, is de-
fined on a two-dimensional square lattice, described by
the mean-field Hamiltonian

H = −
∑
σα

∑
<ij>

eiqAijc†iσαcjσα+

+
∑
iα

(
∆iαc

†
↑iαc

†
↓iα +H.c.

)
+

1

2
Fm .

(1)

Here < ij > denotes all nearest neighbor pairs, ciσα is
the fermionic annihilation operator at position i, with
spin σ (σ ∈ {↑, ↓}) and band index α (α ∈ {1, 2}) and
H.c. denotes Hermitian conjugation. The phase factor

exp{iqAij} accounts for the interaction with the mag-
netic vector potential A through Peierls substitution
[39, 40], 1

2Fm is the magnetic field energy density.

Aij =

∫ i

j

A · dℓ , (2)

the gap fields are defined as

∆iα =
∑
β

Vαβ ⟨c↑iβc↓iβ⟩ , (3)

where Vαβ = V ∗
βα stands for quadratic interaction term,

and the fermionic current is

Jij = −2q
∑
ασ

Im
(
⟨c†iασcjασ⟩e

iqAij

)
. (4)

and discrete version of Maxwell’s equation∇×∇×A = J
determines the connection between Aij and Jij .

The free energy associated with the tight binding
Hamiltonian Eq. (1), may be expressed as

FH =
∑
i

∆†
iV

−1∆i − kBT Tr ln
(
e−βH + 1

)
+

+
1

2

∑
plaquettes

B2,
(5)

where the magnetic field B = ∇ × A is defined on pla-
quettes.
The self-consistency equations Eq. (3), Eq. (4), along

with the Maxwell equation, are solved numerically us-
ing iterative scheme, described in [41]. Two independent
codes were used to validate the solutions. New values
are obtained for the vector potential and the gaps dur-
ing each iteration, using Eq. (3). They can be calcu-
lated by obtaining the eigenvectors cσiα by direct diag-
onalization of the Hamiltonian or using the Chebyshev
spectral expansion scheme. The key results of the paper
are obtained by Graphic Processing Units (GPU)-based
exact matrix diagonalization, which is used for free en-
ergy calculation Eq. (5). In addition, we report approxi-
mate solutions for a larger vortex cluster, obtained using
the approximate Chebyshev spectral expansion method
for larger vortex clusters. The iteration procedure stops
when the convergence criteria |δp/ (p+ ϵ)| < ε is achieved
for each of the parameters ∆1, ∆2, and A simultaneously.
Below, we report microscopic solutions for vortex clus-

ters in the BdG model. We demonstrate (i) the exis-
tence of multiple correlation lengths in the microscopic
solution, (ii) that these length scales form the required
hierarchy: ξ1 < λ < ξ2, (iii) the intervortex interac-
tion potential has a minimum at a finite distance (iv)
a multi-quanta vortex separates into a bound state of
single-quanta vortices, forming a cluster.
We study a square sample with linear size L and open

boundary conditions. The crucial aspect is to avoid
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mesoscopic effects on vortex physics. For that reason,
the vortices are initiated with an initial guess far away
from sample boundaries, and the sample is chosen to be
significantly large to avoid vortex escape due to bound-
ary attraction. For the same reason, only the regime with
moderate disparity of the length scales could be studied
to have all the characteristic length scales much smaller
than the grid size and, at the same time, significantly
larger than lattice spacing. The calculations based on
the Chebyshev approximation method were performed
on a grid with L = 64. For free energy calculations, we
used the exact diagonalization method with double pre-
cision, so the system size is decreased to L = 48 sites.
Since the quasiclassical analysis [25] suggests that inter-
band coupling should be very weak to have well-defined
multiple correlation lengths, we analyze the Hamiltonian
Eq. (1) with the following numerical parameters q = 0.6,
V11 = 2.8, V22 = 2.2, V12 = 0.01, and T = 0.264. We use
the the convergence criteria ϵ = 10−8, ε = 10−6.

First, we analyze the structure of a single vortex.
Single-vortex states were calculated using the Chebyshev
spectral expansion approximation. From these solutions,
the asymptotics for magnetic field and order parameter
correlation length were obtained FIG. 1.

In the presence of even a small inter-band Joseph-
son coupling V12, coherence lengths are affected quan-
titatively and qualitatively. Calculations in two-band
Ginzburg-Landau [16, 17] and Eilenberger [24, 25] for-
malisms predict that away from a vortex, each gap field
approaches its asymptotic value

∣∣∆u
1,2

∣∣ with two length
scales. In these models, the gap asymptotic is given by a
combination of two modified Bessel functions:

|∆1 (r)| = |∆u
1 | − q1 cosΘK0 (r/ξ1) + q2 sinΘK0 (r/ξ1)

|∆2 (r)| = |∆u
2 | − q1 sinΘK0 (r/ξ1)− q2 cosΘK0 (r/ξ2)

(6)
This implies that due to interband coupling, the coher-
ence lengths ξ1,2 are associated with the linear combina-
tion of the gap fields rather than individual bands.

The crossection on FIG. 1, shows two length scales in
the gap function. From the solution, we can see that even
a weak interband coupling forces the same long-range
asymptotic on both gap functions despite very different
behavior of ∆1 near the origin. The solutions can be
fitted with Eq. (6), which gives us ξ1 ≈ 1.27, ξ2 ≈ 4.53,
q1 ≈ 0.043, q2 ≈ −0.48, Θ ≈ 0.495π, meanwile fit for B =
qbe

−x/λ
√
λ/x gives λ ≈ 2.25 and qb = 0.14. Therefore, it

shows that ξ1 < λ < ξ2, which verifies, that the system
is in the type-1.5 regime for these coupling constants.

Upon establishing the type-1.5 hierarchy of the length
scales, we demonstrate that the system forms vortex clus-
ters due to the competition of long-range attractive core-
core interaction set by coherence length ξ2 and shorter-
range current-current and magnetic interaction set by the
magnetic field penetration length λ. In the next step,
we analyze the interaction energy between two vortices.
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FIG. 1. The absolute values for superconducting gap and
magnetic field for single vortex, showing three distinct length
scales. Left - asymptotic of single-vortex solution. Dots repre-
sent numerical data for the gap amplitudes ∆1,2 and magnetic
field B; lines show the fit for the function Eq. (6). Right -
heatmaps for |∆1|, |∆2| and |B|. Dot lines show the cross-
section line, represented on the left figure.

To ensure that the results are not artifacts of numerical
grid pinning, the calculations are performed for a variety
of initial conditions. The total free energy of the system
Eq. (5) is orders of magnitude higher than the intervortex
interaction energy, so the exact diagonalization method
and double precision were used to ensure the accuracy of
the energy calculations.

If the distance between the vortices in the initial guess
is large enough, the interaction force will not move the
vortex from its initial position due to the exponential
falloff of interaction, and the presence of an underlying
lattice. This on the one hand, allows us to calculate
directly the energy of vortex interaction on different dis-
tances away from the minimum of the potential FIG. 2,
on the other hand the grid pinning mean that we slightly
overstimate the interaction energy, compared to the an-
alytic expression (8). The interaction energy of vortex
pair Eint (r) is calculated as follows: We calculate nu-
merically the energy of a vortex pair put the positions r1
and r2: Fp (L, r1, r2) from this we subtract (i) the energy
of the system in the absence of vortices Fu (L), and (ii)
the energies of the solutions for single vortices, which are
calculated at the same positions as vortices in the pair
r1,2, in order to diminish the finite-size and discretization
effects.

Eint (r) = Fp (L, r1, r2) + Fu (L)− Fv (L, r1)− Fv (L, r2)
(7)

where r = |r1 − r2|.

The long-range asymptotic form for the vortex-vortex
interaction energy in type-1.5 superconductor calculated
in continuum two-band Ginzburg-Landau [16, 24] and
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FIG. 2. Left - vortex pair interaction energy Eq. (7), ex-
pressed in single-vortex energy units Ev = Fv−Fu vs relative
distance r/L between the vortex cores. The leftmost data
point corresponds to the calculated minimum of the interac-
tion energy. The dashed line is the analytic fit based on -
Eq. (8). Right - |∆1|, |∆2| and |B| for the minimal energy
solution. There is a noticeable core overlap in ∆2.

Eilenberger [25] formalisms has the form

V (r) = α
(
q2bKo (r/λ)− q22Ko (r/ξ2)− q23Ko (r/ξ1)

)
(8)

where α is a positive constant [42].
The two dominant terms with λ and ξ2 in this expres-

sion give a minimum of the interaction potential at a cer-
tain intervortex distance that depends on the competing
coherence and magnetic field penetration length scales.
We can compare this approximate expression with the
results of our BdG-based calculations. First, since we
are interested only in long-range forces, we omit the part
with the shortest length scale Ko (r/ξ1) from Eq. (6).
In the above, we extracted the coherence and magnetic
field penetration lengths from our solutions. Using these
lengths, we fit the results from Eq. (7) using Eq. (8) and
obtain α. Although, strictly speaking, the form Eq. (8) is
derived using different continuum models, that equation
approximately fits the calculated intervortex potential. It
also shows that the long-range attraction is dominated by
density-density interaction between the extended vortex
cores and short-range repulsion is dominated by current-
current and magnetic interactions.

Finally, an approximate solution for a larger vortex
cluster is obtained. The exact diagonalization meth-
ods are computationally expensive, and larger system
sizes are necessary to study multi-vortex clusters, so the
Chebyshev spectral expansion method was used. The
system Eq. (1) is evaluated for a single multi-quanta vor-
tex solution as an initial conditions. The giant vortex
is not a stable configuration and it decays into a vortex
cluster. On FIG. 3 is shown the solution for an initial
guess of the giant vortex with charge 3.

In conclusion, we demonstrated, in a fully microscopic
formalism, the superconductivity beyond type-1/type-2
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FIG. 3. Cluster made of 3 vortices. The panels show the
absolute values |∆1,2| and phases φ1,2 for gap distributions,
magnetic field B and current |J | from Eq. (4) in the system
and tunneling conductance below σ (0) and above σ (V1) the
gap. The initial state of the system was a single vortex with
charge 3. There is a visible overlap of the vortex cores in the
second component. The distance between the cores for each
pair of vortices is the same as for the minimal energy solution
on FIG. 2

dichotomy in two-band superconductors. Such supercon-
ductors break only a single symmetry due to interband
coupling. Nonetheless, when the interband coupling is
weak, the obtained vortex solutions clearly show the ef-
fects of multiple correlation lengths. The numerical solu-
tions show that these correlation lengths are hybridized:
i.e. associated with different linear combinations of the
gap fields. For weak interband coupling, we find hier-
archy of the length scales ξ1 < λ < ξ2 that leads to
attractive intervortex interaction at large separation due
to core-core overlap. It does not exclude large disparity
of coherence lengths at stronger interband coupling, for
example in the cases of frustrated interband coupling or
proximity to a phase transition into a superconducting
state with different symmetry [22, 26]. The Bogoliubov-
de-Gennes formalism allows us also to calculate signa-
tures of the vortex clusters in Scanning Tunneling Mi-
croscopy. In such a probe, a vortex cluster in the con-
sidered microscopic model, can appear as a group of vor-
tices with individual small cores yet having a significant
attractive interaction. This is because the large coher-
ence length is associated with an asymptotic tail where
both gaps are suppressed at a long range but with a very
small amplitude.
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