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ABSTRACT

We study a planar random motion
`

Xptq, Y ptq
˘

with orthogonal directions which can turn clockwise,
counterclockwise and reverse its direction each with a different probability. The support of the process
is given by a time-varying square and the singular distributions on the boundary and the diagonals
of the square are obtained. In the interior of the support, we study the hydrodynamic limit of the
distribution. We then investigate the time T ptq spent by the process moving vertically and the joint
distribution of

`

T ptq, Y ptq
˘

. We prove that, in the hydrodynamic limit, the process
`

Xptq, Y ptq
˘

spends half the time moving vertically.

Keywords Telegraph process ¨ Bessel functions ¨ Hyperbolic equations

1 Introduction

Finite-velocity planar random motions have been investigated by several authors in the literature since the Eighties.
These motions can be classified according to different criteria. One such classification considers the number of possible
directions the motion can take, distinguishing between minimal (Di Crescenzo [4]), orthogonal (Orsingher [12]) and
motions with infinite directions (Orsingher and De Gregorio [13]). A categorization is also possible based on the
distribution of the waiting time before a change of direction occurs. While the classical problem involves direction
changes at Poisson times, variants such as the Polya process (Crimaldi et al. [3]), processes with gamma-distributed
intertimes (Martinucci et al. [9]) and the geometric counting process (Di Crescenzo et al. [5]) have been explored in the
univariate case. In the bivariate case, Cinque and Orsingher [2] examined the case in which the direction changes are
governed by a non-homogeneous Poisson process. Fractional extensions of finite-velocity planar random motions have
been investigated by Masoliver and Lindenberg [11] and Masoliver [10].
A relevant criteria for classifying planar random motion considers the mechanism for determining the direction taken
after a change occurs. Orsingher [12] investigated a motion with orthogonal directions which turns clockwise or
counter-clockwise with equal probabilities. Di Crescenzo [4] examined a minimal cyclic random motion, which can
only turn counter-clockwise when the change of direction occurs. A cyclic planar random motion with orthogonal
directions was examined by Orsingher et al. [14]. Kolesnik and Orsingher [6] and Cinque and Orsingher [2] discussed
a variant of the planar motion which can turn clockwise, counter-clockwise and can reverse its direction, each with an
equal probability of 1

3 . The term reflection was used by the authors to denote the direction reversal, and they showed
that expressing the distribution of the process explicitly becomes a challenging task when reflection is present.
Multivariate extensions have been proposed, for minimal cyclic random motions, by Samoilenko [15] and Lachal et
al. [8]. Lachal [7] studied multidimensional random motions with an arbitrary number of directions, while three-
dimensional random motions with orthogonal directions were investigated by Cinque and Orsingher [1].
In this paper, we study a finite-velocity planar random motion for which orthogonal changes of direction and reflection
occur with different probabilities. We consider a planar random motion

`

Xptq, Y ptq
˘

which moves along four directions

dj “

´

cos
´π

2
j
¯

, sin
´π

2
j
¯¯

, j “ 0, 1, 2, 3.

Of course, we have that dj “ dj`4n for integer values of n. We assume that the random vector
`

Xptq, Y ptq
˘

lies at the
origin of the Cartesian plane at the initial time t “ 0, and it starts moving along one of the four possible directions
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Planar random motions in a vortex

with equal probabilities. The changes of direction are modeled as Poisson arrivals and we denote by Nptq, t ą 0, the
total number of changes. The intensity of Nptq is assumed to be constant and we denote it by λ. Moreover, we assume
that at each Poisson event the new direction is taken according to the following rule. With probability p the direction
changes by a counter-clockwise turn, therefore passing from dj to dj`1. With probability q the direction changes by a
clockwise turn, therefore passing from dj`1 to dj . A reflection occurs wih probability 1´ p´ q, changing the direction
from dj to dj`2. Thus, reflection is possible only if p ` q ă 1. In the special case p “ q “ 1

2 , the process we study
reduces to that studied by Kolesnik and Orsingher [6] for which an explicit representation of the distribution can be
obtained. If p ‰ q, a vorticity effect is introduced in the sense that the process tends to perform clockwise turns with
higher probability if p ă q, while counter-clockwise turns are more likely to occur if p ą q. In the limiting cases p “ 1
or q “ 1, the cyclic random motion investigated by Orsingher et al. [14] is obtained. It is clear that the support of the
motion is time-dependent and coincides with the square Sct defined as

Sct “
␣

px, yq P R2 : |x ` y| ď ct, |x ´ y| ď ct
(

.

Moreover, the distribution of
`

Xptq, Y ptq
˘

has a singular component on the boundary BSct of the domain Sct. The
particle with position

`

Xptq, Y ptq
˘

lies on BSct if no changes of direction occur or if clockwise and counter-clockwise
turns alternate. In particular, if no changes of direction occur the particle lies on the vertices of the square Sct. A sketch
of some sample paths is provided in figure 1.

Figure 1: some sample paths of the process
`

Xptq, Y ptq
˘

. The motion takes place in the time-varying square Sct and a
degenerate component of the distribution is present on the boundary and the diagonals of the square. In particular, the
process lies on BSct if the path changes direction by always alternating two contiguous directions. This behaviour is
displayed, for instance, by the red path in the figure. The green and blue sample paths lead the particle to the interior of
the support. While the green path only exhibits clockwise and counterclockwise changes of direction, in the blue path a
reflection has occurred and the particle has reversed its direction.

Our work starts with the presentation of some results concerning the distribution of the process
`

Xptq, Y ptq
˘

on the
boundary BSct. In the general case where reflection is admitted, the probability of the particle lying on the boundary is
given by

P
´

`

Xptq, Y ptq
˘

P BSct

¯

“ e´λt

"

eλt
?
pq

ˆ

1 `
p ` q

2
?
pq

˙

` e´λt
?
pq

ˆ

1 ´
p ` q

2
?
pq

˙

´ 1

*

.

On each side of BSct, the distribution of
`

Xptq, Y ptq
˘

admits a continuous component which is explicitly obtained in
this paper. In particular, we prove that

P
´

Xptq`Y ptq “ ct, Xptq ´ Y ptq P dη
¯

{ dη

“
e´λt

4c

„

λpp ` qq

2
I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙

`
B

Bt
I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙ȷ

, |η|ă ct

2



Planar random motions in a vortex

with characeristic function

E
”

eiαpXptq´Y ptqq 1tXptq`Y ptq“ctu

ı

“
e´λt

4

«˜

1 `
λpp ` qq

2
a

λ2pq ´ α2c2

¸

et
?

λ2pq´α2c2

`

˜

1 ´
λpp ` qq

2
a

λ2pq ´ α2c2

¸

e´t
?

λ2pq´α2c2

ff

.

We then proceed with our analysis by studying the distribution of
`

Xptq, Y ptq
˘

on the diagonals of Sct, that is on the set

Qct “ tpx, yq P Sct : x “ 0 _ y “ 0u .

We first show that
P
´

`

Xptq, Y ptq
˘

P Qct

¯

“ e´λpp`qqt. (1)

Formula (1) above highlights that if p ` q “ 1, that is if reflection is not admitted, the probability of the particle lying
on the diagonals of the square Sct coincides with the probability of no Poisson events occurring, which implies that no
direction changes occur and therefore the particle must lie on one of the vertices of Sct. In other words, if reflection
is not admitted the particle lies on Qct if and only if it lies on one of the vertices of Sct. Conversely, if reflection is
possible, the distribution of

`

Xptq, Y ptq
˘

on Qct admits a continuous component. In fact, we show that, if p ` q ă 1,

P
´

Xptq P dx, Y ptq “ 0
¯

{ dx “
e´λt

4c

«

λp1 ´ p ´ qq I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙

`
B

Bt
I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙

ff

, |x|ă ct

and we obtain the corresponding characteristic function.
We then study the distribution of

`

Xptq, Y ptq
˘

in the interior of its support Sct. We show that the probability density
function

upx, y, tq dx dy “ P
´

Xptq P dx, Y ptq P dy
¯

, |x|`|y|ă ct (2)

is the solution to a complicated fourth-order partial differential equation for which a general solution is difficult to
give in an explicit form. In the special case in which reflection is not admitted, we derive the characteristic function of
`

Xptq, Y ptq
˘

in the interior of Sct explicitly. In the general case, we are able to study the hydrodynamic limit of the
distribution for λ, c Ñ `8, with λ

c2 Ñ 1, and we prove that the heat equation

Bu

Bt
“

1

4

p1 ´ pq ` p1 ´ qq

p1 ´ pq2 ` p1 ´ qq2
∆u (3)

is satisfied in the limiting case. The interpretation of equation (3) is that the process
`

Xptq, Y ptq
˘

converges to a planar
Brownian motion with independent components and diffusion coefficient depending on p and q. It is interesting to
observe that the diffusion coefficient is maximized for p “ q “ 1

2 .

The final part of our work is devoted to the study of the time spent by
`

Xptq, Y ptq
˘

moving vertically, in parallel to the
y-axis. Thus, we study the random process

T ptq “

ż t

0

1tDpτqPtd1,d3uu dτ, t ą 0.

We obtain the exact distribution of T ptq and its characteristic function. In particular, we prove that

P
´

T ptq P ds
¯

{ds “ e´λpp`qqt

«

λpp`qq I0

´

2λpp ` qq
a

spt ´ sq

¯

`
B

Bt
I0

´

2λpp ` qq
a

spt ´ sq

¯

ff

, s P p0, tq. (4)

We then analyze the joint distribution of the vector
`

T ptq, Y ptq
˘

. The support of such random vector is given by the
triangle

Rct “
␣

ps, yq P R2 : |y|ď cs, s P r0, ts
(

.

3



Planar random motions in a vortex

The process
`

T ptq, Y ptq
˘

can move along two directions which are parallel to the oblique sides of Rct. Moreover, as
we will discuss in the remainder of the paper, the process can arrest its movement at some points and stay still for some
time. In particular, this occurs when the process

`

Xptq, Y ptq
˘

is moving horizontally in Sct. Some sample paths of the
process

`

T ptq, Y ptq
˘

are exemplified in figure 2.

Figure 2: some sample paths of the process
`

T ptq, Y ptq
˘

, whose support coincides with the time-varying triangle
Rct. The particle with position

`

T ptq, Y ptq
˘

can move along two diffrent directions, parallel to the oblique side of
the triangle, and can arrest its movement at some points and stay still for some time. For each path in the figure, we
highlighted with a dot the points in which the particle has stopped. In particular, the particle which moved along the
blue path has never arrested its movement and therefore it lies on the verical side of Rct. The particle lies on one of the
oblique sides of Rct if it always moves along the same direction, possibly stopping its movement sometimes. This is
the case of the red path in the figure.

We first study the distribution of
`

T ptq, Y ptq
˘

in the interior of Rct and we show that the probability density function

ūps, y, tq ds dy “ P
´

T ptq P ds, Y ptq P dy
¯

, ps, yq P Rct. (5)

satisfies a third-order partial differential equation. By studying the hydrodynamic limit of the equation, we prove that,
for λ, c Ñ `8 with λ

c2 Ñ 1, the partial differential equation

Bu

Bt
“ ´

1

2

Bu

Bs
`

1

4

p1 ´ pq ` p1 ´ qq

p1 ´ pq2 ` p1 ´ qq2

B2u

By2.
(6)

holds. The interpretation of equation (6) is that, by taking the hydrodynamic limit, the asymptotic distribution is

lim
λ,cÑ`8

P
´

T ptq P ds, Y ptq P dy
¯

{ pds dyq “

d

p1 ´ pq2 ` p1 ´ qq2

p1 ´ pq ` p1 ´ qq
¨
e´

p1´pq2`p1´qq2

p1´pq`p1´qq
y2

t

?
πt

¨ δ

ˆ

s ´
t

2

˙

where the symbol δp¨q denotes the Dirac delta. Therefore, while in the hydrodynamic limit the variable Y ptq becomes a
Brownian motion with variance depending on p and q, the process T ptq becomes deterministic and its limiting value is
equal to t

2 . Thus, in the limit, the process
`

Xptq, Y ptq
˘

spends half of the time moving vertically.
The joint distribution of

`

T ptq, Y ptq
˘

is also studied on the sides of the triangle Rct. As for the oblique side, on which
the particle lies if Y ptq “ cT ptq, the distribution satisfies a third-order partial differential equation. In the special case
p ` q “ 1, we are able to study such equation in detail. We first calculate the probability of the particle

`

T ptq, Y ptq
˘

lying on the oblique side of the triangle, which reads

P
`

Y ptq “ c T ptq
˘

“
e´λt

8

#˜

1 `
1

a

2pp1 ´ pq

¸2

eλt
?

2pp1´pq

`

˜

1 ´
1

a

2pp1 ´ pq

¸2

e´λt
?

2pp1´pq ´
p2p ´ 1q2

pp1 ´ pq

+

.

4
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We then investigate the exact distribution of
`

T ptq, Y ptq
˘

when Y ptq “ cT ptq. If p ` q “ 1, we show that

P
´

T ptq P ds, Y ptq “ c T ptq
¯

{ ds “
λ

2
?
2
I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

`
1

4

ˆ

1 `
1

2pp1 ´ pq

˙

B

Bt
I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

, |s|ă t.

We then discuss a special case in which the partial differential equation governing the distribution of
`

T ptq, Y ptq
˘

on the
oblique side of Rct reduces to a second-order equation, namely the case p “ q in which clockwise and counterclockwise
changes of direction are equiprobable. While we are not able to find the exact distribution, for p “ q we obtain the
probability of the particle lying on the oblique side of Rct, that is

P
`

Y ptq “ c T ptq
˘

“
3

8

˜

1 `
p1 ` 6pq

3
a

12p2 ´ 4p ` 1

¸

e
λt
2

´

´p1`2pq`
?

12p2´4p`1
¯

`
3

8

˜

1 ´
p1 ` 6pq

3
a

12p2 ´ 4p ` 1

¸

e
λt
2

´

´p1`2pq´
?

12p2´4p`1
¯

.

Finally, we study the distribution of
`

T ptq, Y ptq
˘

on the vertical side of Rct and we show that it perfecly resembles the
distribution of the process

`

Xptq, Y ptq
˘

on the diagonals Qct of the square Sct. Thus, it holds that

P
´

Y ptq P dy, T ptq “ t
¯

{ dy “
e´λt

4c

«

λp1 ´ p ´ qq I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ y2
˙

`
B

Bt
I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ y2
˙

ff

, |y|ă ct

The paper is structured in the following manner. In section 2 we study the distribution of the process
`

Xptq, Y ptq
˘

on
the boundary BSct of its support, while in section 3 we study the distribution on the diagonals Qct. Section 4 is devoted
to the study of the distribution in the interior of the square Sct. In the final section, the distribution of the time spent
moving vertically T ptq and the joint distribution of the vector

`

T ptq, Y ptq
˘

are studied.

2 Distribution on the boundary

In this section, we study the behaviour of the particle
`

Xptq, Y ptq
˘

on the boundary of the square Sct. We first calculate
the probability of the particle lying on BSct and we then obtain the exact distribution of the position of the particle
on the boundary. We examine the general case in which reflection is possible. Our analysis starts by observing that,
regardless of the initial direction of the motion, the boundary can be reached if the particle always moves along two
contiguous directions by alternating clockwise and counterclockwise changes of direction. Of course, if no changes of
direction occur, the motion always takes place on BSct because the particle lies on the vertices of the square. Therefore,
we distinguish three cases in which the particle is on BSct:

• the particle is on the boundary because no changes of direction occur
• an even number of alternating changes of direction occurs, in which case the first change of direction can be

either clockwise or counterclockwise
• an odd number of alternating changes of direction occurs, in which case the first change of direction can be

either clockwise or counterclockwise.

Thus, we have the following result.
Theorem 1. It holds that

P
´

`

Xptq, Y ptq
˘

P BSct

¯

“ e´λt

"

eλt
?
pq

ˆ

1 `
p ` q

2
?
pq

˙

` e´λt
?
pq

ˆ

1 ´
p ` q

2
?
pq

˙

´ 1

*

. (7)

Proof. By treating separately the cases in which the process performs no changes of direction, an even number of
changes and an odd number of changes, we can write that

P
´

`

Xptq, Y ptq
˘

P BSct

¯

5



Planar random motions in a vortex

“P
`

Nptq “ 0
˘

`

8
ÿ

k“1

P
`

Nptq “ 2k
˘ `

pkqk ` qkpk
˘

`

8
ÿ

k“0

P
`

Nptq “ 2k ` 1
˘ `

pk`1qk ` qk`1pk
˘

“e´λt ` 2e´λt
8
ÿ

k“1

pλt
?
pqq2k

p2kq!
` e´λt pp ` qq

?
pq

8
ÿ

k“0

pλt
?
pqq2k`1

p2k ` 1q!

“e´λt ` 2e´λt
`

cosh pλt
?
pqq ´ 1

˘

` e´λt pp ` qq
?
pq

sinh pλt
?
pqq

“e´λt

"

eλt
?
pq

ˆ

1 `
p ` q

2
?
pq

˙

` e´λt
?
pq

ˆ

1 ´
p ` q

2
?
pq

˙*

´ e´λt

which completes the proof.

We emphasize that formula (7) represents the probability of the particle being at any point on the entire boundary of the
support, encompassing all four sides and the vertices of the square. In order to calculate the probability of the particle
lying in the interior of a specific side of BSct, the probability mass on the vertices must be subtracted. The result must
then be divided by four in order to focus on just one side. For instance, the probability of the process

`

Xptq, Y ptq
˘

belonging to the interior of the side of BSct which belongs to the first quadrant of the Cartesian plane is given by

P
´

Xptq ` Y ptq “ ct, |Xptq ´ Y ptq| ă ct
¯

“
1

4

”

P
´

`

Xptq, Y ptq
˘

P BSct

¯

´ P
`

Nptq “ 0
˘

ı

“
e´λt

4

"

eλt
?
pq

ˆ

1 `
p ` q

2
?
pq

˙

` e´λt
?
pq

ˆ

1 ´
p ` q

2
?
pq

˙

´ 2

*

. (8)

We now highlight some interesting special cases of formula (7). First of all, if reflection is not admitted, that is if
p ` q “ 1, we have that

P
´

`

Xptq, Y ptq
˘

P BSct

¯

“ e´λt

#

eλt
?

pp1´pq

˜

1 `
1

2
a

pp1 ´ pq

¸

` e´λt
?

pp1´pq

˜

1 ´
1

2
a

pp1 ´ pq

¸

´ 1

+

. (9)

Moreover, a noticeable simplification of formula (7) occurs for p “ q, in which case we can write

P
´

`

Xptq, Y ptq
˘

P BSct

¯

“ 2e´λtp1´pq ´ e´λt. (10)

For p “ q “ 1
3 , formula (10) is consistent with the results obtained by Cinque and Orsingher [2]. In the special case

p “ 1
2 , both formulas (9) and (10) reduce to

P
´

`

Xptq, Y ptq
˘

P BSct

¯

“ 2e´ λt
2 ´ e´λt

which coincides with the result obtained by Orsingher [12].

We now study the distribution of
`

Xptq, Y ptq
˘

on a side of BSct. In particular, we consider the side belonging to the
first quadrant of the Cartesian plane. Therefore, we want to determine the probability density function

fpη, tq “ P
´

Xptq ` Y ptq “ ct, Xptq ´ Y ptq P dη
¯

{ dη, ´ct ă η ă ct. (11)

We start by considering, for j “ 0, 1, the density functions

fjpη, tq “ P
´

Xptq ` Y ptq “ ct, Xptq ´ Y ptq P dη, Dptq “ d0

¯

{ dη .

Clearly, we have that
fpη, tq “ f0pη, tq ` f1pη, tq. (12)

By means of standard methods it can be shown that
"

f0pη, t ` dtq “ f0pη ´ c dt, tqp1 ´ λ dtq ` f1pη, tqλq dt`opdtq

f1pη, t ` dtq “ f1pη ` c dt, tqp1 ´ λ dtq ` f0pη, tqλp dt`opdtq
(13)

6
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Therefore, by performing a first-order Taylor expansion of the equations in formula (13), we obtain that f0 and f1
satisfy the system of partial differential equations

$

’

’

&

’

’

%

Bf0
Bt

“ ´c
Bf0
Bη

` λqf1 ´ λf0

Bf1
Bt

“ c
Bf1
Bη

` λpf0 ´ λf1

(14)

with initial condition f0pη, 0q “ f1pη, 0q “ 1
4 δpηq. The relationship (12) together with the system of differential

equations (14) implies that the probability density function f satisfies, for ´ct ă η ă ct, the partial differential equation
ˆ

B2

Bt2
` 2λ

B

Bt
´ c2

B2

Bη2
` λ2 p1 ´ pqq

˙

f “ 0 (15)

Therefore, the continuous component of the distribution (11) is given in the following theorem.
Theorem 2. The probability density function (11) is

fpη, tq “
e´λt

4c

„

λpp ` qq

2
I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙

`
B

Bt
I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙ȷ

, |η|ă ct. (16)

Proof. In view of equation (15), the function
rfpη, tq “ eλtfpη, tq (17)

satisfies the partial differential equation
B2

rf

Bt2
´ c2

B2
rf

Bη2
“ λ2pq rf. (18)

The change of variables
z “

a

c2t2 ´ η2 (19)
reduces equation (18) to the Bessel equation

d2 rf

z2
`

1

z

d rf

dz
´

λ2

c2
pq rf “ 0

whose general solution reads
rfpzq “ A I0

ˆ

λ

c

?
pqz

˙

` B K0

ˆ

λ

c

?
pqz

˙

. (20)

We disregard the term involving the modified Bessel function of the second kind K0p¨q because it would make the density
function fpη, tq non-integrable in proximity of the endpoints η “ ˘ct. Therefore, by inverting the transformations (17)
and (19), we express the solution to equation (15) in the form

fpη, tq “ e´λt

„

A I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙

` B
B

Bt
I0

ˆ

λ

c

?
pq
a

c2t2 ´ η2
˙ȷ

(21)

Comparing formulas (20) and (21), observe that we added a term involving the time derivative of the Bessel function in
order to add flexibility to the general solution to equation (15). The introduction of the additional term can be performed
because equation (15) is homogeneous with respect to the time variable. We now have to determine the coefficients A
and B in the expression (21). For this purpose, we use the well-known relation

ż ct

´ct

I0

´

K
a

c2t2 ´ η2
¯

dη “
1

K

`

eKct ´ e´Kct
˘

, c, t ą 0 (22)

from which we also obtain
ż ct

´ct

B

Bt
I0

´

K
a

c2t2 ´ η2
¯

dη “ c
`

eKct ` e´Kct ´ 2
˘

, c, t ą 0. (23)

Using the above formulas and integrating the expression (21), we obtain that
ż ct

´ct

fpη, tq dη “ e´λt

"ˆ

Bc `
Ac

λ
?
pq

˙

eλt
?
pq `

ˆ

Bc ´
Ac

λ
?
pq

˙

e´λt
?
pq ´ 2Bc

*

. (24)

Comparing formulas (8) and (24) yields

A “
λpp ` qq

8c
, B “

1

4c
.

which completes the proof.
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In the following theorem, we derive an explicit expression for the characteristic function of
`

Xptq, Y ptq
˘

on the
boundary of the support.

Theorem 3. The characteristic function of
`

Xptq, Y ptq
˘

on BSct is

E
”

eiαpXptq´Y ptqq 1tXptq`Y ptq“ctu

ı

“
e´λt

4

«˜

1 `
λpp ` qq

2
a

λ2pq ´ α2c2

¸

et
?

λ2pq´α2c2

`

˜

1 ´
λpp ` qq

2
a

λ2pq ´ α2c2

¸

e´t
?

λ2pq´α2c2

ff

(25)

Proof. By using the notation
pfpα, tq “ E

”

eiαpXptq´Y ptqq 1tXptq`Y ptq“ctu

ı

equation (15) implies that the following ordinary differential equation is satisfied
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

d2 pf

dt2
` 2λ

d pf

dt
`
“

c2α2 ` λ2p1 ´ pqq
‰

pf “ 0

pfpα, 0q “
1

2
d

dt
pfpα, tq

∣∣∣
t“0

“ ´
λp2 ´ p ´ qq

4

(26)

where the initial conditions have been determined from the linear system (14). The general solution to equation (26)
reads

pfpα, tq “ k0pαq e´λt`t
?

λ2pq´α2c2 ` k1pαq e´λt´t
?

λ2pq´α2c2 .

The coefficients k0 and k1 can be determined by using the initial conditions.

We conclude this section by verifying that the results presented so far are consistent with each other. We start by
observing that, for α “ 0, formula (25) reduces to

P
´

Xptq ` Y ptq “ ct
¯

“
e´λt

4

"

eλt
?
pq

ˆ

1 `
p ` q

2
?
pq

˙

` e´λt
?
pq

ˆ

1 ´
p ` q

2
?
pq

˙*

which is consistent with formula (8). Moreover, a direct calculation of the characteristic function (25) can be performed
by observing that

E
”

eiαpXptq´Y ptqq 1tXptq`Y ptq“ctu

ı

“ eiαct ¨ P
´

Xptq “ ct, Y ptq “ 0
¯

` e´iαct ¨ P
´

Xptq “ 0, Y ptq “ ct
¯

`

ż ct

´ct

eiαηfpη, tq dη

“
e´λt

2
cos pαctq `

ż ct

´ct

eiαηfpη, tq dη . (27)

By using the expression (16) for the density f and the integral formula
ż ct

´ct

eiαη I0

ˆ

λ

c

a

c2t2 ´ η2
˙

dη “
c

?
λ2 ´ α2c2

”

et
?
λ2´α2c2 ´ e´t

?
λ2´α2c2

ı

(28)

it is a matter of straightforward calculation to prove that formula (27) coincides with the characteristic function (25).

3 Distribution on the diagonals

If reflection is admitted, a degenerate component of the distribution of
`

Xptq, Y ptq
˘

emerges on the diagonals of Sct.
In order to verify this, note that the process must start moving along a diagonal at time t “ 0. If the process only
performs reflections, it is clear that it continues to move along the same diagonal as it only changes the travel orientation.
Therefore, recalling the notation

Qct “ tpx, yq P Sct : x “ 0 _ y “ 0u ,

8
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we have that

P
´

`

Xptq, Y ptq
˘

P Qct

¯

“

8
ÿ

k“0

P
´

pXptq, Y ptqq P Qct

∣∣∣Nptq “ k
¯

P pNptq “ kq

“e´λt
8
ÿ

k“0

p1 ´ p ´ qqkpλtqk

k!
“ e´λpp`qqt. (29)

Observe that, if p ` q “ 1, the expression (29) corresponds to the probability of no changes of direction occurring.
In other words, if reflection is not admitted the particle lies on the diagonals if and only if it never changes direction,
in which case it must lie in one of the vertices of Sct. We also emphasize that formula (29) gives the probability of
the particle belonging to whole diagonals, including the extremal points. In order to only consider the interior of the
diagonals, the probability mass on the vertices of Sct must be subtracted. For instance, is we consider the horizontal
diagonal, we have that

P
´

Y ptq “ 0, ´ct ă Xptq ă ct
¯

“
1

2

”

P
´

`

Xptq, Y ptq
˘

P Qct

¯

´ P
`

Nptq “ 0
˘

ı

“
e´λpp`qqt ´ e´λt

2
. (30)

We now want to determine the exact distribution of the process on the diagonals Qct. Without loss of generality, we
only consider the horizontal diagonal. Therefore we study the probability density function

gpx, tq “ P
´

Xptq P dx, Y ptq “ 0
¯

{ dx, |x|ă ct. (31)

By defining, for j “ 0, 2, the densities

gjpx, tq “ P
´

Xptq P dx, Y ptq “ 0, Dptq “ dj

¯

{ dx, |x|ă ct

it is clear that
gpx, tq “ g0px, tq ` g2px, tq. (32)

Moreover, we can write
"

g0px, t ` dtq “ g0px ´ c dt, tqp1 ´ λ dtq ` g2px, tqλp1 ´ p ´ qq dt`opdtq

g2px, t ` dtq “ g2px ` c dt, tqp1 ´ λ dtq ` g0px, tqλp1 ´ p ´ qq dt`opdtq
(33)

which implies that the system of partial differential equations
$

’

&

’

%

Bg0
Bt

“ ´c
Bg0
Bx

` λp1 ´ p ´ qqg2 ´ λg0

Bg2
Bt

“ c
Bg2
Bx

` λp1 ´ p ´ qqg0 ´ λg2

(34)

is satisfied with initial conditions g0px, 0q “ g2px, 0q “ 1
4δpxq. The system (34) implies, in view of equation (32), that

ˆ

B2

Bt2
` 2λ

B

Bt
´ c2

B2

Bx2
` λ2pp ` qq p2 ´ p ´ qq

˙

g “ 0 (35)

Therefore, we obtain an explicit expression for the density gpx, tq in the following theorem.
Theorem 4. If p ` q ă 1, the probability density function (31) is

gpx, tq “
e´λt

4c

«

λp1 ´ p ´ qq I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙

`
B

Bt
I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙

ff

, |x|ă ct.

Proof. We start by defining the auxiliary function

rgpx, tq “ eλtgpx, tq.

Equation (35) implies that rgpx, tq satisifes the partial differential equation satisfies the partial differential equation

B2
rg

Bt2
´ c2

B2
rg

Bx2
“ λ2p1 ´ p ´ qq2rg. (36)

9
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The change of variables
z “

a

c2t2 ´ x2 (37)
transforms equation (36) into the Bessel equation

d2rg

z2
`

1

z

drg

dz
´

λ2

c2
p1 ´ p ´ qq2rg “ 0

whose general solution reads

rgpzq “ A I0

ˆ

λ

c
p1 ´ p ´ qqz

˙

` B K0

ˆ

λ

c
p1 ´ p ´ qqz

˙

. (38)

Similarly to theorem 2, we disregard the term involving the modified Bessel function of the second kind K0p¨q and,
since equation (35) is homogeneous with respect to the time variable, we express its solution in the form

gpx, tq “ e´λt

„

A I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙

` B
B

Bt
I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ x2

˙ȷ

(39)

In order to determine the coefficients A and B in formula (39), we use formulas (22) and (23) and we obtain
ż ct

´ct

gpx, tq dx “ e´λt

"ˆ

Bc `
Ac

λp1 ´ p ´ qq

˙

eλtp1´p´qq `

ˆ

Bc ´
Ac

λp1 ´ p ´ qq

˙

e´λtp1´p´qq ´ 2Bc

*

. (40)

Comparing formulas (30) and (40) yields

A “
λp1 ´ p ´ qq

4c
, B “

1

4c
.

which completes the proof.

We now derive the characteristic function of the process on on the horizontal diagonal of the support.
Theorem 5. The characteristic function of

`

Xptq, Y ptq
˘

on the horizontal diagonal of the square Sct is

E
”

eiαXptq 1tY ptq“0u

ı

“
e´λt

4

«˜

1 `
λp1 ´ p ´ qq

a

λ2p1 ´ p ´ qq2 ´ α2c2

¸

et
?

λ2p1´p´qq2´α2c2

`

˜

1 ´
λp1 ´ p ´ qq

a

λ2p1 ´ p ´ qq2 ´ α2c2

¸

e´t
?

λ2p1´p´qq2´α2c2

ff

. (41)

Proof. In view of equation (35), the characteristic function

pgpα, tq “ E
”

eiαXptq 1tY ptq“0u

ı

satisfies the ordinary differential equation
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

d2pg

dt2
` 2λ

dpg

dt
`
“

λ2pp ` qq p2 ´ p ´ qq ` α2c2
‰

pg “ 0

pgpα, 0q “
1

2
d

dt
pgpα, tq

∣∣∣∣
t“0

“ ´
λpp ` qq

2
.

(42)

The general solution to equation (26) is

pgpα, tq “ k0pαq e´λt`t
?

λ2p1´p´qq2´α2c2 ` k1pαq e´λt´t
?

λ2p1´p´qq2´α2c2 .

The coefficients k0 and k1 can be obtained by using the initial conditions.

We emphasize that the consistency of the results presented in this section can be proved by using a similar approach to
that of section 2. In particular, setting α “ 0 in formula (41) yields the probability (29) while the characteristic function
(41) can be obtained direcly by using theorem 4 and the integral (28).
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4 Distribution in the interior of the domain

In this section, we study the distribution of the process
`

Xptq, Y ptq
˘

in the interior of its domain, that is the interior of
the set

Sct “
␣

px, yq P R2 : |x|`|y|ď ct
(

.

Therefore, we are interested in studying the function upx, y, tq defined by the relationship

upx, y, tq dx dy “ P
´

Xptq P dx, Y ptq P dy
¯

, |x|`|y|ă ct. (43)

We emphasize that when the process admits reflection, that is when p ` q ă 1, the distribution of
`

Xptq, Y ptq
˘

has a
degenerate component on the diagonals of the square Sct. Therefore, if reflection is possible we study the function
upx, y, tq under the implicit assumption that x ‰ 0 and y ‰ 0 since the definition (43) does not make sense otherwise.
In order to study the distribution (43) we consider, for j “ 0, 1, 2, 3, the probability density functions ujpx, y, tq defined
as

ujpx, y, tq dx dy “ P
´

Xptq P dx, Y ptq P dy, Dptq “ dj

¯

.

By means of standard techniques it can be shown that the following linear system of equations is satisfied by
ujpx, y, tq, j “ 0, 1, 2, 3

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bu0

Bt
“ ´c

Bu0

Bx
` λqu1 ` λp1 ´ p ´ qqu2 ` λpu3 ´ λu0

Bu1

Bt
“ ´c

Bu1

By
` λpu0 ` λqu2 ` λp1 ´ p ´ qqu3 ´ λu1

Bu2

Bt
“ c

Bu2

Bx
` λp1 ´ p ´ qqu0 ` λpu1 ` λqu3 ´ λu2

Bu3

Bt
“ c

Bu3

By
` λqu0 ` λp1 ´ p ´ qqu1 ` λpu2 ´ λu3

(44)

with initial conditions ujpx, y, 0q “ 1
4 δpxq δpyq for j “ 0, 1, 2, 3. Moreover, since upx, y, tq “

ř3
j“0 ujpx, y, tq, the

system of equations (44) implies that upx, y, tq satisfies a partial differential equation which can be represented in the
form

#˜

ˆ

B

Bt
` λ

˙

2 ´ c2
B2

Bx2

¸˜

ˆ

B

Bt
` λ

˙2

´ c2
B2

By2

¸

´ 4λ2pq

ˆ

B

Bt
` λ

˙2

´λ2p1 ´ p ´ qq2

˜

2

ˆ

B

Bt
` λ

˙2

´ c2∆

¸

´ 4λ3pp2 ` q2qp1 ´ p ´ qq

ˆ

B

Bt
` λ

˙

` λ4
“

p1 ´ p ´ qq2 ´ 2pq
‰2

´ λ4pp2 ` q2q2

+

u “ 0. (45)

Theorem 6. For λ, c Ñ `8 with c2

λ Ñ 1, the partial differential equation (45) becomes

Bu

Bt
“

1

4

p1 ´ pq ` p1 ´ qq

p1 ´ pq2 ` p1 ´ qq2
∆u (46)

where ∆ “ B
2

Bx2 ` B
2

By2 is the Laplacian.

Proof. The theorem is proved by dividing equation (45) by λ3, simplifying the expression for eliminating all the terms
which grow as a multiple of λ and taking the limit.

The interpretation of theorem 6 is that the process
`

Xptq, Y ptq
˘

becomes, in the hydrodynamic limit, a planar Brownian
motion with independent components and variance depending on p and q. By taking into account the natural constraints
to which p and q are subject, a constrained maximization problem can be solved in order to prove that the diffusion
coefficient of equation (46) is maximized for p “ q “ 1

2 . Intuitively, this is due to the fact that both reflection and the
vorticity effect induced by the condition p ‰ q tend to prevent the particle from moving too far from the starting point.
The case p “ q “ 1

2 is the only case in which both reflection and the vorticity effect are absent, which implies that the
diffusion coefficient is maximized.

11
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We now examine the special case in which the process
`

Xptq, Y ptq
˘

does not admit reflection. By setting q “ 1 ´ p, it
can be easily verified that the partial differential equation (45) reduces to

˜

ˆ

B

Bt
` λ

˙4

´
`

c2∆ ` 4λ2pp1 ´ pq
˘

ˆ

B

Bt
` λ

˙2

` c2
B4

Bx2By2

¸

u “ λ4p2p ´ 1q2u. (47)

Even in this simpler case, finding the distribution of
`

Xptq, Y ptq
˘

in closed form is a difficult task. However, we are
able to obtain an explicit form of the characteristic function as shown in the following theorem.
Theorem 7. If p ` q “ 1, the characteristic function of

`

Xptq, Y ptq
˘

in the interior of BSct is

E
”

eipαXptq`βY ptqq
ı

“ e´λt

#

k0pα, βq cosh
´

Apα, βq t`Bpα, βq t
¯

` k1pα, βq sinh
´

Apα, βq t`Bpα, βq t
¯

´ k2pα, βq cosh
´

Apα, βq t´Bpα, βq t
¯

´ k3pα, βq sinh
´

Apα, βq t´Bpα, βq t
¯

+

(48)

where
Apα, βq “

1

2

b

4λ2pp1 ´ pq ´ c2pα2 ` β2q ` 2
a

c4α2β2 ´ λ4p2p ´ 1q2 (49)

Bpα, βq “
1

2

b

4λ2pp1 ´ pq ´ c2pα2 ` β2q ´ 2
a

c4α2β2 ´ λ4p2p ´ 1q2 (50)

and

k0pα, βq “
2λ2 ´ c2pα2 ` β2q ´ 2 pApα, βq ´ Bpα, βqq

2

8Apα, βqBpα, βq

k1pα, βq “
λ3 ´ λc2pα2 ` β2q ´ λ pApα, βq ´ Bpα, βqq

2

4Apα, βqBpα, βq pApα, βq ` Bpα, βqq

k2pα, βq “
2λ2 ´ c2pα2 ` β2q ´ 2 pApα, βq ` Bpα, βqq

2

8Apα, βqBpα, βq

k3pα, βq “
λ3 ´ λc2pα2 ` β2q ´ λ pApα, βq ` Bpα, βqq

2

4Apα, βqBpα, βq pApα, βq ´ Bpα, βqq
.

Proof. We adopt the notation
pupα, β, tq “ E

”

eipαXptq`βY ptqq
ı

. (51)

In view of equation (47), the characteristic function pupα, β, tq satisfies the ordinary differential equation
˜

ˆ

d

dt
` λ

˙4

`
`

c2pα2 ` β2q ´ 4λ2pp1 ´ pq
˘

ˆ

d

dt
` λ

˙2

` c2α2β2

¸

pu “ λ4p2p ´ 1q2pu. (52)

We now establish the initial conditions for equation (52). For this purpose we define the functions

pujpα, β, tq “ E
”

eipαXptq`βY ptqq 1tDptq“dju

ı

, j “ 0, 1, 2, 3

and, in view of the system of equations (44), we observe that for all n P N

dn

dtn

¨

˚

˝

pu0

pu1

pu2

pu3

˛

‹

‚

“ Ln ¨

¨

˚

˝

pu0

pu1

pu2

pu3

˛

‹

‚

(53)

where

L “

¨

˚

˝

iαc ´ λ λp1 ´ pq 0 λp
λp iβc ´ λ λp1 ´ pq 0
0 λp ´iαc ´ λ λp1 ´ pq

λp1 ´ pq 0 λp ´iβc ´ λ

˛

‹

‚

.

12
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Equation (53) can be proved for n “ 1 by taking the Fourier transforms of the equations in the system (44) and can be
extended to general values of n by induction. Moreover, formula (53) implies that

dn

dtn

¨

˚

˝

pu0

pu1

pu2

pu3

˛

‹

‚

∣∣∣∣∣∣∣
t“0

“
1

4
Ln ¨

¨

˚

˝

1
1
1
1

˛

‹

‚

(54)

where we have used the fact that, for j “ 0, 1, 2, 3, the condition ujpx, y, 0q “ 1
4δpxqδpyq implies that pujpα, β, 0q “ 1

4 .
By using formula (54) and by taking into account that pupα, β, tq “

ř3
j“0 pujpα, β, tq, we obtain the following initial

conditions for equation (52):

pupα, β, 0q “ 1,
d

dt
pupα, β, tq

∣∣∣
t“0

“ 0,

d2

dt2
pupα, β, tq

∣∣∣
t“0

“ ´
c2pα2 ` β2q

2
,

d3

dt3
pupα, β, tq

∣∣∣
t“0

“
λc2pα2 ` β2q

2
.

(55)

We now define the function
rupα, β, tq “ eλt pupα, β, tq (56)

and we observe that, in view of formulas (52) and (55), the following ordinary differential equation is satisfied by
rupα, β, tq:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

d4ru

dt4
`
`

c2pα2 ` β2q ´ 4λ2pp1 ´ pq
˘ d2ru

dt2
`
`

c2α2β2 ´ λ4p2p ´ 1q2
˘

ru “ 0

rupα, β, 0q “ 1

d

dt
rupα, β, tq

∣∣∣
t“0

“ λ

d2

dt2
rupα, β, tq

∣∣∣
t“0

“ λ2 ´
c2pα2 ` β2q

2
d3

dt3
rupα, β, tq

∣∣∣
t“0

“ λ3 ´ λc2pα2 ` β2q.

(57)

Equation (57) is an Euler-type ordinary differential equation which can be solved by finding the roots of the associated
algebraic equation

r4 `
`

c2pα2 ` β2q ´ 4λ2pp1 ´ pq
˘

r2 `
`

c2α2β2 ´ λ4p2p ´ 1q2
˘

“ 0.

Since the above algebraic equation is biquadratic, its roots can be easily found and it can be shown that the general
solution to equation (57) can be expressed in the form

rupα, β, tq “ φ0pα, βq eApα,βqt`Bpα,βqt ` φ1pα, βq eApα,βqt´Bpα,βqt

`φ2pα, βq e´Apα,βqt´Bpα,βqt ` φ3pα, βq e´Apα,βqt`Bpα,βqt (58)

where Apα, βq and Bpα, βq are defined in formulas (49) and (50). By taking the derivatives of the general solution (58)
and using the initial conditions of equation (57), it can be proved that the coefficients φjpα, βq, j “ 0, 1, 2, 3, satisfy
the linear system of equations

¨

˚

˝

1 1 1 1
A ` B A ´ B ´A ´ B ´A ` B

pA ` Bq2 pA ´ Bq2 pA ` Bq2 pA ´ Bq2

pA ` Bq3 pA ´ Bq3 ´pA ` Bq3 ´pA ´ Bq3

˛

‹

‚

¨

˚

˝

φ0

φ1

φ2

φ3

˛

‹

‚

“

¨

˚

˚

˝

1
λ

λ2 ´
c2pα2

`β2
q

2

λ3 ´ λc2pα2 ` β2q

˛

‹

‹

‚

(59)

where we omitted, for simplicity, the dependence of A,B,φ0, φ1, φ2 and φ3 on α and β. The linear system (59) can be
solved by inverting the coefficient matrix. Thus, we have that

¨

˚

˝

φ0

φ1

φ2

φ3

˛

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

´
pA´Bq

2

8AB ´
pA´Bq

2

8ABpA`Bq
1

8AB
1

8ABpA`Bq

pA`Bq
2

8AB
pA`Bq

2

8ABpA´Bq
´ 1

8AB ´ 1
8ABpA´Bq

´
pA´Bq

2

8AB
pA´Bq

2

8ABpA`Bq
1

8AB ´ 1
8ABpA`Bq

pA`Bq
2

8AB ´
pA`Bq

2

8ABpA´Bq
´ 1

8AB
1

8ABpA´Bq

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˝

1
λ

λ2 ´
c2pα2

`β2
q

2

λ3 ´ λc2pα2 ` β2q

˛

‹

‹

‚

(60)

13
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from which the coefficients φjpα, βq, j “ 0, 1, 2, 3, are immediately obtained. In particular, it can be shown that

φ0pα, βq “
k0pα, βq ` k1pα, βq

2
, φ1pα, βq “ ´

k2pα, βq ` k3pα, βq

2
,

φ2pα, βq “
k0pα, βq ´ k1pα, βq

2
, φ3pα, βq “ ´

k2pα, βq ´ k3pα, βq

2
,

where the coefficients kjpα, βq, j “ 0, 1, 2, 3, are defined in the statement of the theorem. After substituting the
expressions of φjpα, βq, j “ 0, 1, 2, 3, into formula (58), the proof is completed by inverting the transformation (56)
and properly collecting the terms of the final expression.

We observe that, although the characteristic function (48) has a cumbersome representation, it is consistent with the
existing literature since it coincides with the results obtained by Orsingher [12] for p “ q “ 1

2 . Moreover, we emphasize
that the key step for obtaining the characteristic function was to solve the fourth-order algebraic equation (57). Such
equation is easy to solve because it is biquadratic in the case p ` q “ 1. In principle, the characteristic function of
`

Xptq, Y ptq
˘

could also be obtained in the case in which reflection is admitted by solving a more general fourth-order
equation. However, since the equation is not biquadratc for p ` q ă 1, the resulting characteristic function would have
an extremely complicated form.

5 Time spent in vertical direction

We conclude our analysis by studying the time spent by the process
`

Xptq, Y ptq
˘

moving vertically, parallel to the
y-axis. Formally, we define the process

T ptq “

ż t

0

1tDpτqPtd1,d3uu dτ, t ą 0.

For fixed t ą 0, the support of the random variable T ptq coincides with the interval r0, ts. Moreover, it is clear that the
distribution of T ptq has a degenerate component on the extrema of its support. In particular, we have that T ptq “ 0 if
the process

`

Xptq, Y ptq
˘

starts moving in horizontal direction at time 0 and it never changes direction or it changes
direction by only performing reflections until time t. Similarly, it holds that T ptq “ t if the process

`

Xptq, Y ptq
˘

starts
moving vertically at time 0 and it never changes direction or it only performs reflections until time t. Therefore, we
have that

P pT ptq “ 0q “ P pT ptq “ tq “
1

2
e´λt

8
ÿ

k“0

pλtqkp1 ´ p ´ qqk

k!
“

1

2
e´λtpp`qq. (61)

In the interior of its support, the random variable T ptq has a continuous distribution. We denote the corresponding
probability density function by

hps, tq “ P
´

T ptq P ds
¯

{ds, s P p0, tq. (62)

In order to determine the density (62), we start by defining the functions hjps, tq, j “ 0, 1,

hjps, tq “ P
´

T ptq P ds, Dptq P tdj , dj`2u

¯

{ds, s P p0, tq.

It is clear that
"

h0ps, t ` dtq “ h0ps, tqp1 ´ λpp ` qq dtq ` h1ps ´ ds, tqλpp ` qq dt`opdtq

h1ps, t ` dtq “ h1ps ´ ds, tqp1 ´ λpp ` qq dtq ` h0ps, tqλpp ` qq dt`opdtq

which implies that the system of differential equations
$

’

&

’

%

Bh0

Bt
“ λpp ` qq ph1 ´ h0q

Bh1

Bt
“ ´

Bh1

Bs
` λpp ` qq ph0 ´ h1q

(63)

is satisfied with initial conditions h0ps, 0q “ h1ps, 0q “ 1
2 δpsq. In view of the system (63) and taking into account that

hps, tq “ h0ps, tq ` h1ps, tq

the density function hps, tq satisfies the partial differential equation
ˆ

B2

Bt2
`

B2

Bs Bt
` 2λpp ` qq

B

Bt
` λpp ` qq

B

Bs

˙

h “ 0. (64)

Thus, we are able to prove the following result.
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Planar random motions in a vortex

Theorem 8. The probability density function (62) reads

hps, tq “ e´λpp`qqt

„

λpp ` qq I0

´

2λpp ` qq
a

spt ´ sq

¯

`
B

Bt
I0

´

2λpp ` qq
a

spt ´ sq

¯

ȷ

, s P p0, tq. (65)

Proof. In light of equation (64), the function
rhps, tq “ eλpp`qqt hps, tq

satisfies the partial differential equation
ˆ

B2

Bt2
`

B2

BsBt
´ λ2pp ` qq2

˙

rh “ 0. (66)

The change of variables
z “

a

spt ´ sq

transforms equation (66) into the Bessel equation

d2rh

z2
`

1

z

drh

dz
´ 4λ2pp ` qq2rh “ 0

whose general solution reads

rhpzq “ A I0

´

2λpp ` qqz
¯

` B K0

´

2λpp ` qqz
¯

.

Therefore, usual arguments permit us to express the solution to equation (64) in the form

hps, tq “ e´λpp`qqt

„

A I0

´

2λpp ` qq
a

spt ´ sq

¯

` B
B

Bt
I0

´

2λpp ` qq
a

spt ´ sq

¯

ȷ

. (67)

In order for formula (67) to be consistent with (61), we must have that
ż t

0

hps, tq ds “ 1 ´ e´λpp`qqt.

By using the relation
ż t

0

I0

´

K
a

spt ´ sq

¯

ds “
1

K

´

e
Kt
2 ´ e´ Kt

2

¯

, t ą 0 (68)

we obtain
A “ λpp ` qq, B “ 1

which completes the proof.

The corresponding characteristic function is given in the following theorem.
Theorem 9. The characteristic function of T ptq is

E
”

eiαT ptq
ı

“
1

2

˜

1 `
2λpp ` qq

a

4λ2pp ` qq2 ´ α2

¸

ei
α
2 t´λpp`qqt` 1

2

?
4λ2pp`qq2´α2 t

`
1

2

˜

1 ´
2λpp ` qq

a

4λ2pp ` qq2 ´ α2

¸

ei
α
2 t´λpp`qqt´ 1

2

?
4λ2pp`qq2´α2 t. (69)

Proof. The function
phpα, tq “ E

”

eiαT ptq
ı

satisfies, in view of equation (64), the ordinary differential equation
$

’

’

’

’

’

&

’

’

’

’

’

%

d2ph

dt2
` r2λpp ` qq ´ iαs

dph

dt
´ iλpp ` qqαph “ 0

phpα, 0q “ 1

d

dt
phpα, tq

∣∣∣
t“0

“
iα

2
.

(70)

The general solution to equation (70) can be expressed in the form

phpα, tq “ k0pαq ei
α
2 t´λpp`qqt` 1

2

?
4λ2pp`qq2´α2 t ` k1pαq ei

α
2 t´λpp`qqt´ 1

2

?
4λ2pp`qq2´α2 t.

The coefficients k0 and k1 can be determined by using the initial conditions.
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Observe that the characteristic function (69) can be computed directly from the density function (65). By writing that

E
”

eiαT ptq
ı

“

ż t

0

eiαs hps, tq ds

the integral formula
ż t

0

eiαs I0

´

β
a

spt ´ sq

¯

ds “
e

iαt
2

β2 ´ α2

”

e
t
2

?
β2´α2

´ e´ t
2

?
β2´α2

ı

yields the result.

We conclcude our analysis by discussing some aspects of the joint distribution of the time spent moving vertically
T ptq and the component Y ptq of the planar random motion studied so far. Clearly, the support of the bivariate process
`

T ptq, Y ptq
˘

coincides with the triangle

Rct “
␣

ps, yq P R2 : 0 ď s ď t, ´ct ď y ď ct
(

. (71)

We consider the probability density function ūps, y, tq defined by the relationship

ūps, y, tq ds dy “ P
´

T ptq P ds, Y ptq P dy
¯

, ps, yq P Rct. (72)

At the initial time t “ 0, the process
`

T ptq, Y ptq
˘

starts at the vertex p0, 0q of the triangle Rct and it moves along
two directions which are parallel to the oblique sides of Rct. In particular, the normalized vectors which describe the
directions along which

`

T ptq, Y ptq
˘

can move are given by

θ` “

ˆ

1
?
1 ` c2

,
c

?
1 ` c2

˙

, θ´ “

ˆ

1
?
1 ` c2

, ´
c

?
1 ` c2

˙

.

Clearly, in both cases the particle with position
`

T ptq, Y ptq
˘

moves rightwards since the process T ptq is non-decreasing.
We denote by Θptq the direction of

`

T ptq, Y ptq
˘

at time t ą 0. In order to understand how the motion of
`

Xptq, Y ptq
˘

on Sct and that of
`

T ptq, Y ptq
˘

on Rct relate to each other, we first observe that Θptq “ θ` if and only if Dptq “ d1
and Θptq “ θ´ if and only if Dptq “ d3. It is now clear that when

`

Xptq, Y ptq
˘

moves horizontally, neither T ptq

increases nor Y ptq, so that the particle in Rct remains still. If the process
`

T ptq, Y ptq
˘

is not moving at time t we say
that Θptq “ 0. Therefore, we have that Θptq “ 0 if and only if Dptq P td0, d2u.
We now study the rule which determines the changes of the direction Θptq for the particle moving in the triangle Rct.
For this purpose, we denote by Et the event of a change of direction occurring during the time interval pt, t ` dts. This
enables us to write that

Θpt ` dtq
∣∣∣ tEt, Θptq “ θ`u “

"

0 with prob. p ` q

θ´ with prob. 1 ´ p ´ q.
(73)

Formula (73) can be interpreted in the following manner. Assume that at time t the particle
`

T ptq, Y ptq
˘

is moving
with direction Θptq “ θ` and that the event Et occurs. Since Θptq “ θ`, we have that Dptq “ d1 and thus we can
distinghuish between two cases. In the first case reflection occurs with probability 1 ´ p ´ q, which implies that
Dpt ` dtq “ d3 and thus Θptq “ θ´. If reflection does not occur, which happens with probability p ` q, we have that
Dptq P td0, d2u and therefore Θpt ` dtq “ 0. Similarly, we have that

Θpt ` dtq
∣∣∣ tEt, Θptq “ θ´u “

"

0 with prob. p ` q

θ` with prob. 1 ´ p ´ q.

We now emphasize that difficulties emerge when conditioning the distribution of Θpt ` dtq on the event Θptq “ 0. It
can be easily verified that

Θpt ` dtq
∣∣∣ tEt, Θptq “ 0, Dptq “ d0u “

$

&

%

0 with prob. 1 ´ p ´ q

θ` with prob. p
θ´ with prob. q.

(74)

and analogously

Θpt ` dtq
∣∣∣ tEt, Θptq “ 0, Dptq “ d2u “

$

&

%

0 with prob. 1 ´ p ´ q

θ` with prob. q
θ´ with prob. p.

(75)
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The difference between formulas (74) and (75) shows that the distribution of Θpt ` dtq, conditional on the fact that
Θptq “ 0 and that a change of direction occurs, cannot be determined exactly unless the additional information on Dptq
is given. The interesting fact about this phenomenon is that it only occurs if p ‰ q. For p “ q, the right-hand sides of
formulas (74) and (75) are equal and we can write

Θpt ` dtq
∣∣∣ tEt, Θptq “ 0u “

$

&

%

0 with prob. 1 ´ 2p

θ` with prob. p
θ´ with prob. p

which noticeably simplifies the joint distribution of the couple
`

T ptq, Y ptq
˘

. In order to understand how the study of
the density function ūps, y, tq is simplified for p “ q, we define, for j “ 0, 1, 2, 3, the auxiliary density functions

ūjps, y, tq ds dy “ P pT ptq P ds, Y ptq P dy, Dptq “ djq , ps, yq P Rct.

and we observe that the following linear system of partial differential equations is satisfied:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bū0

Bt
“ ´λū0 ` λqū1 ` λp1 ´ p ´ qqū2 ` λpū3

Bū1

Bt
“ ´

Bū1

Bs
´ c

Bū1

By
` λpū0 ` λqū2 ` λp1 ´ p ´ qqū3 ´ λū1

Bū2

Bt
“ ´λū2 ` λp1 ´ p ´ qqū0 ` λpū1 ` λqū3

Bū3

Bt
“ ´

Bū3

Bs
` c

Bū3

By
` λqū0 ` λp1 ´ p ´ qqū1 ` λpū2 ´ λū3.

(76)

The system (76) implies that ūps, y, tq satisfies the cumbersome fourth-order partial differential equation
#«

ˆ

B

Bt
` λ

˙2

´ λ2p1 ´ p ´ qq2

ff«

ˆ

B

Bt
` λ `

B

Bs

˙2

´ c2
B2

By2

ff

´ 4λ2pq

ˆ

B

Bt
` λ

˙ˆ

B

Bt
` λ `

B

Bs

˙

´ 4λ3p1 ´ p ´ qqpp2 ` q2q

ˆ

B

Bt
` λ `

1

2

B

Bs

˙

´ λ2p1 ´ p ´ qq2
ˆ

B

Bt
` λ

˙2

´ λ4pp2 ´ q2q2

´ 4λ4pqp1 ´ p ´ qq2 ` λ4p1 ´ p ´ qq4

+

ū “ 0. (77)

We now show that the system (76) and equation (77) simplify in the case p “ q. We define the function

ū02ps, y, tq ds dy “ P pT ptq P ds, Y ptq P dy, Dptq P td0, d2uq , s P r0, ts, y P r´ct, cts.

Of course, we have that
ū02ps, y, tq “ ū0ps, y, tq ` ū2ps, y, tq.

Therefore, the first and the third equations of the system (76) imply that, if p “ q, the ordinary differential equation

Bū02

Bt
“ ´2λp ū02 ` 2λppū1 ` ū3q (78)

holds which permits to simplify the system (76) into
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bū02

Bt
“ ´2λp ū02 ` 2λppū1 ` ū3q

Bū1

Bt
“ ´

Bū1

Bs
´ c

Bū1

By
` λpū02 ` λp1 ´ 2pqū3 ´ λū1

Bū3

Bt
“ ´

Bū3

Bs
` c

Bū3

By
` λpū02 ` λp1 ´ 2pqū1 ´ λū3.

(79)

Observe that equation (78) is not satisfied if p ‰ q. Since

ūps, y, tq “ ū02ps, y, tq ` ū1ps, y, tq ` ū3ps, y, tq

the linear system (79) implies that, if p “ q, equation (77) reduces to the third-order partial differential equation
#

ˆ

B

Bt
` 2λp

˙„ˆ

B

Bt
` λ `

B

Bs

˙

´ c2
B2

By2

ȷ

´ 4λ2p2
ˆ

B

Bt
` λ `

B

Bs

˙

17
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´ λ2p1 ´ 2pq2
ˆ

B

Bt
` 2λp

˙

´ 4λ3p2p1 ´ 2pq

+

ū “ 0. (80)

Unfortunately, finding an explicit solution to equation (77) seems a difficult task even in the special case (80). However,
in the following theorem we are able to obtain the limiting behaviour of

`

T ptq, Y ptq
˘

when both the velocity of the
process and the rate of the direction changes are infinite.

Theorem 10. For λ, c Ñ `8, with λ
c2 Ñ 1, the partial differential equation (77) becomes

Bu

Bt
“ ´

1

2

Bu

Bs
`

1

4

p1 ´ pq ` p1 ´ qq

p1 ´ pq2 ` p1 ´ qq2

B2u

By2.
(81)

Proof. The proof can be performed by straightfoward calculation after dividing equation (77) by λ3. Simplifying the
expression and taking the limit yields the result.

In order to interpret theorem 10 observe that, by taking the Fourier transform of both sides of equation (81), it can be
shown that the characteristic function of

`

T ptq, Y ptq
˘

becomes, in the hydrodynamic limit,

lim
λ,cÑ`8

E
”

eipαT ptq`βY pyqq
ı

“ e
iαt

2 ´
p1´pq`p1´qq

p1´pq2`p1´qq2
β2t
4 . (82)

Taking the inverse Fourier transform of the expression (82) yields

lim
λ,cÑ`8

P
´

T ptq P ds, Y ptq P dy
¯

{ pds dyq “

d

p1 ´ pq2 ` p1 ´ qq2

p1 ´ pq ` p1 ´ qq
¨
e´

p1´pq2`p1´qq2

p1´pq`p1´qq
y2

t

?
πt

¨ δ

ˆ

s ´
t

2

˙

. (83)

Equation (83) implies that, while Y ptq converges to a Brownian motion, the process T ptq becomes deterministic and its
limiting value is equal to t

2 . Thus, in the hydrodynamic limit, the process
`

Xptq, Y ptq
˘

spends half of the time moving
vertically.

We are now interested in studying the behaviour of
`

T ptq, Y ptq
˘

on the boundary of Rct. We start by considering the
oblique side with equation y “ cs and we define the probability density function

f̄ps, tq “ P
´

T ptq P ds, Y ptq “ c T ptq
¯

{ ds, s P p0, tq. (84)

By setting, for j “ 0, 1, 2,

f̄jps, tq “ P
´

T ptq P ds, Y ptq “ c T ptq, Dptq “ dj

¯

{ ds, s P p0, tq

we clearly have that
$

’

&

’

%

f̄0ps, t ` dtq “ f̄0ps, tqp1 ´ λ dtq ` f̄1ps, tqλq dt`f̄2ps, tqλp1 ´ p ´ qq dt`opdtq

f̄1ps, t ` dtq “ f̄1ps ´ ds, tqp1 ´ λ dtq ` f̄0ps, tqλp dt`f̄2ps, tqλq dt`opdtq

f̄2ps, t ` dtq “ f̄2ps, tqp1 ´ λ dtq ` f̄0ps, tqλp1 ´ p ´ qq dt`f̄1ps, tqλp dt`opdtq

which implies that
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bf̄0
Bt

“ λqf̄1 ` λp1 ´ p ´ qqf̄2 ´ λf̄0

Bf̄1
Bt

“ ´
Bf̄1
Bs

` λpf̄0 ` λqf̄2 ´ λf̄1

Bf̄2
Bt

“ λp1 ´ p ´ qqf̄0 ` λpf̄1 ´ λf̄2

(85)

with initial conditions f̄jps, 0q “ 1
4 δpsq for j “ 0, 1, 2. Thus, the probability density function (84) satisfies the

third-order partial differential equation

"ˆ

B

Bt
` λ

˙3

`

ˆ

B

Bt
` λ

˙2
B

Bs
´ λ2

“

2pq ` p1 ´ p ´ qq2
‰

ˆ

B

Bt
` λ

˙
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´ λ2p1 ´ p ´ qq2
B

Bs
´ λ3p1 ´ p ´ qqpp2 ` q2q

*

f̄ “ 0. (86)

While finding a general solution to equation (86) is a difficult task, we observe that a noticeable simplification of the
equation occurs if the process does not admit reversion, that is if p ` q “ 1. In this case equation (86) can be expressed
in the form

ˆ

B

Bt
` λ

˙

˜

B2

Bt2
`

ˆ

B

Bs
` 2λ

˙

B

Bt
` λ2 r1 ´ 2pp1 ´ pqs ` λ

B

Bs

¸

f̄ “ 0. (87)

Thus, if reflection is not admitted, we are able to study the exact distribution of
`

T ptq, Y ptq
˘

on the oblique sides of
Rct. We start by calculating the probability of the particle lying on the upper oblique side.
Theorem 11. If the process

`

Xptq, Y ptq
˘

does not admit reflection, that is if p ` q “ 1, it holds that

P
`

Y ptq “ c T ptq
˘

“
e´λt

8

#˜

1 `
1

a

2pp1 ´ pq

¸2

eλt
?

2pp1´pq

`

˜

1 ´
1

a

2pp1 ´ pq

¸2

e´λt
?

2pp1´pq ´
p2p ´ 1q2

pp1 ´ pq

+

. (88)

Proof. We start by studying the probability of
`

T ptq, Y ptq
˘

lying on the oblique side of Rct conditional on the initial
direction of

`

Xptq, Y ptq
˘

being d1. Clearly, we can write that

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1

˘

“

8
ÿ

k“0

P
`

Y ptq “ c T ptq, Nptq “ k
∣∣Dp0q “ d1

˘

“

8
ÿ

k“0

P
`

Y ptq “ c T ptq, Nptq “ 2k
∣∣Dp0q “ d1

˘

`

8
ÿ

k“0

P
`

Y ptq “ c T ptq, Nptq “ 2k ` 1
∣∣Dp0q “ d1

˘

“

8
ÿ

k“0

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k

˘

P pNptq “ 2kq

`

8
ÿ

k“0

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k ` 1

˘

P pNptq “ 2k ` 1q

“e´λt
8
ÿ

k“0

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k

˘ pλtq2k

p2kq!

` e´λt
8
ÿ

k“0

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k ` 1

˘ pλtq2k`1

p2k ` 1q!
. (89)

We now observe that
P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k

˘

“ p2pp1 ´ pqq
k
. (90)

In order to clarify the formula above, observe that the event tY ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2ku occurs if the

process alternates the upward direction d1 with horizontal directions, which can be both d0 and d2. In order for Nptq
to be equal to 2k, a change of direction from d1 to horizontal and then back to d1 must occur k times, and it always
occurs with probability pp1 ´ pq no matter whether the horizontal direction is d0 or d2. Therefore, a path having
initial direction d1 and involving 2k changes of directions which alternate d1 and horizontal directions can occur
with probability ppp1 ´ pqq

k. Moreover, there are 2k equiprobable ways of combining all the possible choices of the
horizontal directions of the sequence, since every horizontal direction must belong to the set td0, d2u.
Similar arguments permit to show that

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1, Nptq “ 2k ` 1

˘

“ p2pp1 ´ pqq
k
. (91)

Formula (91) holds because, in order to perform 2k ` 1 changes of direction, the process must first perform 2k changes
of direction with probability p2pp1 ´ pqq

k and then perform an additional change. Since the initial direction is d1, the
first 2k changes lead to the direction d1 again. The event tY ptq “ c T ptqu is then true if and only if the additional
change of direction occurs towards a horizontal direction, which occurs with probability 1 because reflection is not
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admitted by hypothesis.
By now substituting formulas (90) and (91) into (89), we obtain

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d1

˘

“

8
ÿ

k“0

P
`

Y ptq “ c T ptq, Nptq “ k
∣∣Dp0q “ d1

˘

“e´λt
8
ÿ

k“0

p
a

2pp1 ´ pqλtq2k

p2kq!
`

e´λt

a

2pp1 ´ pq

8
ÿ

k“0

p
a

2pp1 ´ pqλtq2k`1

p2k ` 1q!

“e´λt

#

cosh
´

λt
a

2pp1 ´ pq

¯

`
1

a

2pp1 ´ pq
sinh

´

λt
a

2pp1 ´ pq

¯

+

“
e´λt

2

#˜

1 `
1

a

2pp1 ´ pq

¸

eλt
?

2pp1´pq

`

˜

1 ´
1

a

2pp1 ´ pq

¸

e´λt
?

2pp1´pq

+

.

Similar arguments permit to obtain the probability of
`

T ptq, Y ptq
˘

lying on the oblique side of Rct conditional on the
initial direction being horizontal. In particular, we have that

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d0

˘

“ e´λt

#

p

2

˜

1

2pp1 ´ pq
`

1
a

2pp1 ´ pq

¸

eλt
?

2pp1´pq

`
p

2

˜

1

2pp1 ´ pq
´

1
a

2pp1 ´ pq

¸

e´λt
?

2pp1´pq ` 1 ´
1

2p1 ´ pq

+

and

P
`

Y ptq “ c T ptq
∣∣Dp0q “ d2

˘

“ e´λt

#

1 ´ p

2

˜

1

2pp1 ´ pq
`

1
a

2pp1 ´ pq

¸

eλt
?

2pp1´pq

`
1 ´ p

2

˜

1

2pp1 ´ pq
´

1
a

2pp1 ´ pq

¸

e´λt
?

2pp1´pq ` 1 ´
1

2p

+

.

The theorem is finally proved by observing that

P
`

Y ptq “ c T ptq
˘

“
1

4

2
ÿ

j“0

P
`

Y ptq “ c T ptq
∣∣Dp0q “ dj

˘

.

We are now able to obtain the distribution (84) in explicit form.
Theorem 12. If p ` q “ 1, the probability density function (84) is

f̄ps, tq “
λ

2
?
2
I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

`
1

4

ˆ

1 `
1

2pp1 ´ pq

˙

B

Bt
I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

, |s P p0, tq.

Proof. In order to find a solution to equation (87), we solve the equation
˜

B2

Bt2
`

ˆ

B

Bs
` 2λ

˙

B

Bt
` λ2 r1 ´ 2pp1 ´ pqs ` λ

B

Bs

¸

f̄ “ 0.

By setting
rf̄ps, tq “ eλtf̄ps, tq
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the equation is transformed into
˜

B2

Bt2
`

B2

BsBt
´ 2λ2pp1 ´ pq

¸

rf̄ “ 0. (92)

The change of variables z “
a

spt ´ sq transforms equation (92) into the Bessel equation

d2 rf̄

z2
`

1

z

d rf̄

dz
´ 8λ2pp1 ´ pq rf̄ “ 0

which admits general solution in the form

rf̄pzq “ A I0

´

2λ
a

2pp1 ´ pq z
¯

` B K0

´

2λ
a

2pp1 ´ pq z
¯

.

By discarding the second kind modified Bessel function K0 we write that

f̄ps, tq “ e´λt

„

A I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

` B
B

Bt
I0

´

2λ
a

2pp1 ´ pq
a

spt ´ sq

¯

ȷ

. (93)

In view of the integral (68), the coefficients A and B which make formula (93) consistent with formula (88) are

A “
λ

2
?
2
, B “

1

4

ˆ

1 `
1

2pp1 ´ pq

˙

.

We conclude our study of the distribution (84) in the case p ` q “ 1 by obtaining, in the following theorem, the
characteristic function of

`

T ptq, Y ptq
˘

on the oblique side of Rct.

Theorem 13. If p ` q “ 1, the characteristic function of
`

T ptq, Y ptq
˘

on the oblique side of Rct reads

E
”

eiαT ptq 1tY ptq“c T ptqu

ı

“
1

16

˜

1 ` 2pp1 ´ pq

pp1 ´ pq
`

4pp1 ´ pqp2λ ` iαq ´ iαp1 ` 2pp1 ´ pqq

pp1 ´ pq
a

8λ2pp1 ´ pq ´ α2

¸

e
´λt` t

2

´

iα`
?

8λ2pp1´pq´α2
¯

`
1

16

˜

1 ` 2pp1 ´ pq

pp1 ´ pq
´

4pp1 ´ pqp2λ ` iαq ´ iαp1 ` 2pp1 ´ pqq

pp1 ´ pq
a

8λ2pp1 ´ pq ´ α2

¸

e
´λt` t

2

´

iα´
?

8λ2pp1´pq´α2
¯

´
p2p ´ 1q2

8pp1 ´ pq
e´λt. (94)

Proof. We set
pf̄ps, tq “ E

”

eiαT ptq 1tY ptq“c T ptqu

ı

.

By taking into account equation (87), the characteristic function pf̄ps, tq can be obtained by finding the solution to the
ordinary differential equation

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

d3 pf̄

dt3
` r3λ ´ iαs

d2 pf̄

dt2
` λ rλ p3 ´ 2pp1 ´ pqq ´ 2iαs

d pf̄

dt
` λ2 rλ p1 ´ 2pp1 ´ pqq ´ iαs pf̄ “ 0

pf̄pα, 0q “
3

4
d

dt
pf̄pα, tq

∣∣∣∣
t“0

“
iα ´ λ

4

d2

dt2
pf̄pα, tq

∣∣∣∣
t“0

“
2λ2pp1 ´ pq ´ α2

4
.

(95)

The general solution to equation (95) reads

pf̄pα, tq “ k0pαq e
´λt` t

2

´

iα`
?

8λ2pp1´pq´α2
¯

` k1pαq e
´λt` t

2

´

iα´
?

8λ2pp1´pq´α2
¯

` k2pαq e´λt.

and the coefficients k0, k1 and k2 can be obtained by using the initial conditions.
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So far, we have studied the distribution of
`

T ptq, Y ptq
˘

on the oblique side of the triangle Rct and we observed that,
while finding the general distribution is a difficult problem, an explicit representation for the distribution can be obtained
if reflection is not admitted. We now discuss another special case in which equation (86) can be replaced by a simpler
second-order equation, namely the case in which p “ q. By defining

f̄02ps, tq “ P
`

T ptq P ds, Y ptq “ cs, Dptq P td0, d2u
˘

{ ds, s P p0, tq

it is clear that, under the assumption that p “ q, the system of equations (85) can be written in the form
$

’

’

&

’

’

%

Bf̄02
Bt

“ ´2λpf̄02 ` 2λpf̄1

Bf̄1
Bt

“ ´
Bf̄1
Bs

` λpf̄02 ´ λf̄1

(96)

which implies that the probability density function (84) satisfies the second-order partial differential equation
ˆ

B2

Bt2
`

B2

Bs Bt
` λp1 ` 2pq

B

Bt
` 2λp

B

Bs
` 2λ2pp1 ´ pq

˙

f̄ “ 0. (97)

In principle, we would start the analysis of the density function f̄ by first studying the probability of the particle with
position

`

T ptq, Y ptq
˘

being on the oblique side of Rct. Unfortunately, a combinatorial approach in the fashion of
theorem 11 is not trivial if p “ q because reversion is admitted, except for the special case p “ q “ 1

2 . Therefore, for
p “ q, we start by studying the characteristic function in the following theorem.

Theorem 14. If p “ q, the characteristic function of
`

T ptq, Y ptq
˘

on the oblique side of Rct reads

E
”

eiαT ptq 1tY ptq“c T ptqu

ı

“
3

8

˜

1 `
λ ´ iα ` 6λp

3
a

λ2p12p2 ´ 4p ` 1q ´ α2 ´ 2iαλp1 ´ 2pq

¸

e
t
2

´

iα´λp1`2pq`
?

λ2p12p2´4p`1q´α2´2iαλp1´2pq

¯

`
3

8

˜

1 ´
λ ´ iα ` 6λp

3
a

λ2p12p2 ´ 4p ` 1q ´ α2 ´ 2iαλp1 ´ 2pq

¸

e
t
2

´

iα´λp1`2pq´
?

λ2p12p2´4p`1q´α2´2iαλp1´2pq

¯

.

(98)

Proof. Similarly to theorem 13, we set

pf̄ps, tq “ E
”

eiαT ptq 1tY ptq“c T ptqu

ı

.

Since p “ q, equation (97) implies that the characteristic function pf̄ps, tq is the solution to the ordinary differential
equation

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

d2 pf̄

dt2
` rλ p1 ` 2pq ´ iαs

d pf̄

dt
`
“

2λ2pp1 ´ pq ´ 2iαλp
‰

pf̄ “ 0

pf̄pα, 0q “
3

4
d

dt
pf̄pα, tq

∣∣∣∣
t“0

“
iα ´ λ

4
.

(99)

The general solution to equation (99) reads

pf̄pα, tq “ k0pαq e
t
2

´

iα´λp1`2pq`
?

λ2p12p2´4p`1q´α2´2iαλp1´2pq

¯

` k1pαq e
t
2

´

iα´λp1`2pq´
?

λ2p12p2´4p`1q´α2´2iαλp1´2pq

¯

. (100)

and the coefficients k0, k1 and k2 are obtained by using the initial conditions.

We are now able to calculate the probability of the process
`

T ptq, Y ptq
˘

lying on the oblique side of Rct.
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Theorem 15. If p “ q, it holds that

P
`

Y ptq “ c T ptq
˘

“
3

8

˜

1 `
p1 ` 6pq

3
a

12p2 ´ 4p ` 1

¸

e
λt
2

´

´p1`2pq`
?

12p2´4p`1
¯

`
3

8

˜

1 ´
p1 ` 6pq

3
a

12p2 ´ 4p ` 1

¸

e
λt
2

´

´p1`2pq´
?

12p2´4p`1
¯

. (101)

Proof. Formula (101) follows immediately from formula (98) by setting α “ 0.

It is interesting to observe that formulas (88) and (101) coincide if p “ q “ 1
2 .

Unfortunately, the inverse Fourier transform of the characteristic function (98) is difficult to find. Therefore, in the case
p “ q we are not able to obtain the exact distribution of the process on the oblique side of Rct.

We conclude our work by studying the distribution of the process
`

T ptq, Y ptq
˘

on the vertical side of Rct. Of course, the
particle with position

`

T ptq, Y ptq
˘

lies on the vertical side if and only if T ptq “ t, that is if the process
`

Xptq, Y ptq
˘

has always moved vertically. Recalling formula (61), we have that

P pT ptq “ tq “
1

2
e´λtpp`qq. (102)

We are now interested in studying the probability density function

ḡpy, tq dy “ P
´

Y ptq P dy, T ptq “ t
¯

, |y| ă ct. (103)

Moreover, for j “ 1, 3, we define the functions

ḡjpy, tq dy “ P
´

Y ptq P dy, T ptq “ t, Dptq “ dj

¯

, |y| ă ct.

We have that
$

’

’

&

’

’

%

Bḡ1
Bt

“ ´c
Bḡ1
By

` λp1 ´ p ´ qqḡ3 ´ λḡ1

Bḡ3
Bt

“ c
Bḡ3
By

` λp1 ´ p ´ qqḡ1 ´ λḡ3

(104)

which implies that the partial differential equation
ˆ

B2

Bt2
` 2λ

B

Bt
´ c2

B2

By2
` λ2pp ` qqp2 ´ p ´ qq

˙

ḡ “ 0. (105)

is satisfied. We now observe that the system of equations (104) and equation (105) perfectly resemble equations (34)
and (35), where the variable x is replaced by y. Therefore, the motion on the diagonal of the square Sct is identical in
distribution to the process moving on the vertical side of the triangle Rct. The reason for which this relationship holds
is clear. Both the motions take place at costant velocity c on the segment r´ct, cts and the changes of direction occur at
Poisson times with constant intensity λp1 ´ p ´ qq, that is when the process

`

Xptq, Y ptq
˘

performs a reflection. Thus,
by using the ideas of theorems 4 and 5, the exact distribution of

`

T ptq, Y ptq
˘

on the vertical side of Rct can be obtained
in explicit form. In particular, if p ` q ă 1, we have that

ḡpy, tq “
e´λt

4c

„

λp1 ´ p ´ qq I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ y2
˙

`
B

Bt
I0

ˆ

λ

c
p1 ´ p ´ qq

a

c2t2 ´ y2
˙ȷ

and

E
”

eiβY ptq 1tT ptq“tu

ı

“
e´λt

4

«˜

1 `
λp1 ´ p ´ qq

a

λ2p1 ´ p ´ qq2 ´ β2c2

¸

et
?

λ2p1´p´qq2´β2c2

`

˜

1 ´
λp1 ´ p ´ qq

a

λ2p1 ´ p ´ qq2 ´ β2c2

¸

e´t
?

λ2p1´p´qq2´β2c2

ff

.
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