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THE DISTRIBUTION ON PERMUTATIONS INDUCED BY

A RANDOM PARKING FUNCTION

ROSS G. PINSKY

Abstract. A parking function on [n] creates a permutation in Sn via

the order in which the n cars appear in the n parking spaces. Plac-

ing the uniform probability measure on the set of parking functions on

[n] induces a probability measure on Sn. We initiate a study of some

properties of this distribution.

1. Introduction and Statement of Results

Consider a row of n parking spaces on a one-way street. A line of n

cars, numbered from 1 to n, attempts to park, one at a time. The ith car’s

preferred space is spot number πi ∈ [n]. If this space is already taken, then

car i proceeds forward and parks in the first available space, if one exists.

If the car is unable to park, it exits the street. A sequence π = {πi}ni=1

is called a parking function on [n] if all n cars are able to park. It is easy

to see that π is a parking function if and only if |{i : πi ≤ j}| ≥ j, for all

j ∈ [n]. Let Pn denote the set of parking functions. It is well-known that

|Pn| = (n+1)n−1. There are a number of proofs of this result; a particularly

elegant one due to Pollack can be found in [3]. There is a large literature on

parking functions and their generalizations; see, for example, the survey [5].

We can consider a random parking function by placing the uniform prob-

ability measure on Pn. Denote this probability measure by PPn . A study of

random parking functions was initiated by Diaconis and Hicks in [1]. Since

each parking function yields a permutation σ = σ1 · · · σn ∈ Sn, where σj

is the number of the car that parked in space j, it follows that a random
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parking function induces a distribution on the set Sn of permutations of [n].

In this paper we initiate a study of this distribution.

We will use the notation Pn and En to denote the uniform probability

measure and the corresponding expectation on Sn. We will denote by P
park
n

the probability measure on Sn induced by a random parking function in

Pn. The corresponding expectation will be denoted by E
park
n . To be more

precise concerning the definition of the induced probability measure, define

Tn : Pn → Sn by Tn(π) = σ, if when using the parking function π, σj is the

number of the car that parked in space j, for j ∈ [n]. For example, if n = 4

and π = 2213 ∈ P4, then we have T4(2213) = 3124 ∈ S4. We define

(1.1) P park
n (σ) = PPn

(

T−1
n (σ)

)

.

For 1 ≤ i ≤ n < ∞ and σ ∈ Sn, define

ln,i(σ) = max{l ∈ [i] : σi = max(σi, σi−1, · · · , σi−l+1}.

For n ∈ N, define

(1.2) Ln(σ) =
n
∏

i=1

ln,i(σ), σ ∈ Sn.

For example, if σ = 379218645 ∈ S9, then ln,i(σ) = 1, for i ∈ {1, 4, 5, 7, 8},
ln,i(σ) = 2, for i ∈ {2, 9} and ln,i(σ) = 3, for i ∈ {3, 6}. Thus, L9(σ) =

152233 = 36.

We have the following proposition.

Proposition 1.

(1.3) P park
n (σ) =

Ln(σ)

(n+ 1)n−1
, σ ∈ Sn.

The following corollary of Proposition 1 is immediate, where the asymp-

totic behavior follows from Stirling’s formula.

Corollary 1. The expected value of the random variable Ln = Ln(σ) on

(Sn, Pn) satisfies

(1.4) EnLn =
1

n!

∑

σ∈Sn

Ln(σ) =
(n+ 1)n−1

n!
∼ en+1

√
2π n

3

2

.

We will prove the following weak convergence result for Ln.
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Theorem 1. For any ǫ ∈ (0, 2], the random variable Ln = Ln(σ) on (Sn, Pn)

satisfies

(1.5) lim
n→∞

Pn((2− ǫ)n ≤ Ln ≤ (2 + ǫ)n)) = 1

The following corollary follows immediately from Proposition 1 and The-

orem 1.

Corollary 2. For any ǫ ∈ (0, 2], the random variable P
park
n = P

park
n (σ) on

(Sn, Pn) satisfies

(1.6) lim
n→∞

Pn

({

σ ∈ Sn : P park
n (σ) ∈

(

(2− ǫ)n

(n+ 1)n−1
,

(2 + ǫ)n

(n+ 1)n−1

)})

= 1.

And the following corollary follows immediately from Corollary 1 and

Theorem 1.

Corollary 3. The expectation of the random variable P
park
n = P

park
n (σ) on

(Sn, Pn) is given by

(1.7) EnP
park
n =

1

n!
∼ en

√
2πnn+ 1

2

.

Comparing (1.6) and (1.7), we see that for all but a Pn-negligible set of

permutations in Sn, the P
park
n -probability of a permutation in Sn is approx-

imately 2n

(n+1)n−1 , but the “average” P
park
n -probability of a permutation in

Sn is exponentially larger, namely asymptotic to en√
2πnn+1

2

. There is also a

Pn-negligible set of permutations in Sn each of whose elements has super-

exponentially larger P
park
n -probability than this average (and this is where

almost all the P
park
n -probability lies), and a Pn-negligible set of permuta-

tions in Sn for which the P
park
n -probability is exponentially smaller than

this average probability. In particular, we have the following corollary.

Corollary 4. The maximum value of P
park
n = P

park
n (σ) is equal to n!

(n+1)n−1 ∼
√
2π n

3
2

en+1 and is attained uniquely at σ = 1 · · · n. The minimum value of P
park
n

is equal to 1
(n+1)n−1 and is attained uniquely at σ = n · · · 1.

Proof. The function Ln = Ln(σ), σ ∈ Sn, attains its minimum value 1

uniquely at σ = n · · · 1 and attains its maximum value n! uniquely at

σ = 1 · · · n. �
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From the definition of a parking function, it is obvious that

P park
n (σj = 1) = PPn(π1 = j), j ∈ [n].

In [1], the following asymptotic behavior was proven for π1 (or any πk by

symmetry):

(1.8)

For fixed j, PPn(π1 = j) ∼ 1 + P (X ≥ j)

n
;

For fixed j, PPn(π = n− j) ∼ P (X ≤ j + 1)

n
,

where X is a random variable satisfying P (X = j) = e−j j
j−1

j!
, j = 1, 2, · · · .

Thus, it follows that (1.8) also holds with PPn(π1 = j) replaced by P park
n (σj =

1). It would be nice to obtain similar type asymptotics for P
park
n (σj = k),

for general j, k. It doesn’t seem that our results in this paper can help here.

Nor do they seem to be useful for obtaining information on the distributions

of certain classical permutation statistics under P park
n , such as the number

of inversions, the number of cycles or the number of descents.

We will also prove the following results.

Proposition 2. For any m ∈ [n],

(1.9) P park
n (σ1 · · · σm = [m]) =

(

m+ 1

n+ 1

)m

.

We have the following immediately corollary.

Corollary 5. For any m ∈ N,

(1.10) lim
n→∞

P park
n (σ1 · · · σn−m = [n−m]) = e−m

In fact, we also have the following result.

Proposition 3. For any m ∈ N,

(1.11) lim
n→∞

P park
n (σn−m+1 · · · σn = n−m+ 1 · · ·n) = e−m.

Remark. Note that (1.10) and (1.11) give

lim
n→∞

P park
n (σn−m+1 · · · σn = n−m+ 1 · · · n|σ1 · · · σn−m = [n−m]) = 1.
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The proof of Proposition 1 is given in section 2, the proof of Theorem 1 is

given in section 3 and the proofs of Propositions 2 and 3 are given in section

4.

2. Proof of Proposition 1

Recall the definition of ln,i from the paragraph containing equation (1.2)

which defines Ln. For the proof of the proposition, it will be convenient to

define l̃n,i(σ) = ln,σ−1

i

(σ). For example, if σ = 379218645, then l̃n,i(σ) = 1,

for i ∈ {1, 2, 3, 4, 6}, l̃n,i = 2, for i ∈ {5, 7} and l̃n,i = 3, for i ∈ {8, 9}. Of

course, we can express L in terms of the {l̃n,i}:

Ln(σ) =
n
∏

i=1

ln,i(σ) =
n
∏

i=1

l̃n,i(σ).

The proposition will follow if we show that for each σ ∈ Sn, there are

Ln(σ) different parking functions π ∈ PFn such that Tn(π) = σ, where Tn

is as in the paragraph containing equation (1.2). Before giving a formal

proof of the proposition, we illustrate the proof with a concrete example,

from which the general result should be clear. Consider the permutation

σ = 379218645 ∈ S9. We look for those π ∈ PF9 that satisfy T9(π) = σ.

From the definition of the parking process and from the definition of Tn, we

need π1 = 5 in order to have σ5 = 1, π2 = 4 in order to have σ4 = 2, π3 = 1

in order to have σ1 = 3 and π4 = 8 in order to have σ8 = 4. In order to

have σ9 = 5, we can either have π5 = 9, in which case car number 5 parks

in its preferred space 9, or alternatively, π5 = 8, in which case car number

5 attempts to park in its preferred space 8 but fails, and then moves on to

space 9 and parks. Then we need π6 = 7 in order to have σ7 = 6. Then

similar to the explanation regarding π5, we need π7 to be either 1 or 2 in

order to have σ2 = 7. In order to have σ6 = 8, we can have either π8 = 6, in

which car number 8 parks directly in its preferred space 6, or alternatively

π8 = 5, in which case car number 8 tries and fails to park in space number

5 and then parks in space number 6, or alternatively, π8 = 4, it which case

car number 8 tries and fails to park in space number 4 and then also in

space number 5, before finally parking in space number 6. Similarly, we

need π9 to be equal to 1,2 or 3 in order to have σ9 = 3. Thus, there are
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1 × 1 × 1 × 1 × 2 × 1 × 2 × 3 × 3 =
∏9

i=1 l̃9,i(σ) different parking functions

π ∈ PF9 that yield T9(π) = σ.

To give a formal proof for the general case, fix σ ∈ Sn. In order to have

Tn(π) = σ, first we need π1 = σ−1
1 . Thus there is just one choice for π1,

and note that l̃n,1(σ) = 1. Now let k ∈ [n − 1] and assume that we have

chosen π1, · · · πk in such a way that car number i has parked in space σ−1
i ,

for i ∈ [k]. We now want car number k + 1 to park in space σ−1
k+1. By

construction, this space is vacant at this point, and so are the l̃n,k(σ) − 1

spaces immediately to the left of this space. However the space l̃n,k spaces

to the left of this space is not vacant (or possibly this space doesn’t exist–it

would be the zeroth space). Thus, by the parking process, car number k+1

will park in space σ−1
k+1 if and only if πk+1 is equal to one of the l̃n,k+1(σ)

numbers σ−1
k+1, σ

−1
k+1− 1, · · · , σ−1

k+1− l̃n,k+1(σ)+ 1. This shows that there are

Ln(σ) =
∏n

i=1 l̃n,i(σ) different parking functions π satisfying Tn(π) = σ. �

3. Proof of Theorem 1

We begin with several preliminary results. Recall that Pn is the uniform

probability measure on Sn.

Lemma 1.

(3.1) Pn(ln,i = j) =







1
j
− 1

j+1 = 1
j(j+1) , j = 1, · · · , i− 1;

1
i
, j = i.

.

Proof. Fix i and let j ∈ [i]. The event {ln,i(σ) ≥ j} is the event
{

σi =

max{σi, σi−1, · · · , σi−j+1}
}

. Since Pn is the uniform distribution on Sn, we

have

(3.2) Pn(ln,i ≥ j) =
1

j
, i ∈ [n], 1 ≤ j ≤ i.

The lemma now follows. �

We now write

(3.3) Sn := logLn =

n
∑

i=1

log ln,i.

From Lemma 1, we have

(3.4) En log ln,i =

i−1
∑

j=1

log j

j(j + 1)
+

log i

i
.
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Note that En log ln,i does not depend on n, but of course it is only defined

for 1 ≤ i ≤ n.

Lemma 2.

(3.5) lim
n,i→∞

En log ln,i = log 2.

Proof. Recall the Abel-type summation formula [4]:

∑

1<r≤x

a(r)f(r) = A(x)f(x)−A(1)f(1)−
∫ x

1
A(t)f ′(t)dt, whereA(r) =

r
∑

i=1

ai.

We apply this formula with a(r) = 1
r(r+1) = 1

r
− 1

r+1 and f(r) = log r. We

have A(r) = 1− 1
r+1 = r

r+1 . Recalling (3.4), we obtain

lim
n,i→∞

En log ln,i = lim
i→∞

i−1
∑

j=1

log j

j(j + 1)
= lim

i→∞

(

i

i+ 1
log i−

∫ i

1

t

t+ 1

1

t
dt

)

=

lim
i→∞

(

i

i+ 1
log i− log(i+ 1) + log 2

)

= lim
i→∞

(

log
i

i+ 1
− log i

i+ 1
+ log 2

)

= log 2.

�

From (3.3) and (3.5), we conclude that

(3.6) lim
n→∞

EnSn

n
= lim

n→∞

1

n
En logLn = log 2.

We now consider EnS2
n. We have

(3.7)

EnS2
n = En

(

n
∑

i=1

log ln,i

)2

=

n
∑

i=1

En log l
2
n,i + 2

∑

1≤i<j≤n

En log ln,i log ln,j .

We have the following proposition.

Proposition 4. For 1 ≤ i < j ≤ n, the random variables ln,i and ln,j on

(Sn, Pn) are negatively correlated; that is,

(3.8) Pn(ln,i ≥ k, ln,j ≥ k) ≤ Pn(ln,i ≥ k)Pn(ln,j ≥ l), for k, l ≥ 1.

Proof. Since Pn is the uniform probability measure on Sn, for any k ≤ i,

the events {ln,i ≥ k} =
{

σi = max(σi, · · · , σi−k+1)
}

and {ln,j ≥ l} =
{

σj =

max(σj , · · · , σj−l+1)
}

are independent if l ≤ j − i. Thus, (3.8) holds with

equality in these cases.
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Consider now the case k ≤ i and j − i+ 1 ≤ l ≤ j. In this case

(3.9)

{ln,i ≥ k, ln,j ≥ l} =
{

σj = max(σj , σj−1, · · · , σr)
}

∩
{

σi = max(σi, σi−1, · · · , σi−k+1)
}

,

where r = min(i− k + 1, j − l + 1).

We have

(3.10) Pn (σj = max(σj , σj−1, · · · , σr)) =
1

max(l, j − i+ k)
≤ 1

l
.

Also,

(3.11)

Pn (σi = max(σi, σi−1, · · · , σi−k+1|σj = max(σj , σj−1, · · · , σr)) =
1

k
.

The proposition follows from (3.9)–(3.11) and (3.2). �

We can now prove the theorem.

Proof of Theorem 1. Since ln,i and ln,j are negatively correlated, one has

Enf(ln,i)g(ln,j) ≤ Enf(ln,i)Eng(ln,j), if f and g are increasing functions on

[n]. In particular then,

(3.12) En log ln,i log ln,j ≤ En log ln,iEn log ln,j.

Using (3.12), a standard straightforward calculation gives

(3.13) Var(Sn) ≤
n
∑

i=1

Var(log ln,i).

From (3.1), we have

En(log ln,i)
2 =

i−1
∑

j=1

(log j)2

j(j + 1)
+

(log i)2

i(i + 1)
.

Using this with (3.5) and (3.13), we conclude that there exists a C > 0 such

that

(3.14) Var(Sn) ≤ Cn, n ∈ N.

From (3.6) and(3.14), it follows from the second moment method that

(3.15) lim
n→∞

Pn(log 2− ǫ ≤ Sn

n
≤ log 2 + ǫ) = 1, for all ǫ > 0.

Now (1.5) follows from (3.15) and (3.3). �
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4. Proofs of Propositions 2 and 3

Proof of Proposition 2. Let σ = Tn(π), where Tn is as in the paragraph

containing equation (1.2). Then σ1 · · · σm = [m] if and only if π1 · · · πm ∈
Pm. Thus, there are (m + 1)m−1 choices for π1 · · · πm. Given π1 · · · πm ∈
Pm, we now consider how many sequences πm+1 · · · πn there are so that

the concatenated sequence π1 · · · πmπm+1 · · · πn belongs to Pn. Of course,

we start with the restriction 1 ≤ πj ≤ n, for all j ∈ {m + 1, · · · n}. It is

easy to see that such a sequence πm+1 · · · πn will be such that the above

concatenated sequence belongs to Pn if and only if this sequence results in

all n−m cars being able to park in the following scenario: There is a one-

way street with n spaces, but with the first m of them already taken up by a

trailer. A sequence of n−m cars enters, each with a preferred parking space

between 1 and n. It is known that the number of such sequences resulting

in all n −m cars successfully parking is equal to (m + 1)(n + 1)n−m−1 [2].

Thus, the number of parking functions π ∈ Pn such that σ = Tn(π) satisfies

σ1 · · · σm = [m] is equal to (m+ 1)m−1(m+ 1)(n+ 1)n−m−1. Consequently,

P park
n (σ1 · · · σm = [m]) =

(m+ 1)m−1(m+ 1)(n + 1)n−m−1

(n + 1)n−1
=

(

m+ 1

n+ 1

)m

.

�

Proof of Proposition 3. Let σ = Tn(π), where Tn is as in the paragraph

containing equation (1.2). In order to have σn−m+1 · · · σn = n−m+1 · · · n,
it is of course necessary to have σ1 · · · σn−m = [n − m]. As in the proof

of Proposition 2, but with m replaced by n − m, the number of sequences

π1 · · · πn−m such that σ1 · · · σn−m = [n −m], is (n −m + 1)n−m−1, and for

each such π1 · · · πn−m, the number of sequences πn−m+1 · · · πn such that the

concatenation π1 · · · πn−mπn−m+1 · · · πn belongs to Pn is equal to

(n −m+ 1)(n + 1)m−1. It is easy to see from the definition of the parking

process that a sequence πn−m+1 · · · πn from among these (n−m+1)(n+1)m−1

sequences will be such that for the concatenation π1 · · · πn−mπn−m+1 · · · πn,
one has σn−m+1 · · · σn = n−m+ 1 · · ·n if and only if πn−m+i ≤ n−m+ i,

for i ∈ [m]. There are
∏m

i=1(n−m+ i) = n!
(n−m)! such sequences. From this
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it follows that

P park
n (σn−m+1 · · · σn = n−m+ 1 · · · n|σ1 · · · σn−m = [n−m]) =

n!
(n−m)!

(n−m+ 1)(n + 1)m−1
,

and consequently,

(4.1)

lim
n→∞

P park
n (σn−m+1 · · · σn = n−m+ 1 · · · n|σ1 · · · σn−m = [n−m]) = 1.

Now (1.11) follows from (4.1) and (1.10). �
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