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Vector light beams, characterised by a spatially varying polarisation, can exhibit localised

structures reminiscent of the Skyrmions familiar from the study of magnetic media. We

present a theory of such Skyrmions within paraxial optics, exploiting mathematical analogies

with the study of superfluids, especially the A phase of superfluid He3. The key feature is the

Skyrmion field which, together with the underlying Skyrmion vector potential, determines

the properties of the Skyrmions and, more generally, the polarisation structure of every

paraxial vector beam. In addition to structures with integer Skyrmion number we find

polarisation patterns with non-integer Skyrmion number; these seem to have no analogue in

other fields of physics.
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I. INTRODUCTION

Paraxial light beams with a spatially varying polarisation pattern underpin many recent devel-

opments in the field of structured light [1–4]. Such structured beams can be intricate, with many

spatial modes contributing to a complex polarisation pattern [5–7]. At their simplest, however,

they may be formed from a mere two distinct spatial modes with orthogonal polarisations. Fun-

damental examples are the beams with a radial or an azimuthal polarisation [8–10]. The former

of these is remarkable for enabling tight focusing and enhanced field strengths in the propagation

direction [11, 12].

We have shown, in 2020, that the simplest vector beams can exhibit a polarisation pattern

that is readily identified with a Skyrmionic structure [13]. Such patterns are characterised by a

polarisation at the centre of the beam that is orthogonal to that at the edges, together with a

polarisation that rotates on the Poincaré sphere as we follow an orbit around the beam centre.

The structures that came to be known as Skyrmions were first introduced by Skyrme as topologi-

cal excitations in a non-linear field theory [14] and applied to the theory of mesons and baryons [15].

These ideas have largely been superceeded, but a simpler purely spatial form of Skyrme’s excita-

tions, the so-called baby Skyrmions [16], has had a wider application in many other areas of physics

including quantum liquids [17, 27, 28], photonic materials [29], fractional statistics [30], non-linear

field theories [31] and even in cosmology [32]. It is perhaps in magnetic media, however, where

the idea has had its greatest impact [33–39, 41, 42], where they have been proposed for use in

data storage [43, 44]. In this context, localised Skyrmions can be found in the orientation of the

magnetisation in magnetic materials.

In optics there has been a wide variety of recent developments, both theoretical and experimen-

tal, associated with Skyrmions in a multitude of guises. Skyrmionic structures have been prepared

in the interference between evanescent fields [45], in plasmons associated with metamaterials [46]

and in a range of other structures [47]. They have been identified as features in yet more complex

field structures [18, 48–53]. It has been shown that optical Skyrmions can be generated in suit-

able microcavities [55]. Optical Skyrmions have also been shown to exist in the strongly focussed

regime, beyond the paraxial regime [56]. The simple paraxial Skyrmions proposed in [13] have

been prepared and the associated Skyrmion number measured [57].

Here we present the theory of propagating Skyrmions within paraxial optics. We reveal the

role played by the Skyrmionic field in the propagation properties of Skyrmions and, in particular,

its role in the stability of these structures noted in [60]. We show that the Skyrmion field is
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transverse (divergenceless) and, therefore that it can be written as the curl of a further vector

field in the same manner that the magnetic induction in electromagnetism is the curl of the vector

potential. This idea has been exploited in the theory of superfluid helium 3 [17] and we translate

concepts from this topic into paraxial optics to underscore the value of the Skyrmion numbers for

Skyrmion beams. We previously introduced a second method for measuring the skyrmion number

experimentally, showing its advantage for optical applications [19]. Here, we derive this method in a

general context and highlight specific cases of interest. Finally, we investigate the exotic properties

of paraxial beams with a non-integer Skyrmion number.

II. SKYRMIONS AND THEIR MATHEMATICAL PROPERTIES

Our construction of paraxial optical Skyrmions has features in common with the magnetic

Skyrmions formed on the surface of a suitable material [34] and these provide a natural starting

point for our analysis. Magnetic Skyrmions can be visualised as a covering of a Bloch sphere on

which is wrapped the local magnetisation or, more precisely, the direction of the local magnetisa-

tion, and with every possible direction present at least at one point in space. Magnetic Skyrmions

are mapped from the stereographic projection of the 3D sphere onto the 2D plane of the magnetic

surface [61–64]. At the centre of the Skyrmion, the direction of the magnetisation is opposite to

that at large distances from the centre. The magnetisation changes gradually as we move from

one point to an adjacent one. The Skyrmion number, n, is then the number of rotations of the

magnetisation around the Bloch sphere as we traverse a closed circuit around the centre of the

Skyrmion. This Skyrmion number has the mathematical form [33, 34]

n =
1

4π

∫
M ·

(
∂M

∂x
× ∂M

∂y

)
dx dy , (1)

where the integration takes place over the magnetic surface, taken here to define the plane z = 0.

The quantity M corresponds to the local direction of the magnetisation. Note that there is no

dependence on the strength of the magnetisation and that M is a vector field with unit magnitude

everywhere. Hence we can picture the unit vector field M as representing, at each point, the Bloch

vector on the corresponding Bloch sphere.

To make the transition into paraxial optics, we replace the magnetic spin direction M with a

vector, S, formed by the normalised Stokes parameters associated with the local optical polarisa-

tion [58, 59]. The vector field points in the direction of the local orientation of the magnetic spin,

but the Stokes vector is oriented in the abstract space of the Poincaré sphere. Despite this analogy,
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it is important to note that unlike magnetic skyrmions, for which the spin structure is determined

by energy constraints defined by the film structure, conservation laws, and energy minimization,

optical skyrmions are only limited by Maxwell’s equations and thus offer a versatile platform for

the exploration of exotic topological structures [18].

The Skyrmion number can be written as the integrated flux of a Skyrmion field across the

plane z = 0. For paraxial optics we shall show that it is a powerful idea, with implications for the

polarisation structure of the beam. To this end we introduce the Skyrmion field as

Σi =
1

2
εijkεpqrSp

(
∂Sq
∂xj

)(
∂Sr
∂xk

)
, (2)

where εijk and εpqr are the alternating (Levi-Civita) symbols [65] and we employ the Einstein

summation convention for repeated indices. In vectorial notation, Eq. 2 becomes:

Σi =
1

2
εijkS ·

(
∂S

∂xj
× ∂S

∂xk

)
. (3)

The Skyrmion field, Σ, is the natural counterpart of the Skyrmion current from Skyrme’s original

paper [14]. In terms of this field, our Skyrmion number is simply

n =
1

4π

∫
Σ · dA , (4)

where the surface of integration, dA, is the z = 0 plane. The form of the Skyrmion field is

closely related to the scalar triple product and, indeed, it can be written as a combination of

determinants. From this we can infer an important symmetry, which is that the Skyrmion field

is invariant under a global rotation of the polarisation on the Poincaré sphere (the same rotation

applied to every point). This statement, which is readily confirmed by direct calculation, means

that each optical Skyrmion is part of a family with differently oriented polarisations but identical

Skyrmion fields [13].

In our study of optical Skyrmions we shall exploit the form of the Skyrmion field throughout

space and we examine here the general properties of this field. The first thing to note is that the

field is transverse, or divergenceless:

∇ ·Σ = 0 . (5)

To prove this we recall that the alternating symbol is antisymmetric under interchange of any two

indices and hence

∇ ·Σ =
1

2
εijkεpqr

(
∂Sp
∂xi

)(
∂Sq
∂xj

)(
∂Sr
∂xk

)
,

= 3det

(
∂Sp
∂xi

)
. (6)
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To show that this quantity is zero, first consider a general point in the field and denote this by r0.

We have not specified coordinate directions and therefore, without loss of generality, we can define

the x-direction to correspond to the orientation of S at r0. This, together with the fact that S

is a unit vector, means that S(r0) = x̂. Consider a point r that is close to r0 and recall that the

polarisation varies continuously in space. This suggests that we can represent the field S at r by

the first two terms of the Taylor expansion around its value at r0:

S(r) = S(r0) + [(r− r0) ·∇]S|r0 . (7)

From this we can evaluate the length of S(r) which is required to be unity:

S(r) · S(r) = S(r0) · S(r0) + 2 [(r− r0) ·∇]S|r0 +O
[
|r− r0|2

]
,

≈ 1 + 2(r− r0) ·∇Sx|r0 . (8)

We can choose r such that r− r0 points in any desired direction and it follows, therefore, that any

first derivative of the x-component at r0 is zero. Note that ∇ · Σ, as given in Eq. (6), contains

first derivatives of all three Cartesian components of S and this includes the x-component of S

at our point r0. It then follows that ∇ · Σ = 0 everywhere (at least as long as the derivative is

well-defined).

The transverse nature of Σ, which we have just established, suggests that we can write it as

the curl of a further field, by analogy with the vector potential and magnetic induction for which

we write B = ∇×A. By analogy with the vector potential in electromagnetism, we refer to this

new field as the Skyrmion vector potential, V:

Σ = ∇×V . (9)

This idea has long been exploited in the study of superfluids and specifically of the A phase of

helium 3 [17, 27, 66]. The advantage of turning to the superfluid literature is that an explicit

expression, due to Mermin and Ho [17, 67], exists for the form of the V field, our Skyrmion

potential becomes:

Vi = m · ∂

∂xi
n , (10)

where m and n are any two orthogonal unit vector fields such that

m× n = S . (11)

It is clear, for example, that we can also write the Skyrmion potential in the form

Vi = −n · ∂

∂xi
m , (12)
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We note that the non-uniqueness of the fields m and n is reminiscent of the non-uniqueness of

the vector potential in electromagnetism. To see this we recall that a gauge transformation of the

vector potential has the form

A → A−∇χ . (13)

This leaves the magnetic induction unchanged whatever the form of the scalar field χ. We can

arrive at a similar form of gauge transformation for the Skyrmion potential by first noting that we

can write our Skyrmion potential in the form

Vi =
1

2
ℑ
[
(m− in) · ∂

∂xi
(m+ in)

]
, (14)

where we have used the readily checked properties

m · ∂

∂xi
n = 0 = n · ∂

∂xi
m . (15)

Our Skyrmion vector potential, Eq. (14), is clearly unchanged if we replace m+in by e−iχ(m+in)

and m− in by eiχ(m− in) for some constant phase χ, corresponding to a rotation of the m and

n fields about the direction given by the vector S:

m = ℜ(m+ in) → m cosχ+ n sinχ

n = ℑ(m+ in) → n cosχ−m sinχ . (16)

This is reminiscent of quantum electrodynamics, in which the gauge freedom is related to the non-

unique phase of the electron wavefunction [68]. If, as in quantum electrodynamics, we allow χ to

be a function of r then the Skyrmion potential becomes

V → V −∇χ , (17)

precisely as in Eq. (13) for the vector potential. This means that we can choose our vector fields

m and n as we like at different points in space and change only the Skyrmion potential but not

the Skyrmion field Σ.

The relationship between our Skyrmion field and the Skyrmion potential suggests that we might

invoke Stokes’ theorem to replace the surface integral over the Skyrmion field by a line integral

of the Skyrmion potential. There is, however, a subtlety to be accounted for, which is analogous

to the theory of Dirac strings associated with magnetic monopoles [69–72]. To illustrate this we

choose a specific form for the fields m and n and, in doing so, a specific form for the Skyrmion

potential. We start by noting that the S field has the form

S = Sxx̂+ Syŷ + Szẑ . (18)
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A natural choice for the m and n fields is

m =
1√

S2
x + S2

y

(Syx̂− Sxŷ)

n =
1√

S2
x + S2

y

[−SzSxx̂− SzSyŷ + (S2
x + S2

y)ẑ] , (19)

for which the Skyrmion potential is

Vi =
Sz

S2
x + S2

y

(
Sy

∂

∂xi
Sx − Sx

∂

∂xi
Sy

)
. (20)

The feature that concerns us is any points (or more precisely lines) at which the Skyrmion potential

diverges as these require special treatment. At first sight, it would seem that any point at which

Sz = 1 (and so Sx = 0 = Sy) is of this nature, but a careful analysis of the limit as we approach such

points shows that V is well-behaved and finite at these locations. To identify genuine divergences

we consider the form of V in cylindrical polar coordinates with the z-axis running through our

point of interest. In this case we can write the azimuthal component of V in the form

Vϕ =
Sz

S2
x + S2

y

1

ρ

(
Sy

∂

∂ϕ
Sx − Sx

∂

∂ϕ
Sy

)
. (21)

Clearly if the bracketed term does not tend to zero as we approach the line by making ρ → 0

then Vϕ will diverge. We shall find that divergences of this form are a characteristic of our optical

Skyrmions.

We can use Stokes’s theorem to rewrite our Skyrmion number as a line integral of the Skyrmion

potential:

n =
1

4π

∫
Σ · dA

=
1

4π

∮
V · dℓ . (22)

As discussed above, it is not sufficient to simply choose a large radius circle centred on the Skyrmion

and carry out the integration. The singular points in V must be omitted from the region of

integration. The way in which this is achieved is analogous to that employed in contour integration

for dealing with poles in the complex plane [65]. An example of this is depicted in Fig. 1: the

required contour omits any singular points in V by passing from the large radius contour, in

towards any singular points, circling them and then returning to the large radius component of the

closed contour. In this way the singularities of V are left outside the integration contour. The line

integrals along the straight lines in from the outer circular path cancel with those in the opposite
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x

y

L∞

L1

L2

L3

FIG. 1. Line integral of the Skyrmion vector potential, V, excluding singular points identified by crosses.

direction. Hence we are left only with contributions from the large circular contour and those

around and close to the singular points. Consequently, the Skyrmion number is

n =
1

4π

∮
L∞

V · dl−
∑
j

∮
Lj

V · dl

 , (23)

where the two contours L∞ and Lj are the circular contour of very large radius and the inner

contour as depicted in Fig. 1. We shall show in the next section how this can be applied to

a paraxial optical Skyrmion, and how we can use winding numbers to obtain a new topological

expression for the Skyrmion number.

III. PARAXIAL OPTICAL SKYRMIONS

We can construct Skyrmions in paraxial optics by close analogy with those for the magnetisation

of suitable surfaces. For magnetic skyrmions the direction of the magnetic spin is associated with

a point on the Bloch sphere [73], whereas for paraxial optics we can map the local polarisation

onto the Poincaré sphere [58, 59] on which each point is associated with a polarisation: the North

and South poles correspond to circular polarisations, the equator to linear polarisations, with all

other points associated with elliptical polarisations. The mapping between the Bloch and Poincaré

spheres is a satisfactory one, but there is an important physical difference: a point on the Bloch

sphere corresponds to the same orientation of the spin but the polarisation on the Poincaré sphere

sits in an abstract space and the points on its surface do not correspond to physical directions.
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To complete the mapping from magnetisation to optical polarisation we need to select a repre-

sentation of the vector S. The natural way to do this is to employ the description of polarisation in

terms of the Jones vectors [74]. It is convenient, but not essential, to use the bra-ket notation from

quantum mechanics and to write the Jones vector as a complex superposition of two orthogonal

polarisations, which we denote by |0⟩ and |1⟩. There is no need to decide at this stage which or-

thogonal polarisations these represent (they could be left- or right-circular polarisations, horizontal

and vertical or any other orthogonal pair). In terms of these arbitrary polarisations we can define

the Pauli operators as

σx = |0⟩⟨1|+ |1⟩⟨0| ,

σy = i(|1⟩⟨0| − |0⟩⟨1|) ,

σz = |0⟩⟨0| − |1⟩⟨1| . (24)

Let us reiterate that the kets |0⟩ and |1⟩ do not correspond to any specific form of polarisation

and so we are dealing with a rotated Poincaré sphere. This is a consequence of the fact that the

Skyrmion field and Skyrmion number are independent of the orientation of the sphere.

To construct our Skyrmionic optical beams we introduce a pair of spatially varying amplitudes,

u0(r) and u1(r), and associate the polarisation at position r in the beam with the ket

|ψ(r)⟩ = αu0(r)|0⟩+ βu1(r)|1⟩ , (25)

where α and β are a pair of complex constants. For any beam we can choose the orthogonal polar-

isations, |0⟩ and |1⟩ in such a way that the two mode functions u0(r) and u1(r) are orthonormal.

If the beam is propagating in the z-direction, this means that for any value of z∫
u∗i (r)uj(r) dx dy = δij . (26)

That a construction of the form in Eq. (25) is always possible is a consequence of the Schmidt

deomposition [75] familiar from the study of entangled states in quantum theory [73].

The advantage of employing the bra-ket notation is that we can use some of the mathematical

language of quantum theory, which serves both to emphasise the analogy with magnetic Skyrmions

and also with quantum entanglement [8, 76]. We start by normalising |ψ(r)⟩ to write

|ψ(r)⟩ = |0⟩+ µ(r)|1⟩√
1 + |µ(r)|2

, (27)

where µ(r) = βu1(r)/αu0(r). The local polarisation, or more precisely the local direction on the

Poincaré sphere, is then simply the expectation value of a vector operator the components of which
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are the familiar Pauli matrices:

S = ⟨ψ(r)|σ|ψ(r)⟩ . (28)

Hence the components of S are simply the normalised Stokes parameters for the beam [58, 59, 74].

It is straightforward to determine the components of S from |ψ(r)⟩ given in Eq. (27):

Sx =
2ℜ(µ)
1 + |µ|2

,

Sy =
2ℑ(µ)
1 + |µ|2

,

Sz =
1− |µ|2

1 + |µ|2
, (29)

where we have used the representation of the Pauli operators in Eq. (24).

We can use these components to calculate the Skyrmion field by substituting these into Eq. (3).

We find a simple, general expression for the components of the Skyrmion field:

Σl =
4εlmn

(1 + |µ|2)2
∂ℜ(µ)
∂xm

∂ℑ(µ)
∂xn

,

=
εlmn

(1 + |µ|2)2

(
i
∂µ

∂xm

∂µ∗

∂xn
− i

∂µ∗

∂xm

∂µ

∂xn

)
. (30)

By introducing a pair of complex Stokes parameters as

S± = Sx ± iSy = |S±|e±iΦ, (31)

where we have now obtained a phase term, Φ, for this complex quantity, the Skyrmion potential

has a yet simpler form:

V = −Sz∇Φ = −Sz∇ arg(µ), (32)

which is reminiscent of the form of the superfluid velocity in helium 4, which also depends on the

gradient of the argument of a complex wavefunction [77, 78]. Here, however, it is a phase appearing

in the superposition of polarisations rather than the argument of a macroscopic wavefunction. The

appearance of the particular component Sz may seem unexpected, but this component is singled

out by being the polarisation corresponding to the Schmidt basis in |ψ(r)⟩. It is certainly possible

to choose alternative forms for V, however, and these are a consequence of the non-uniqueness of

the Skyrmion vector potential.

The Skyrmion number defined in Eq. 23 associated with the contour in Fig. 1 can be written

as:

n =
1

4π

∑
j

∮
Lj

Sz∇Φ · dl−
∮
L∞

Sz∇Φ · dl

 , (33)
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a. b.

c. d.

FIG. 2. Inner and outer integration contours can be deformed and stretched (from a to d) without changing

the value of the Skyrmion number.

where L∞ is the large circular contour and the Lj are the small circular contours around each of

the singularities of V. Recalling the formula of the winding number N = (2π)−1
∮
∇Φ · dl, we

obtain a topological expression for the Skyrmion number:

n =
1

2

∑
j

S(j)
z Nj − S̄(∞)

z N∞

 , (34)

where N∞ and Nj are the number of rotations of Stokes vector encountered on circumnavigating,

respectively, the large circular contour and the small contours around each of the singularities. In

spite of the presence of the 1/2 coefficient, n is guaranteed to be an integer. Indeed, as shown

in Fig. 2, the inner integration line around each of the sigularities can always be deformed and

stretched to spatial infinity without a change of topological structure such that
∑

j Nj = N∞ so

that:

n =
1

2

∑
j

(S(j)
z − S̄(∞)

z )Nj , (35)

The quantity S̄
(∞)
z is the average of Sz obtained by integration around the large circular contour.



12

In the limit that the radius of the contour tends to infinity this should be a constant, but in

experimental realisations an averaging procedure at finite radius is necessary [19].

The Skyrmion number for any given position along the beam is simply the integral of the

z-component of this field over the transverse plane, and so is a function of the z-coordinate:

n(z) =
1

4π

∫
Σz dx dy . (36)

This quantity is remarkably robust in many cases owing to the fact that ∇ ·Σ = 0, entailing that

the integral of Σ over any closed surface is zero. This is a reflection of the general robustness of

structured light beams [79]. It is possible to change the Skyrmion number on propagation, however,

as we shall see [13].

IV. SKYRMION FIELD LINES

The mathematical properties of the Skyrmion field lines are derived directly from their definition.

Firstly, the Skyrmion field is transverse, ∇ · Σ = 0, and it follows that the Skyrmion field lines

are unbounded; they can exist only as closed loops or extend to infinity. It follows, also, that they

cannot merge or split, although we shall encounter an interesting exception to this in section VII.

Secondly, the Skyrmion field lines are basis independent in that they are unchanged by a global

rotation of the Stokes vector on the Poincaré sphere. This means that knowledge of the Skyrmion

field does not determine the polarisation pattern. It remains, however, to determine the physical

significance of the Skyrmion field lines and we address this here.

Inspection of numerous polarisation patterns leads to the conjecture that Skyrmion field lines are

lines of constant polarisation. That this is indeed the case was proven in [40] but, for completeness,

we give a summary of the main points here. We start with the observation that our general

polarisation pattern can be written in the form of a spatially varying ket as given in Eq. (27).

It follows that the polarisation at any given point is determined solely by, and in one-to-one

correspondence with, the complex field µ(r). Hence lines of constant polarisation are contours of

constant µ.

The transverse nature of the Skyrmion field means that at any given point, r0, only a single

Skyrmion field line is present and, moreover, that this line is continuous at this point. It follows

that at r0 there is a direction u(r0) along which the Stokes parameters, S, do not change:

u(r0) · ∇Si(r0) = 0 . (37)
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As the Stokes parameters do not change in this direction it follows, necessarily, that the polarisation

also does not change. Hence u(r0) determines the direction of a line of constant polarisation, which

includes but is not restricted to C lines and L lines (lines of circular and specific linear polarisation).

[80–83]

a. b.

FIG. 3. a. A line of constant elliptical polarisation and the local coordinate system u,v,w at r0. b. A

twisted mesh of lines of constant polarisation for a paraxial skyrmion beam (n = 1) freely propagating over

eight Rayleigh ranges.

To prove that lines of constant polarisation are also Skyrmion field lines, we return to the

definition of the Skyrmion field, given in Eq. (2), and evaluate this expression by introducing, at

each point, two unit vectors v(r0) and w(r0), where u, v and w are orthonormal vectors satisfying

the right-hand rule so that, for example, u = v×w, as depicted in Fig. 3 a. Hence the components

of the Skyrmion field in this coordinate system are

Σu =
1

2
εpqr Sp

(
∂Sq
∂v

∂Sr
∂w

− ∂Sq
∂w

∂Sr
∂v

)
, (38)

Σv =
1

2
εpqr Sp

(
∂Sq
∂w

∂Sr
∂u

− ∂Sq
∂u

∂Sr
∂w

)
, (39)

Σw =
1

2
εpqr Sp

(
∂Sq
∂u

∂Sr
∂v

− ∂Sq
∂v

∂Sr
∂u

)
. (40)

The derivatives of the Stokes parameters are zero along the direction u and it follows, therefore,

that Σv = 0 = Σw. The one remaining non-zero component of the Skyrmion field at r0 is Σu and

it follows, therefore, that the Skyrmion field line at any point, r0, points along the direction of

constant polarisation. Further details and consequences of this may be found in [40]. In a typical

Skyrmionic optical beam with n = 1 the lines of constant polarisation form a twisted mesh of

straight lines shown in Fig. 3 b.

The identification of Skyrmion field lines with lines of constant polarisation is general and holds

whether or not the structured light has a non-zero Skyrmion number. As such, Skyrmion field lines
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provide a natural way to extend studies of L and C lines to arbitrary polarisations. A fully general

comparison, however, requires an extension of the ideas presented here to non-paraxial fields. We

return to this point elsewhere.

V. THE SKYRMION VECTOR POTENTIAL AND DIRAC STRINGS

We have seen that the Skyrmion field is transverse and that this property allows for the introduc-

tion of a Skyrmion vector potential V. As with the magnetic vector potential in electromagnetism,

V is not unique and may be modified by an analogue of a gauge transformation. The Skyrmion

number can be evaluated by performing a line integral of the Skyrmion vector potential in much

the same way that the magnetic flux through a surface is equivalent to an integral of the vector

potential along a line bounding the surface.

A key feature in evaluating the Skyrmion number using the Skyrmion vector potential is the

necessity of omitting singularities by deforming the integration contour. These singularities exist

along lines in space and are analogous to Dirac strings that appear in the theory of magnetic

monopoles [84–86]. Dirac strings are lines along which the magnetic vector potential is singular.

They originate and end at magnetic monopoles or extend to infinity. For paraxial optical Skyrmions

there is no analogue of the magnetic monopole and so the singular lines of the Skyrmion vector

potential are unbounded.

Dirac strings are not unique; a gauge transformation will move them. The same behaviour

holds for the Skyrmion vector potential and this means that there exists a variety of patterns of

singular lines of the Skyrmion vector potential for any given Skyrmion field. The contour required

to evaluate the line integral of V will also vary, but the Skyrmion field and consequently the pattern

of Skyrmion field lines will remain unchanged. In the following section, we give an explicit example

of this behaviour where we give two distinct forms of the Skyrmion vector potential for the same

structures paraxial light beam and, consequently, the same Skyrmion field.

A pattern with Skyrmion number n will typically be associated with 2n singular lines, or strings.

A special case exists, however, in which there is a single string, of strength n. A continuous gauge

transformation reveals, however, further strings entering from infinity. We shall provide an example

of this behaviour in section VI.
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VI. SKYRMIONS AND OPTICAL ORBITAL ANGULAR MOMENTUM

The theory outlined above is rather general and facilitates the exploration of a very wide range

of polarisation patterns. It is useful, however, to study a few simple examples to illustrate a few

key features. To this end we select the two orthogonal spatial modes to be Laguerre-Gaussian

modes of the form

uℓp(ρ, ϕ, z) =

√
2p!

π(p+ |ℓ|)!
1

w(z)

(
ρ
√
2

w(z)

)|ℓ|

exp

(
− ρ2

w2(z)

)
× L|ℓ|

p

(
2ρ2

w2(z)

)
eiℓϕ exp

(
−i ρ2

w2(z)

z − z0
zR

)
× exp

(
−i(2p+ |ℓ|+ 1) tan−1

(
z − z0
zR

)) (41)

where zR = πw2
0/λ is the Rayleigh range, w(z) = w0

√
1 + (z − z0)2/z2R is the beam width at z and

z = z0 is the focal plane. These have been much studied in the physics of lasers [87, 88] and also

by virtue of the orbital angular momentum, of ℓh̄ per photon, associated with them [89–93].

Selecting the modes u0(r) and u1(r) to be Laguerre-Gaussian modes means that the function

µ reduces to the simple form

µ = f(ρ, z)eiΦ(ρ,ϕ,z) = f(ρ, z)eiΘ(ρ,z)ei(ℓ1−ℓ0)ϕ (42)

so that the components of S are

Sx =
2f cos[Θ + (ℓ1 − ℓ0)ϕ]

1 + f2
,

Sy =
2f sin[Θ + (ℓ1 − ℓ0)ϕ]

1 + f2
,

Sz =
1− f2

1 + f2
. (43)

The symmetry of our light beam suggests that we express the components of Σ in cylindrical polar

coordinates [13]:

Σρ = −2(ℓ1 − ℓ0))

ρ(1 + f2)2
∂f2

∂z
,

Σϕ = − 2

(1 + f2)2

(
∂f2

∂ρ

∂Θ

∂z
− ∂f2

∂z

∂Θ

∂ρ

)
,

Σz =
2(ℓ1 − ℓ0)

ρ(1 + f2)2
∂f2

∂ρ
. (44)

The Skyrmion number from Eq. 36. is then simply given by the integral of Σz over a plane of
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constant z:

n(z) =
1

4π

∫ ∞

0
ρdρ

∫ 2π

0
dϕΣz

= (ℓ1 − ℓ0)

(
1

1 + f2(0, z)
− 1

1 + f2(∞, z)

)
. (45)

It is remarkable that this depends only on the dominant polarisation on the z-axis where the optical

vortex is situated and at large distances from the axis. If the mode u0(r) dominates at ρ = 0, then

limρ→0 µ(r) = 0 and f(0, z) = 0, but if mode u1(r) dominates then f(0, z) = ∞. The value of

f(∞, z) is similarly determined by the dominant spatial mode at large distances from the z-axis.

FIG. 4. Integration contours for an n = 3 skyrmion: (a) For S± = Sx ± iSy. (b) For S± = Sz ± iSx (cf.

Eq. 31). The background shows the corresponding phase, Φ, with phase singularities marked by red crosses.

We can shed some light on the form of our expression for the Skyrmion number by calculating

it using the Skyrmion potential V. To do so we recall, from Eq. (22) that we can use the Skyrmion

vector potential V to rewrite the Skyrmion number in the form

n(z) =
1

4π

∮
V · dℓ . (46)

The integration contour must exclude singular points as showed in Fig. 4 for two different choices

of basis. In the case of Fig. 4(a), where S± = Sx± iSy, this includes the z-axis where the argument

of µ is not defined, and integrating around the contour and noting that the two straight line

contributions to the contour cancel results in:

n(z) =
1

4π

(
lim
ρ→∞

∫ 2π

0
ρ dϕVϕ − lim

ρ→0

∫ 2π

0
ρ dϕVϕ

)
, (47)



17

where

Vϕ =
Sz
ρ

∂

∂ϕ
arg(µ) =

Sz
ρ
(ℓ1 − ℓ0) . (48)

It follows that the Skyrmion number is

n(z) =
1

2
(ℓ1 − ℓ0)

(
−1− f2(∞, z)

1 + f2(∞, z)
+

1− f2(0, z)

1 + f2(0, z)

)
= (ℓ1 − ℓ0)

(
1

1 + f2(0, z)
− 1

1 + f2(∞, z)

)
. (49)

The Skyrmion number will typically be ±(ℓ1 − ℓ0) or 0, with the value determined by the modes

that dominate at ρ = 0 and as ρ → ∞. It will be zero if a single mode dominates in both places,

and non-zero if the polarisation at ρ = 0 is orthogonal to that for ρ→ ∞. There is one exception,

which is when neither mode is sufficiently dominant at ρ = 0 and in this case we find a non-integer

Skyrmion number. We shall deal with this case separately in the next section.

As noted above, the Skyrmion vector potential is not unique and we can change its form, without

changing the Skyrmion field, by a simple rotation of the basis. This will not affect the Skyrmion

field lines, and so will leave the Skyrmion number unchanged, but it will change V and also modify

the pattern of singularities. An example of this is shown in Fig. 4(b), where we have rotated the

Stokes vector through −π/2 about the y-axis, so that S± becomes Sz ± iSy. We see that the sole

singularity at the origin in Fig. 4(a), around which the phase changes by 6π corresponding to a

Skyrmion number of 3, is replaced by six, that is 2n, strings around each of which the phase changes

by 2π. The Skyrmion number is, of course, unchanged. We note that such a change of basis can be

advantageous from an experimental perspective as the integration contour can be moved to regions

of higher intensity, yielding better measured Skyrmion numbers [19].

If our two spatial modes are a pair of Laguerre-Gaussians, of the form given in Eq. (41) then

the forms of f(0, z) and of f(∞, z) are particularly simple. At large distances from the beam axis,

the behaviour is determined solely by the rate at which the Gausssian tends to zero. For large ρ

we find

f(ρ, z) =
P (ρ)

Q(ρ)
exp

[
−ρ2

(
1

w2
1(z)

− 1

w2
0(z)

)]
, (50)

where P (ρ) and Q(ρ) are polynomials. As ρ → ∞, f(ρ) tends to zero if w1(z) < w0(z) and if

w1(z) > w0(z) then f(ρ) tends to infinity. For small values of ρ, however, f(ρ) is proportional to

a power of ρ determined by the orbital angular momenta of the two modes:

f(ρ) ∝ ρ|ℓ1|−|ℓ0| . (51)
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This tends to zero if |ℓ1| > |ℓ0| and to infinity if |ℓ1| < |ℓ0|. Situations in which these quantities

are equal are a special case that will be dealt with in the next section. Note that the behaviour for

small ρ is quite general and applies for modes other than the Laguerre-Gaussians with a charge ℓ

vortex.

The form of µ implicit in Eq. (50) reveals, also, how the Skyrmion number can change on

propagation. We have seen how the widths w0(z) and w1(z), when combined with the behaviour

at the origin, determine the Skyrmion number. If the two Laguerre-Gaussian modes are focused

at different points, then the relative widths of the modes can switch, say from w1(z) < w0(z) to

w1(z) > w0(z) and with this the form of the polarisation at large distances, with the corresponding

change in the Skyrmion number [13]. When this happens, Skyrmion field lines turn away from the

propagation direction heading radially outwards.

VII. NON-INTEGER SKYRMIONS

The remaining case to consider is when the two spatial modes have equal but opposite orbital

angular momentum so that ℓ1 = −ℓ0 = ℓ. This case can also produce a Skyrmion structure but

this time the Skyrmion number takes a fractional, or more precisely a non-integer, value. To the

best of our knowledge, this situation does not appear in other fields of physics in which Skyrmions

or the associated textures arise.

We shall see that non-integer Skyrmions have a number of features that distinguish them from

the more familiar integer Skyrmions described above.

To begin our discussion let us return to our formula for the Skyrmion number associated with

a pair of spatial modes carrying orbital angular momentum, Eq. (45). The Skyrmion number

depends only on the function f(ρ, z) at large and small values of ρ. For large ρ one of the two

modes will always dominate and hence if we move far enough from the z-axis we will find that

f(ρ, z) tends to zero or to infinity. The new feature occurs on the z-axis where as ρ → 0 we find

that f(ρ, z) tends to the value

f(0, z) =

√
p1!(2p0 + |ℓ|)!
p0!(2p1 + |ℓ|)!

∣∣∣∣βα
∣∣∣∣ (w0(z)

w1(z)

)|ℓ|+1

. (52)

It follows that the associated Skyrmion number,

n(z) = 2ℓ

(
1

1 + f2(0, z)
− 1

1 + f2(∞, z)

)
, (53)

can take any desired value. As the beam propagates, moreover, this Skyrmion number will change

as diffraction causes the ratio of beam waists w0(z)/w1(z) to change.
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The fact that the Skyrmion number changes on propagation requires an explanation. The

situation is clearly distinct from that produced by a pair of spatial modes focused in different

places, as there the Skyrmion number changes abruptly at a single plane. This suggests that a

different explanation is required. To find this we note that the issue seems to originate from the

behaviour of the Skyrmion field on the z-axis and it is there that we find an explanation. For small

values of ρ the ratio of the mode amplitudes tends to the value

lim
ρ→0

µ = f(0, z) exp

(
−i2(p1 − p0) tan

−1

(
z − z0
z

))
ei2ℓϕ . (54)

As the magnitude of this is non-zero it is clearly ill-defined as the azimuthal angle ϕ has no

meaning on the axis. It follows that the point z = 0 in any given plane is singular.

To focus attention on the Skyrmion field on the z-axis, let us consider a cylindrical volume of

radius ∆ρ and height ∆z centred on and rotationally symmetric about the z-axis, as depicted in

Fig. 5. We can use our expressions for the z- and ρ-components of Σ, given in Eq. (29), to evaluate

the flux of the Skyrmion field through the surface of this cylinder. We find∮
Σ · dS = 4π2ℓ

(
1

1 + f2(0, z +∆z)
− 1

1 + f2(0, z)

)
. (55)

This depends, clearly, only on the polarisation on the z-axis, through the function f(0, z). Gauss’s

theorem then implies that the divergence of Σ is not zero but rather takes a singular value on the

z-axis,

∇ ·Σ = 4ℓ
δ(ρ)

ρ

∂

∂z

1

1 + f2(ρ, z)
, (56)

so that the volume integral of this over our cylinder gives∫
∇ ·ΣdΩ = 8πℓ

(
1

1 + f2(0, z +∆z)
− 1

1 + f2(0, z)

)
=

∮
Σ · dS , (57)

as required. The theorem, which we proved earlier (5), established that ∇ · Σ = 0, but here we

see the need to add a caveat to this due to the singular behaviour of the Skyrmion field on the

z-axis. For a non-integer Skyrmion, the Skyrmion field does not have a properly defined value on

the z-axis and therefore does not have a well-defined derivative there. Our earlier proof of the

divergenceless nature of Σ employed the idea that S (or M) is slowly varying in that its value

can be represented by a Taylor series in the vicinity of any given point. The singular form of the

Skyrmion field on the z-axis means that the required slowly varying behaviour does not hold on

the z-axis. The fact that ∇ ·Σ = 0 everywhere except on the z-axis means that the Skyrmion field
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lines can originate or terminate there, and it is by this mechanism that the Skyrmion number can

change continuously as the light propagates. A schematic illustration of this behaviour is presented

in Fig. 5. The failure of the transversality condition for non-integer Skyrmions also suggests that

a description of these in terms of an underlying Skyrmion vector potential may not be helpful.

FIG. 5. Lines of constant polarisation going in and out of the cylindrical volume for a non-integer Skyrmion.

VIII. CONCLUSION

While optical Skyrmions fall into a specific category of structured light beams, studying their

fundamental properties uncovers powerful tools for examining the topological properties of paraxial

light beams. Optical Skyrmions are best understood by reference to a Skyrmion field. This field

is transverse, or divergenceless, and so may be represented in terms of a vector potential. This

potential, although not unique, provides a simple expression for the Skyrmion number in paraxial

optical Skyrmion fields based solely on topological considerations. Skyrmion field lines have a

significance beyond their association with Skyrmions: they are lines of constant polarisation [40].

As such they underlie and map the forms of all structured paraxial beams. It is likely, therefore,

that they will find general application in the developing study of structured light beams [1, 2].

Extending the study of Skyrmions beyond the paraxial regime could bring novel insights into

topological charge conservation as has been advocated in the study of L and C lines [80–83].

It is straightforward to construct paraxial beams with Skyrmionic structure by superposing
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orthogonally polarised Laguerre-Gaussian modes. For these we can determine the Skyrmion num-

ber purely in terms of the polarisation on the beam axis and at large distances. We can readily

construct analogues of the Skyrmions encountered in the study of magnetic media. The spins in a

magnetic film interact, but there is no such interaction for a light beam. For this reason, we can

contemplate creating structures that do not exist in magnetism, such as Skyrmions with arbitrary

polarisation at their centre. A further example given here is the existence of non-integer Skyrmions.

These have many of the features of the more familiar integer Skyrmions but lack their stability in

that the Skyrmion number typically varies on propagation. The origin of this effect is the failure of

the transversality or divergenceless condition on the beam axis. It is this feature that accounts for

both the fractional (or more precisely non-integer) nature of the Skyrmions and for their changes

on propagation.

IX. ACKNOWLEDGEMENTS

S. M. B. acknowledges support from the Royal Society, grant number RP150122, J. B. G ac-

knowledges support from the EP/V048449/1 grant and the Leverhulme Trust, A. M. acknowledges

support by a UK Research and Innovation Council grant EPSRC/DTP 2020/21/EP/T51786/1.

C. M. C. acknowledges financial support from UK Research and Innovation Council (UKRI) grant

EP/W016486/1.

REFERENCES

[1] Forbes A, de Oliveira M and Dennis M R, 2021, Structured light Nat. Photon. 15 253–262

[2] Rubinsztein-Dunlop H. et al., 2016, Roadmap on structured light J Opt 19 1:013001

[3] Wang J, Castellucci C, Franke-Arnold S, 2020, Vectorial light–matter interaction: Exploring spatially

structured complex light fields AVS Quantum Science 2 3.

[4] Zhan Q, 2009, Cylindrical vector beams: from mathematical concepts to applicationsAdv. Opt. Photon.

1 1-57.

[5] Zambrini R and Barnett S M, 2007, Angular momentum of multimode and polarisation patterns Opt.

Expr. 15 15214–15227

[6] Galvez E, Khadka S, Schubert W and Nomoto S, 2012, Poincaré-beam patterns produced by nonsepa-
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