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Abstract
Pansharpening is a significant image fusion tech-
nique that merges the spatial content and spectral
characteristics of remote sensing images to gen-
erate high-resolution multispectral images. Re-
cently, denoising diffusion probabilistic models
have been gradually applied to visual tasks, enhanc-
ing controllable image generation through low-
rank adaptation (LoRA). In this paper, we intro-
duce a spatial-spectral integrated diffusion model
for the remote sensing pansharpening task, called
SSDiff, which considers the pansharpening pro-
cess as the fusion process of spatial and spec-
tral components from the perspective of subspace
decomposition. Specifically, SSDiff utilizes spa-
tial and spectral branches to learn spatial de-
tails and spectral features separately, then em-
ploys a designed alternating projection fusion mod-
ule (APFM) to accomplish the fusion. Further-
more, we propose a frequency modulation inter-
branch module (FMIM) to modulate the frequency
distribution between branches. The two compo-
nents of SSDiff can perform favorably against the
APFM when utilizing a LoRA-like branch-wise
alternative fine-tuning method. It refines SSD-
iff to capture component-discriminating features
more sufficiently. Finally, extensive experiments on
four commonly used datasets, i.e., WorldView-3,
WorldView-2, GaoFen-2, and QuickBird, demon-
strate the superiority of SSDiff both visually and
quantitatively. The code will be made open source
after possible acceptance.

1 Introduction
Due to physical limitations, satellite sensors cannot directly
acquire high-resolution multispectral images (HrMSI). In-
stead, they can obtain high-resolution panchromatic (PAN)
images and low-resolution multispectral images (LrMSI).
Pansharpening techniques can merge PAN images with
LrMSI, generating HrMSI that possess both high spatial and
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Figure 1: Schematic of (a) DL-based pansharpening approach in a
supervised fashion, in which the “network” can be any deep module,
e.g., denoising diffusion probabilistic models (DDPM). The com-
parison of (b) the LoRA based on DDPM and (c) the proposed
APFM in our SSDiff. G and U represent the spectral and spa-
tial domains, respectively. The LoRA can expand learnable weights
W0 with ∆W (but without applications to pansharpening), and the
given APFM can obtain pansharpened HrMSI from PAN image and
LrMSI through alternating projections.

spectral resolutions. Pansharpening, as a fundamental prepro-
cessing method, has been widely utilized in various applica-
tions, including change detection [Wu et al., 2017] and image
segmentation [Yuan et al., 2021].

Pansharpening methods are roughly categorized into
four types: component substitution (CS) methods, multi-
resolution analysis (MRA) methods, variational optimization
(VO) techniques, and deep learning (DL) methods, as shown
in Fig. 1 (a). The CS method [Kwarteng and Chavez, 1989;
Meng et al., 2016] involves projecting the LrMSI into a spe-
cific domain and replacing the spatial components of the
LrMSI in that domain with the corresponding components
from the PAN image. CS-based methods can generate fu-
sion images with high spatial fidelity but spectral distortion
with fast runtime. MRA-based methods [Otazu et al., 2005;
Vivone et al., 2017] extract spatial details from the PAN im-
age through multiscale decomposition and inject them into
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the LrMSI. While MRA-based methods effectively preserve
spectral information, they may sacrifice spatial details. Com-
pared to CS-based and MRA-based methods, VO-based tech-
niques [Wu et al., 2023a; Wu et al., 2023b] gain more math-
ematical guarantees but require handling a higher computa-
tional burden and more adjustable parameters.

In recent years, DL-based methods [Wu et al., 2021;
He et al., 2019] have increasingly been applied to pan-
sharpening tasks, yielding exciting results. Traditional DL-
based methods typically utilize a single-scale model to pro-
cess information from PAN images and LrMSI. In a single-
scale network, PAN images and LrMSI are usually stacked
together without distinguishing the information contained
within them, serving as inputs to the network. They over-
look the disparities in the deep-level information inherent in
both, potentially leading to the omission of crucial discrim-
inative features and subsequently influencing lower fusion
performance. Then, dual-branch methods [Deng et al., 2023;
Liang et al., 2022] based on deep learning can differen-
tiate and hierarchically learn information from PAN and
LrMSI. Thanks to this design, it has shown outstanding per-
formance in pansharpening tasks. However, the cumbersome
structure of dual-branch networks makes it challenging to
perform localized fine-tuning. Denoising diffusion proba-
bilistic model (DDPM) [Ho et al., 2020] is attaining atten-
tion in remote sensing pansharpening [Meng et al., 2023;
Cao et al., 2023]. Unfortunately, existing DDPM-based
methods have not yet designed models for the discriminative
features required in the pansharpening task.

Considering the characteristics of the pansharpening task,
we propose a novel SSDiff method based on subspace decom-
position, which leverages spatial and spectral branches to dis-
criminatively capture global spatial information and spectral
features, respectively. Additionally, we further construct an
alternating projection fusion module (APFM) to fuse the cap-
tured spatial and spectral components. Besides, a frequency
modulation inter-branch module (FMIM) is designed to over-
come the problem of uneven distribution of frequency infor-
mation between two branches in the denoising process. Fi-
nally, through the proposed LoRA-like branch-wise alternat-
ing fine-tuning (L-BAF), our SSDiff can further reveal spatial
and spectral information not discovered in each branch. The
contributions of this work include three folds, as follows:

• Our SSDiff is based on subspace decomposition to di-
vide the network into spatial and spectral branches. In
addition, for subspace decomposition, we give an illus-
tration of vector projection and construct an alternating
projection fusion module (APFM). APFM transforms
the process of fusing HrMSI into the fusion process of
spatial and spectral components. Moreover, our SSDiff
is tested on four widely used pansharpening datasets and
achieves state-of-the-art (SOTA) performance.

• The frequency modulation inter-branch module is used
at the junction of spectral and spatial branches to enrich
extracted spatial information with more high-frequency
information in the denoising process.

• The proposed L-BAF method is used to fine-tune the
proposed APFM, where the spatial and spectral branches

are updated alternately. This design allows us to alter-
nately fine-tune the two branches without increasing the
parameter count, enabling the learning of more discrim-
inative features.

2 Related Works
2.1 DL-based Methods
As a simple but effective method, the representative single-
scale coupling model, namely PNN [Masi et al., 2016],
first proposes a simple and effective three-layer CNN ar-
chitecture and achieves the best results at that time. Sub-
sequently, other methods such as FusionNet [Deng et al.,
2020], DCFNet [Wu et al., 2021], and others adopt similar
coupled input approaches and successfully design their net-
works. However, these methods still have significant room
for improvement in spectral fidelity and generalization per-
formance due to weak feature representation in their network
structure designs. In multi-source image fusion tasks, im-
ages acquired from diverse sources exhibit varying character-
istics. Coupling two information sources together may suffer
from inadequate feature extraction. Then, spatial and spec-
tral branches methods [Deng et al., 2023; Liang et al., 2022;
Peng et al., 2023] based on deep learning can differentiate
and hierarchically learn information from PAN images and
LrMSI. These methods can better exploit the potential advan-
tages of multi-scale information.

2.2 Diffusion-based Model
DDPM, as a generative model, has been widely applied in
various domains such as text-to-image generation [Ruiz et
al., 2023] and image editing [Kawar et al., 2023]. In re-
cent years, DDPM has shown its prominence in image pro-
cessing tasks [Gao et al., 2023; Song et al., 2020]. Among
them, Song et al. [Song et al., 2020] propose denoising dif-
fusion implicit models (DDIM), where they design a non-
Markov chain sampling process, accelerating the sampling of
diffusion models. Then, through some simple modifications,
IDDPM [Nichol and Dhariwal, 2021] achieves competitive
log-likelihoods while preserving the high sample quality of
DDPM. Currently, DDPM is attracting attention in the field
of pansharpening [Meng et al., 2023; Cao et al., 2023]. These
DDPM-based methods treat PAN and LrMSI as model fusion
conditions, unlike other pansharpening methods where they
serve as fusion targets.

3 Background
3.1 Denoising Diffusion Probabilistic Models
Denoising diffusion probabilistic models [Ho et al., 2020] are
latent variable models, generating realistic target images pro-
gressively from a normal distribution by iterative denoising.
The diffusion model contains two steps: forward and reverse
processes.

The forward process aims to make the prior data distri-
bution x0 noisy by a T step Markov chain that gradually
transforms it into an approximate standard normal distribu-
tion xT ∼ N (0, Id) and d denotes the dimension. One for-



ward step is defined as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where N (·) is a Gaussian distribution with the mean of√
1− βtxt−1 and variance of βtI, βt is a pre-defined variance

schedule in time step t ∈ [0, T ]. Through the reparameteriza-
tion trick, we can derive xt directly from x0, The following
equation gives this derivation:

q(xt|x0) =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ϵ ∼ N (0, I) and αt = 1− βt, ᾱt =
∏t

i=0 αi.
The reverse process aims to learn to remove the degrada-

tion brought from the forward process and sample the x0 from
xt. To accomplish this objective, we need to learn the distri-
bution of pθ(xt−1|xt) using a neural network and perform
iterative sampling as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (3)

where µθ and Σθ are the mean and variance of pθ(xt−1|xt),
respectively, and θ is the parameters of model.

According to Eq. (3), the mean and variance can be com-
puted, following:

µθ =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)), (4)

Σθ(xt, t) =
1− ᾱt−1

1− ᾱt
βt. (5)

For sampling from a standard Gaussian noise xT to get xT−1,
after performing T -step iterations of sampling as described
above, we get the output x0 from xT .

3.2 LoRA: Low-rank Adaptation of Large
Language Models

For the fine-tuning of parameters in large pre-trained mod-
els, Hu et al. [Hu et al., 2021] introduce the LoRA to freeze
the pre-trained model weights and inject trainable low-rank
decomposition matrices into each layer of the Transformer
architecture. This significantly reduces the number of train-
able parameters for downstream tasks. For H = W0X, the
modified forward pass of the LoRA follows the formula:

H = W0X+∆WX = W0X+BAX, (6)

where W0 ∈ Rd×k is a pre-trained weight matrix, X ∈
Rk×n, B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k).
Actually, W0 + ∆W = W0 + BA represents a low-rank
decomposition.

3.3 Motivation
PAN images and LrMSI are obtained from different sensors
and contain distinct feature information. PAN images exhibit
richer spatial details, while LrMSI possesses more abundant
spectral information. However, existing DDPM-based meth-
ods have not yet designed models specifically for the dis-
criminative features required in the pansharpening task. As
a result, these methods suffer from issues such as insufficient
feature learning and generalization capabilities, though they

may employ low-rank adaptation (LoRA) to improve the per-
formance of DDPM for the pansharpening task.

To solve these problems, we propose SSDiff, which trans-
forms the problem of solving HrMSI into a fusion problem
of spatial and spectral components. Significantly, we give an
illustration of linear algebra to remove the gap between sub-
space decomposition and the self-attention mechanism. The
SSDiff utilizes vector projection to discriminatively capture
global spatial information and spectral features in spatial and
spectral branches. By introducing subspace decomposition,
we can further illustrate and generalize the vector projection
to the matrix form. Based on this, we propose an APFM that
naturally decouples spatial and spectral information and fuses
the captured features. Unlike the LoRA method, the APFM
can establish low-rank representations for the spatial-spectral
branches more accurately, as shown in Fig. 1. Furthermore,
the spectral branch contains abundant low-frequency infor-
mation. When low- and high-frequency information from the
spatial branch is injected into the spectral branch, it may re-
sult in an overemphasis on low-frequency information, im-
pacting the denoising performance of the model. Based on
this, we propose FMIM to modulate the frequency informa-
tion between different branches. The overall model is trained
by L-BAF to uncover spatial and spectral information not dis-
covered in each branch.

Algorithm 1: Training stage of the proposed method.
Data: GT image x0, diffusion model xθ with its

parameters θ, spectral and spatial branch
parameter θspe, θspa, respectively, condition
cond, timestep t, and denoised objective x̂0.

Result: Optimized diffusion model x∗
θ .

1 cond← PAN,LrMSI,xt;
2 while until convergence do
3 t← Uniform(0, T ); ϵ ∼ N (0, I);
4 xt ←

√
ᾱt(x0 − LrMSI) +

√
1− ᾱtϵ;

5 x̂0 ← xθ(xt, cond) + LrMSI;
6 if iteration > 150k then
7 fine-tune θspe or θspa; // L-BAF
8 end
9 θ ← ∇θLsimple(x̂0,x0).

10 end

4 Methodology
4.1 SSDiff Architecture
Inspired by the LoRA approach, we view the pansharpening
task as the fusion of spatial and spectral components, where
the spatial and spectral elements can be considered as a ma-
trix decomposition of a multi-spectral image. Based on these
characteristics, our SSDiff employs a model comprising a
spatial branch and a spectral branch, as shown in Fig. 2. Both
the spatial branch and the spectral branch comprise two en-
coder layers and two decoder layers. Down-sampling occurs
between the encoder layers to decrease the spatial resolution
while increasing channel numbers. Up-sampling operation
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Figure 2: Overall framework of the proposed SSDiff. ϵt =
√
1− ᾱtϵ is a Gaussian noise, where t is the time step. Fspa is the output of the

spatial branch, and Fspe is the output of the spectral branch. The process of APFM follows Theorem 1.

between the two layers of the decoder to increase the spa-
tial resolution while decreasing the number of channels, and
the middle of the encoder and the decoder are connected by
a down-sampling convolution layer. The spatial branch em-
ploys ResNet [He et al., 2016] blocks to handle spatial im-
ages into features. These spatial features are transmitted to
corresponding layers in the spectral branch via a frequency
modulation inter-branch module. Additionally, fusing incom-
ing spatial features and spectral information via an alternating
projection fusion module.

Eventually, it is delivered to the next stage via an MLP. In
this work, we convert the objective from ϵ to x0, so the loss
function Lsimple [Cao et al., 2023] takes the following form:

Lsimple = E [∥x0 − xθ(xt, c, t)∥1] , (7)
where xθ denotes the prediction of the model and c is the con-
ditions for injecting the model. Inspired by FusionNet [Deng
et al., 2020], our SSDiff changes the forward and backward
denoising objects during the training process from HrMSI to
the difference between HrMSI and up-sampled LrMSI. The
detailed training process of SSDiff can be found in Algo-
rithm 1.

4.2 Alternating Projection Fusion Module
This section starts with vector projection in linear algebra
(See Lemma 1) and subspace decomposition (See Defini-
tion 1) to illustrate vector projection as a specific subspace de-
composition. Then, the self-attention mechanism [Vaswani et
al., 2017] is generalized into the proposed alternating projec-
tion fusion framework, i.e., the alternating projection fusion
module (APFM). In what follows, we rewrite vector projec-
tion as follows.
Lemma 1 ([Strang, 2022]). Assuming that the existing two
arbitrary vectors a ∈ domU ∈ Rn and b ∈ domG ∈ Rn,
then Pb = λa = p, we have the following formula:

p =
aaT

aTa
b. (8)
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Figure 3: Schematic diagram of the relationship between subspace
decomposition and self-attention mechanism. f(Q,K) is the classic
self-similarity equation in self-attention mechanism.

where P is a projection matrix, λ denotes the scaling factor,
and p is the vector in the same domain as a.

Proof. For any two vectors a and b, there exists a vector e =
p − b such that e is orthogonal to a. We have the following
equation:

aTe = aT (p− b) = aT (λa− b) = 0, (9)

thus, we have

λ =
aTb

aTa
. (10)

Taking Eq. (10) into Pb = λa = p, we have the conclusion:

p = Pb = aλ =
aaT

aTa
b. (11)



Definition 1 ([Dian and Li, 2019]). Assume that D ∈ RS×L

is the subspace and C ∈ RL×HW is the corresponding coef-
ficients. We have:

Z = DC. (12)

Based on subspace decomposition, we can take spatial and
spectral components to accomplish the pansharpening of re-
mote sensing images. According to Lemma 1, we can further
determine a specific subspace decomposition in Definition 1.
The subspace represents the projection relationship between
vectors a and b. Interestingly, we find that we can generalize
Eq. (8) and Eq. (12) to the matrix form of the self-attention
mechanism, as shown in Fig. 3. In other words, the self-
attention mechanism is represented as the vector projection
of Eq. (8), which is the low-rank subspace decomposition.
Remark 1. Back to the pansharpening applications, the in-
put PAN and LrMSI are mapped to a high-dimensional fea-
ture space. The features often exhibit significant correlations
between frequency bands, while spectral vectors typically re-
side in a low-dimension subspace. These features can be rep-
resented as Eq. (12). In this way, the characteristics in the
image domain can be transformed into the subspace.

Based on the above analysis, we can build an alternating
projection framework, which is summarized in the following
theorem.
Theorem 1. Assuming that Fspa ∈ RH×W×S and Fspe ∈
RH×W×S from the spatial and spectral branches, they can
be alternatively projected as follows:

Tspa = Softmax
(
TaT

T
b√

S′

)
TT

c , (13)

Tspe = Softmax

 TcT
T
d√

(S′)3

HW

TT
a , (14)

where Tspa ∈ RHW×S′
and Tspe ∈ RS′×HW denote the

features of spatial domain and spectral domain separately.
Ta ∈ RHW×S′

and Tb ∈ RHW×S′
are features in the spa-

tial domain generated by Fspa, where S′ is the channel of
self-attention. Tc ∈ RS′×HW and Td ∈ RS′×HW are fea-
tures in the spectral domain generated by Fspe.

√
S′ and√

(S′)3

HW are constants related to the matrix size. Softmax(·)
stands for the Softmax function.

Proof. According to Lemma 1, we can generalize the self-
attention mechanism [Vaswani et al., 2017], where Q and
K are the features from domU, and V is the feature from
domG, respectively. Thus, we have the following form:

Softmax(
QKT

√
dk

) =
aaT

aTa
, V = b. (15)

Then we transform the projection relationship between the
spatial domain (domU) and spectral domain (domG), where
Ta,Tb ∈ domU and Tc,Td ∈ domG. d is a self-attention
constant. As a result, the alternating projection is complete
from the spatial/spectral domain to the spectral/spatial do-
main, i.e., Eq. (13) and Eq. (14).

Generated 
image

Low 
frequency

High 
frequency

Denoising Process

Figure 4: The denoising process. The top row consists of a series
of iteratively generated images from the gradual denoising process.
The subsequent two rows represent the associated low-frequency
and high-frequency spatial domain information obtained through in-
verse Fourier transform from the denoised image in the first row of
each corresponding step.

In addition, we need to get fused outputs from Tspa and
Tspe. Without loss of generality, we have

Tfus = Tspa ⊙Tspe, (16)

where ⊙ defines element-wise multiplication. Element-wise
multiplication is used to fuse spatial and spectral information
to obtain Tfus ∈ RHW×S′

.
Comparing Eq. (8) with Eq. (13) and Eq. (14), this sub-

space is built by vector projection and naturally decouples
spatial and spectral information into the self-attention mech-
anism. This naturally leads us to apply a fine-tuning method
similar to LoRA methods (See details in Sect. 4.4).

4.3 Frequency Modulation Inter-branch Module
Through the APFM, we build an effective fusion module from
the characteristics of images. Interestingly, there are some
differences between the spatial and spectral components. The
spectral branch contains abundant low-frequency informa-
tion. When low- and high-frequency information from the
spatial branch is injected into the spectral branch, it may re-
sult in an overemphasis on low-frequency information, im-
pacting the denoising performance of the model. We found
that modulating the frequency distribution contributes to SS-
Diff obtaining better fusion results.

As shown in Fig. 4, the low-frequency components un-
dergo a gradual modulation characterized by a slow and sub-
tle rate of change in the denoising process. In contrast, the
modulation process of the high-frequency components ex-
hibits distinct dynamic variation. Considering the above phe-
nomenon, we design a frequency modulation inter-branch
module. Specifically, we utilize a Fourier filter to extract the
high-frequency information of the feature map xspa obtained
from the spatial branch, following:

F ′(xspa) = FFT(xspa)⊙ α, (17)

x′
spa = IFFT(F ′(xspa)), (18)

where FFT and IFFT are Fourier transform and inverse
Fourier transform. ⊙ denotes element-wise multiplication,
and α is a Fourier mask [Si et al., 2023]. Furthermore, we
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Figure 5: The sketch of the proposed LoRA-like branch-wise alter-
native fine-tuning process.

find in experiments that directly injecting high-frequency in-
formation into spectral branches will cause the frequency in-
formation imbalance. To solve this problem, half of the chan-
nels of feature xspec of the spectral branch are multiplied by
a constant. For the three different channel numbers in the
model, ranging from low to high, we set this constant to 1.2,
1.4, and 1.6, respectively.

4.4 LoRA-like Branch-wise Alternative
Fine-tuning

During the model training process, it is crucial to carefully
maintain a balance between model underfitting and overfit-
ting. Our SSDiff can hierarchically and discriminatively ex-
tract more features. However, achieving a simultaneous bal-
ance condition for both spatial and spectral branches during
unified training is undoubtedly challenging. Therefore, this
paper approaches the LoRA-like alternate fine-tuning of each
branch as a feasible solution. As shown in Fig. 1, LoRA
methods fine-tune the output of the model by updating the
parameters on the fully connected layer weights. Compared
with LoRA, the proposed alternating projection method is
also a low-rank matrix decomposition. In Fig. 1 (b), the dif-
ference is that we can have the backpropagation process and
control the gradient of the projection process to achieve alter-
nate fine-tuning in the proposed APFM. In practice, taking the
fine-tuning of Eq. (13) as an example to update the spectral
branch, we can detach the gradient propagation at Tspa, pre-
venting parameter updates in the spatial branch. In this case,
gradients only propagate through the path shown in Eq. (14),
which means only the parameters of the spectral branch are
updated. Similarly, when fine-tuning the spatial branch, de-
taching the gradient propagation from the computation graph
at Tspe can prevent parameter updates in the spectral branch.

The L-BAF method alternately fine-tunes the spatial and
spectral branches based on the proposed APFM. As shown in
Fig. 5. When we fine-tune the spectral branch, we freeze the
Ta and Tb parameters in the spatial branch and the Ta pa-
rameter in the spectral branch. Block gradient propagation to

prevent parameter updates for the entire spatial branch. Sim-
ilarly, when fine-tuning the spatial branch, we freeze the Tc

and Td parameters in the spectral branch, as well as the Tc

parameter in the spatial branch. Block gradient propagation
to prevent parameter updates for entire spectral branches.

5 Experiments
To fairly evaluate SSDiff and other state-of-the-art meth-
ods, we conducted experiments on both reduced- and full-
resolution datasets to obtain reference and non-reference met-
rics.

Implementation Details: Our SSDiff is implemented in
PyTorch 1.7.0 and Python 3.8.5 using AdamW optimizer
with an initial learning rate of 0.001 to minimize Lsimple

on a Linux operating system with two NVIDIA GeForce
RTX3090 GPUs. For the diffusion denoising model, the ini-
tial number of model channels is 32, the diffusion time step
used for training in the pansharpening is set to 1000, while
the diffusion time step for sampling is set to 100. The ex-
ponential moving average (EMA) ratio is set to 0.9999. The
total training iterations for the WV3, GF2, and QB datasets
are set to 150k, 100k, and 200k iterations, respectively. The
batch size is 12. During the model fine-tuning, the learning
rate is set to 0.0001, and the total fine-tune training iterations
are set to 30k.
Datasets: To demonstrate the effectiveness of our SSDiff,
we conducted experiments on widely used pansharpening
datasets. The Pancollection1 dataset for pansharpening con-
sists of data from three satellites: WorldView-3 (8 bands),
QuickBird (4 bands), and GaoFen-2 (4 bands).

To better evaluate performance, we simulated reduced-
resolution and full-resolution datasets. For reduced datasets,
Pancollection follows Wald’s protocol [Wald et al., 1997] to
obtain simulated images with ground truth images. There
are three steps involved: 1) Use a modulation transfer-based
(MTF) filter to downsample the original PAN and MS im-
ages by a factor of 4. Downsampled PAN and MS are used
as training PAN and MS images; 2) Treat the original MS
image as a ground truth image, i.e. HRMSI; 3) Upsampling
the training MS image using interpolation with polynomial
kernels [Aiazzi et al., 2002] and processing it into a LrMSI.
When processing the full datasets, the original MS image
is considered MS, the upsampled MS image is considered
LrMSI, and the original PAN is considered PAN.

Benchmark: To evaluate the performance of our SSDiff,
we compared it with various state-of-the-art methods of Pan-
sharpening (on WV3, QB, and GF2 datasets). Specifically,
we choose three traditional methods: BDSD-PC [Vivone,
2019], MTF-GLP-FS [Vivone et al., 2018], BT-H [Aiazzi et
al., 2006]; as well as nine machine learning-based methods:
PNN [Masi et al., 2016], DiCNN [He et al., 2019], MSDCNN
[Wei et al., 2017], FusionNet [Deng et al., 2020], CTINN
[Zhou et al., 2022], LAGConv [Jin et al., 2022], MMNet
[Zhou et al., 2023], DCFNet [Wu et al., 2021], and Pandiff
[Meng et al., 2023]. To ensure fairness, we train DL-based
methods using the same Nvidia GPU-3090 and PyTorch en-
vironment.

1https://liangjiandeng.github.io/PanCollection.html.

https://liangjiandeng.github.io/PanCollection.html


Dataset Method
Reduced resolution Full resolution

SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

WV3

BDSD-PC [Vivone, 2019] 5.4675±1.7185 4.6549±1.4667 0.8117±0.1063 0.9049±0.0419 0.0625±0.0235 0.0730±0.0356 0.8698±0.0531
MTF-GLP-FS [Vivone et al., 2018] 5.3233±1.6548 4.6452±1.4441 0.8177±0.1014 0.8984±0.0466 0.0206±0.0082 0.0630±0.0284 0.9180±0.0346

BT-H [Aiazzi et al., 2006] 4.8985±1.3028 4.5150±1.3315 0.8182±0.1019 0.9240±0.0243 0.0574±0.0232 0.0810±0.0374 0.8670±0.0540
PNN [Masi et al., 2016] 3.6798±0.7625 2.6819±0.6475 0.8929±0.0923 0.9761±0.0075 0.0213±0.0080 0.0428±0.0147 0.9369±0.0212
DiCNN [He et al., 2019] 3.5929±0.7623 2.6733±0.6627 0.9004±0.0871 0.9763±0.0072 0.0362±0.0111 0.0462±0.0175 0.9195±0.0258

MSDCNN [Wei et al., 2017] 3.7773±0.8032 2.7608±0.6884 0.8900±0.0900 0.9741±0.0076 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271
FusionNet [Deng et al., 2020] 3.3252±0.6978 2.4666±0.6446 0.9044±0.0904 0.9807±0.0069 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197

CTINN [Zhou et al., 2022] 3.2523±0.6436 2.3936±0.5194 0.9056±0.0840 0.9826±0.0046 0.0550±0.0288 0.0679±0.0312 0.8815±0.0488
LAGConv [Jin et al., 2022] 3.1042±0.5585 2.2999±0.6128 0.9098±0.0907 0.9838±0.0068 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247
MMNet [Zhou et al., 2023] 3.0844±0.6398 2.3428±0.6260 0.9155±0.0855 0.9829±0.0056 0.0540±0.0232 0.0336±0.0115 0.9143±0.0281
DCFNet [Wu et al., 2021] 3.0264±0.7397 2.1588±0.4563 0.9051±0.0881 0.9861±0.0038 0.0781±0.0812 0.0508±0.0342 0.8771±0.1005

PanDiff [Meng et al., 2023] 3.2968±0.6010 2.4667±0.5837 0.8980±0.0880 0.9800±0.0063 0.0273±0.0123 0.0542±0.0264 0.9203±0.0360
SSDiff (ours) 2.8466±0.5285 2.1086±0.4572 0.9153±0.0844 0.9866±0.0038 0.0132±0.0049 0.0307±0.0029 0.9565±0.0057

GF2

BDSD-PC [Vivone, 2019] 1.7110±0.3210 1.7025±0.4056 0.9932±0.0308 0.9448±0.0166 0.0759±0.0301 0.1548±0.0280 0.7812±0.0409
MTF-GLP-FS [Vivone et al., 2018] 1.6757±0.3457 1.6023±0.3545 0.8914±0.0256 0.9390±0.0197 0.0336±0.0129 0.1404±0.0277 0.8309±0.0334

BT-H [Aiazzi et al., 2006] 1.6810±0.3168 1.5524±0.3642 0.9089±0.0292 0.9508±0.0150 0.0602±0.0252 0.1313±0.0193 0.8165±0.0305
PNN [Masi et al., 2016] 1.0477±0.2264 1.0572±0.2355 0.9604±0.0100 0.9772±0.0054 0.0367±0.0291 0.0943±0.0224 0.8726±0.0373
DiCNN [He et al., 2019] 1.0525±0.2310 1.0812±0.2510 0.9594±0.0101 0.9771±0.0058 0.0413±0.0128 0.0992±0.0131 0.8636±0.0165

MSDCNN [Wei et al., 2017] 1.0472±0.2210 1.0413±0.2309 0.9612±0.0108 0.9782±0.0050 0.0269±0.0131 0.0730±0.0093 0.9020±0.0128
FusionNet [Deng et al., 2020] 0.9735±0.2117 0.9878±0.2222 0.9641±0.0093 0.9806±0.0049 0.0400±0.0126 0.1013±0.0134 0.8628±0.0184

CTINN [Zhou et al., 2022] 0.8251±0.1386 0.6995±0.1068 0.9772±0.0117 0.9803±0.0015 0.0586±0.0260 0.1096±0.0149 0.8381±0.0237
LAGConv [Jin et al., 2022] 0.7859±0.1478 0.6869±0.1125 0.9804±0.0085 0.9906±0.0019 0.0324±0.0130 0.0792±0.0136 0.8910±0.0204
MMNet [Zhou et al., 2023] 0.9929±0.1411 0.8117±0.1185 0.9690±0.0204 0.9859±0.0024 0.0428±0.0300 0.1033±0.0129 0.8583±0.0269
DCFNet [Wu et al., 2021] 0.8896±0.1577 0.8061±0.1369 0.9727±0.0100 0.9853±0.0024 0.0234±0.0116 0.0659±0.0096 0.9122±0.0119

PanDiff [Meng et al., 2023] 0.8881±0.1197 0.7461±0.1032 0.9792±0.0097 0.9887±0.0020 0.0265±0.0195 0.0729±0.0103 0.9025±0.0209
SSDiff (ours) 0.6694±0.1244 0.6038±0.1080 0.9836±0.0074 0.9915±0.0017 0.0164±0.0093 0.0267±0.0071 0.9573±0.0100

Ideal value 0 0 1 1 0 0 1

Table 1: Result on the WV3 and GF2 reduced-resolution and full-resolution datasets. Some conventional methods (the first three rows) and
the DL-based approaches are compared. The best results are highlighted in bold and the second best results are underlined.

Method Reduced resolution Full resolution
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) QNR(± std)

BDSD-PC [Vivone, 2019] 8.2620±2.0497 7.5420±0.8138 0.8323±0.1013 0.9030±0.0181 0.1975±0.0334 0.1636±0.0483 0.6722±0.0577
MTF-GLP-FS [Vivone et al., 2018] 8.1131±1.9553 7.5102±0.7926 0.8296±0.0905 0.8998±0.0196 0.0489±0.0149 0.1383±0.0238 0.8199±0.0340
BT-H [Aiazzi et al., 2006] 7.1943±1.5523 7.4008±0.8378 0.8326±0.0880 0.9156±0.0152 0.2300±0.0718 0.1648±0.0167 0.6434±0.0645

PNN [Masi et al., 2016] 5.2054±0.9625 4.4722±0.3734 0.9180±0.0938 0.9711±0.0123 0.0569±0.0112 0.0624±0.0239 0.8844±0.0304
DiCNN [He et al., 2019] 5.3795±1.0266 5.1354±0.4876 0.9042±0.0942 0.9621±0.0133 0.0920±0.0143 0.1067±0.0210 0.8114±0.0310
MSDCNN [Wei et al., 2017] 5.1471±0.9342 4.3828±0.3400 0.9188±0.0966 0.9689±0.0121 0.0602±0.0150 0.0667±0.0289 0.8774±0.0388
FusionNet [Deng et al., 2020] 4.9226±0.9077 4.1594±0.3212 0.9252±0.0902 0.9755±0.0104 0.0586±0.0189 0.0522±0.0088 0.8922±0.0219
CTINN [Zhou et al., 2022] 4.6583±0.7755 3.6969±0.2888 0.9320±0.0072 0.9829±0.0072 0.1738±0.0332 0.0731±0.0237 0.7663±0.0432
LAGConv [Jin et al., 2022] 4.5473±0.8296 3.8259±0.4196 0.9335±0.0878 0.9807±0.0091 0.0844±0.0238 0.0676±0.0136 0.8536±0.0178
MMNet [Zhou et al., 2023] 4.5568±0.7285 3.6669±0.3036 0.9337±0.0941 0.9829±0.0070 0.0890±0.0512 0.0972±0.0382 0.8225±0.0319
DCFNet [Wu et al., 2021] 4.5383±0.7397 3.8315±0.2915 0.9325±0.0903 0.9741±0.0101 0.0454±0.0147 0.1239±0.0269 0.8360±0.0158

PanDiff [Meng et al., 2023] 4.5754±0.7359 3.7422±0.3099 0.9345±0.0902 0.9818±0.0902 0.0587±0.0223 0.0642±0.0252 0.8813±0.0417
SSDiff (ours) 4.4640±0.7473 3.6320±0.2749 0.9346±0.0943 0.9829±0.0080 0.0314±0.0108 0.0360±0.0133 0.9338±0.0208
Ideal value 0 0 1 1 0 0 1

Table 2: Quantitative results on the QuickBird reduced-resolution and full-resolution datasets. Some conventional methods (the first three
rows) and DL-based methods are compared. The best results are highlighted in bold and the second best results are underlined.

Quality Metric: For the reduced data in Pansharpening
tasks, we utilize four metrics to evaluate the results on re-
duced resolution datasets, including the spectral angle map-
per (SAM) [Yuhas et al., 1992], the erreur relative glob-
ale adimensionnelle de synthèse (ERGAS) [Wald, 2002], the
universal image quality index (Q2n) [Garzelli and Nencini,
2009], and the spatial correlation coefficient (SCC) [Zhou
et al., 1998]. As for full-resolution datasets, we apply Dλ,
Ds, and hybrid quality with no reference (HQNR) indexes

[Arienzo et al., 2022] for evaluation.

5.1 Experimental Results
Results on WorldView-3: On the WorldView-3 dataset, we
evaluate the performance of SSDiff using 20 test images. The
results for both reduced-resolution and full-resolution are pre-
sented in Table 1. The running time of a single picture during
the sampling process is 89.136 seconds. We compared our
method with three traditional methods and some SOTA DL-



SSDiffGT PanDiff DCFNet MMNet LAGConv CTINN FusionNet

Figure 6: Visual comparisons on a reduced-resolution WorldView-3 and GaoFen-2 case. The first two rows are the results of WV3, and the
last two rows are the results of GF2. The first and third rows are the predicted HrMSI for each method, and the second and fourth rows are
the error maps of the predicted HRMS versus ground truth (GT) for each one.

based methods. To illustrate the performance of each method
more clearly, we presented the fusion result images and error
maps of all these methods in Fig. 6, and zoomed in on a spe-
cific location. On average, our method achieves SOTA per-
formance on the reduced dataset, with our SSDiff reaching
2.84 (SAM) and 2.10 (ERGAS) metrics, outperforming all
DL-based methods. The error map indicates that the images
sampled by SSDiff are closer to the ground truth (GT). SS-
Diff achieves SOTA performance in obtaining full-resolution
images on the WV3 dataset. The HQNR score close to 1 indi-
cates better fusion quality of the full-resolution images. The
obtained results demonstrate that our SSDiff can fuse HrMSI,
reducing spatial and spectral distortions, thereby proving its
excellent generalization ability at full resolution.
Results on GaoFen-2: On the GaoFen-2 reduced dataset, we
tested our SSDiff on 20 test images, as shown in Table 1. Our
SSDiff achieving SOTA performance. From the error maps
in Fig. 6, we can observe that there are still significant dif-
ferences between traditional fusion methods and DL-based
fusion methods. These experiments demonstrate that, com-
pared to other DL-based methods used for comparison in the
experiments, the proposed SSDiff exhibits superior spatial
performance and effectively preserves spectral information.
On the GaoFen-2 full-resolution dataset, we tested our SS-
Diff on 20 test images, Fig. 8 shows the results and HQNR
maps, where an HQNR score close to 1 indicates better fu-
sion quality of full-resolution images. The obtained results
indicate that our SSDiff has a good generalization of the full-
resolution dataset.

Results on QuickBird: We conduct experiments on the

QuickBird reduced dataset and evaluate the performance of
SSDiff. Similarly, the reference and non-reference metrics
were obtained from 20 randomly selected test images from
the QB dataset. The performance comparison is reported in
Table 2. Our SSDiff achieves SOTA performance. From the
error maps in Fig. 7, we can observe that there are still sig-
nificant differences between traditional fusion methods and
DL-based fusion methods.

5.2 Ablation Study
We conduct an ablation study on proposed modules and tech-
niques to verify their effectiveness.
Effectiveness of Decoupling Branches: To investigate the
effectiveness of the spatial and spectral branch design, we
perform ablation experiments by training the diffusion model
under the following conditions: V1) Coupling inputs, and
training only with the spatial branch. V2) Coupling inputs
and training only with the spectral branch. V3) Spatial and
spectral branch structure and decoupling inputs, only the
outputs of the two branches are concatenated without any
inter-branch information interaction. V4) Spatial and spectral
branch structure and decoupling inputs, replace each APFM
with an additional operation, i.e., the way of LoRA. V5) Our
method. The results on the WV3 reduced dataset are reported
in Table 3. Training solely with a single branch significantly
reduces the quality of the HrMSI. It can be seen that SSDiff
is more suitable for pansharpening tasks than LoRA way and
concatenating way.
Frequency Modulation Inter-branch Module: To validate
the effectiveness of the FMIM, we remove FMIM from our
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Figure 7: Visual comparisons on a reduced-resolution QuickBird case. The first and third rows are the predicted HrMSI for each method, and
the second and fourth rows are the error maps of the predicted HRMS versus ground truth (GT) for each one.

model and train the diffusion model to converge the WV3
dataset. The results are shown in Table 4. Without using
FMIM, the model’s performance on the SAM/ERGAS/Q8 in-
dicators decreased by approximately 3.1%/2.8%/1%, respec-
tively. This demonstrates that utilizing FMIM for frequency
transfer can effectively improve model performance.

Method SAM(± std) ERGAS(± std) Q8(± std) SCC(± std) Params

V1 3.3612±0.6497 2.5633±0.6249 0.8960±0.1031 0.9816±0.0070 1100K
V2 3.0598±0.5560 2.2638±0.5663 0.9097±0.0947 0.9847±0.0062 654K
V3 3.4040±0.6088 2.5564±0.6737 0.9023±0.0954 0.9796±0.0078 1420K
V4 3.4871±0.5821 2.4580±0.5885 0.8928±0.0959 0.9809±0.0061 1249K
V5 2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040 1420K

Table 3: Ablation study on 20 reduced-resolution samples acquired
by WV3 dataset, where SSDiff can be trained without fine-tuning.

FMIM SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)

2.9798±0.6060 2.1978±0.5399 0.9153±0.0868 0.9855±0.0053
2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040

Table 4: Ablation study on 20 reduced-resolution samples acquired
by WV3 dataset, where SSDiff can be trained without fine-tuning.

5.3 Discussion
Generalization: To test the generalization ability of DL-
based methods, we evaluated models trained on the WV3

dataset using 20 reduced resolutions from the WorldView-2
dataset. The quantitative evaluation results, as reported in Ta-
ble 5, demonstrate that the SSDiff method achieves the best
results across all four evaluation metrics. This indicates that
our approach possesses a powerful generalization ability.

Method SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)

PNN 7.1158±1.6812 5.6152±0.9431 0.7619±0.0928 0.8782±0.0175
DiCNN 6.9216±0.7898 6.2507±0.5745 0.7205±0.0746 0.8552±0.0289
MSDCNN 6.0064±0.6377 4.7438±0.4939 0.8241±0.0799 0.8972±0.0109
FusionNet 6.4257±0.8602 5.1363±0.5151 0.7961±0.0737 0.8746±0.0134
CTINN 6.4103±0.5953 4.6435±0.3792 0.8172±0.0873 0.9147±0.0102
LAGConv 6.9545±0.4739 5.3262±0.3185 0.8054±0.0837 0.9125±0.0101
MMNet 6.6109±0.3209 5.2213±0.2133 0.8143±0.0790 0.9136±0.0201
DCFNet 5.6194±0.6039 4.4887±0.3764 0.8292±0.0815 0.9154±0.0083
SSDiff (ours) 5.0647±0.5634 3.9885±0.4297 0.8577±0.0782 0.9335±0.0055

Table 5: Generalization of DL-based methods on WV2 dataset.

Training SSDiff: To address the issue of insufficient local
parameter training in the dual branches model, we design the
L-BAF method to fine-tune the model. Taking the experi-
ments on the reduced WV3 dataset, we first train the model
without fine-tuning until convergence and perform branch-
wise fine-tuning, which includes: 1) Only fine-tuning the spa-
tial branch parameters with the spectral branch parameters
fixed. 2) Only fine-tuning the spectral branch parameters with
the spatial parameters fixed. 3) Alternating fine-tuning spec-
tral branch and spatial branch. The quantitative results are
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Figure 8: Fused GF2 full-resolution data and their corresponding HQNR map. The high value in the HQNR map means better full-resolution
fusion performance.

shown in Table 6, and all three branch-wise fine-tuning meth-
ods lead to the improved testing performance of the model.
Fine-tuning the spatial branch parameters alone results in a
smaller improvement, while the alternating fine-tuning ap-
proach showed the most significant performance improve-
ment. This demonstrates the effectiveness of the L-BAF.

S F SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)

2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040
2.8545±0.5244 2.1138±0.4658 0.9143±0.0857 0.9864±0.0040
2.8460±0.5232 2.1132±0.4671 0.9152±0.0849 0.9864±0.0041
2.8466±0.5285 2.1086±0.4572 0.9153±0.0844 0.9866±0.0038

Table 6: Fine-tuning of SSDiff. S denotes fine-tuning of the spatial
branch, while F represents fine-tuning of the spectral branch.

6 Conclusion
In this paper, we propose a spatial-spectral integrated diffu-
sion model for remote sensing pansharpening, named SSD-
iff. We design a spatial-spectral integrated model architec-
ture, which utilizes spatial and spectral branches to learn spa-
tial details and spectral features separately. By introducing
vector projection, the spatial and spectral components in the

subspace decomposition are further specified in the proposed
APFM. Then, the self-attention mechanism is naturally gen-
eralized to the APFM. Furthermore, we propose an FMIM to
modulate the frequency distribution between branches. Fi-
nally, the two branches of SSDiff can capture discriminating
features. It is interesting that, when utilizing the proposed L-
BAF method in the APFM, the two branches can be updated
alternately, and then SSDiff produces more satisfactory re-
sults. We compare our SSDiff with several SOTA pansharp-
ening methods on the WorldView-3, QuickBird, GaoFen-2,
and WorldView-2 datasets. The results demonstrate the supe-
riority of SSDiff both visually and quantitatively.
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