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Fig. 1. Predicting long-horizon futures by conditioning on geometry and
time. In this work, we focus on the task of forecasting sensor observations given
the past. Since the unobserved future can unfold in multiple ways, we capitalize on
the recent explosion in large-scale pretraining of 2D diffusion networks, which are able
to model the multi-modal distribution of natural images. By introducing invariances
in data and additionally learning to condition on frame timestamps, we are able to
equip 2D diffusion models with the ability to perform predictive video modeling using
moderately-sized training data. Since we are able to query arbitrary timestamps, we
find new sampling schedules that perform better than traditional autoregressive / hier-
archical sampling strategies. Here, we show two pseudo-depth futures each, given the
past pseudo-depth for four scenes, along with forecasts from training with luminance.

Abstract. Our work explores the task of generating future sensor obser-
vations conditioned on the past. We are motivated by ‘predictive coding’
concepts from neuroscience as well as robotic applications such as self-
driving vehicles. Predictive video modeling is challenging because the
future may be multi-modal and learning at scale remains computation-
ally expensive for video processing. To address both challenges, our key
insight is to leverage the large-scale pretraining of image diffusion models
which can handle multi-modality. We repurpose image models for video
prediction by conditioning on new frame timestamps. Such models can
be trained with videos of both static and dynamic scenes. To allow them
to be trained with modestly-sized datasets, we introduce invariances by
factoring out illumination and texture by forcing the model to predict
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(pseudo) depth, readily obtained for in-the-wild videos via off-the-shelf
monocular depth networks. In fact, we show that simply modifying net-
works to predict grayscale pixels already improves the accuracy of video
prediction. Given the extra controllability with timestamp conditioning,
we propose sampling schedules that work better than the traditional
autoregressive and hierarchical sampling strategies. Motivated by proba-
bilistic metrics from the object forecasting literature, we create a bench-
mark for video prediction on a diverse set of videos spanning indoor and
outdoor scenes and a large vocabulary of objects. Our experiments illus-
trate the effectiveness of learning to condition on timestamps, and show
the importance of predicting the future with invariant modalities.

1 Introduction

Recent innovations in generative visual modeling have paved the way for a variety
of applications. In this work, we focus on the task of conditionally generating
(or forecasting) the future from past observations. Our motivation is from an
embodied perspective. Evidence from neuroscience suggests predictive coding to
be a fundamental phenomena for biological processing of visual streams [45];
specifically, biological agents process the future by first predicting what may
occur and then updating predictions based on actual observations (similar to
classic dynamic models such as kalman filters [26, 28]). Predictive modeling is
the backbone of autonomous systems such as self-driving vehicles that forecast
environment motion for downstream applications like motion planning [9,29].

Why is this hard? One of the challenges in operationalizing such a pre-
dictive task is that the future is inherently multi-modal, consider an outdoor
scene of a busy intersection where cars may continue straight or turn. Encoding
such uncertainty has been a notorious challenge, but recent generative modeling
techniques such as diffusion networks provide an attractive formalism for gener-
ating multiple samples from the multi-modal future. As such, our work follows a
growing body of work on video-based diffusion models [5,6,22,66]. But crucially,
rather than generating video samples unconditionally or conditioned on textual
prompts, we generate future frames conditioned on past observations. However,
this introduces a significant practical challenge of satisfying compute demands
that are required for learning from massive-scale video datasets.

Our approach relies on two key insights. First, we take the view that accu-
rate video prediction can be achieved by using recent 2D image diffusion mod-
els [47] alone. This is because such models are trained on a massive scale of
image data that (inevitably) contains multiple stages or instances of temporal
events (c.f. Fig. 2). We add a control mechanism to image diffusion models in
the form of timestamps that help build a temporal understanding, and are fairly
easy to obtain. Moreover, by training on videos with differing framerates, our
timestamp-conditioned model can support a variety of video prediction tasks
including short-horizon forecasting, autoregressive long-horizon forecasting, and
even frame interpolation (by conditioning on fractional timestamps). This flexi-
bility to sample an arbitrary timestamp in the future lets us probe newer (and
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stronger) sampling schedules, other than just autoregressive and heirarchical
sampling that is most commonly used by prior work [17,22, 58].

Modalites Our second key insight is motivated by embodied applications
such as robotics / self-driving vehicles. Oftentimes, we are not concerned with the
photometric properties of the future (e.g., “what will be the color of this car?”)
but rather geometric properties (e.g.,“where will this car be?”) [30]. Geometric
processing of depth sensors is commmon in point cloud processing [39,62,63] &
occupancy forecasting [2,27,38] from 3D LiDAR sweeps, and legged locomotion
using only egocentric depth [1, 11]. However, such depth data is not as widely
as available as passive camera imagery. To leverage the latter, we show that
one can use (pseudo) depth, which can readily be obtained at-scale for videos by
running recent monocular depth estimators [4]. We show that simply choosing to
forecast in grayscale rather than color already simplifies the forecasting problem
to a great degree. More importantly, introducing invariances in data allows us
to finetune image diffusion models with only 1000 videos in about 7 hours (11
hours for training them from scratch with same data)!

Contributions In summary, we present a video prediction diffusion net-
work that can be efficiently fine-tuned from foundational image networks by
additionally conditioning on frame timestamps. The flexibility in sampling an
arbitrary future, allows us to propose stronger sampling schedules than prior
work. We also demonstrate that our design choices allow our model to be trained
on a modest but diverse set of ~1000 videos from the TAO dataset [12], that
encompasses a variety of indoor and outdoor scenes, spanning a large vocabulary
of objects. We use a variety of baselines [13,17,58] (including nonlinear regres-
sion, constant and linear prediction) to illustrate the effectiveness of different
modalities. To illustrate the effectiveness of multi-modal forecasting, we make
use of probabilistic (top-K) metrics developed in the forecasting community [10].

2 Related work

Extracting priors from image diffusion models Denoising diffusion mod-
els [20,53] have emerged as an expressive and powerful class of text-to-image
generative models. Because of the massive scale of data used to train models
like Stable Diffusion [47], Imagen [48] and DALL-E [44], numerous follow-up
works have investigated and built upon their rich representations. Specifically
for novel-view synthesis, a few works [37,49] aimed at extracting geometric, pose
priors from Stable Diffusion [47] for object or scene-level novel-view-synthesis.
Other sparse-view 3D reconstruction works [55, 73, 74] also draw motivation
from the same concept for distilling the information from image diffusion into
3D models. A new paradigm of text/image-to-3D assets emerged, where many
works [42,51,54] iteratively enforced 3D consistency from the outputs of image
diffusion models, whereas others repurposed the image models for directly pre-
dicting tri-plane representations [23]. In fact, a dedicated study was conducted
for understanding the 3D priors learnt by image diffusion models [72].
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Similarly for the task of video or motion diffusion, some works [52, 58, 65]
have attempted to “inflate” image diffusion models to suit video generation,
with normalization tricks, a general phenomenon that has appreared before for
designing convolutional video understanding architectures [8]. This also extends
to the task of 3D motion generation, be it for humans [14] or object trajectories
[3,16]. In a similar spirit, we address the task of video forecasting, emphasizing
the fact that in order to repurpose 2D diffusion models to suit the video-based
task of forecasting given the past, it is important to extract and control the axis
of time, by explicit conditioning on fractional timestamps.

Video diffusion models For video diffusion, algorithms have been built on top
of recurrent or 3D architectures, including 3D convolutions [22], and RNNs [68],
usually coupled with large-scale training datasets. Apart from these, there has
been a meteoric rise in recent developments in dedicated text-to-video diffusion
models, ranging from industrial-scale pretraining [6,15,19,34], to multi-modality
conditioning and generation networks [66]. Some of these methods are even de-
signed for extremely-long autoregressive video generation [17,58,69]. We instead
explore the setting where in addition to a moderately-sized data, only limited
training resources are available for building a model that conditions on an input
timestamp, instead of text (therefore, find the open-sourced Stable Video Diffu-
sion [5] to be out of resource bounds). We also find better sampling schedules
than autoregressive and hierarchical sampling.

Training with masked-autoencoder objectives The ground-breaking find-
ings from learning self-supervisable representations with masked autoencoders
[18], have recently been adopted by image and video transformer architectures
[25, 56, 60,70, 71], and diffusion models designed for a variety of tasks [61,67].
Although we do not explicitly train in the fashion of masked autoencoders, we
touch upon a similar finding when designing the timestamp conditioning mech-
anism for optimizing the forecasting performance at inference.

Forecasting for autonomous systems In robotics, an important precursor
to motion planning is forecasting what the scene and its agents will look like in
the future [10,24,64]. In self-driving, this spans the field of point cloud [62,63],
and recently, occupancy forecasting [2,27,38]. Forecasting videos of depth has a
direct analogue to works that forecast range images of point clouds from LiDAR
sensors [39]. For the task of legged locomotion in quadrupeds, egocentric-depth is
increasingly becoming the sole modality that robots rely on [1,11]. This is largely
for the reason that depth acts a low-level actionable cue that helps generalization
across a vast set of diverse environments for robot navigation. We are motivated
by this, and explore forecasting future geometries for use in autonomous systems.

3 Method

We lean on recent image-to-image diffusion architectures, specifically Zero-1-to-
3 [37], trained for changing the camera viewpoint of an object given its RGB
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Fig. 2. Using 2D diffusion models
for video prediction As part of design-
ing the video prediction architecture, we
make the important design choice of us-
ing image diffusion models. Owing to the
scale of data such models are trained on,
we can expect them to understand in-
depedent stages of temporal events such
as ‘turning head from left to right’, and
‘flower bud opening up’. We show individ-
ual frames prompted from Stable Diffusion
v2. We propose to add a control knob to
image models in the form of timestamps
that helps in temporal understanding.
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Fig. 3. High-level architecture We use
a diffusion model that conditions on three
video frames, their corresponding times-
tamps and a query timestamp. It gener-
ates a single video frame for the query.
We adopt the two-stream conditioning
from image-to-image models [37], and (1)
channel-concatenate the context frames
with the noisy input to diffusion model,
and (2) CLIP-encode the context frames
for cross-attention across the UNet layers.
Context and query timestamps are posi-
tionally encoded and concatenated with
CLIP embeddings.

image. We repurpose its image and camera pose conditioning for the task of
timestamp-conditioned video forecasting given multiple past contexts.

3.1 Problem formulation

Given a set of context frames ¢ € REXHXWXC fiom a video of a (static or
dynamic) scene, our goal is to generate a frame x € RM>*HXWXC for the same
scene but from a different point in time, ¢. Let all timestamps in consideration
be t € RE*!, Then, we want to learn a function g that generates an estimate of
the unobserved frame x given context frames ¢ and timesteps t,

(1)

Since, X is unobserved, it inherently follows a multi-modal distribution, making
its prediction underconstrained. To this end, we exploit pretrained large diffusion
models like Stable Diffusion [33,47] that can model and sample from such multi-
modal distributions of natural images. We can use single-frame 2D diffusion
models for the task of video prediction, as their large-scale pretraining likely
covers the space of temporal events and the different stages of their unfolding.
In Fig. 2, we show different stages of two temporal events, prompted from Stable
Diffusion v2. However, such architectures are not straight-forward to use, as time-
conditioned video prediction demands for two new capabilities: first, the ability
to generate a new frame that is consistent with the historical context frames c,
and second, the ability to listen to the continuous valued timestamps, t.

% = g(c, t)
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Given the above, we formalize the task of video prediction in the context of
diffusion models as follows. Given a dataset of videos with a known FPS, we
extract snippets of length K + 1 and construct a training sample as {x,c,t}.
Using this training data, we start from the natural scene-level data distribution
learnt by Stable Diffusion Image Variations [31,33] and finetune it for controlling
both the conditioning with the context frames, and timestamp scalars. Archi-
tecturally (ref. Fig. 3), we use a denoising UNet € [37], that looks at 64 x 64
images. For any timestep ¢ ~ [0,1000], we train €y with the well-adopted noise
prediction objective for diffusion training,

min E. i ennvonlle = €0(z, 0, f(e,1))[[5. (2)

where f(c,t) is the conditioning embedding discussed in the following subsec-
tions. At inference, we start from pure gaussian noise, and iteratively denoise it,
steering the denoised image in the direction of the conditioning embedding.

3.2 Conditioning on context views

We use a two-stream image conditioning protocol from prior work [37] but mod-
ify it to suit our multi-frame setting. For conditioning on low-level features of
the input context frames (such as depth, texture, and motion patterns of scene
actors), we concatenate the K frames with the noisy input image to the UNet.
For conditioning on higher-level features of the input context frames (such as
the scene elements, contextual background, and observed camera trajectory), we
pass the context frames through the CLIP image encoder [43] to get their image
embeddings. We additionally construct a “residual” CLIP embedding for the tar-
get frame, by learning the weights on K embeddings and taking their weighted
average. Intuitively, this “guides” the target image with a residual embedding
that can be hooked onto, in order to generate the prediction.

3.3 Conditioning on timestamp scalars

In addition to building a conditioning mechanism for the context views, we also
need to let the denoising UNet know, which timestamps the context frames
belonged to, and which timestamp we are probing for. To accomplish this, we
positionally encode the timestamp scalar with sinusoidal embeddings,

7(t) = (sin 27t cos 207t . . ., sin 2871t cos 287 rt) (3)

This ensures that even if every timestamp value is not seen during training,
any high-frequency variation of it can be approximated in the frequency domain
at inference. We concatenate this with CLIP embeddings, and cross-attend them
at every residual block in the UNet architecture.

Even though at inference this method addresses forecasting, we train it for a
‘random timestamp prediction’ objective (i.e., the order of K frames and their
timestamps can be arbitrary), instead of the task of forecasting itself. We detail
more results from this finding in Sec. 4.4.
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3.4 Stitching together a video from individual frames

At inference, we generate long-horizon forecasts by predicting one frame at-a-
time, which means that our model has to be queried more than once. Consider
the case where we want to predict depth maps for 7" timesteps in the future. Prior
work for long-horizon generation tends to make use of T' sequential autoregressive
next-frame predictions [17,58], or log(T) hierarchical [17,22,52] predictions that
first predict a low framerate future that is iteratively refined into 2x higher
framerate predictions (until 7' frames are generated). However, both sampling
strategies have their drawbacks; autoregressive prediction may suffer from “drift”
as the historical window of frames (to be conditioned on) will eventually contain
only predicted frames rather than actual ground-truth histories. On the other
hand, hierarchical sampling may not exhibit enough temporal coherence.
Interestingly, because our approach explicitly conditions on both input and
output timestamps when making predictions, our trained model can support
both such sampling strategies in addition to other more flexible approaches. We
describe two such flexible approaches, which Sec. 4.2 shows perform better than
the conventional sampling. First, given pairs of past frames and their timestamps,
{C_g:—1,t_k:.—1}, one can directly jump to all futures ¢ € [1,T] independently.
We term this Direct sampling. While this predicts more plausible futures be-
cause ‘real” historical frames are used for conditioning, generated frames aren’t
temporally coherent (every frame might be sampled from a different future).
To improve temporal consistency, we propose mizing forecasts from direct
sampling (which are accurate but temporally inconsistent) with forecasts from
autoregressive sampling (which are temporally consistent but not as accurate
as they are conditioned on the previously-predicted past, {c;—x.t—1,tt—kt—1})-
This means that for outputs 21 and z”{ generated from direct and autoregressive
sampling respectively, we can linearly combine these two inference pathways
during the reverse diffusion process similar to classifier-free guidance [21],

xtD = g(cszflatfk:fl) qu = g(ctfk:tflattfkt:tfl)

Thy = Ty + Wn - (@ — Th) (4)
where w,, is the mixing guidance and g is a generative model. We term this
sampling schedule, Mized sampling. Intuitively, this makes samples from direct
inference more coherent, and samples from autoregressive inference more plau-
sible, as they now condition on a ‘real’ past. This also curbs the tendency of
autoregressive inference to blow up at longer horizons as the output sample can
now always fall back on predictions with direct inference.

Training details For all experiments in this work, K = 3, L = 160, w,,, = 2.0.
We train our architecture with classifier free guidance, ¢.e. we randomly remove
the conditioning to generate unconditional frames (which can be used as a guid-
ance signal during inference [21]). During training, the diffusion model predicts
noise, and we set the probability of dropping the conditioning for classifier free
guidance to 10%. During inference, we use a guidance of 2.0 for all experiments,
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with DDPM sampling for 40 iterative denoising steps. We do not perform diffu-
sion in the latent space, but train and evaluate on images of size 64 x 64 using
the Stable Diffusion Image Variations [31] UNet. To circumvent the use of VAE,
we learn two new convolutional layers at the start and end of the UNet that help
the input image to adjust to the weights of the latent space diffusion model, sim-
ilar in spirit to prior works [40,57] that also do not depend on the VAE. We learn
all new layers 10x faster than other layers, for training from scratch. We train
the network with a batch size of 12 for 10k iterations (which takes ~7 hours on
8 NVIDIA RTX A6000s), using AdamW with 3; = 0.95, By = 0.999,¢ = le~8
and weight decay of 1le~%, with a learning rate of le™%.

4 Experiments

4.1 Benchmarking Setup

Datasets To cover a wide range of dynamic environments from a number of
domains like activity recognition and self-driving, we use the large-vocabulary
diverse tracking dataset, TAO [12]. TAO is a collection of seven different datasets
that is originally used for multi-object tracking. For its unconstrained dynamic
nature of videos, we repurpose it for predictive modeling. For rigid scenes, we also
include video sequences from Common Objects in 3D (CO3Dv2) [46]. CO3Dv2
is a collection of 19k video sequences spanning objects from 51 MS-COCO [35]
categories, designed for use in object-level 3D reconstruction and new-view syn-
thesis of static scenes. We experiment with three different modalities: RGB
videos, their luminance channels and most importantly, sequences of pseudo-
depth, where the pseudo-depth is obtained from a single-frame monocular depth
estimator, ZoeDepth [4], that predicts metric depth for scenes. We randomly
sample the input and output frames in a window of 8s across the entire length
of a video and shuffle the frame ordering for training. For dataset splits of TAO
and using metric depth from CO3Dv2, please see supplement.

Evaluation settings For benchmarking, we consider two settings. First, we
evaluate single-frame forecasting. Because this is a scalable evaluation, we bench-
mark all baselines discussed below and do all ablations for the setting where
methods are asked to generate a single prediction for either the future +1s or
+10s with input frames given at {-1.0, -0.5, 0}s. Note the forecasting windows
are motivated by and reminiscent of motion planning benchmarking [7,30].

Second, we evaluate multi-frame forecasting for up to +10s long horizon. This
setting allows us to empirically evaluate the proposed direct and mixed sampling
schedules. The input is still provided at {-1.0, -0.5, 0}s and samplers generate
predictions for future {+1, +2, +3, ..., +10s}.

Metrics For evaluating depth prediction across both TAO and CO3Dv2 datasets,
we adopt the scale and shift invariant L1 error on relative depth maps from
monocular depth estimation literature [32], where scale and shift are computed
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as a minimization of the following least squares objective:

M
(s,t) = argr(rslitr)l Z(Sd,’ +t—df)? (5)
=1

Here, d; is the set of per-pixel predicted depths, and d; are the corresponding
groundtruth values. Using Eq. 4, the L1 error is computed as e = % Zf\il |sd; +
t—d}|. For evaluating both grayscale and RGB modalities, we follow prior work in
novel-view synthesis [41,73] and compute the peak-signal-to-noise ratio (PSNR),
which measures mean color difference. We take motivation from the forecasting
literature in the autonomous driving domain [10] and use Top-k versions of both
L1 and PSNR metrics: we take k samples from the model and report the best L1
/ PSNR of k. When benchmarking multi-frame depth forecasting, we compute an
average trajectory error (ATE, i.e. L1 error across the entire predicted sequence),
and compute the Top-k errors across a set of k trajectories.

Baselines We compare to state-of-the-art video prediction architectures MCVD
[58], FDM [17] and RIVER [13] and construct three simple baselines for video
prediction: (1) constant past which predicts the current frame as the future,
(2) linear extrapolation from the two temporally closest context frames, and
(3) non-linear regression, which is trained for the task of forecasting the next
+1.0s using our architecture but without cross-attention layers (therefore, no
conditioning) with an L2 loss on the predicted depth from diffusion model. We
retrain MCVD [58], FDM [17] and RIVER [13] on our TAO pseudo-depth dataset
and use them at inference for single-frame forecasting given three past frames.
For MCVD, we use the ‘concat’ variant as it has lower memory requirements.

Finally, in the setting where the scene is rigid but camera has a non-zero
motion, like in CO3Dv2, we compare to a state-of-the-art method for sparse (3-)
view reconstruction, SparseFusion [73], on the task of novel-view depth synthe-
sis. Here, we evaluate on a randomly sampled set of test sequences from the
core subset proposed in a prior work [46]. This subset consists of 10 object cate-
gories from CO3Dv2. All experiments, including qualitative analysis, on CO3Dv2
against SparseFusion can be found in the supplement.

4.2 Comparison to state-of-the-art

We begin the quantitative analysis by comparing our method to MCVD [58],
FDM [17] and RIVER [13] for future timestamp prediction in dynamic videos.
Short horizon forecasting We evaluate our method and all baselines for
single-frame -+1s forecasting in Tab. 1. We find that our method outperforms
state-of-the-art video prediction methods, MCVD [58], FDM [17] and RIVER
[13]. We posit that against MCVD, our randomized frame prediction objective
during training and additional conditioning on timestamps, helps in learning
better temporal coherence across frames. FDM, specifically, is not designed for
scenes that have dynamic actors, so may perform suboptimally when learning to
handle dynamics. RIVER’s bottleneck is video prediction in a significantly low
dimensional latent space which results in imprecise reconstructions at inference.
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Fig. 4. Qualitative analysis of single-frame short horizon forecasting We
show examples of input-output-groundtruth triplets. Given 3 past frames as input,
we show 3 different samples of the future from our diffusion network, and the cor-
responding groundtruth. Prediction highlighted in red is the closest to groundtruth.
Despite learning from only 1000 videos and training for only 7 hours, our method learns
to generate multiple realistic futures and listens to low-level details in the historical
context frames (e.g., scene structure, actors performing events, and overall camera mo-
tion). For reference, the events across examples in row major form could be described
as, ‘playing in field’, ‘crossing road’, ‘doing laundry’, ‘driving (front view)’, ‘exiting
room while holding a box’, ‘picking up from table’, ‘driving (side view)’; ‘biking’, ‘fid-
geting’, ‘boating with camera zooming in’, ‘standing in hallway’, ‘sailing’.

When comparing our method to simple baselines such as the (non-learned)
constant past and linear extrapolation, and the unimodal non-linear regression,
it becomes readily apparent that, (1) both constant past and linear extrapo-
lation are strong baselines for scenes that are static and have been captured
by a stationary camera, and (2) regression, expectedly, stands out as an even
stronger baseline (often used by pioneering work in occupancy forecasting [30])
but regresses to the mean of multi-modal distribution of possible futures. This
mean-seeking behaviour still suffices for most scenes and metrics (such as our
mean Top-1 L1 error), but our method provides the increased capability of sam-
pling multiple futures which reduces the probabilistic Top-5 L1 further. An in-
depth qualitative analysis of all baselines along with our method, and a training
/ inference runtime analysis, can be found in the supplement.

Long horizon forecasting First, we evaluate the single-frame forecasting
for +10s using three different sampling schedules as discussed in Sec. 3.4. Note
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Table 1. Comparison to state-of-the-
art We evaluate future depth predic-
tion for +1s against state-of-the-art video
prediction methods by retraining them
for pseudo-depth prediction, and against
other simple or non-learned baselines. We
find that our method beats prior work
with a substantial margin.

Table 2. Single-frame long horizon
forecasting We evaluate future depth
prediction for +10s against the discussed
baselines. Given our timestamp condition-
ing, we are able to explore more flexible
sampling schedules like direct and mixed,
which perform better than the widely used
autoregressive sampling.

Method Top-1 L1 Top-3 L1 Top-5 L1

Method Top-1 L1 Top-3 L1 Top-5 L1
Linear extrapolation — 21.25 21.25 21.25 - -
Non-linear regression  7.96 7.96 7.96 Linear extrapolation  21.80 21.80 21.80
Constant past 715 715 715 Non-linear regression 14.76 14.76 14.76
Constant past 11.61 11.61 11.61
RIVER [13] 10.82 10.32 10.17
MCVD [58] 10.54 7.83 7.12 Ours (autoreg.) 12.93 11.24 10.77
FDM [-l T] 9.99 778 7.94 Ours (direct) 12.65 11.13 10.65
Ours (mixed) 12.39 10.97 10.51
Ours 8.40 6.93 6.59

that in the single-frame case, direct and hierarchical sampling are equivalent as
the first lowest framerate layer of hierarchical sampling generates the +10s frame
directly from the given inputs. Compared to the baselines in Tab. 2, we find that
our proposed mixed sampling strategy performs the best at the probabilistic L1,
while surprisingly constant prediction suffices for the Top-1 metric.

Second, in Tab. 3, we benchmark different sampling schedules discussed for
the multi-frame forecasting case with Top-k ATE, where samplers predict a 1fps
sequence up to 10s in the future. First, we find that directly jumping to a future
frame, performs better than the conventional autoregressive and hierarchical
sampling schedules. Specifically, for autoregressive sampling, the error in predic-
tion starts adding up as the diffusion models starts conditioning on predicted
frames rather than the groundtruth past. For hierarchical sampling, the future
is coarsely decided by the first set of predictions. After this, intermediate frames
can only be interpolated and the future cannot be refined. Finally, for mixed
sampling, we find that it produces more accurate and coherent futures as it
benefits from the advantages of both direct & autoregressive sampling (Fig. 5).

4.3 Comparison between different modalities

We also explore luminance and RGB modalities for single-frame +1s video pre-
diction. Specifically, instead of pseudo-depth, we train our model for luminance
and RGB prediction under the short-horizon forecasting setting. When evalu-
ating RGB, we factor out the luminance channel from the prediction and use
that for benchmarking against our luminance prediction model. In Tab. 4, we see
that introducing invariances in the input data (such as learning from luminance
rather than a combination of color and texture), helps in making forecasting eas-
ier. Quantitatively, the Top-5 PSNR increases by a large margin of ~2.1 points.

We also compare our depth and RGB prediction models by running Stable
Diffusion Depth2Img on the predicted depth. We find that, (1) our depth is
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sampling does better, it cannot produce coherent futures. Concretely, we propose mixed
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Fig. 5. Comparison between sampling strategies We qualitatively analyse the
which are enabled by our timestamp conditioning. As detailed in Sec. 3.4, we find
that autoregressive sampling suffers from “drift”, and the performance of hierarchical
sampling, which mixes both the coherence of autoregressive and the accuracy of direct
samples. For reference, the samples from left to right could be described as, ‘standing
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predictions from the four discussed sampling strategies given same past alongside the
sampling is governed by its first layer of forecasts (i.e. lacks flexibility). While direct
in hallway’, ‘interaction between two people’, ’side-view from a driving car’.

readily usable for downstream tasks, and (2) it is infact easier to do RGB pre-
diction by learning to forecast scene depth first! For details on the depth2img
parameters and text prompts used, please see supplement.

Finally, we compare all three modalities for the task of pseudo-depth forecast-
ing. This requires running ZoeDepth [4] on our predictions from the luminance
and RGB models. We once again find that it is easier to directly learn to forecast
depth, without depending on color or scene texture.

4.4 Architecture ablations

We ablate our design decisions in Tab. 5 for +1s forecasting. For a fair compari-
son with MCVD, FDM and RIVER and to see how much performance boost we
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Table 4. Comparison between differ-
Table 3. Multi-frame long ent modalities. We quantitatively en-
horizon forecasting We evalu- able a fair comparison between modali-
ate multiple sampling strategies ties by evaluating them for either pseudo-
for generating a sequence of fu- depth, luminance, or RGB forecasting. We
ture depths upto +10s. We eval- consistently find that invariant modalities
uate with Top-k ATE and find like depth and luminance perform drasti-
that our proposed mixed sam- cally better than RGB at video prediction.
pling, which is able to generate Luminance and Color models are evaluated
accurate and coherent futures, with PSNR and Depth with L1.
performs the best of all.

Method Top-1 Top-3 Top-5  Evaluation

Method Top-1 Top-3 Top-5 Ours-L 16.32 17.07 17.33 Luminanc
Het ATE ATE ATE Ouwrs-RGB 12,16 14.47 1524 ~ -ormance
Ours (autoreg.) 15.20 13.56 13.06 Ours-D 16.28 16.44 16.50 Color
Ours (hierar.) 15.15 13.77 13.32 Ours-RGB  14.10 1540 15.80
Ours (direct) — 13.54 12.73 12.43

(

Ours-D 8.40 6.93 6.59
Ours-L 22.68 19.17 17.61 Pseudo-depth
Ours-RGB  27.05 20.88 19.33

Ours (mixed) 12.16 11.73 11.58

get from the Stable Diffusion Image Variations weights, we attempt to train from
scratch. Surprisingly, this training does not take much longer than finetuning (11
hours for training from scratch vs. 7 hours for finetuning), and performs remark-
ably well (still better than the state-of-the-art). We further attempt to reduce
the number of parameters in our network by removing 1 convolution block each
from the UNet encoder and decoder. This brings number of parameters closer to
the state-of-the-art video prediction models, and training the smaller model from
scratch still beats all baselines. For exact parameter counts, see supplement.

Next, we find that the CLIP embedding is essential to conditioning on the
past context frames and results in a drop of ~1.4 points if ablated. Finally, we
ablate the design decisions for the timestamp conditioning.

Anchoring timestamps When designing the timestamp conditioning, we find that
it helps to condition on relative rather than absolute timestamps. This includes,
“anchoring” timestamps to a constant frame in the input such that that frame
always occurs at t=0s. For our experiments, we choose the third context frame
as anchor, and this frame at timestamp +0s becomes the ‘current’ frame for the
diffusion network. This practice has recently been adopted by methods [59] that
use diffusion models for conditioning on 3D cues such as camera pose.

Timestamp randomization One of our key insights is that training directly for
the task of forecasting is sub-optimal to training for a random frame prediction
objective. Specifically, the drop in performance is rather significant (~1.8 Top-1
L1 points). This aligns with the insights from masked autoencoder literature
[18, 56, 60| where randomization in masking results in better representations.
Analogously, destroying structure in the data and making the final task harder
for the diffusion models, helps in building robust temporal understanding.
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Table 5. Architecture ablations. We
ablate our method under the single-frame
+1s forecasting setting with L1 error. We
assess the benefits from using pretrained
weights [31], a large model, and CLIP em-
beddings for context frames. We addition-
ally investigate the design choices in cre-
ating the timestamp conditioning, by us-
ing relative timestamps and randomizing
their order. Ablations indicate that all de-
sign choices play a crucial role.

-

el
'
TR N
OO O O O

Fig. 6. Video applications. We show
examples of how the formulation of our
method unlocks multiple video applica-

1!:

tions: variable framerate forecasting (top

Method Top-1 Top-3 Top-5 row at 1FPS, second row at 5FPS),
Ours 840 6.93 6.59 (third row) frame interpolation given the
- pretrained weights 7.89  7.04 6.78 frames in gray, and (last row) backcast-
-2 x conv blocks 850 127 6.89 ing at 5FPS given the future. For refer-
- CLIP embedding 9.19 825 7.95 8 g :

- timestamp anchoring  9.00  7.08  6.62 ence, events from top to bottom could
- random timestamps ~ 10.24  7.89  7.31 be described as, ‘playing pool’, ‘jumping’,

‘walking on a busy street’.

4.5 Applications

In Fig. 6, we show qualitative examples of different applications our approach
can be used for: (1) generating videos at varying framerates for different horizons
given the same context frames, (2) frame interpolation at fractional timestamps
between the given context frames, and (3) looking back in the past with negative
timestamps given the future frames as context.

5 Discussion

We focus on the problem of predicting the future from past sensor observations,
and take motivation from the neuroscience literature on predictive coding. Since
the future is multi-modal and can therefore unfold in multiple ways, we lean on
the explosive advancements in large-scale pretraining of diffusion models, that
can internally represent such multi-modal distributions. With two key modifica-
tions to image diffusion networks, we come up with a method for predictive video
modeling. We find that for training with moderately-sized datasets, it helps to
introduce invariances in the data — such as forecasting only pseudo-depth or lu-
minance of real-world images. Physical quantities like pseudo-depth are readily
usable by downstream tasks in robot autonomy (locomotion and planning) as
they represent the time-to-contact. We introduce a mechanism for diffusion mod-
els to condition on a frame’s timestamp. This allows models to perform better
at the task of forecasting (especially when they are not trained for forecasting).
Timestamp conditioning also lets us come up with flexible sampling schedules
for long-horizon forecasting. We find that these new sampling schemes perform
better than conventional autoregressive or hierarchical sampling strategies.
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Appendix

In this appendix, we extend our discussion of the performance of our method on
predicting diverse future geometries, both qualitatively and quantitatively.

A Dataset splits and evaluation

We use the diverse TAO [12] dataset for learning dynamism in unconstrained
scenes. Since TAO is a tracking benchmark, its training set is smaller than the
validation or test sets. For this reason, we train on the validation set of TAO
(~1000 videos) and report all results on one randomly sampled subsequence
each, from the train set (containing about 500 videos). The randomly sampled
set is fixed across all experiments for fair comparison.

In the case of evaluation on rigid scenes, we use CO3Dv2 [46]. Although
CO3Dv2 has groundtruth depth that is obtained from COLMAP [50], it is not
dense. For this reason, we still run ZoeDepth on CO3Dv2 and use those pseudo-
depth maps for training our method, but use the valid depths from groundtruth
for computing the probabilistic L1 metric on CO3Dv2 for both our method
and the baseline, Sparsefusion [73]. In the following section, we analyse depth
forecasting on CO3Dv2 qualitatively and quantitatively.

B Novel-view synthesis

We consider the case where a moving camera captures a static scene. In litera-
ture, this has been studied under the umbrella of novel-view synthesis from dense
[41] or sparse views [46,73]. The setting we evaluate (context from {-1s, -0.5s,
0Os} and prediction at +1s) falls under sparse view reconstruction/synthesis. We
use a variant of our model trained on CO3Dv2 alongside TAO. Note that the
state-of-the-art method, SparseFusion [73], which we use as a baseline has ac-
cess to future camera pose for rendering the novel-view from its reconstruction,
whereas for our method, the camera pose is unknown. Along with the scene,
it is sampled from the timestamp-conditioned diffusion model during inference.
Despite this disadvantage, we find that our method predicts plausible depths
for the objects, in addition to the depth predictions for the object backgrounds,
which is ignored by SparseFusion. We cover some qualitative analysis in Fig. 7.

In Tab. 6, we formally evaluate the task of novel-view synthesis. Since CO3Dv2
has multi-view object data captured in the form of videos, we structure this
problem as, given frames at -1.0s, -0.5s, 0.0s, we want to predict the frame at
+1.0s. For our method, only the future timestamp is available. For SparseFu-
sion, instead of future timestamp, future camera pose information is available.
Quantitatively, we find that our method performs better than SparseFusion on
a few categories (donut, apple, ball, suitcase, etc.) because of more smooth
depth forecasts (ref. Fig. 7). Other than that, for categories where camera view-
point matters more (hydrant, bench, plant etc.) for rendering the geometry,
SparseFusion does better.



Predicting Long-horizon Futures by Conditioning on Geometry and Time 21

Table 6. Novel-view synthesis results on Co3Dv2 core subset. We evaluate our
method for the task of novel-view depth synthesis with Top-1 L1 error on normalized
depth, against a recent approach for 3-view reconstruction. Over the set of categories
in the core subset of CO3Dv2, we see that SparseFusion performs better overall. Unlike
SparseFusion, our method does not have the access to future camera pose or object
mask. Despite this, it is able to generate plausible depth maps for object turn-table
sequences in Co3Dv2. We only compute the metric on valid groundtruth depths inside
the given object mask in CO3Dv2, without penalizing the background forecasts.

Method Donut Apple Hydrant Vase Cake Ball Bench Suitcase Teddybear Plant Overall

SparseFusion 11.54 28.94 19.04 14.29 26.28 27.64 75.89 34.32 40.04 71.53 34.95
Ours 7.22 19.23 30.39 21.82 19.57 20.65 91.83 33.56 38.44 75.23 35.79
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apple bench cake donut hydrant ball suitcase teddybear vase plant

Fig. 7. Qualitative comparison to novel-view synthesis We train and qualita-
tively evaluate our method on CO3Dv2. From the core subset [46] of 10 categories
in CO3Dv2, we show the visualization of novel-view synthesis from both our method
(top) and SparseFusion [73] (bottom). While SparseFusion has access to the param-
eters of both the input and new (or future) view, these are implicitly estimated by our
method from the camera trajectory encoded in the past frames. Therefore, our method
does not rely on known camera poses! Qualitatively, our method performs favourably
on the task of new-view synthesis from 3 input views, while handling dynamics and
backgrounds in general for a wide variety of scenes.

More importantly, the extension of our method for the task of novel-view
synthesis coupled with its performance on forecasting for dynamic scenes, we
show that we can handle object backgrounds, and dynamic video settings such
as in TAO [12], unlike methods for sparse-view static object/scene reconstruction
like SparseFusion.

C Qualitative comparison with baselines

In Fig. 9-12, we qualitatively compare our method to all baselines discussed in
Tab. 1 in main paper. It can be seen that predicting the most recent past frame
as the future serves as a strong baseline. Non-linear regression, regresses to the
mean of the future distribution. FDM [17], RIVER [13], MCVD [58] and our
method instead, sample modes of the future distribution. Linear extrapolation
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Fig. 8. With same training data/architecture/duration, a depth or luminance model
learns better temporal coherence than RGB.

is not shown but it serves as a strong baseline when the scene is static. Overall,
we see that our method produces more realistic and diverse outputs, as com-
pared to MCVD [58] which usually does not diverge much from the input views.
RIVER [13] struggles to learn temporal coherence because of its processing in the
low-dimensional latent space, and FDM [17] is not able to learn precise object
boundaries likely because it is not designed to handle dynamic scenes.

Mean vs. mode-seeking behavior Fig. 9, row 1 shows how the non-linear regres-
sion baseline hallucinates multiple possible futures, thereby introducing artifacts
because of this phenomenon (e.g., multiple people are visible in the output). In
contrast to this, our method and other state-of-the-art approaches are able to
sample multiple futures separately, commonly referred to as the mode-sampling
or mode-seeking behavior.

Depth vs. luminance vs. RGB Fig. 8 shows a qualitative comparison between
forecasts from different modalities; we see that RGB forecasting tends to be
noisy. Temporal coherence is better learned with invariant modalities such as
pseudo-depth or luminance. While many recent works do show successful RGB
video generation [24,34], they typically train on far more data than us (days of
compute on 10 million videos vs 7 hours of compute on 1000 videos).

D Comparison to state-of-the-art on long-horizon
forecasting

In Tab. 7, we compare the performance of our method shown in the main paper,
by retraining FDM [17] and RIVER [13] for +10s forecasting. Note that this is
not an apples-to-apples comparison to our method, as even for the case where we
want to predict just the +10s frame with the baselines, they are forced to predict
every intermediate (0s to 10s) frame because this is the only way to reach the
future +10s. On the other hand, when we evaluate our method for single-frame
+10s forecasting, we directly jump to that timestamp.

Quantitatively we see that, (1) errors are higher when methods are used for
predicting sequences of future frames, rather than when evaluated for a single
timestamp in future, and (2) across the discussed settings, our method performs
the best of all with the proposed mixed sampling.
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Table 7. Long horizon forecasting We evaluate future depth prediction for +10s
against FDM and RIVER, two state-of-the-art methods for video generation in the
single-frame (with L1) and multi-frame (with ATE) settings. Given our timestamp
conditioning, we are able to explore more flexible sampling schedules like mixed sam-
pling, which performs better than the widely used autoregressive sampling strategies
for FDM and RIVER.

. L1 ATE
Method Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
FDM [17] 16.05 13.15 12.29 16.57 14.38 13.79
RIVER [13] 13.21 11.71 11.26 13.34 12.28 11.93
Ours 12.39 10.97 10.51 12.16 11.73 11.58

E Memory requirements and speed

In Tab. 8, we detail the memory and speed Tabl'e 8. R?source requirements  of
requirements of our method and its vari- basehnes for single-frame +1s forecast-

ants along with the state-of-the-art for the e

task of +1s single-frame forecasting. First,

we find that at inference, our method sam- Params. Mem. Train Test

ples the fastest from the diffusion model. Method (M) (GB) (lrs) (5)
RIVER [13] 236 12 32 6.90

Second, FDM [17] uses the least amount | 54 S5 10 66 1950

of memory as it has the smallest model. rpMm [17] 80 8 72 2441
Ours 860 21 7 4.09

RIVER [13] also uses lesser memory for (scrsth) w0 om0
a lighter architecture since it learns video  Ours (small, scratch) 399 16 8 3.78
generation in significantly low dimensional

latent space. While these methods allow for a smaller memory footprint, as seen
qualitatively and quantitatively, none of them is able to learn persistence and
temporal coherence of objects and scenes. For a fair comparison to baselines,
we see that a variant of our model that is not initialized with the Stable Diffu-
sion Image Variations weights finishes training in 11 hours, still better than all
baselines. Another variant of our model that has lesser parameters and is more
comparable to baselines, is much faster to both train and sample from.

All numbers are provided for batch size = 1. For RIVER, a VQ-GAN needs
to be trained whose number of parameters (68M) are added to the RIVER
parameters (168M). Note that all our variants quantitatively perform better
than the state-of-the-art as shown in the main paper, and these differences in
the training and inference resources are even more pronounced when the state-
of-the-art methods are used for multi-frame long-horizon future generation.

F Details on Stable Diffusion Depth2Img

In the main paper, we show that given the same amount of training resources, it is
better to train a depth video prediction diffusion model and use this ‘temporally-
aware’ depth in conjunction with a single-frame depth-to-image model (such
as Stable Diffusion Depth2Img [47]) than an RGB video prediction model. To
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get this RGB image for every predicted future depth frame, we input the RGB
image at timestamp t = Os (which is the last input timestamp), alongside every
predicted depth frame from the future, into the Stable Diffusion Depth2Img
model one-at-a-time. We use the LLaVA [36] model to caption the RGB image at
t = Os which is input as the text prompt for the depth-to-image generation. We
use ‘ugly looking, bad quality, cartoonish’ as the negative text prompt.
The guidance scale is set to 5.0 and the conditioning strength is set to 0.3.

F.1 LLaVA prompting

To get the text prompt from LLaVA, we use the HuggingFace 11ava-hf/llava-

1.5-7b-hf weights, and use the input prompt for LLaVA as, "<image>\nUSER:

Caption the image in one long sentence.\nASSISTANT:". All text returned
after this prompt is used as input to Stable Diffusion Depth2Img. The RGB im-

ages are resized at a 512 x 512 resolution, and a max output length of 500
characters is used.

G Limitations

Our method suffers from two important limitations. First, our method is biased
towards hallucinating people and cars. For the other categories, the future is
rather difficult to forecast. This limitation arises from the fact that TAO, which
is used for training, has ~52% of the objects as people, with the second most
common category being cars. However, when even a small finetuning set of varied
objects from CO3Dv2 [16] are used, our method does perform well on forecasting
the future for those categories.

Second, we find that the pseudo-depth produced by our method (and others)
is low-fidelity, lacking details that otherwise appeared in the inputs. We posit
that this because although neural networks are universal function approximators,
they struggle with modeling high-frequency functions.
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Fig. 9. Qualitative comparison to baselines (1 of 4). We compare to all baselines
for the task of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s
in gray, methods predict future pseudo-depth at +1.0s. Lighter color is closer depth.
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Fig. 10. Qualitative comparison to baselines (2 of 4). We compare to all baselines
for the task of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s
in gray, methods predict future pseudo-depth at +1.0s. Lighter color is closer depth.
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Fig. 11. Qualitative comparison to baselines (3 of 4). We compare to all baselines
for the task of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s
in gray, methods predict future pseudo-depth at +1.0s. Lighter color is closer depth.
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Fig. 12. Qualitative comparison to baselines (4 of 4). We compare to all baselines
for the task of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s
in gray, methods predict future pseudo-depth at +1.0s. Lighter color is closer depth.
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