
ar
X

iv
:2

40
4.

11
56

0v
1 

 [
m

at
h.

C
O

] 
 1

7 
A

pr
 2

02
4

THE TERWILLIGER ALGEBRAS OF DOUBLY

REGULAR TOURNAMENTS

ALLEN HERMAN∗

Abstract. The Terwilliger algebras of asymmetric association
schemes of rank 3, whose nonidentity relations correspond to dou-
bly regular tournaments, are shown to have thin irreducible mod-
ules, and to always be of dimension 4k+9 for some positive integer
k. It is determined that asymmetric rank 3 association schemes of
order up to 23 are determined up to combinatorial isomorphism by
the list of their complex Terwilliger algebras at each vertex, but
this no longer true at order 27. To distinguish order 27 asymmetric
rank 3 association schemes, it is shown using computer calculations
that the list of rational Terwilliger algebras at each vertex will suf-
fice.

1. Introduction

The goal of this article is to study the Terwilliger algebras of asym-
metric rank 3 association schemes. Terwilliger introduced these as
subconstituent algebras for arbitrary finite association schemes in [17],
and in [18] he gave descriptions of their irreducible modules for the
main families of P - and Q-polynomial association schemes with the
thin property, and identified other families of these that do not have
the thin property. Since then, calculations of the irreducible modules
for Terwilliger algebras have been given for strongly regular graphs
[19], some group case association schemes ([3],[2], [9], and [14]), Doob
schemes [16], bipartite P - and Q-polynomial association schemes [6],
and a few other cases. Apart from these, there are general formulae
for the Terwilliger algebras of direct products and wreath product as-
sociation schemes ([4], [12], [15]), but there are very few calculations
for the Terwilliger algebras of other families of association schemes, in
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2 A. HERMAN

particular for asymmetric (i.e. non-symmetric) association schemes.
As asymmetric rank 3 association schemes are a fundamental building
block for asymmetric association schemes, they are a natural place to
start.
The main results of this paper show the Terwilliger algebras of asym-

metric rank 3 association schemes have thin irreducible modules, and
that their dimensions are always equal to 9 plus a multiple of 4 and
bounded by a function of the order of the scheme. We note aslo that
the same conclusions hold, by similar arguments, for the symmetric
rank 3 schemes generated by conference graphs.
We then consider the extent to which an association scheme is deter-

mined up to combinatorial isomorphism by its Terwilliger algebras, a
question that is particularly interesting for asymmetric rank 3 schemes
because any two of these with the same order are cospectral. As many
asymmetric rank 3 association schemes (X,S) have intransitive au-
tomorphism groups, several non-isomorphic Terwilliger algebras over
C can occur as x runs over the set of vertices X . It turns out that
the list of complex Terwilliger algebras {Tx : x ∈ X} distinguishes
asymmetric rank 3 association schemes of order up to 23, but this in-
variant does not distinguish those of order 27. This motivates us to
consider the associated list of rational Terwilliger algebras for these
schemes. Using GAP [8] and the Terwilliger algebra features of its
AssociationSchemes package [1], we have verified that asymmetric
rank 3 association schemes of order 27 are determined up to com-
binatorial isomorphism by their lists of rational Terwilliger algebras
{QTx : x ∈ X} up to Q-algebra isomorphism. In order to analyze
the algebraic structure of the rational Terwilliger algebras, we first es-
tablish a general result for arbitrary Terwilliger algebras, which shows
any simple component of QTx that is associated with a thin irreducible
Tx-module V has rational Schur index 1, and is hence isomorphic to a
full matrix ring over the field of character values associated with V .

2. Asymmetric Association Schemes of rank 3

Let A = {A0 = In, A1, A
⊤
1 } be the set of adjacency matrices of an

asymmetric association scheme of rank 3 and order n. In particular,
A1 is the adjacency matrix of a total digraph on n vertices satisfying
In + A1 + A⊤

1 = Jn, where A
⊤
1 denotes the transpose of A1 and Jn

is the n × n matrix with every entry equal to 1. As is well known,
this requires A1 to be the usual adjacency matrix of a doubly regular
tournament of order n = 4u + 3, for some u ≥ 0, and these matrices
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satisfy the identities

(1) A1A
⊤
1 = A⊤

1 A1 = (2u+ 1)A0 + uA1 + uA⊤
1 ,

and

(2) A2
1 = uA1 + (u+ 1)A⊤

1 .

We record the following matrix equation for later use, which follows
from the identities in (1) and (2), and the fact that In+A1+A

⊤
1 = Jn:

if α = −1+
√
−n

2
and ᾱ denotes its complex conjugate, then

(3) (A1 − αIn)(A1 − ᾱIn) = (u+ 1)Jn.

Regardless of whether or not they are realized by a collection of di-
graphs, asymmetric standard integral table algebras of rank 3 exist for
all n = 4u + 3, u ≥ 0. This means that asymmetric rank 3 associa-
tion schemes are algebraically possible for all positive integers n ≡ 3
mod 4. The character table (with multiplicities) of such a table algebra
takes the following form, where {b0, b1, b∗1} is the defining basis of the
table algebra, δ denotes the valency (or degree) character, and φ and φ̄
are a pair of complex conjugate irreducible characters:

b0 b1 b∗1 multiplicity
δ 1 2u+ 1 2u+ 1 1
φ 1 α ᾱ 2u+ 1
φ̄ 1 ᾱ α 2u+ 1

Paley tournaments of this type are known to exist whenever n is
a prime congruent to 3 mod 4, these correspond to the fusion of the
thin association scheme corresponding to the cyclic group whose non-
trivial classes consist of squares and non-squares. The number of non-
isomorphic asymmetric rank 3 schemes can be quite large, other than
the Payley ones, they are almost always non-Schurian and often have
trivial automorphism groups. The number of asymmetric rank 3 as-
sociation schemes of each order n ≡ 3 mod 4 for n ≤ 31 has been
determined:

order n 3 7 11 15 19 23 27 31 35
number 1 1 1 1 2 19 374 98300 ?

The 98300 asymmetric rank 3 association schemes were recently classi-
fied in [11], they also report that the smallest n ≡ 3 mod 4 for which
such a scheme is not yet known to exist is 275.
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3. Terwilliger algbras over C and Q

Let A = {A0, A1, . . . , Ad} be the set of of adjacency matrices for an
association scheme defined on the vertex set X = {1, . . . , n}. For a
fixed vertex x ∈ X , the set of the dual idempotents with respect to x
is the set

E∗(x) = {E∗
0 , E

∗
1 , . . . , E

∗
d}

of n× n diagonal matrices defined as follows: for 1 ≤ u, v ≤ n,

(4) (E∗
i )uv =

{

1 if u = v and (Ai)xu = 1

0 otherwise.

E∗(x) is a set of orthogonal and diagonal idempotents, whose ranks
correspond to the valencies of the Ai, for i = 0, . . . , d. The Terwilliger

algebra (a.k.a. subconstitutent algebra) of the association scheme with
respect to a choice of vertex x ∈ X is the subalgebra Tx of n × n
matrices over C generated by A and E∗(x). This algebra is closed under
the conjugate transpose, and is thus semisimple when considered as an
algebra over C. We will also be interested in the rational Terwilliger
algebra QTx, which is the algebra generated by the sets of n×n integral
matrices A and E∗(x) over the smaller field Q. The rational Terwilliger
algebra QTx is a Q-algebra with Tx ≃ C⊗Q QTx, so its dimension over
Q is the same as the dimension of Tx over C.
The presence of the dual idempotents in the generating set of a Ter-

williger algebra produces a natural refinement of its irreducible mod-
ules, a fact which has been exploited since its first introduction in [17,
§3]. For every E∗

i ∈ E∗(x), E∗
i TxE

∗
i is a subalgebra of Tx whose multi-

plicative identity is E∗
i . Given any irreducible Tx-module V , we have

that

V =
d

∑

i=0

E∗
i V,

where each E∗
i V is an E∗

i TxE
∗
i -module. The dual-diameter of an irre-

ducible Tx-module V is the number of dual idempotents E∗
i in E∗(x)

for which E∗
i V 6= 0. V is said to be thin when all of these E∗

i V are of
dimension at most 1.
The primary module V0 = Txe = Txx̂ is the Tx-module generated

by either the all 1’s column vector e of length n, or the characteristic
vector x̂ of the vertex x. The primary module gives an example of
a thin irreducible Tx-module whose dimension d + 1 is equal to its
dual diameter [17, Lemma 3.6]. Note that the primary module is also
realized over Q, so it is an absolutely irreducible QTx-module. Since
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E∗
0TxE

∗
0 has dimension 1, the other irreducible Tx-modules V 6= V0

have E∗
0V = 0, so their dual-diameters will be less than d+ 1.

If every irreducible Tx-module is thin, then we say that the Ter-
williger algebra Tx is thin. Since the thinness of Tx implies that every
irreducible E∗

i TxE
∗
i -module has dimension 1, this implies the compo-

nents E∗
i TxE

∗
i of the Pierce decomposition of Tx with respect to E∗(x)

are all commutative. Conversely, commutativity of all the E∗
i TxE

∗
i

implies Tx is thin [17], so these notions are equivlaent. This Pierce
decomposition also makes sense for the rational Terwilliger algebra, so
since E∗

i (QTx)E
∗
i ⊂ E∗

i TxE
∗
i , commutativity of these components over

C implies they are also commutative over Q.

4. The Subconstituent Decomposition of an asymmetric

rank 3 association scheme

Our approach to studying the irreducible modules of the Terwilliger
algebras of asymmetric rank 3 association schemes is similar to the ap-
proach used by Tomiyama and Yamizaki for the Terwilliger algebras of
strongly regular graphs in [19] that relied on subconstituent decompo-
sitions for these graphs introduced by Cameron, Goethals, and Seidel
in [5].
Let A = {A0, A1, A

⊤
1 } be the set of adjacency matrices for our asym-

metric rank 3 association scheme of order n = 4u + 3 on the set
X = {1, . . . , n}. By re-ordering the vertices, we may assume x = 1
and the first row of A1 has 1’s in positions 2 to 2u + 2. Since A1 is
asymmetric, its’ subconstituent decomposition takes this form:

(5) A1 =
2

∑

i=0

2
∑

j=0

E∗
iA1E

∗
j =





0 e⊤ 0⊤

0 B1 N
e J −N⊤ B2



 ,

where e and 0 are the (2u + 1)-column vectors of all 1’s and all 0’s
respectively, J is the (2u+ 1)× (2u+ 1) matrix of all 1’s, and B1, B2,
and N are appropriate (2u + 1) × (2u + 1) 01-matrices, with B1 and
B2 asymmetric.
Analyzing the implications of Equation (1) and (2) on the subcon-

stituents of A1 and A⊤
1 , we obtain the following:

B1e = ue, e⊤B1 = ue⊤,

Ne = (u+ 1)e, e⊤N = (u+ 1)e⊤,

B2e = ue, and e⊤B2 = ue⊤.

In particular,

(6) NJ = JN = (u+ 1)J,
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(7) B1J = JB1 = uJ, and

(8) B2J = JB2 = uJ.

We can also see that

B2
1 +N(J −N⊤) = uB1 + (u+ 1)B⊤

1 ,

B2
2 + (J −N⊤)N = uB2 + (u+ 1)B⊤

2 ,

B1N +NB2 = uN + (u+ 1)(J −N), and

J + (J −N⊤)B1 +B2(J −N⊤) = u(J −N⊤) + (u+ 1)N⊤.

These imply

(9) B2
1 +B1 + (u+ 1)I = NN⊤,

(10) B2
2 +B2 + (u+ 1)I = N⊤N,

(11) N +B1N +NB2 = (u+ 1)J, and

(12) B2N
⊤ +N⊤B1 +N⊤ = (u+ 1)J.

Lemma 1. B⊤
1 = J−I−B1 and B

⊤
2 = J−I−B2 as (2u+1)×(2u+1)

01-matrices. In particular, B1 and B2 commute with their transposes,

and are hence diagonalizable.

Proof. The first two identities are a consequence of the fact that A⊤
1 =

J − I −A1 as n× n 01-matrices. The last two conclusions follow from
Equations (5) and (8), which show B1 and B2 commute with J . �

Theorem 2. Let (X,S) be an asymmetric rank 3 association scheme,

and let Tx be its complex Terwilliger algebra with respect to a fixed

vertex x ∈ X. Then T is thin.

Proof. Suppose (X,S) has order n = 4u + 3 for some u ∈ N. Assume
without loss of generality that x = 1 is the first vertex in X . Let
A = {A0, A1, A

⊤
1 } be the set of adjacency matrices of (X,S) and let

E∗(x) = {E0, E1, E2} be the set of dual idempotents corresponding to
x. Let B1, N , and B2 be the subconstituents of A1 defined in Equation
(5).
We claim that the corner subring E∗

1TxE
∗
1 is equal to the algebra

generated by I, B1, and J . It is easy to see that E∗
1TxE

∗
1 will be

generated as an algebra by certain words in the matrices E∗
1 , Jn, A1,

and E∗
2 , of increasing length:

E∗
1 , E

∗
1JnE

∗
1 , E

∗
1A1E

∗
1 , E

∗
1A1E

∗
2A1E

∗
1 , E

∗
1A1E

∗
2A1E

∗
2A1E

∗
1 , etc.

Since E∗
0 = In−E∗

1 −E∗
2 and A⊤

1 = Jn−In−A1, it is only necessary to
use words in the four matrices E∗

1 , A1, Jn, and E
∗
2 that lie in E∗

1TxE
∗
1 .
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Under the natural projection to (2u + 1) × (2u + 1) matrices given
by Equation (4) that maps E∗

1A1E
∗
1 to B1, the first three generators

project to the (2u+1)×(2u+1) matrices I, J , andB1. We also have that
E∗

1A1E
∗
2A1E

∗
1 projects to N(J −N⊤) and E∗

1A1E
∗
2A1E

∗
2A1E

∗
1 projects

to NB2(J −N⊤). Since

N(J −N⊤) = (u+ 1)J −B2
1 − B1 − (u+ 1)I)

and

NB2(J −N⊤) = −(u+ 1)J +B3
1 + 2B2

1 + (u+ 2)B1 + (u+ 1)I

by Equations (6) through (12), these will lie in the algebra gener-
ated by I, J , and B1. The same will be true of the projections of
any generators of E∗

1TxE
∗
1 that is expressed using longer words in E∗

and A. So E∗
1TxE

∗
1 ≃ 〈I, J, B1〉. Since B1 commutes with J , this

algebra is commutative. A similar approach can be applied to show
E∗

2TxE
∗
2 ≃ 〈I, J, B2〉 and is commutative. Since the three corner sub-

algebras E∗
i TxE

∗
i for i = 0, 1, 2 are all commutative, we can conclude

from [17] that Tx is thin. �

Theorem 3. Let (X,S) be an asymmetric rank 3 association scheme of

order n = 4u+3, for some u ≥ 0. Let In = A0, A1, A
⊤
1 be its adjacency

matrices. Let Tx be the complex Terwilliger algebra with respect to some

x ∈ X. Let {E∗
0 , E

∗
1 , E

∗
2} be the set of dual idempotents with respect to

x, and let B1 be the subconstituent corresponding to E∗
1A1E

∗
1 .

(i) Every non-primary irreducible Tx-module has dimension 1 or

2.
(ii) The number of distinct 1-dimensional irreducible Tx-modules

is either 0 or 4, and it is 4 exactly when α = −1+
√
−n

2
is an

eigenvalue of B1.

(iii) Let dα ≥ 0 be the dimension of the α-eigenspace of B1. Then

the number of non-isomorphic 2-dimensional irreducible Tx-
modules is m2, where 0 ≤ m2 ≤ 2(u − dα). The dimension of

Tx is 9 + 4ǫ+ 4m2, where

ǫ =

{

1 if Tx has a 1-dimensional irreducible module

0 otherwise
.

Proof. (i) follows from Theorem 2.
It follows from Lemma 1 that B1 has a set of 2u + 1 linearly inde-

pendent orthogonal eigenvectors. From Equation (6), one of these is e.
Let v be one of the 2u eigenvectors in this set that is orthogonal to e,
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and suppose θ ∈ C with B1v = θv. Since Jv will be 0, we will have

A1





0
v
0



 =





0 e⊤ 0⊤

0 B1 N
e J −N⊤ B2









0
v
0



 =





0
B1v

(J −N⊤)v



 =





0
θv

−N⊤v



 .

From Equations (9) and (12), we obtain

A1





0
0

−N⊤v



 =





0
−NN⊤v
−B2N

⊤v





=





0
−(B2

1 +B1 + (u+ 1)I)v
((u+ 1)J −N⊤ −N⊤B1)v





=





0
−(θ2 + θ + (u+ 1))v

−(1 + θ)N⊤v



 .

Since these two vectors are fixed by elements of E∗, we can see that





0
v
0





and





0
0

−N⊤v



 generate an irreducible Tx-module. Call this module V1,θ.

This module will have dimension 2 exactly when N⊤v 6= 0. Whenever
v is an eigenvector for B1 orthogonal to e with eigenvalue θ, Equations
(9) and (12) tell us that

B2N
⊤v = (−1 − θ)N⊤v and NN⊤v = (θ2 + θ + (u+ 1))v.

So N⊤v = 0 implies θ2 + θ+ (u+1) = 0, and hence θ ∈ {α, ᾱ}. When
θ 6∈ {α, ᾱ}, we will have NN⊤v 6= 0, so N⊤v 6= 0, and so the module
V1,θ is 2-dimensional.
In a similar fashion, if we start with an eigenvector w for B2 with

eigenvalue φ that is orthogonal to e, we will have

A1





0
0

w



 =





0
Nw
B2w



 =





0
Nw
φw



 ,
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so from Equations (10) and (11) we will get

A1





0
Nw
0



 =





0
B1Nw

(J −N⊤)Nw





=





0
((u+ 1)J −N −NB2)w

−N⊤Nw





=





0
(−1− φ)Nw

−(φ2 + φ+ (u+ 1))w



 .

So again we get an irreducible Tx-module V2,φ generated by





0
0

w



 and





0
Nw
0



, which will be 1-dimensional when φ ∈ {α, ᾱ} and otherwise

2-dimensional. In the 2-dimensional case, B1Nw = (−1 − φ)w, so we
will have V2,φ = V1,−1−φ.
Since B1 is a matrix with rational entries, α will be an eigenvalue of

B1 if and only if ᾱ is an eigenvalue of B1, and the dimension dα of the
α-eigenspace of B1 will be equal to the dimension of the ᾱ-eigenspace
of B1. It follows that, among the 2u eigenvectors of B1 orthogonal
to e we started with, 2u − 2dα of them have eigenvalues θ that are
not equal to α or ᾱ, and therefore their corresponding irreducible Tx-
modules V1,θ = V2,−1−θ will be 2-dimensional. (Note that ᾱ = −1 − α,
so θ 6∈ {α, ᾱ} if and only if −1 − θ 6∈ {α, ᾱ}.)
Let S be the standard Tx-module of dimension n. Since

V1,θ = E∗
1V1,θ ⊕ E∗

2V1,θ = E∗
1V2,−1−θ ⊕ E∗

2V2,−1−θ,

with each of these components having dimension 1, the sum of the
dimensions in E∗

1S and E∗
2S that correspond to components of 2-

dimensional irreducible submodules of S will be the same, and both
of these will be 2u − 2dα. This leaves a 2dα-dimensional submodule
of E∗

2S that is filled with 1-dimensional irreducible Tx-modules, and
which projects to the direct sum of the α- and ᾱ-eigenspaces of B2.
The upshot of this is that whenever α is an eigenvalue of B1, then Tx
has four 1-dimensional irreducible modules V1,α, V1,ᾱ, V2,α, and V2,ᾱ,
and if α is not an eigenvalue of B1, then every non-primary irreducible
Tx-module will be 2-dimensional.
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Now, if β : V1,α →W is any non-zero Tx-module homomorphism, we
would have E∗

1β(v) = β(E∗
1v) 6= 0 and A1β(v) = β(A1v) = αβ(v). So

β(V1,α) is a 1-dimensional irreducible that is isomorphic to a compo-
nent of E∗

1S, and β(v) lies in the α-eigenspace of E∗
1A1E

∗
1 . Therefore,

β(V1,α) ≃ V1,α. It follows then that the four 1-dimensional irreducible
Tx-modules V1,α, V1,ᾱ, V2,α, and V2,ᾱ are pairwise non-isomorphic. Since
every irreducible Tx-module is isomorphic to a submodule of the stan-
dard Tx-module S, these are all of the 1-dimensional irreducible Tx-
modules up to isomorphism. This proves (ii).
By the preceding argument, the sum of the dimensions of the 2-

dimensional irreducible Tx-submodules of S will be 4(u − dα). Since
these submodules include representatives for all the 2-dimensional ir-
reducible Tx-modules, the number m2 of isomorphism classes of these
will be at most 2u− 2dα. This proves (iii). �

Continuing with the notation of the previous theorem, the next
lemma shows we can determine the number of 2-dimensional irreducible
Tx-modules from the spectrum of B1.

Lemma 4. Suppose θ1 6= θ2 are eigenvalues of B1 whose eigenvectors

are orthogonal to e. If θ1, θ2 6∈ {α, ᾱ} then the 2-dimensional irreducible

Tx-modules V1,θ1 and V1,θ2 are not isomorphic.

Proof. Suppose β : V1,θ1 → V1,φ is a Tx-module isomorphism between
a pair of 2-dimensional irreducible submodules of the standard module
of Tx. Then

(E∗
1A1E

∗
1)β

(





0
v
0





)

= β

(

E∗
1A1E

∗
1





0
v
0





)

= β

(

θ





0
v
0





)

= θβ

(





0
v
0





)

.

It follows that βE∗
1

(





0
v
0





)

is an eigenvector of E∗
1A1E

∗
1 with eigen-

value θ. Therefore, β(V1,θ) is a 2-dimensional irreducible Tx-module
corresponding to an element of the θ-eigenspace of B1, and so β(V1,θ) ≃
V1,θ. �

Example 5. The above results tell us the structure of the complex
Terwilliger algebra Tx of an asymmetric rank 3 association scheme at
a given vertex x determined by the spectrum of B1, and hence by
E∗

1A1E
∗
1 . B1 has 2u eigenvalues other than u. If all 2u of these are

distinct, none are repeated, and none are equal to α, then dim(Tx) will
be the maximum possible, 9 + 4(2u), and otherwise it will be smaller.
Computationally the structure of the complex Terwilliger algebra can
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be deduced from the degrees of the distinct nonzero irreducible factors
of the minimal polynomial of E∗

1A1E
∗
1 , and the irreducible decompo-

sition of the standard module can be deduced from the irreducible
factorization of the characteristic polynomial of E∗

1A1E
∗
1 . For small

n the dimensions of these Terwilliger algebras Tx, as x runs over all
vertices, is as follows:

AS dim(Tx), with frequency AS dim(Tx), with frequency
as7no2 (177)

as11no2 (2511)
as15no5 (337, 177)
as19no2 (4112, 257) as19no3 (4119)
as23no2 (499, 451, 413, 339, 171) as23no3 (4910, 451, 412, 339, 171)
as23no4 (498, 415, 339, 171) as23no5 (498, 452, 413, 3310)
as23no6 (4912, 412, 337, 172) as23no7 (497, 451, 415, 339, 171)
as23no8 (499, 456, 411, 337) as23no9 (497, 455, 411, 339, 171)
as23no10 (498, 457, 412, 335, 171) as23no11 (4911, 455, 336, 171)
as23no12 (4911, 455, 411, 336) as23no13 (495, 452, 415, 3310, 171)
as23no14 (4912, 454, 411, 336) as23no15 (4910, 455, 411, 337)
as23no16 (4910, 456, 336, 171) as23no17 (497, 456, 412, 338)
as23no18 (4915, 452, 336) as23no19 (4911, 3311, 171)
as23no20 (4923)

In these small examples, the only Terwilliger algebras that have 1-
dimensional irreducible modules are the ones of dimension 45 that occur
for just a few vertices of some of the order 23 schemes. When n =
4u+ 3, the maximum possible dimension 9 + 4(2u) occurs for at least
one vertex in all of these small examples, and the minimum we see is
17 = 9 + 4(2). Since B1 is asymmetric nonnegative irreducible matrix,
it should have at least three complex eigenvalues, one of them being a
complex conjugate pair, so this is the smallest possible dimension that
can occur.
From this data we can see that asymmetric rank 3 association schemes

of order up to order 23 are distinguished up to combinatorial isomor-
phism by their complex Terwilliger algebras. For asymmetric rank 3
schemes of order 27 this is no longer the case. In fact, not a single one
of the 374 combinatorial isomorphism classes of these schemes is deter-
mined by its list of complex Terwilliger algebras! In the next section we
will explain how to use the rational Terwilliger algebras to distinguish
these schemes.

Remark 6. A similar approach to Theorem 3 gives an analogous con-
clusion for the dimensions of the Terwilliger algebras of symmetric rank
3 association schemes generated by a conference graph. This slightly
strengthens the conclusions obtained for strongly regular graphs by
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Tomiyama and Yanazaki [19] in the case of conference graphs. When
the conference graph has order n = 4u+1, the character table of these
association schemes has the form

A0 A1 A2

δ 1 2u 2u 1
ψ 1 β βσ 2u
ψ̄ 1 βσ β 2u

where β = −1+
√
4u+1

2
and βσ is its Galois conjugate. The subconstituent

decomposition of A1 takes the form

A1 =





0 e⊤ 0⊤

e B1 N
0 N⊤ B2



 ,

and working with the identity A2
1 = (2u)I + (u − 1)A1 + uA2 we can

deduce the identities

NN⊤ = uJ − (B2
1 +B1 − uI) and B2N

⊤ = uJ −N⊤ −N⊤B1.

From this, we can see that whenever v is an eigenvector for B1 that is
orthogonal to e and has eigenvalue θ, then NN⊤v = −(θ2 + θ − u)v
and B2N

⊤v = (−1 − θ)v. As in the proof of Theorem 3, when θ 6∈
{β, βσ}, then Tx will have a 2-dimensional irreducible module generated

by





0
v
0



 and

[

0
N⊤v

]

, and when θ ∈ {β, βσ}, then





0
v
0



 generates a

1-dimensional irreducible Tx-module. As above, the number of non-
isomorphic irreducible Tx-modules of each dimension is determined by
the degrees of the distinct factors of the minimal polynomial of B1.
Since B1 is an integral matrix, when it has the eigenvalue β, it also

has the eigenvalue βσ = −1 − β. Since the 2-dimensional irreducible
Tx-modules are also thin in this case, we can deduce that the number of
1-dimensional irreducible Tx-submodules of the standard module that
are generated from eigenvectors of B1 is the same as that generated
using eigenvectors of B2. So from this we can conclude the number of
non-isomorphic 1-dimensional irreducible Tx-modules is either 0 or 4.
So the dimension of Tx is again always 9 plus a multiple of 4.

5. The Rational Terwilliger Algebra

In this section, we consider the rational Terwilliger algebra QTx of
an association scheme (X,S) of order n with respect to a fixed ver-
tex x ∈ X . So QTx is the Q-subalgebra of Mn(Q) generated by the
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union A ∪ E∗(x), where A = {A0 = In, A1, . . . , Ad} is the set of adja-
cency matrices of (X,S) and E∗(x) = {E∗

0 , E
∗
1 , . . . , E

∗
d} is its set of dual

idempotents with respect to x. Since these are 01-matrices, it is clear
that these sets will generate an algebra with a basis whose structure
constants are rational. (Finding a basis of Tx with integral structure
constants turns out to be much more difficult, see [10].)
It is easy to see that QTx is a semisimple Q-algebra. If QTx were not

semisimple, it would have a nonzero nilpotent ideal I, and C⊗QI would
be a nonzero nilpotent ideal of Tx, which does not exist. Because it
is a finite-dimensional semisimple Q-algebra, the algebraic structure of
QTx is dependent upon the Galois conjugacy classes of irreducible Tx-
modules, their fields of character values, and their associated Schur in-
dices. (For an overview of representation theory over non-algebraically
closed fields of characteristic zero relevant to the discussion that fol-
lows, see [7, §74]).
Since Tx is semisimple C-algebra with a rational basis, QTx has a

splitting field K ⊂ C which is a finite Galois extension of Q. This
splitting field K satisfies

K ⊗Q QTx = KTx ≃
⊕

χ∈Irr(Tx)

KTxeχ ≃
⊕

χ∈Irr(Tx)

Mnχ
(K),

where eχ is the centrally primitive idempotent of Tx corresponding to
each irreducible character χ ∈ Irr(Tx), and nχ denotes the degree of χ.
When we let Gal(K/Q) act on KTx, we obtain each centrally primitive
idempotent eχ̃ of QTx as the sum over one Galois conjugate class of
idempotents eσχ as σ runs over Gal(K/Q). Thus

QTx ≃
⊕

χ̃

QTxeχ̃

as χ̃ runs over the distinct Galois conjugacy classes of irreducible char-
acters of Tx. Each simple component QTxeχ̃ is a central simple algebra
whose dimension over its center is nχ. This means QTxeχ̃ ≃ Mr(D)
where D is a finite dimensional division algebra over Q satisfying
n2
χ = r2[D : Z(D)]. The dimension of D over its center is the square

of the Schur index of D. Since K has characteristic zero, the center of
QTxeχ̃ is Q-isomorphic to the field of character values Q(χ). We re-
mark that Q(χ)/Q need not be a normal extension, so the subfields of
K that are isomorphic to Q(χ) are the images of Q(χ) under elements
of Gal(K/Q), and so there will be [Q(χ) : Q] of these embeddings
Q(χ) →֒ K. (Unlike what happens for rational adjacency algebras of
association schemes, where it is an open question whether the splitting
fields are always cyclotomic, we have found it to be quite common for
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the splitting fields of rational Terwilliger algebras to be noncyclotomic
extensions of Q.)
If W is an irreducible QTx-module, then there will be a unique eχ̃

for which eχ̃W 6= 0, and the corresponding representation QTx →
EndQ(W ) has image isomorphic to QTxeχ̃. Conversely, given χ ∈
Irr(Tx), there is a unique centrally primitive idempotent eχ̃ of QTx.
The simple algebra QTxeχ̃ has just one irreducible module W up to
isomorphism, which lifts to an irreducible QTx-module. Tensoring
this module with K gives KTx-module K ⊗Q W that is isomorphic

to a nonzero multiple m′Ṽ ′ of Ṽ ′, where Ṽ ′ is the sum of the Galois
conjugates of V ′, an absolutely irreducible KTx-module. In this case
V = C ⊗K V ′ will be an irreducible Tx-module whose character is a
Galois conjugate of χ. The multiplicity m′ is called the rational Schur

index of the irreducible module V (or of the irreducible character χ);

when QTxeχ̃ ≃ Mr(D) above, then m′ =
√

[D : Q(χ)] agrees with the
Schur index of the division algebra D.
The goal of this section is to prove the rational Schur index associated

with a thin Tx-module is 1.

Theorem 7. Suppose V is a thin irreducible Tx-module whose char-

acter is χ ∈ Irr(Tx). Then χ has rational Schur index equal to 1. In

particular, the simple component of QTx determined by V and χ will

be isomorphic to Md′(Q(χ)), where d′ is the dual diameter of V .

Proof. Let QTxeχ̃ be the simple component of QTx determined by the
given irreducible character χ of V , and let W be an irreducible QTx-
module for which V is a constituent of C ⊗Q W . Let E∗

i ∈ E∗(x) be
one of the dual idempotents for which E∗

i V 6= 0. Since E∗
iW = 0

implies E∗
i V = 0, we must have that E∗

iW 6= 0. Since eχ̃ acts as the
identity on W , we have E∗

i eχ̃W 6= 0. Therefore, E∗
i (QTxeχ̃)E

∗
i is non-

zero. But QTxeχ̃ is a finite-dimensional simple algebra, and E∗
i eχ̃ is

a non-zero idempotent of it, so we have that E∗
i (QTxeχ̃)E

∗
i is Morita

equivalent to QTxeχ̃. Therefore, if QTxeχ̃ ≃ Mr(D) for some division
algebra D and positive integer r satisfying dim(V ) = r[D : Q(χ)], then
E∗

i (QTxeχ̃)E
∗
i ≃Mr′(D) with 1 ≤ r′ ≤ r.

When V is thin, we have that E∗
i TxE

∗
i is commutative, so its subring

E∗
i (QTxeχ̃)E

∗
i is commutative. Since it is also simple, it is a field.

Being Morita equivalent to a central simple algebra over Q(χ), the
field E∗

i (QTxeχ̃)E
∗
i must be isomorphic to Q(χ). It follows that the

rational Schur index of V is 1, and therefore QTxeχ̃ ≃Mr(Q(χ)), where
r = dim(V ). When V is thin, V =

∑

iE
∗
i V and each nonzero E∗

i V has
dimension 1, so dim(V ) is equal to the dual diameter of V . �
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6. Distinguishing Order 27 schemes with their rational

Terwilliger algebras

In this section we will illustrate how we have used Theorem 7 to
determine the algebraic structure of the rational Terwilliger algebras
at every vertex of asymmetric rank 3 association schemes of order 27,
and found that these do distinguish these schemes up to combinato-
rial isomorphism. As there are 374 of these schemes, and 27 rational
Terwilliger algebras for each one, we will not include all of the details.
Instead we will illustrate the necessary techniques by presenting the
most interesting and difficult cases we encountered.
Let QTx be the rational Terwilliger algebra of an asymmetric rank

3 association scheme. By Theorems 7 and 3, we have that the non-
primary simple components of QTx are either Q(χ) or M2(Q(χ)), and
the central fields Q(χ) are the fields Q(θ) where θ is an eigenvalue of the
subconstituent matrix B1 defined in Equation (5). So the approach is
to determine these central fields and compare how many of each occur.

Example 8. The largest collection of schemes of order 27 whose com-
plex Terwilliger algebras are all isomorphic has size 23, for these the
dimensions of their Terwilliger algebras, with frequency, are (5724, 493).
For these, every non-primary simple component will be a 2× 2 matrix
ring over its center.
The first pair we will distinguish is as27no134 and as27no288. In

both cases the simple components of the three rational Terwilliger alge-
bras of dimension 49 have central fields that are extensions of degree 2
and 8, and the quadratic extensions are the splitting field of x2+x+4.
As it is harder to distinguish extensions of degree 8 we look first at their
collections of 24 Terwilliger algebras of dimension 57. We consider the
distribution of degrees of central field extensions in each case, always
the sum of these degrees will be 12, and identify the specific quadratic
extensions.

For as27no134, these central fields and their freqencies are:
• degree 12 extension (17 times);
• degree 10 extension and the splitting field of x2 + x+ 4 (1 time)
• degree 10 extension and the splitting field of x2 + x+ 3 (1 time)
• degree 8 extension and degree 4 extension (4 times)
• degree 8 extension and the splitting fields of x2+x+4 and x2+x+1

(1 time)

For as27no288, this central field distribution is:
• degree 12 extension (17 times);
• degree 10 extension and the splitting field of x2 + x+ 6 (1 times)
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• degree 10 extension and the splitting field of x2 + x+ 3 (1 time)
• degree 8 extension and degree 4 extension (4 times)
• degree 8 extension and splitting fields of x2 + x+ 4 and x2 + x+ 1

(1 time)

We can conclude from this information that the rational Terwilliger
algebras for these two association schemes are distinguished by the
specific quadratic extensions occurring as centers of simple components.
The first one as27no134 has the splitting field Q(

√
−11) of x2 + x+ 3

occurring as a center of one of the simple components of its rational
Terwilliger algebras, while as27no288 does not, and instead has this
center replaced by the splitting field Q(

√
−23) of x2 + x+ 6.

The next pair we will consider is as27no186 and as27no276, which
lies in the same collection as the previous pair. For these the degrees of
central fields for their 24 Terwilliger algebras of dimension 57 match:
each has 17 degree 12 extensions and 7 that have a degree 8 and de-
gree 4 extension. When we look at their three Terwilliger algebras of
dimension 49, as27no82 has a degree 8 extension occurring with the
splitting field Q(

√
−15) of x2 + x+ 4 for two of them, and a degree 8

extension occurring with the splitting field of Q(
√
−11) of x2 + x + 3

for the other. For as27no276 it is the opposite: two have a degree 8
extension and Q(

√
−11) and the other has a degree 8 extension oc-

curring with Q(
√
−15). So the frequency of the quadratic extensions

occurring as centers of simple components distinguishes the two lists
of rational Terwilliger algebras.

The last example gives the most sensitive technique required to dis-
tinguish asymmetric rank 3 association schemes of order 27 using their
rational Terwilliger algebras.

Example 9. The three association schemes as27no11, as27no106, and
as27no168 have isomorphic complex Terwilliger algebras: 25 of dimen-
sion 57, one of dimension 41, and one of dimension 25. as27no168 is
distinguished from the others by the degrees of the central field exten-
sions in its Terwilliger algebras, since it has 15 degree 12 extensions
occurring as centers of its Terwilliger algebras of dimension 57 and for
the other two schemes this number is 20. For as27no11 and as27no106,
the degrees of all central field extensions occurring among simple com-
ponents of their rational Terwilliger algebras match. When we consider
the central field extensions in their Terwilliger algebras of dimension
41, the splitting field of x4 + 2x3 + 6x2 + 5x + 2 occurs in both. The
other central field occurring in both algebras is also of degree 4. For
as27no11 it is the non-normal extension L1 obtained by adjoining a
root of x4 + 2x3 + 9x2 + 8x+ 11 and for as27no106 it is the extension
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L2 obtained by adjoining a root of x4+2x3+9x2+8x+13. We can use
GAP to check that L1 contains no root of x4+2x3+9x2+8x+13, and
therefore the fields L1 and L2 are not Q-isomorphic. So these two ass-
sociation schemes are distinguished by just one difference in the degree
4 extensions occurring in their rational Terwilliger algebra of dimension
41.

In terms of rational representation theory, the semisimple algebras
in the last example come quite close to being isomorphic. It seems
unlikely that rational Terwilliger algebras will be enough to distinguish
the 98300 non-isomorphic asymmetric rank 3 association schemes of
order 31, but this formidable task is yet to be attempted.

Data availability statement: This manuscript has no associated data.
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