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Abstract

When considering statistical mechanics models on trees, such that the Ising model, perco-
lation, or more generally the random cluster model, some concave tree recursions naturally
emerge. Some of these recursions can be compared with non-linear conductances, or p-
conductances, between the root and the leaves of the tree. In this article, we estimate the
p-conductances of Tn, a supercritical Galton–Watson tree of depth n, for any p > 1 (for
quenched realization of Tn). In particular, we find the sharp asymptotic behavior when
n goes to infinity, which depends on whether the offspring distribution admits a finite
moment of order q, where q = p

p−1 is the conjugate exponent of p. We then apply our

results to the random cluster model on Tn (with wired boundary condition) and provide
sharp estimates on the probability that the root is connected to the leaves. As an example,
for the Ising model on Tn with plus boundary conditions on the leaves, we find that, at
criticality, the quenched magnetization of the root decays like: (i) n−1/2 times an explicit
tree-dependent constant if the offspring distribution admits a finite moment of order 3;
(ii) n−1/(α−1) if the offspring distribution has a heavy tail with exponent α ∈ (1, 3).
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1 Introduction and main results

We consider a super-critical branching process with reproduction law µ, and we denote by T
the associated tree. We denote by Z a generic random variable with law µ and we let m :=
E[Z], that we assume to be finite. We assume for simplicity that µ(0) = 0 so the tree is
infinite (and has no leaves) and that µ(1) < 1 so the tree is non-degenerate (and m > 1).

For n ∈ N, we let Tn be the subtree of depth n, and we equip the tree Tn with a set
of resistances R(e) on its edges: if the edge is uv with u the parent of v (we will write
u → v), then we denote Rv := R(e). Our main objective is to estimate the p-conductance
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(or p-capacity) of Tn, equipped with resistances (Rv)v∈Tn . Such capacities arise naturally in
the context of the random cluster model (including the percolation and Ising model) on a
quenched Galton–Watson tree, we refer to Section 2 below for more details.

Let us mention that the usual effective resistance (or conductances) of random trees have
already been considered in [1, 9], with a specific choice of (random) resistances (Rv)v∈Tn which
corresponds to a critical case. Our work can therefore be seen as a generalization of [1, 9] to
the case of p-resistances, with a wider range of (non-random) resistances; we improve some of
their results and present some applications, in particular to the (near) critical percolation or
Ising models on a quenched tree.

More generally, we study (concave) recursions on a Galton–Watson tree: these recursions
may arise in the context of statistical mechanics models on tree-like graphs (see [35] for an
overview), or more generally in belief propagation or population dynamics algorithm (see e.g.
[26] for an overview). These tree-recursion are often considered in a distributional sense rather
than with a fixed tree, which corresponds to an annealed setting for random graphs (i.e. the
randomness of the tree is part of the recursion); then, one of the main question is that of the
convergence to the fixed point distribution, and we refer for instance to [20, 31] for recent (and
general) results. Our interest is here slightly different, since we study iterations on a quenched
(i.e. fixed) Galton–Watson tree, focusing on the case where the distributional fixed point of
the iteration is degenerate, equal to 0: our main objective is then to estimate precisely the
decay rate of the recursion towards zero.

1.1 Non-linear (Lp) resistive networks

Let us consider a graph G = (V,E) equipped with a set of (non-negative) resistances (R(e))e∈E
on its edges. A general theory of non-linear resistances and capacities is by now well-developed,
and are usually defined through discrete nonlinear potential theory, see for instance [34] for an
overview. Here, we focus on a specific non-linear case, so-called “Lp resistive networks”. We
will give the definitions directly in terms of the Lp-Thomson’s principle, since it is essentially
the only tool we need for this article; we refer to [11] for a detailed review of Lpresistances
and conductances, see in particular [11, Thm. 2.13] for the Lp-Thomson’s principle.

For A,Z two disjoint subsets of V , we consider a flow θ between A and Z, which is a
function on ordered edges θ : E → R+ that verifies θ(−e) = −θ(e) and Kirchoff’s node law:
for x ∈ V \ (A ∪ Z),

∑
y∼x θ(x, y) = 0. The strength of the flow is then

Strength(θ) =
∑

x∈A,y/∈A
x∼y

θ(x, y)

and we say that θ is a flow from A to Z if Strength(θ) ⩾ 0; we also say that θ is a unit flow
if Strength(θ) = 1.

For p > 1, we define the Lp-energy (or simply p-energy) of a flow θ from A to Z as

Ep(θ) =
∑
e∈E

R(e)
1

p−1 θ(e)
p

p−1 .

Then, the p-resistance and p-conductance (or p-capacity) between A and Z are defined,
through Thomson’s principle as follows:

Rp(A↔ Z) := inf
θ:A→Z

Strength(θ)=1

Ep(θ)p−1

and Cp(A↔ Z) := Rp(A↔ Z)−1 .

(1.1)
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It is actually notationally convenient to introduce the conjugate exponent q = p
p−1 (i.e.

such that 1
p + 1

q = 1), so that the Thomson’s principle (1.1) can be rewritten as

Rp(A↔ Z)s = inf
θ:A→Z

Strength(θ)=1

∑
e∈E

R(e)sθ(e)q , with s := q − 1 =
1

p− 1
. (1.2)

Let us also stress that for p = 2 (q = 2), the p-resistance and p-conductance amount to the
usual effective resistance and conductance.

Remark 1.1. From the definition (1.1), we can easily deduce the Series and Parallel laws for
Lp electrical networks: we can formally write them as

Rp

(
R1 R2

)s
= Rp

(
R1

)s
+Rp

(
R2

)s
,

Cp
(

R1

R2

)
= Cp

(
R1

)
+ Cp

(
R2

)
.

Remark 1.2. General non-linear networks can be defined by replacing the function x 7→ |x|p
by a strictly convex function φ : x 7→ φ(x) (in this case, Thomson’s principle becomes harder
to state); we refer to [12, 34] and references therein. Most of our results would hold also for
these capacities, but we have chosen to restrict to the case of p-capacities for simplicity, also
because the applications we have in mind do not require more generality.

1.2 Concave recursions on trees

Let g : R+ → R+ be a concave function, and consider the iteration on the rooted tree Tn

Bn(u) =
∑
v←u

Ru

Rv
g
(
Bn(v)

)
, (1.3)

where we recall that v ← u means that v is a descendant of u in Tn. These types of recursions
appear in some statistical mechanic models on trees, in particular for the Random Cluster
Model (with parameter q ∈ (0, 2], q = 1 corresponding to the percolation model and q = 2
to the Ising model), see Section 2 for details. Let us now explain how they also appear when
computing Lp capacities of trees seen as resistive networks.

For p > 0, and u ∈ Tn \ ∂Tn, let us consider the subtree Tn(u) of all descendants of u
inside Tn, that we equip with resistances (RuRv)v∈Tn(u); in other words, we simply multiply
all original resistances inside Tn(u) by Ru. We denote

C(p)
n (u) := Cp(u↔ ∂Tn(u))

the p-conductance from the root to the leaves of this subtree Tn(u), as in (1.1). Then, the
Series and Parallel laws from Remark 1.1 yield the following relation

C(p)
n (u) =

∑
v←u

Ru

Rv

C
(p)
n (v)

(1 + C
(p)
n (v)s)1/s

. (1.4)

This is exactly the iteration (1.3) with the function g(x) = x
(1+xs)1/s

with s := q − 1 = 1
p−1 ,

and boundary condition C
(p)
n (u) = 1 if u ∈ ∂Tn.

Remark 1.3. The recursion (1.4) appears in [33, Lem. 3.1], but with s = p − 1 instead of
s = q − 1. This is just a convention, which simply means that all results in [33] are stated
with the conjugate exponent; in practice capp in [33] should refer to the p

p−1 -conductance.
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We can actually compare (1.4) with (1.3) with a general concave g if we make some
assumptions on the function g. For instance, if we assume that g is bounded and that there
is some q > 1 such that x−q(g(x)− x) remains bounded away from 0 and +∞ as x ↓ 0, then
we get that there are some constants κ1, κ2 such that for all x > 0

x

(1 + κ1xs)1/s
⩽ g(x) ⩽

x

(1 + κ2xs)1/s
, (1.5)

with s := q−1. This is for instance verified in the random cluster model of parameter q (with
q = 2 if q ∈ (0, 2) and q = 3 for q = 2), see Section 2 below.

One then gets the following proposition, similarly to Theorem 3.2 in [33].

Proposition 1.4. Let the function g verify (1.5) for some q > 1, and define Bn(u) iteratively
as in (1.3) with boundary condition Bn(u) ∈ [c,+∞] for u ∈ ∂T , for some constant c > 0.
Then, there are two constants κ′1 and κ′2 such that

κ′2C
(p)
n (u) ⩽ Bn(u) ⩽ κ′1C

(p)
n (u) , (1.6)

where p := q
q−1 is the conjugated exponent of q.

Let us also mention another interesting and easy lemma, which proves a monotonicity in p
of the conductances, see Lemma 6.9 in [3].

Lemma 1.5. For 1 < p ⩽ p′, let q (resp. q′) be the conjugated exponent of p (resp. p′).

Then, for any u ∈ Tn we have C
(p)
n (u) ⩾ C

(p′)
n (u). In particular, the p-conductance of a tree,

C
(p)
n (ρ) = Cp(ρ↔ ∂Tn) is non-increasing in p, or equivalently non-decreasing in q.

1.3 Main results: p-conductances of Galton–Watson trees

From now on, we fix p > 1 so we will suppress it from notations and write Cn(u) instead of

C
(p)
n (u). We wish to estimate the p-conductance of the Galton–Watson tree Tn, that is the

p-conductance between the root and the leaves of Tn:

Cn := Cn(ρ) = Cp(ρ↔ ∂Tn) ,

which is a random variable since it depend on the realization of the tree T . In the following,
we focus on the case where the tree is equipped with resistances (Rv)v∈Tn that are of the form:

Rv = (Rn)
−|v| , (1.7)

where |v| is the distance between v and the root, and R = Rn > 0 is a number which is fixed
along Tn, but that may depend on n. The choice (1.7) may seem rather restrictive but is
the one that appears naturally in the statistical mechanics models that we are interested in;
then Rn is related to the inverse temperature of the model (the fact that Rn may depend
on n will allow us to study the critical window for the random cluster model, as will become
clear in Section 2). It is also closely related to the choice of conductances considered in [9]
(or [1]), where authors estimate the standard 2-conductance (or 2-resistance) with resistances
Rv = ξvm

|v|, for i.i.d. random variables (ξv)v∈T — here we focus on the case where ξv ≡ 1
but we allow more generality in the growth rate of resistances in view of the applications we
have in mind, see Section 2.

More generally, we consider a concave function g : R+ → R+ verifying (1.5) and the
recursion (1.3) with resistances (Rv)v∈Tn defined as in (1.7): with this choice of resistances,
we have for all u ∈ Tn \ ∂Tn

Bn(u) = Rn

∑
v←u

g
(
Bn(v)

)
, (1.8)
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with boundary condition Bn(u) ≡ b0 for u ∈ ∂Tn. We also denote Bn := Bn(ρ); in particular,
we have Bn = Cn if g(x) = x/(1 + xs)1/s and b0 = 1.

Let us stress once more that the resistances are Rv = (Rn)
−|v|, where Rn is a parameter

that is fixed along the tree Tn and that might depend on n. In particular, except when Rn ≡ R,
the recursion (1.8) that defines Bn is different from the one that defines Bn+1. In fact, one
may think of Bn as belonging to a (tree-)triangular array of recursions ((Bn(u))u∈Tn , n ⩾ 0).

Before we state our results, let us introduce the following normalizing sequence, which
plays an important role:

an :=
n∑

k=1

(mRn)
−ks . (1.9)

To anticipate a bit, let us notice that we have an = fn(mRn), with fn(x) = x−s x
−ns−1
x−s−1 . In

particular, we easily get that

if mRn ∈
(
0, 1− 1

n

]
an ≍ (1− (mRn)

s)−1(mRn)
−ns ,

if mRn ∈
[
1− 1

n , 1 +
1
n

]
an ≍ n ,

if mRn ∈
[
1 + 1

n , 2] an ≍ ((mRn)
s − 1)−1 ,

(1.10)

where we have used the notation an ≍ a′n if the ratio an/a
′
n is bounded from above and

from below by two universal constants. Note that the first line also includes the case where
Rn → 0, but we will mostly focus on the case where lim infn→∞Rn > 0. We refer to the
regime mRn ≡ 1 as the critical case and one can interpret |mRn − 1| = O( 1n) as being in the
critical window.

We obtain different results depending on whether Z ∼ µ admits or not a finite moment
of order q; similarly to what happens for the critical behavior of the Ising model on random
trees, see [17]. We start with the case where E[Zq] < +∞, where our results are much sharper;
we then turn to the case where E[Zq] = +∞.

1.3.1 Case of a finite moment of order q

Our first result gives a general estimate on E[Bn]; in particular, thanks to Proposition 1.4,
we may focus on the p-conductance Cn of the tree Tn. We first give a result in the case where
the offspring distribution admits a finite moment of order q.

Theorem 1.6. Let p > 1, let q = p
p−1 be its conjugate exponent and let s = q − 1 = 1

p−1 .
Assume that Z ∼ µ admits a finite moment of order q. Then, there is a constant cp (that
depend only on the law µ and on p) such that

cp(an)
−1/s ⩽ E[Cn] ⩽ (an)

−1/s ,

where an is defined in (1.9). Additionally, (a
1/s
n Cn)n⩾1 is tight in (0,+∞).

Remark 1.7. Let us note that when Z only admits a moment of order r < q, then Lemma 1.5
combined with Theorem 1.6 gives the bound

E[Cp(ρ↔ ∂Tn)] ⩾ E[Cp′(ρ↔ ∂Tn)] ⩾ (ãn)
1/(r−1) ,

with p′ = r
r−1 the conjugate exponent of r and ãn =

∑n
k=1(mRn)

−k(r−1). In particular, if

Rn = m−1, E[Cn] ⩾ n−1/(r−1).
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In view of (1.10), we have the following estimates:

if mRn ∈
(
0, 1− 1

n

]
E[Bn] ≍ (1− (mRn)

s)1/s(mRn)
n ,

if mRn ∈
[
1− 1

n , 1 +
1
n

]
E[Bn] ≍ n−1/s = n−(p−1) ,

if mRn ∈
[
1 + 1

n , 2] E[Bn] ≍ ((mRn)
s − 1)1/s .

(1.11)

To complete the picture, note that when mRn ⩾ 2, E[Bn] is of order (mRn)
−1.

Our next result shows the Lq convergence of the rescaled conductance (or of the rescaledBn).

Theorem 1.8. Let p > 1, let q = p
p−1 be its conjugate exponent and s = q − 1. Assume that

Z ∼ µ admits a finite moment of order q. Then, if lim supn→∞mRn ⩽ 1 and infn⩾0Rn > 0,
we have, as n→∞

Bn

E[Bn]

Lp

−−−→
n→∞

W ,

where W := limn→∞
1

mnZn is the a.s. limit of the usual martingale associated to the branching
process. If Rn ≡ R with R ∈ (0,m−1], then the convergence also holds almost surely.

Finally, we estimate precisely the expectation E[Bn], under some condition on the func-
tion g. We have the following result.

Proposition 1.9. Let p > 1, let q = p
p−1 be its conjugate exponent and let s = q − 1.

Assume that Z ∼ µ admits a finite moment of order q and that the following limit exists
κg := limx↓0

1
xq (x − g(x)) in (0,+∞). Then, if limn→∞mRn = ϑ ∈ (0, 1], we have, as

n→∞,
E[Bn] ∼ αp(ϑ)(an)

−1/s ,

for some constant αp(ϑ), with αp(1) := (sκgE[W q])−1/s in the case where limn→∞mRn = 1.

Let us mention that Proposition 1.9 improves in particular the result [9, Thm. 1.2] which
considers some additional source of randomness on the resistances, but treats only the case of
linear (p = q = 2) conductances in the critical case mRn ≡ 1 and requires a moment of order
3 (i.e. q + 1) for the branching process.

1.3.2 Case of an infinite moment of order q

In the case of an infinite moment of order q, we need assume some (either upper or lower)
bounds on the truncated q-moment of Z ∼ µ. More precisely, we assume that there is some
α ∈ (1, q] and some slowly varying function L(·) such that, for x ⩾ 1

E[(Z ∧ x)q] ⩾ c1L(x)x
q−α (1.12)

E[(Z ∧ x)q] ⩽ c2L(x)x
q−α (1.13)

for some constants c1, c2. We obtain a lower bound on E[Bn] assuming (1.13) and an upper
bound on E[Bn] assuming (1.12).

Let h be a increasing function which verifies h(x) ∼ L(1/x)xα−1 as x ↓ 0. We denote by
h−1 its inverse and let us stress that h−1(x) ∼ L̃(x)x1/(α−1) as x ↓ 0, for some slowly varying
function L̃, see [8, §1.5.7]. Then, define

if mRn ∈
(
0, 1− 1

n

]
γn = h−1(1−mRn) (mRn)

n ,

if mRn ∈
[
1− 1

n , 1 +
1
n

]
γn = h−1(1/n) ,

if mRn ∈
[
1 + 1

n , 2] γn = h−1(mRn − 1) ,

(1.14)
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to be compared with (1.11), which corresponds to having h(x) = xq−1. Let us also define γ̃n
by setting γ̃n = γn ifmRn ⩾ 1− 1

n and γ̃n := h−1(1/n)(n(1−mRn))
1/s(mRn)

n ifmRn ⩽ 1− 1
n .

In practice, in the case where Rn ≡ R and if L(x) ≡ 1 in (1.12)-(1.13), then we have:
(i) γn = γ̃n ≍ (mR−1)1/(α−1) ifmR > 1; (ii) γn = γ̃n ≍ n−1/(α−1) ifmR = 1; (iii) γn ≍ (mR)n

and γ̃n ≍ n
1

q−1
− 1

α−1γn if mR < 1.

Theorem 1.10. Assume that 0 < infnmRn ⩽ supnmRn ⩽ 2 and let γn be as in (1.14).
Then there are constants c, c′ such that:

• If (1.12) holds, then E[Bn] ⩽ cγn, and in particular

lim
K↑+∞

lim sup
n→∞

P(Bn ⩾ Kγn) = 0 ;

• If (1.13) holds, then E[Bn] ⩾ c′γ̃n, or more precisely

lim
ε↓0

lim sup
n→∞

P(Bn ⩽ εγ̃n) = 0 .

Notice that there is a tiny gap between γn and γ̃n in the case where mRn ⩽ 1 − 1
n ; this

should be an artifact of the proof, and we believe that the correct decay is given by γn.
However, γn and γ̃n only differ by a polynomial in xn := n(1 − mRn): indeed, by Potter’s

bound [8, Thm. 1.5.6] we have that h−1(1/n) ⩾ cδ(xn)
−δ− 1

α−1h−1(1 −mRn). We therefore
obtain that γn ⩾ γ̃n ⩾ cδ(xn)

a−δγn, with a = 1
s −

1
α−1 . Let us conclude by noting that in the

case mRn ⩽ 1− 1/n, both γn, γ̃n have the same exponential decay in (mRn)
n.

Remark 1.11. Wemention that we consider an assumption on the truncated q-th moment since
they are slightly more general than assumptions on the tail of Z as considered for instance
in [17] (see Section 2.3 for some further comments); also, the truncated moments are the
quantities naturally appearing in the proof. Consider for instance the following conditions:

P(Z > x) ⩾ c′1L̂(x)x
−α , (1.15)

P(Z > x) ⩽ c′2L̂(x)x
−α , (1.16)

for some slowly varying L̂. Then, one can actually deduce (1.12) from (1.15) (resp. (1.13)
from (1.16)), since we have E[(Z ∧ x)q] = q

∫ x
0 t

q−1P(Z > t)dt. We then have L(x) = L̂(x)

in the case α < q, whereas L(x) =
∫ x
1 u
−1L̂(u)du ≫ L̂(x) (see [8, Prop. 1.5.9.a]) in the case

α = q.
Let us also show that the conditions (1.12)-(1.13) are weaker than the tail conditions

(1.15)-(1.16). Indeed, on one hand, we have E[(Z ∧ x)q] ⩾ xqP(Z > x), so (1.13) implies the
upper bound P(Z > x) ⩽ c2L(x)x

−α, but this is not optimal in the case α = q. However,
in the case α < q, (1.13) is equivalent to (1.16) with L̂ = L. On the other hand, to obtain
a lower bound on P(Z > x), one needs to have α < q and both (1.12)-(1.13); simply write
E[(Z ∧Ax)q] ⩽ (Ax)qP(Z > x) +E[(Z ∧ x)q].

1.4 Organisation of the paper

In section 2 we introduce the main motivation for our results on non-linear conductances: the
random cluster model (RCM ) on Galton–Watson trees. In 2.2, we present the tree recursion
arising in the model (we postpone the proof to Appendix A) and, in Section 2.3, we apply
our main results on p-conductances in order to detail the critical behaviour of the RCM on a
quenched GW tree.

The rest of the paper is divided as follows:
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• In Section 3, we introduce a few preliminary (technical) results on branching processes.

• In Section 4 we focus on the estimates of the moments of Cn, in the case where Z ∼ µ
admits a finite moment of order q, and in particular we prove Theorem 1.6.

• In Section 5, we show the Lp convergence of the normalized conductance of Theorem 1.8
and we conclude the precise estimate of E[Bn] of Proposition 1.9.

• In Section 6, we prove 1.10, which treats the moments of Cn in the case Z ∼ µ has an
infinite moment of order p.

• In Appendix A we prove the RCM tree recursion presented in Section 2.2.

• In Appendix B we provide some technical proofs regarding branching processed with heavy
tails, which are necessary for the estimates of Theorem 1.10.

2 The (critical) random cluster model on a quenched GW tree

The Random Cluster Model (RCM) or FK-percolation, introduced by Fortuin and Kasteleyn
in [19], unifies a number of models in statistical physics, including the percolation model, the
Ising or q-states Potts models and the uniform spanning tree. Some of these models, when
considered on trees, exhibit recursions as in (1.3), in particular the connection (sometimes
called survival) probability of the RCM on a tree, see (2.2). We give a quick presentation
of the model below, but we refer to [21] for a more complete overview of the RCM and its
connection to other models; see also [18, Ch. 1].

Let us mention that one of the motivation for considering statistical mechanics models on
trees is to apply the results to general random tree-like graphs, see e.g. [35] for an overview
(see also [13, 16] in the context of the Ising model).

2.1 The random cluster model on a graph

For a finite graph G = (V,E), the random cluster model is a Gibbs measure on percolation
configurations ω ∈ {0, 1}E , where in the configuration ω = (ωe)e∈E , an edge e is called open
if ωe = 1 and closed if ωe = 0. We also denote x

ω←→ y if x and y can be connected by an
open path in ω. For two parameters p ∈ [0, 1], q > 0, the RCM measure PG

p,q is defined by

PG
p,q(ω) =

1

ZG
p,q

po(ω)(1− p)f(ω)qk(ω) , (2.1)

where o(ω) =
∑

e∈E ωe is the number of open edges, f(ω) =
∑

e∈E 1 − ωe is the number of
closed edges and k(ω) is the number of clusters in ω, i.e. the number of connected components
of the subgraph of G induced by ω. Here, ZG

p,q is the partition function of the model, that is
the constant that normalizes Pp,q to a probability. Let us mention that when q ⩾ 1, the model
enjoys some monotonicity and correlation inequalities, see e.g [21, Ch. 3]; these are essential
tools for many of the techniques developed for the study of the RCM, which is therefore often
considered only for q ⩾ 1.

Relation with percolation and Ising/Potts models. Notice that for q = 1, one clearly
recovers the percolation model with parameter p. On the other hand, for q ∈ {2, 3, 4, . . .} the
RCM can be coupled to the (ferromagnetic) q-states Potts model with inverse temperature β
verifying e−β = 1 − p, see [21, §1.4], defined by the Gibbs measure on configurations σ ∈
{1, 2, . . . , q}V by

µβ,q(σ) =
1

Zβ,q
exp

(
β

∑
(x,y)∈E

1{σx=σy}

)
.
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Notice that the case q = 2 corresponds to the Ising model up to a change of parameter β,
since then 1{σx=σy} =

1
2(σxσy + 1).

Additionally, let us stress that in the coupling between the RCM and the q-state Potts
model, one has a direct relation between the two-point correlation functions for the Potts
model and connection probabilities in the RCM, see [21, Thm. 1.16]:

τβ,q(x, y) := µβ,q(σx = σy)−
1

q
= (1− q−1)Pp,q

(
x

ω←→ y
)
. (2.2)

Notice here that in the definition of τβ,q(x, y), one compares the probability that two spins
σx, σy are equal under the Potts measure µβ,q with the same probability if σx, σy were inde-
pendent and uniform in {1, . . . , q}.

Boundary conditions. Analogously to the Ising and Potts models, one may introduce a
boundary condition when considering the random cluster model. Here, we will only focus on
the wired boundary condition on the graph, which consists in contracting all vertices of the
boundary ∂G into one single vertex denoted {∂G}: we denote by Ḡ the resulting graph and
P̄Ḡ
p,q the resulting RCM. In terms of the Potts model, this corresponds to putting all spins

equal on the boundary; for the Ising model this is the model with plus (or minus) boundary
condition.

2.2 The random cluster model on trees and its associated recursion

In the case of a tree Tn of depth n, the boundary ∂Tn corresponds to the leaves and T̄n is
the tree with all leaves identified to one vertex. In view of (2.2), the connection (or survival)
probability

πn = πp,qn (ρ) := P̄T̄n
p,q(ρ↔ ∂Tn)

is one of the key quantity of interest; note that it depends on the realization of the tree T
and we will treat it for a quenched realization of T . In particular, in the case where q = 2,
one has that πn is equal to the magnetization of the root in the Ising model on Tn with plus
boundary condition on the leaves ∂Tn; a similar interpretation holds for πn in the q-Potts
model if q ∈ {2, 3, . . .}, see (2.2). In particular, one is interested to know whether, depending
on the parameters p, q, the connection probability πn vanishes or not as n → ∞, and if it
does, at which rate.

Let us mention that the RCM on d-ary (or Cayley) trees has been studied in several
articles, see e.g. [21, §10.9-10] and references therein. In a nutshell, the results from [22] ([21]
only treats the case d = 2) state that for every fixed q > 0 a phase transition occurs at some
pc(q) ∈ (0, 1) given by different formulas according to whether q ⩽ 2 or q > 2: if q ∈ (0, 2],
then pc(q) =

q
d+q−1 and the phase transition is continuous; if q > 2, then pq(q) is the unique

value of p such that the polynomial Qp,q(x) := (q − 1)xd+1 − (q − 1 + p
1−p)x

d + 1
1−px − 1

has a double root in (0, 1) (note that for d = 2, this gives pc(q) =
2
√
q−1

1+2
√
q−1), and the phase

transition is discontinuous.
The random cluster model seems to have been considered on d-regular (random) graphs,

see e.g. [4, 5, 23], which are locally d-ary trees. However, it does not seem to have been studied
on more random graphs with no fixed degree, in particular, to the best of our knowledge, it
has not been studied on random trees (for instance Galton–Watson trees). Our goal is to
show that the connection probabilities verify some recursive relation on trees and apply our
results of Section 1.3 to obtain information on the critical (or near and sub-critical) random
cluster model.
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The RCM iteration on trees. Let Tn be a tree of depth n with leaves only at generation n.
We then define, for u ∈ Tn

πn(u) = πp,qn (u) := P̄T̄n(u)
p,q

(
u↔ ∂Tn(u)

)
the connection probability from the root to the leaves for the RCM inside the subtree Tn(u),
with wired boundary conditions. Then, we have the following recursion on the tree Tn, whose
proof we present in Appendix A.

Proposition 2.1. If u ∈ ∂Tn, we have πn(u) = 1. If u /∈ ∂Tn, then we have the following
recursion:

φq(πn(u)) =
∏
y←u

φq

(
γ πn(v)

)
where φq(x) :=

1− x
1 + (q− 1)x

(2.3)

and γ = γp,q := φq(1−p). Setting Bn(u) := − logφq(πn(u)), we have Bn(u) = +∞ if u ∈ ∂Tn
and, if u /∈ ∂Tn then we have the recursion: letting β be such that 1− p = e−β,

Bn(u) =
∑
v←u

ψ−1q

(
ψq(β)ψq(Bn(v))

)
, where ψq(x) :=

ex − 1

ex + q− 1
= φq(e

−x) . (2.4)

Let us stress that when q = 2, we have that ψq(x) = tanh(x), so one recovers the well-
known Lyons’ iteration for the Ising model, see [25] (see also [13, Lem. 2.3] for the specific
form ψ−1q

(
ψq(β)ψq(x)

)
= tanh−1(tanh(β) tanh(x)) we have here).

Remark 2.2. As a side remark, let us note that the function φq : x ∈ [0, 1] 7→ 1−x
1+(q−1)x is an

involution, i.e. φq ◦ φq(x) = x for any x ∈ [0, 1].

Properties of the recursion. Let us fix q > 0 and, for every β > 0, let us introduce the
function

gβ(x) = gβ,q(x) :=
1

ψq(β)
ψ−1q

(
ψq(β)ψq(x)

)
.

The normalization by ψq(β) is here to ensure that g′β(0) = 1. With this notation, the recur-
sion (2.4) becomes

Bn(u) = ψq(β)
∑
v←u

gβ(Bn(v)) , (2.5)

and is similar to (1.3) with resistances Rv := ψq(β)
−|v|, i.e. (1.8) with Rn = ψq(β).

Let us now stress that the function gβ is concave on R+ if and only if q ∈ (0, 2]; we will

therefore focus on the case q ∈ (0, 2]. As a clue for this fact, notice that g′′β(0) =
q−2
q
(1−ψq(β)),

which is negative if q < 2, equal to zero if q = 2 and positive if q > 2.
Notice also that gβ is bounded and that, as x ↓ 0

if q ∈ (0, 2) , gβ(x) = x− q− 2

q
(1− ψq(β))x

2(1 + o(1))

if q = 2 , gβ(x) = x− 1

3
(1− ψq(β)

2)x3(1 + o(1))

(2.6)

so we indeed have (1.5) with q = 2 (and s = 1) if q ∈ (0, 2) and with q = 3 (and s = 3) if
q = 2; this was noticed in [33] in the case of the Ising model (with plus boundary condition,
which correspond to our wired boundary condition for the RCM).
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Remark 2.3. Let us stress that a similar recursion also arises for the return probability of a
random walk on a tree Tn equipped with resistances (Rv)v∈Tn . Consider the “non-descending”
probability

πn(u) = Pu

(
τu < τ∂Tn(u)

)
,

where u is the parent of u and τA is the hitting time of the set A. The quantities πn(u)
help encode the recurrence/transience of the graph and can be useful to estimate the Green

function on the tree. Then, setting bn(u) =
1−πn(u)
πn(u)

(in particular πn(u) = (1 + bn)
−1), one

may verify that one gets the recursion

bn(u) =
∑
v←u

Rv

Ru

bn(v)

1 + bn(v)
,

so bn(v) is exactly the 2-conductance, bn(u) = C2(u↔ ∂Tn(u)).

2.3 Main results: critical point and critical behavior

2.3.1 The critical point and critical behavior at (and below) criticality

For any fixed β (recall e−β = 1 − p), we have that (2.5) is exactly the recursion (1.8) with
Rn ≡ R = ψq(β), and (1.5) holds with q = 2 (s = 1) if q ∈ (0, 2) and with q = 3 (s = 2) if
q = 2. First of all, Theorems 1.6-1.10 allows us to identify the critical point.

For any β > βc (i.e. p = 1− e−β > pc), define

πn(β) = πqn(β, T ) := P̄T̄n
pn,q(ρ↔ ∂Tn) , π(β) = lim

n→∞
πn(β) , (2.7)

where the limit exists by monotonicity.
Recall that Bn = − logφq(πn), so in particular πn goes to 0 if and only if Bn goes to 0.

Theorem 2.4. Let q ∈ (0, 2], define πn = P̄T̄n
p,q(ρ↔ ∂Tn) the connection (or survival) proba-

bility, and let e−β = 1 − p. Let βc be defined by the relation mψq(βc) = 1, with ψq in (2.4).
Then we have that, in P-probability,

lim
n→∞

πn(β) = 0 if β ⩽ βc and lim inf
n→∞

πn(β) > 0 if β > βc .

In particular, π(β) > 0 if and only if β > βc.

Remark 2.5. Using the definition of ψq(β) and using that φq is an involution, we can rewrite
the relation mψq(βc) = 1 as e−βc = φq(

1
m) = m−1

m+q−1 , or equivalently, pc = 1− e−βc = q
q+m−1 .

Theorem 2.4 therefore identifies the critical point pc = 1 − e−βc for the random cluster
model with q ∈ (0, 2] on a (random) Galton–Watson tree. The case q > 2 is understood in
the case of a d-ary tree but remains somehow mysterious on a random tree and let us briefly
comment on it. In fact, when q > 2 the phase transition on a d-ary tree happens at a certain

pc(q) characterized by being the only (double) root in (0, 1) of a certain polynomial Q
(d)
p,q(x)

(see 2.2). In terms of the recursion (2.5), this correspond to finding p such that dgβ,q (see (2.2))
intersects the identity function exactly once. For the RCM on a Galton–Watson tree, if q > 2,
the random recursion (2.5) is still valid but the function gβ is then not concave anymore, and
it is not clear whether a characterization of pc(q) in terms of a certain (averaged?) polynomial
remains valid.

Additionally, our results of Section 1.3 directly give precise estimates for the critical case
β = βc. Let us stress that the survival probability on a quenched Galton–Watson tree has
recently been studied for percolation (i.e. q = 1), see [2, 27], where the results are more precise
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in the case of a heavy-tail but the techniques used are very different. On the other hand, the
result for the Ising model (or for the random cluster model with q ̸= 1) does not seem to be
known.

The following result is a direct consequence of Theorem 1.8-Proposition 1.9 in the case
where Z ∼ µ admits a finite moment of order q and of Theorem 1.10 in the case where
E[Zq] = +∞. Notice that − logφq(x) ∼ qx as x ↓ 0, so πn ∼ q−1Bn when Bn goes to 0.

Additionally, note that from (2.6) we get that κg := limx↓0
1
x2 (x− gβ(x)) = q−2

q
(1− ψq(β)) if

q ∈ (0, 2) and κg := limx↓0
1
x3 (x− gβ(x)) = 1

3(1− ψq(β)
2) if q = 2.

Theorem 2.6 (Critical case). Let β = βc, with βc defined by the relation mψq(βc) = 1. We
then have the following asymptotic results for πn. Letting q = 2 (s = 1) in the case q ∈ (0, 2)
and q = 3 (s = 2) in the case q = 2, we have the following:

• if E[Zq] < +∞, we have, almost surely and in Lq,

lim
n→∞

n
1

q−1πn = αqW with αq :=


q

q−2
m

m−1E[W 2]−1 if q ∈ (0, 2) ,
√
3√
2

m√
m2−1E[W 3]−1/2 if q = 2 .

• if c1L(x)x
q−α ⩽ E[(Z ∧ x)q] ⩽ c2L(x)x

q−α for some α ∈ (1, q], some slowly varying
function L(·) and constants c1, c2 > 0, then( πn

h−1(1/n)

)
n⩾1

is tight in (0,+∞),

with h−1(·) an asymptotic inverse of L(1/x)xα−1 as x ↓ 0.

We complete the above result with the subcritical case β < βc: our results imply a sharp
estimate on the exponential decay rate of the survival probability. We can summarize our
results as follows.

Theorem 2.7 (Sub-critical case). Let q ∈ (0, 2] and let βc defined by the relationmψq(βc) = 1.
Then, if β < βc, we have that limn→∞(πn)

1/n = mψq(β) < 1 in P-probability.

In fact, Section 1.3 gives much more precise results, that we describe informally as follows:
letting q = 2 if q ∈ (0, 2) and q = 3 if q = 2, we have

• if E[Zq] < +∞, we have limn→∞(mψq(β))
−nπn = αq(β)W for some constant αq(β);

• if E[(Z ∧ x)q] = nc+o(1) for some constant c, then C ⩾ (mψq(β))
−nπn ⩾ n−c

′
as n→∞.

2.3.2 Near-supercritical connection probability

Once the critical point βc is identified, it is also natural to consider the near-critical regime,
i.e. take an inverse temperature that may depend on n, β = βn, with limn→∞ βn = βc. This is
why we allowed in (1.8) the resistance Rn = ψq(βn) to also depend on n. In fact, Theorem 2.6
can be generalized to the whole near-critical regime. Let us however stress that in (2.5), the
function gβ = gβn also depends on n, but the bounds (1.5) and the expansion (2.6) are uniform
in n (as soon as βn → βc), so Theorem 2.6 can indeed be extended to the whole near-critical
regime as a consequence of Theorems 1.8 and 1.10.

For simplicity of the exposition (and for later use), let us state only the case where
limn→∞ βn = βc, but in the near-supercritical regime, that is when mψq(βn) − 1 ≫ 1

n . Note
that we have,

mψq(βn)− 1 = m(ψq(βn)− ψq(βc)) ∼
(m− 1)(m+ q− 1)

mq
(βn − βc) , as βn → βc ,
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since ψ′q(βc) =
q eβc

(eβc+q−1)2 = m−1
m2q

(m+q−1), recalling also that eβc = m+q−1
m−1 , see Remark 2.5.

Using also (1.10) when mψq(βn)− 1≫ 1
n we have

an :=
n∑

k=1

(mψq(βn))
−ks ∼ 1

(mψq(βn))s − 1
∼ s−1(mψq(βn)− 1)−1 ,

we directly obtain the following result from Theorem 1.8-Proposition 1.9 and Theorem 1.10.

Theorem 2.8 (Near-supercritical). Let (βn)n⩾0 be such that limn→∞ βn = βc, with also
limn→∞ n(βn− βc) = +∞. Define πn(βn) := P̄T̄n

pn,q(ρ↔ ∂Tn), with pn = 1− e−βn (which goes
to pc). Then, letting q = 2 if q ∈ (0, 2) and q = 3 if q = 2, we have the following:

• If E[Zq] < +∞, then we have that, in Lq,

lim
n→∞

πn(βn)

(βn − βc)
1

q−1

= α̃qW , with α̃q :=


m+q−1
q−2 E[W 2]−1 if q ∈ (0, 2) ,√
3m
2 E[W 3]−1/2 if q = 2 .

• If c1L(x)x
q−α ⩽ E[(Z ∧ x)q] ⩽ c2L(x)x

q−α for some α ∈ (1, q], some slowly varying
function L(·) and constants c1, c2 > 0, then( πn

h−1(βn − βc)

)
n⩾1

is tight in (0,+∞),

with h−1(·) an asymptotic inverse of L(1/x)xα−1 as x ↓ 0.

Notice that in Theorem 2.8, one can take βn ↓ βc arbitrarily slowly. We can therefore
deduce the following critical behavior for the limiting survival probability π(β) of the RCM
on a quenched Galton–Watson tree.

Corollary 2.9. Recall the definition (2.7) of π(β) = π(β, T ). Then, letting q = 2 if q ∈ (0, 2)
and q = 3 if q = 2, we have the following critical behavior:

• If E[Zq] < +∞, then π(β) ∼ α̃qW (β − βc)
1

q−1 , with α̃q as in Theorem 2.8.

• If E[(Z ∧x)q] ≍ L(x)xq−α, then π(β) ≍ h−1(β−βc), with h−1(·) an asymptotic inverse of
L(1/x)xα−1 as x ↓ 0.

Let us stress that Corollary 2.9 is related to existing results. For instance, [17] gives the
critical behavior of the Ising model (with external field) on a tree-like graph. Our techniques
are quite different, and we improve the results here by giving a sharp behavior in the case
where E[Zq] < +∞ (with the correct random constant); and treating a more general set-up
in the heavy-tail case. Let us also note that [28] treats the survival probability of Bernoulli
percolation on a GW tree and our Corollary 2.9 improves their main result in two directions:
(i) we recover the first-order asymptotic with a weaker moment condition (E[Z2] < +∞
instead of E[Z3+η] < +∞); (ii) we treat the case of a GW with heavy tails.

3 Some useful preliminaries on Branching processes

In this section, we regroup some technical tools that will be used throughout the proofs.
Some of them are standard, for instance some Lq inequalities for sums of independent random
variables (see Section 3.1), but we recall them for convenience. Others are very natural,
estimating the tail of (truncated) branching processes with heavy-tails (see Section 3.2), but
we were not able to find them in the literature so we provide a proof in Appendix B.
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3.1 Useful Lq inequalities for sums of independent random variables

Let us collect here some estimates on the Lq-norm of sums of independent random variables,
which turn out to be extremely useful in the context of branching processes.

One of the main inequalities that we will use is Lemma 1.4 in [24], which mostly relies on
the Marcinkiewicz–Zigmund inequality (see e.g. [10, Ch. 10.3]).

Lemma 3.1 (Lemma 1.4 in [24]). Let q > 1 and let (Xi)i⩾1 be independent and centered
random variables, with a finite moment of order q > 1. Then, for any n ⩾ 1, we have

E

[∣∣∣ n∑
i=1

Xi

∣∣∣q] ⩽ (Aq)
qnθq−1

n∑
i=1

E
[
|Xi|q

]
,

with θq := max(1, q2) < q and Aq := 2⌈ q2⌉
1/2 (in particular Aq = 2 if q ∈ (1, 2]).

Let us mention for completeness the following (simpler) result due to Neveu [30], in the
case where q ∈ (1, 2].

Lemma 3.2 ([30]). Let q ∈ (1, 2]. For a non-negative r.v. X with a finite moment of order q,
define Vq(X) := E[Xq]−E[X]q. Then, if X,Y are independent non-negative r.v. with a finite
moment of order q, we have that Vq(X + Y ) ⩽ Vq(X) + Vq(Y ).

In particular, if (Xi)i⩾1 are independent non-negative random variables with a finite mo-
ment of order q, then for any n ⩾ 1 we have

E
[( n∑

i=1

Xi

)q]
⩽ E

[ n∑
i=1

Xi

]q
+

n∑
i=1

E
[
Xq

i

]
.

As a direct consequence of Lemma 3.1, we state the following lemma that will be convenient
in the context of branching processes.

Lemma 3.3. Let q > 1, let X be a non-negative random variable and N be a N-valued random
variable, both with a finite moment of order q > 1. If (Xi)i⩾1 are i.i.d. random variables with
the same distribution as X and independent of N , then we have,

∥∥∥ N∑
i=1

Xi

∥∥∥
q
⩽ Aq

(
∥N∥θq

) θq
q
(
∥X −E[X]∥q

)
+ ∥N∥qE[X] ,

with θq := max(1, q2) < q and Aq := 2⌈ q2⌉
1/2 as in Lemma 3.1.

Proof. First of all, letting X̄i = Xi −E[X], we have that

∥∥∥ N∑
i=1

Xi

∥∥∥
q
=

∥∥∥ N∑
i=1

X̄i +NE[X]
∥∥∥
q
⩽

∥∥∥ N∑
i=1

X̄i

∥∥∥
q
+ ∥N∥qE[X] .

Now, using Lemma 3.1 conditionnally on N , we have that

E
[( N∑

i=1

X̄i

)q]
⩽ (Aq)

qE
[
N θq

]
E
[
|X̄|q

]
,

so that
∥∥∑N

i=1 X̄i

∥∥
q
⩽ AqE[N θq ]1/q∥X −E[X]∥q . This concludes the proof.
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As a consequence of Lemma 3.3, we get the following bound for branching processes. Let
(Zk)k⩾0 be a branching process with offspring distribution Z ∼ µ which admits a moment of
order q > 1, and mean denoted by m := E[Z]. Denote Wk := 1

mkZk the usual martingale and

letW := limk→∞Wk a.s., which is in Lq. Then, there are two constants c1(q) := AqE[W θq ]1/q

and c2 := c1 + ∥W∥q, such that the following holds: for any k ⩾ 1, if (Xi)i⩾0 are non-
negative i.i.d. random variables independent of Zk (with common distribution X) with a
finite q-moment, ∥∥∥ 1

mk

Zk∑
i=1

Xi

∥∥∥
q
⩽ c1m

−k(1− θq
q
)∥X∥q + c2E[X] . (3.1)

Indeed, a simple application of Lemma 3.3 gives that

∥∥∥ 1

mk

Zk∑
i=1

Xi

∥∥∥
q
⩽ Aqm

−k(mk∥Wk∥θq
) θq

q ∥X −E[X]∥q + ∥Wk∥pE[X] .

Using that ∥X − E[X]∥q ⩽ ∥X∥q + E[X], this directly concludes (3.1), since supk ∥Wk∥α =

∥W∥α for any α ∈ [1, q] ((Wα
k )k⩾0 is a submartingale), and also m

−k(1− 1
q
θq) ⩽ 1 since θq < q.

3.2 Supercritical branching processes with (truncated) heavy tails

Let µ be the reproduction law of a super-critical branching process, let Z ∼ µ and note
m := E[Z] its mean. For t > 1 some (large) fixed parameter, we define Z̃ := Z ∧ t with
distribution denoted µ̃ and assume that t is large enough so that m̃ := E[Z̃] > 1. We define a
truncated branching process with reproduction law tildeµ. As above, let (Zk)k⩾0, resp. Z̃k, be
a branching process with offspring distribution Z ∼ µ, resp. Z̃ ∼ µ̃, and denote Wk := 1

mkZk

and W̃k := 1
m̃k Z̃k the corresponding martingales.

Notice that if Z verifies (1.13), then we have E[(Z̃)q] ⩽ c2L(t)t
q−α. We will actually work

with the following bound on the tail of Z and Z̃ (which are equivalent to (1.13) if α < q): for
any x ⩾ 1

P(Z > x) ⩽ c2L(x)x
−α, P(Z̃ > x) ⩽ c2L(x)x

−α1{x<t} . (3.2)

We then have the following result, which is a variation of Theorem 1 (or Corollary 12) in [15].

Proposition 3.4. Assume that (3.2) holds for the offspring distribution. Then, there are
constants c, c′ such that, uniformly in ℓ ⩾ 1

P(Wℓ > x) ⩽ cL(x)x−α ,

and, provided that t is large enough,

P(W̃ℓ > x) ⩽

{
cL(x)x−α for all x ⩾ 1 ,

t−c
′x/t for all x ⩾ t .

Let us mention that in [15] the authors provide a uniform upper and lower bound on
the tail probability P(Wℓ > x), but with a slightly stronger assumption that the tail is
dominated varying, i.e. P(Z > x/2)/P(Z > x) remains bounded (it is for instance implied if
we assume the counterpart lower bound P(Z > x) ⩾ c′1L(x)x

−α); let us stress that the proof
of Lemma 11-Corollary 12 in [15] actually only requires that the tail is upper bounded by a
dominated varying function. On the other hand, the case of a truncated branching process
does not seem to have been treated in the literature. We give full (self-contained) proof of
both upper bounds in Proposition 3.4 in Appendix B.
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4 Estimates on moments of Cn in the case E[Zq] < +∞

4.1 Proof of Theorem 1.6

We decompose the proof of Theorem 1.6 into an upper bound, which requires only that Z ∼ µ
admits a finite first moment, and a lower bound, which requires a finite moment of order q
for Z.

Let us denote Cn(u) the conductance of the subtree Tn(u), equipped with the same resis-
tances. Then setting ϕ(u) = RuCn(u) we have the following recursion: for any u /∈ ∂Tn,

ϕ(u) =
∑
v←u

Ru

Rv

ϕ(v)

(1 + ϕ(v)s)1/s
. (4.1)

4.1.1 Upper bound on E[Cn]

We start from the recursion (4.1). We proceed as in [3, §6.2.1] (see also [9, Lem. 3.1] in the
case p = q = 2). Using the branching property and the fact that Ru = R−|u|, we get that for
any u /∈ ∂Tn and v ← u,

E[ϕ(u)] = mRnE

[
ϕ(v)

(1 + ϕ(v)s)1/s

]
⩽ mRn

E[ϕp(v)]

(1 +E[ϕ(v)]s)1/s
,

where we have used that the function x 7→ x
(1+xs)1/s

is concave for the last inequality. Denoting

wk := E[ϕ(u)]−s if |u| = k, we have the following recursive inequality:

wk ⩾ (mRn)
−s(1 + wk+1).

Iterating, we finally get that

w0 := E[Cn]
−s ⩾

n∑
k=1

(mRn)
−ks + (mRn)

−nswn ,

Recalling that we have defined an :=
∑n

k=1(mRn)
−ks, we get that E[Cn]

−s ⩾ an, that is

E[Cn] ⩽ a
−1/s
n .

In particular, using Markov’s inequality, we have P(a
1/s
n Cn ⩾ K) ⩽ K−1, showing the

first part of the tightness of (a
1/s
n Cn)n⩾0.

4.1.2 Lower bound on Cn, E[Cn]

For the lower bound on Cn = Cp(ρ ↔ ∂Tn), we actually prove an upper bound for the p-
resistance Rp(ρ ↔ ∂Tn); we proceed as in [3, §6.2.2]. Using Thomson’s principle (1.2), we
obtain an upper bound on the p-resistance simply by computing the energy of a well-chosen
unit flow θ from ρ to ∂Tn. The uniform flow θ̂ on T is a natural choice (as in [32, Lem. 2.2],
see also [9, Lem. 3.3]): define

θ̂(u, v) =
Zn(v)

Zn
,

where Zn(v) is the number of descendants of v at generation n and Zn := Zn(ρ). Then, θ̂(u, v)
is easily seen to be a unit flow from the root to the leaves of Tn, and we have

Rp(ρ↔ ∂Tn)
s ⩽ Ep(θ̂) =

n∑
k=1

∑
|v|=k

(Rv)
s
(Zn(v)

Zn

)q
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Defining Wn(v) :=
Zn(v)

E[Zn(v)]
= m−(n−k)Zn(v) for |v| = k and Wn := Wn(ρ), using that Ru =

R−|u| and recalling that s = q − 1, we can rewrite the upper bound as

Rp(ρ↔ ∂Tn)
s ⩽

1

(Wn)q

n∑
k=1

(mRn)
−ks 1

mk

∑
|v|=k

Wn(v)
q . (4.2)

Now, for any ε > 0, we can bound

P
(
Rp(ρ↔ ∂Tn)

s ⩾ ε−1an

)
⩽ P

(
Wn ⩽ ε1/2q

)
+P

( n∑
k=1

(mRn)
−ks 1

mk

∑
|v|=k

Wn(v)
q ⩾ ε−1/2an

)
.

Now, for the first term, since the martingaleWn converges a.s. to some non-degenerate random
variable W with P(W > 0) = 1, we get that P(Wn ⩽ ε1/2q) ⩽ δε uniformly in n, for some
δε ↓ 0 as ε ↓ 0. For the second probability, using Markov’s inequality (together with the
branching property), we get that

P

( n∑
k=1

(mRn)
−ks 1

mk

∑
|v|=k

Wn(v)
q ⩾ ε−1/2an

)
⩽
ε1/2

an

n∑
k=1

(mRn)
−ksE

[
(Wn−k)

q
]
.

Assuming that Z admits a finite moment of order q, we get that (Wn)n⩾1 is bounded in Lq

(see [7]), so that there is a constant cq such that E[(Wℓ)
q] ⩽ cq uniformly in ℓ ⩾ 0. This shows

that the last probability is bounded by cqε
1/2, recalling the definition of an.

All together, and recalling that Cn := Cp(ρ ↔ ∂Tn) = Rp(ρ ↔ ∂Tn)
−1, we have obtained

that for any ε > 0,
P
(
Cn ⩽ ε1/s(an)

−1/s) ⩽ δε + cqε
1/2 , (4.3)

which shows the scond part of the tightness of (a
1/s
n Cn)n⩾0.

For a lower bound on E[Cn], choose ε := εq > 0 sufficiently small so that δε+cqε
1/2 ⩽ 1/2:

we end up with

E[Cn] ⩾
1

2
ε1/sq (an)

−1/s ,

which is the desired lower bound.

Remark 4.1. Note that more generally, the proof shows that, for any u ∈ Tn with |u| = k,

cp(an−k)
−1/s ⩽ φk := E[ϕ(u)] ⩽ (an−k)

−1/s .

From this, we get that there exist constants c1, c2 such that for any 1 ⩽ k ⩽ n,

c1 ⩽
φk

φk−1
⩽ c2 .

Indeed, we have an−k ⩽ an−k+1 = (mRn)
−s + (mRn)

−san−k ⩽ (1 + (mRn)
−s)an−k, so that

cp ⩽ φk/φk−1 ⩽ c−1p (1 + (mRn)
−s)1/s; for this, we need to assume that infn⩾0Rn > 0.

4.2 Control of the higher moments of Cn

We now give a technical result that control the moments of Cn, which is useful for the sequel.
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Proposition 4.2. Let p > 1 and let q = p
p−1 be its conjugate exponent. If Z ∼ µ admits a

moment of order r ⩾ q, then so does Cn. Additionally, if supnmRn < mmax( r−1
r

, 1
2
) and if

infnRn > 0, then for any r′ ∈ (1, r], we have

sup
n⩾1

E
[
(Cn)

r′
]

E[Cn]r
′ < +∞ .

The proof would work similarly as in [9, Lem. 3.2] if r were an integer, but we aim at
generalizing their result here (both to non-integer moments r, and to a p-conductance with
p ̸= 2). We take inspiration from [24, Prop. 1.3], which deals with the rate of convergence
in Lq for the usual martingale Wn.

Proof. First of all, let us notice that we only have to prove the claim for r′ = r, since then
we can apply Jensen’s inequality to get that E[Cr′

n ] ⩽ E[Cr
n]

r′/r. Similarly, we only need to
control the Lr norm of Cn, and show that

∥Cn∥r ⩽ crE[Cn] , (4.4)

for some universal constant cr.
Recall that we define ϕ(u) := RuCn(u) = (Rn)

−|u|Cn(u). Now, using (4.1), we have the
general upper bound

0 ⩽ ϕ(u) ⩽ Rn

∑
v←u

ϕ(v) .

First of all, notice that we easily get by iteration that ϕ(v), hence Cn(v), admits a finite
moment of order r. If we iterate the above inequality for k generations, we have

Cn = ϕ(ρ) ⩽ (Rn)
k
∑
|v|=k

ϕ(v) = (Rn)
k

Zk∑
i=1

ϕ
(i)
k ,

where (ϕ
(i)
k )i⩾1 are i.i.d. copies of ϕ(v) for |v| = k (independent of Tk, and in particular

independent of Zk).
Therefore, applying Lemma 3.3 (more precisely (3.1)) and denoting φk = E[ϕk] (and

φ0 = E[Cn]), we obtain that

∥Cn∥r = ∥ϕ0∥r ⩽ c1(mRn)
km−k(1−

θr
r
)∥ϕk∥r + c2(mRn)

k φk

⩽ c1(mRn)
km−k(1−

θr
r
)∥ϕk∥r + c22

k φk .

Now, let us fix k = kr such that γr := (c1)
1/krm−(1−

θr
r
) < 1 with γr sufficiently close to

m−(1−
θr
r
) so that γ̂r := supn γrmRn < 1 (recall that by assumption supnmRn < m1− θr

r ).
This way, we may write

∥Cn∥r = ∥ϕ0∥r ⩽ (γrmRn)
k∥ϕk∥r + c′rφ0 = (γ̂r)

k∥ϕk∥r + c′rφ0 ,

where we have also used that φkr ⩽ (c2)
krφ0, see Remark 4.1. We can then iterate this

inequality, applying it to ∥ϕk∥r, ∥ϕ2k∥r, etc. Letting n = krnr + jr with 0 ⩽ jq ⩽ kr − 1, we
have

∥Cn∥r ⩽ c′r

nr∑
j=0

(γrmRn)
krjφkrj + c′′r(γrmRn)

nrkr , (4.5)

with c′′r := c′r sup0⩽j⩽kr−1 ∥ϕn−j∥r.
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We can now estimate this last expression, using the estimate on φkrj ⩽ c(an−jkr)
−1/s

from Remark 4.1, where we recall that aℓ :=
∑ℓ

i=1(mRn)
−is. Hence, we need to control aℓ,

depending on the value of mRn.

• Let us start with the case mRn = 1 for simplicity. In this case, aℓ = ℓ for all ℓ, so we can
bound the sum

nr∑
j=0

(γrmRn)
krjφjkr ⩽ c

nr∑
j=0

(γ̂r)
krj(n− jkr)−1/s ⩽ c′n−1/s .

Note also that (γ̂r)
krnr ⩽ Cr(γ̂r)

n ⩽ C ′rn
−1/s, using that γ̂r < 1. From (4.5), and recalling

that in this case we have E[Cn] ≍ n−1/s, see (1.11), we end up with

∥Cn∥r ⩽ crE[Cn] ,

as desired.

• Let us now deal with the case mRn > 1. First of all, let us control aℓ for 1 ⩽ ℓ ⩽ n. As
noticed before, aℓ = fℓ(mRn), with fℓ(x) = x−s 1−x

−ℓs

1−x−s , and we may use the following easy

bounds: fℓ(x) ⩾ ℓ if x ∈ [1, 1 + 1
ℓ ] and fℓ(x) ⩾ c(x − 1)−1 if x ∈ [1 + 1

ℓ , C]. Hence, letting
ℓ0 := (mRn − 1)−1, we have that

φn−ℓ ⩽ c

{
ℓ−1/s if ℓ ⩽ ℓ0 ∧ n ,
(mRn − 1)1/s if ℓ ⩾ ℓ0 ∧ n .

Let us consider two different cases.
First, if mRn ∈ (1, 1 + 1

n ], so that ℓ0 ⩾ n. Then we can bound the sum

nr∑
j=0

(γrmRn)
krjφkrj ⩽ c

nr∑
j=0

(γ̂r)
krj(n− jkr)−1/s ⩽ c′n−1/s ,

and we conclude as in the case mRn = 1 that ∥Cn∥r ⩽ crE[Cn], since we also have E[Cn] ≍
n−1/s in that case, see (1.11).

In the case where mRn ∈ (1 + 1
n , C], we have ℓ0 ⩽ n, and we need to split the sum into

two parts:

nr∑
j=0

(γrmRn)
krjφkrj ⩽ c(mRn − 1)1/s

nr−ℓ0/kr∑
j=0

(γ̂r)
krj +

nr∑
j=nr−ℓ0/kr

(γ̂r)
krj(n− jkr)−1/s

⩽ c′(mRn − 1)1/s + c′′
ℓ0∑
i=1

(γ̂r)
n−ii−1/s ⩽ c′′′(mRn − 1)1/s .

Once more, this concludes the proof since E[Cn] ≍ (mRn − 1)1/s, see (1.11), the last term
in (4.5) being again negligible.

• Let us now deal with the case mRn < 1. As above, using that aℓ = fℓ(mRn), with

fℓ(x) = x−s x
−ℓs−1
x−s−1 , we may use the following easy bounds: fℓ(x) ⩾ ℓ if x ∈ [1 − 1

ℓ , 1) and

fℓ(x) ⩾ c x−(ℓ+1)s

1−x if x ∈ (0, 1− 1
ℓ ]. Hence, letting ℓ0 := (1−mRn)

−1, we have that

φn−ℓ ⩽ c

{
ℓ−1/s if ℓ ⩽ ℓ0 ∧ n ,
(mRn)

ℓ+1(1−mRn)
1/s if ℓ ⩾ ℓ0 ∧ n .
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Let us again consider two different cases. First, if mRn ∈ [1− 1
n , 1), so that ℓ0 ⩾ n, then we

conclude that ∥Cn∥r ⩽ crE[Cn] exactly as above.
In the case where mRn ∈ (0, 1− 1

n ], we have ℓ0 ⩽ n, and we again split the sum into two
parts:

nr∑
j=0

(γrmRn)
krjφkrj ⩽ cmRn(1−mRn)

1/s

nr−ℓ0/kr∑
j=0

(γrmRn)
krj(mRn)

n−krj

+

nr∑
j=nr−ℓ0/kr

(γrmRn)
krj(n− jkr)−1/s .

Now, the first sum is bounded by a constant times (1−mRn)
1/s(mRn)

n+1 ⩽ cE[Cn], see (1.11)
for the second inequality. The second term is bounded by a constant times

ℓ0∑
i=1

(γrmRn)
n−ii−1/s ⩽ c(γrmRn)

n−ℓ0(ℓ0)
−1/s = c(mRn)

n−ℓ0(1−mRn)
1/s .

Now, since infnmRn > 0, we get that (mRn)
−ℓ0 remains bounded (recall ℓ0 = (1−mRn)

−1),
so this is bounded by a constant times E[Cn], recalling (1.11).

It remains to control the last term in (4.5). Again, this is bounded by a constant times
(γr)

n(mRr)
nqkq ⩽ c(γq)

n(mRn)
n+1 since infnmRn > 0; now, this is negligible compared to

E[Cn] ≍ (1−mRn)
1/s(mRn)

n+1.

4.3 Control of the ratios φk/φk−1

In view of Remark 4.1, we are able to bound the ratios φk/φk−1, where we recall that φk :=
E[ϕ(u)] for |u| = k. Let us now give a more precise estimate of the ratio φk/φk−1.

Lemma 4.3. With the same assumption as in Proposition 4.2, there exists a constant c > 0
such that 0 ⩽ φk

φk−1
− (mRn)

−1 ⩽ c
an−k

. In particular, we have

1 ⩽
(mRn)

kφk

φ0
⩽

k∏
i=1

(
1 +

c(mRn)
i

an−i

)
. (4.6)

Proof. We start with the iteration (4.1) which defines ϕ(u), with Ru = (Rn)
−|u| Notice that

we can write the iteration as

ϕ(u) = Rn

∑
v←u

ϕ(v)−Rn

∑
v←u

f(ϕ(v)) ,

with f(x) = x− x
(1+xs)1/s

, which verifies 0 ⩽ f(x) ⩽ cmin(xq, x).

Taking the expectation, we therefore get that if |u| = k − 1,

φk−1 = mRnφk −mRnE[f(ϕ(v))] .

All together, using Proposition 4.2 to get that E[f(ϕ(v))] ⩽ Cφq
k, we get that

0 ⩽ mRnφk − φk−1 ⩽ c(mRn)φ
q
k ⩽ cmRn

φk

an−k
,

where we have also used that φq−1
k = φs

k ⩽ (an−k)
−1 from Remark 4.1. This concludes the

first bound in Lemma 4.3. The bound (4.6) follows immediately by iteration.
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5 Convergence of the normalized conductance

We consider the recursion (1.8) on the tree of depth n, with resistances Rv = (Rn)
−|v|:

Bn(u) = Rn

∑
v←u

g
(
Bn(v)

)
,

with g(·) satisfying (1.5). We denote Bn := Bn(ρ) and bn := E[Bn]. We now show the
convergence of the normalized quantity B̂n := 1

bn
Bn assuming that E[Zq] < +∞, i.e. we

prove Theorem 1.8.
The method we use is analogous to that in [9, §5], with some modifications to obtain

the convergence in Lq with only a finite q-moment assumption. We start by proving the L1

convergence; then we upgrade it to a Lq convergence. We then conclude the section by proving
the almost sure convergence in the case Rn ≡ R. We conclude the section by proving the
sharp asymptotic of Proposition 1.9.

Preliminary observations and notation. For |u| = k, let us denote bn−k := E[Bn(u)].
Notice that, as κ1Cn ⩽ Bn ⩽ κ2Cn, we have that bn−k ≍ (an−k)

−1/s with aℓ =
∑ℓ

i=1(mRn)
−is.

Notice that Proposition 4.2 holds, so we have that E[Bn(u)
q] ⩽ cE[Bn(u)]

q for some universal
constant c; we will also make use of Lemma 4.3, which is also valid for bn−k (the proof only
uses that 0 ⩽ f(x) := x− g(x) ⩽ cmin(xq, x)).

5.1 Convergence in L1

Let us write f(x) = x − g(x), which is a non-negative function (by concavity of g), which
verifies f(x) ⩽ cmin(xq, x) thanks to (1.5). Then, we can rewrite the above iteration as

Bn(u) = Rn

∑
v←u

Bn(v)−Rn

∑
v←u

f(Bn(v)) ,

so that iterating for the first k generations we get

Bn = (mRn)
k 1

mk

∑
|v|=k

Bn(v)−Πk,n ,

with

Πk,n :=

k∑
j=1

(mRn)
j 1

mj

∑
|v|=j

f(Bn(v)) ⩾ 0 . (5.1)

Normalizing by bn, and denoting B̂n(v) =
1

bn−k
Bn(v) for |v| = k, we get that

B̂n =
(mRn)

kbn−k
bn

1

mk

∑
|v|=k

B̂n(v)−
1

bn
Πk,n =Wk + Ik,n + Jk,n −

1

bn
Πk,n , (5.2)

where Wk = 1
mkZk is the usual martingale and we have set

Ik,n :=
1

mk

∑
|v|=k

(
B̂n(v)− 1

)
and Jk,n :=

((mRn)
kbn−k

bn
− 1

) 1

mk

∑
|v|=k

B̂n(v) .

We now treat the three terms in (5.2) separately. To anticipate on the Lq convergence, we
bound the terms Ik,n, Jk,n in Lq; we then control 1

bn
Πk,n in L1.
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Control of Ik,n. Since B̂n(v)−1 are i.i.d. centered random variables independent of Tk (hence
of Zk), we can apply Lemma 3.1 conditionally on Zk to get that

E

[∣∣∣ ∑
|v|=k

(B̂n(v)− 1)
∣∣∣q] ⩽ Aq

qE
[
(Zk)

θq
]
E
[
|B̂n(v)− 1|q

]
.

Therefore

∥Ik,n∥q ⩽ Aq
1

mk

(
∥Zk∥θq

) θq
q ∥B̂n(v)− 1∥q ⩽ Aqm

−k(1− 1
q
θq)

(
∥Wk∥θq

) θq
q
(
1 + ∥B̂n(v)∥q

)
.

Now, since θq ⩽ q, we have that supk ∥Wk∥θq < +∞, and thanks to Proposition 4.2 we get

that ∥B̂n(v)∥q ⩽ cq for some universal constant cq. We therefore get that

∥Ik,n∥q ⩽ c′qm
−k(1− 1

q
θq) , (5.3)

which goes to 0 as k →∞ since θq < q.

Control of Jk,n. First of all, we get that∥∥∥ 1

mk

∑
|v|=k

B̂n(v)
∥∥∥
q
⩽ ∥Wk∥q + ∥Ik,n∥q ⩽ cq ,

for some universal constant cq. We therefore only have to focus on the term

∣∣∣(mRn)
kbn−k

bn
− 1

∣∣∣ ⩽ k∏
i=1

(
1 + c

(mRn)
i

an−i

)
− 1 ⩽ exp

(
c

k∑
i=1

(mRn)
i

an−i

)
− 1 ,

where we have used Lemma 4.3. We now show that the upper bound goes to 0 as k →∞.

Claim 5.1. Define kn = 1
2n if mRn ⩽ 1 + 1

n and kn = (mRn − 1)−1 if mRn ⩾ 1 + 1
n . Then,

there is a constant c such that for all k ⩽ kn, we have

k∑
i=1

(mRn)
i

an−i
⩽ c

ak
an

and
k∑

i=1

1

an−i
⩽ c

ak
an

.

In particular, for all k ⩽ kn we have that
∑kn

i=1
(mRn)i

an−i
is bounded by a constant c: we

then get that for any k ⩽ kn

∥Jk,n∥q ⩽ cq

∣∣∣(mRn)
kbn−k

bn
− 1

∣∣∣ ⩽ c′
kn∑
i=1

(mRn)
i

an−i
⩽ c′′

ak
an

, (5.4)

which goes to 0 if k →∞ sufficiently slowly.

Proof of Claim 5.1. The case mRn = 1 is trivial since then we have ak = k and an = n. A
similar result holds when |mRn − 1| ⩽ n−1, since we also have ak ≍ k for all k ⩽ n in that
case.

In the case mRn < 1 − 1
n ⩽ 1, we can bound (mRn)

i ⩽ 1 in the sum so we only need to

control the second sum. Then, we can use the bound an−i ⩾ c(1−mRn)
−1(mRn)

−(n−i)s for
all i ⩽ n/2, see (1.10). We therefore get

k∑
i=1

1

an−i
⩽ c(1−mRn)(mRn)

−ns
k∑

i=1

(mRn)
−is ⩽ c

ak
an

.
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In the case mRn > 1 + 1
n ⩾ 1, we can bound (mRn)

i ⩾ 1 so we only need to control the
first sum. Using that an−i ⩾ c(mRn − 1)−1 ⩾ can for all i ⩽ n/2, see (1.10), we get that

k∑
i=1

(mRn)
i

an−i
⩽

c

an

k∑
i=1

(mRn)
i ⩽

ck

an
,

provided that k ⩽ (mRn− 1)−1, since (mRn)
i ⩽ C uniformly for i ⩽ (mRn− 1)−1. Note that

we have ak ≍ k for (mRn − 1)−1, which concludes the proof.

Control of 1
bn
Πk,n. Recalling the definition (5.1) of Πk,n ⩾ 0 we get that

1

bn
E[Πk,n] =

1

bn

k∑
j=1

(mRn)
jE[f(Bn(v))] ⩽ c

k∑
j=1

(mRn)
jbn−j

bn
(bn−j)

s .

For the last inequality, we have used that f(x) ⩽ c min(xq, x), so that for |v| = j we have
E[f(Bn(v))] ⩽ cE[Bn(v)

q] ⩽ c′(bn−j)
q, thanks to Proposition 4.2; recall also that s = q − 1.

Again, we can use Lemma 4.3 and Claim 5.1 to get that for all j ⩽ kn

(mRn)
jbn−j

bn
⩽

j∏
i=1

(
1 + c

(mRn)
i

an−i

)
⩽ 1 + c′′

ak
an

⩽ C .

Using also that (bn−j)
s ⩽ c(an−j)

−1 by Remark 4.1, we therefore get that for

1

bn
E[Πk,n] ⩽ c′

k∑
j=1

1

an−j
⩽ c′′

ak
an

, (5.5)

using again Claim 5.1 for the last inequality.

Conclusion. Going back to (5.2) and collecting the bounds (5.3)-(5.4)-(5.5), we obtain that
for all k ⩽ kn (with kn defined in Claim 5.1), we have

E
[
|B̂n −W |

]
⩽ E

[
|Wk −W |

]
+ cm

−k(1− 1
q
θq) + c

ak
an

⩽ c′m
−k(1− 1

q
θq) + c

ak
an

,
(5.6)

For the last inequality, we have used that E[|W −Wk|] ⩽ ∥W −Wk∥q ⩽ cm
−k(1− 1

q
θq), see [24,

Prop. 1.3].
Note that the assumption that lim supn→∞mRn ⩽ 1 ensures that kn → ∞ and that

an → +∞, see (1.10). Hence, we can choose k = k̂n ⩽ kn going to +∞ sufficiently slowly so
that the upper bound in (5.6) goes to zero. This concludes the proof that (B̂n)n⩾0 converges
in L1 to W .

5.2 Convergence in Lq

Since we have the convergence B̂n → W in L1, we also have the convergence in probability.
To prove the convergence in Lq, we therefore simply need to show the uniform integrability
of (B̂q

n)n⩾0.
But from (5.2), we have the upper bound B̂n ⩽ Wk + Ik,n + Jk,n, where we can choose

k = k̂n ⩽ kn going to infinity slowly enough. Since B̂n ⩾ 0, we therefore get that

0 ⩽ B̂q
n ⩽ 3q(Wk̂n

)q + 3q(Ik̂n,n)
q + 3q(Jk̂n,n)

q ,
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and we only have to prove the uniform integrability of the three terms on the right-hand side,
which is easy.

First, (5.3) and (5.4) show that (Ik̂n,n)
q and (Jk̂n,n)

q converge to 0 in L1; in particular
they are uniformly integrable. Second, since µ admits a finite moment of order q, we have
that (Wk)k⩾0 converges in Lq to W , so in particular (W q

k )k⩾0 is uniformly integrable. This

concludes the proof that (B̂q
n)n⩾0 is uniformly integrable, hence that (B̂n)n⩾0 converges in Lq

to W .

5.3 Almost sure convergence

First of all, notice that if we take k = k̂n = c log n in (5.6), with a constant c sufficienly large,
we obtain that

E
[∣∣B̂n −W

∣∣] ⩽ c′n−2 + c
ak̂n
an

. (5.7)

Hence, if kn from Claim 5.1 satisfies kn ⩾ c log n = k̂n and if ak̂n/an is summable, we directly

obtain the a.s. convergence limn→∞ B̂n =W .
This is for instance the case if we have Rn ≡ R with R ∈ (0,m−1] since in that case

kn = 1
2n and an ≍ (mR)−ns; more generally, it is verified if mRn ⩽ 1 − c lognn with some

constant c large enough. This settles the a.s. convergence when Rn ≡ R ∈ (0,m−1), and it
remains to treat the critical case Rn ≡ m−1.

Let Rn ≡ m−1, so that ak = k for all k ⩾ 1, and in particular
ak̂n
an

⩽ c lognn . Consider the

subsequence (n2)n⩾0, so that the upper bound in (5.7) is summable along this subsequence.
Then (5.7) gives the a.s. convergence limn→∞ B̂n2 = W . Hence, one simply needs to bridge
the gaps between n2 and (n+1)2. Now, notice that (Bn)n⩾1 is non-increasing (this is where we
use that Rn ≡ R is fixed, see Remark 5.2 below), so we can write that, for all n2 ⩽ ℓ < (n+1)2

b(n+1)2

bn2

B̂(n+1)2 ⩽ B̂ℓ ⩽
bn2

b(n+1)2
B̂n2 ,

and it only remains to show that b(n+1)2/bn2 goes to 1. But this simply comes from Lemma 4.3,
which shows that

1 ⩽
bn2+k

bn2

⩽
k∏

i=1

(
1 +

C

an2+i

)
⩽ exp

(
C

k∑
i=1

1

an2+i

)
⩽ exp

(
C
k

n2

)
,

using also that an2+i ⩾ n2 for all i ⩾ 1. Therefore, since (n + 1)2 = n2 + 2n + 1, we get

that 1 ⩽
b(n+1)2

bn2
⩽ exp

(
C 2n+1

n2

)
and therefore goes to 1 as n→∞, concluding the proof that

limn→∞ B̂n =W almost surely.

Remark 5.2. One could try to use the idea of taking a subsequence to adapt the proof to
a general sequence (Rn)n⩾0, but the difficulty is to compare Bn and Bn+1, since Bn uses
resistances (Rn)

−|v| inside Tn and Bn+1 resistances (Rn+1)
−|v| inside Tn+1; the restriction to

the case Rn ≡ R allows for a comparison. Similarly, in the general case, there is no obvious
relation between bn := E[Bn] and bn+1 := E[Bn+1].

5.4 Precise asymptotic for E[Bn]: proof of Proposition 1.9

Theorem 1.8 proves that B̂n converges in Lq to W , so we get that

lim
n→∞

E[(B̂n)
q] = E[W q] .
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This shows in particular that E[Bq
n] ∼ E[W q](bn)

q.
Note that, setting f(x) = x − g(x), we have the relation bn = mRn

(
bn−1 − E[f(Bn(v))]

)
for |v| = 1, which can be rewritten as

bn = mRnbn−1(1− cn−1) , with cn−1 := (bn−1)
−1E[f(Bn(v))] .

Now, observe that since f(x) ∼ κgx
q as x ↓ 0 and that f(x) ⩽ cxq, we get by dominated

convergence that E[f(Bn(v))] ∼ κgE[Bn(v)
q] ∼ κgE[W p](bn−1)

p, with bn−1 ↓ 0 under the
assumption of Proposition 1.9.

In particular, this gives that cn−1 ∼ κgE[W p](bn−1)
s, with s = q − 1. Setting xn = b−sn ,

we get that

xn = (mRn)
−sxn−1(1 + c′n−1) = (mRn)

−sxn−1 + (mRn)
−sxn−1c

′
n−1 ,

with c′n−1 = (1− cn−1)−s − 1 ∼ sκg(bn−1)s. Iterating this relation, we get that

xn =
n∑

k=1

(mRn)
−ksxn−kc

′
n−k ,

with xic
′
i → sκgE[W q] as i → ∞. Hence, we can choose ℓn going to +∞ arbitrarily slowly

and write that

xn = (1 + o(1))sκgE[W p]

n−ℓn∑
k=1

(mRn)
−ks + (mRn)

−ns
ℓn∑
i=0

(mRn)
isxic

′
i

= (1 + o(1))sκgE[W p]an−ℓn + (mRn)
−ns

ℓn∑
i=0

(mRn)
isxic

′
i .

To conclude, let us notice that, in the case where limn→∞mRn = ϑ = 1, then we can
choose ℓn →∞ so that an−ℓn ∼ an. We also find in that case that the second term is negligible
compared to an provided that ℓn grows sufficiently slowly — this is clear if mRn ⩾ 1− c

n and

follows from the fact that an ∼ (1 − (mRn)
s)−1(mRn)

−(n+1)s if n(mRn − 1) → −∞. This
shows that xn ∼ sκgE[W p]an as n→∞ when ϑ = 1.

On the other hand, if limn→∞mRn = ϑ ∈ (0, 1), then an ∼ (1−ϑs)−1(mRn)
−ns, so for any

ℓn →∞ we have an−ℓn = o(an). We end up with xn ∼ cϑ(mRn)
−ns, with cϑ =

∑+∞
i=0 ϑ

isxic
′
i

which is a convergent sequence. This concludes the fact that xn ∼ cϑ(1− ϑs)an as n→∞.
All together, this gives the desired conclusion, since xn ∼ (bn)

−s.

6 Estimates on moments of Cn in the case E[Zq] = +∞
In this section, we prove Theorem 1.10. Since we can bound Bn with Cn, see Proposition 1.4,
we focus on estimates on Cn, E[Cn]. Let us define, as in Section 4.1.1, ϕ(u) = RuCn(u) and
recall that we have the following recursion (4.1):

ϕ(u) = Rn

∑
v←u

g
(
ϕ(v)

)
with g(x) =

x

(1 + xs)1/s
. (6.1)

6.1 Upper bound on E[Cn]

Let us assume that (1.12) holds and obtain the upper bound in Theorem 1.10. As in Sec-
tion 4.2, let φk = E[ϕ(u)] for |u| = k, so in particular φn = 1 and we need to estimate φ0.
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Using the recursion (6.1) we can write, again with the notation f(x) = x− g(x),

E[g(ϕ(u))] = mRnE[g(ϕ(v))]−E
[
f
(
Rn

∑
v←u

g
(
ϕ(v)

))]
= mRnE[g(ϕ(v))]−E

[
f
(
RnZuE

[
g
(
ϕ(v)

)])]
−E

[
f
(
Rn

∑
v←u

g
(
ϕ(v)

))
− f

(
RnZuE

[
g
(
ϕ(v)

)])]
,

(6.2)

where we have denoted Zu the number of descendants of u. Notice that, for v ∈ Tn such that
|v| = k + 1, we have φk = mRnE[g(ϕ(v))] and that, by convexity of f , the last term in (6.2)
is non-positive: we end up with the following inequality: for all 1 ⩽ k ⩽ n

1

mRn
φk−1 ⩽ φk −E

[
f
( 1

m
Zφk

)]
.

Now, we can use the fact that f(x) ⩾ cmin(xq, x) ⩾ c(x ∧ 1)q, to get that

E
[
f
( 1

m
Zuφk

)]
⩾ c′(φk)

qE
[(
Z ∧ m

φk

)q]
⩾ c′L(1/φk)(φk)

−α .

where we have used assumption (1.12) for the last inequality.
All together, we end up with the following recursion: φn = 1 and for 0 ⩽ k ⩽ n

φk−1 ⩽ mRnφk(1− h(φk)) , (6.3)

where h(x) ∼ cL(1/x)xα−1 as x ↓ 0. Note that we can assume that both x 7→ h(x) ∈ [0, 1)
and x 7→ x(1 − h(x)) are increasing (by properties of regularly varying functions, we may
assume that h′(x) = c′L(1/x)xα−2 so 1− h(x)− xh′(x) remains positive).

We can therefore focus on the iteration

uk+1 = mRnuk(1− h(uk)) with h(x) ∼ cL(1/x)xα−1 , (6.4)

started at u0 = 1. We now have to obtain an upper bound on un.

Remark 6.1. Notice that the recursion (6.4) admits a non-zero fixed point u∗ if mRn > 1,
which verifies h(u∗) =

mRn−1
mRn

, but that if mRn ⩽ 1 the only fixed point is u∗ = 0.

• Let us start with the case where mRn ∈ [1 + 1
n , 2], and let δn := mRn−1

mRn
. We let υn be

the fixed point of the equation (6.4), i.e. such that h(υn) = δn, and notice that it verifies
υn = h−1(δn) ⩽ cγn, where γn is defined in (1.14). Let assume that υn ⩽ u0, otherwise we
have uk ⩽ υn for all k and in particular un ⩽ υn ⩽ cγn.

Now, by assumption we have that (uk)k⩾0 is a decreasing sequence. Let us define kn :=
min{k : h(uk) ⩽ Cδn} for some (large) constant C ⩾ 2. Our goal is to show that if C is large
enough then we have kn ⩽ n, so in particular un ⩽ ukn with ukn ⩽ h−1(Cδn) ⩽ c′γn.

Now, for all k < kn, we have that mRn(1− h(uk)) ⩽ 1 + δn − h(uk) ⩽ 1− 1
2h(uk), so we

end up with
uk+1 ⩽ uk

(
1− 1

2h(uk)
)
.

Now, let H : (0,∞)→ (0,∞) be some decreasing function, with derivative given by H ′(x) =
−(xh(x))−1; we also let c > 0 be a constant such that H(x − t) ⩾ H(x) − ctH ′(x) for all
x ∈ (0, 1] and t ∈ [0, x/2]. We then have that for k < kn,

H(uk+1) ⩾ H
(
uk − 1

2ukh(uk)
)
⩾ H(uk)− cukH ′(uk)h(uk) = H(uk) + c .
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All together, we get that for all k ⩽ kn

H(uk)−H(u0) =

k−1∑
j=0

(
H(uj+1)−H(uj)

)
⩾ ck ,

or, put otherwise H(uk) ⩾ ck. Since H(u) =
∫ 1
u (th(t))

−1dt and since h(t) is regularly varying
with index α − 1 > 0, we get that H(u) ∼ 1

α−1h(u)
−1 as u ↓ 0, so we end up with the fact

that, for all k ⩽ kn

h(uk)
−1 ⩾ c′ k or h(uk) ⩽ c′′ k−1 , for all k ⩽ kn . (6.5)

Now, applying this inequality with k = kn − 1 and recalling the definition of kn, we get that
kn − 1 ⩽ c′′C−1/δn. Since δn = (mRn − 1)/Rn ⩾ 1/2n for mRn ∈ [1 + 1

n , 2], we get that
kn − 1 ⩽ 2c′′C−1n, which is smaller than n provided that C had been fixed large enough.

• The proof is analogous in the case where mRn ∈ [1− 1
n , 1+

1
n ]. Define kn := min{k, h(uk) ⩽

2/n}, so that as above we have mRn(1− h(uk)) ⩽ 1− 1
2h(uk) for all k < kn.

Then, similarly as in (6.5), we get that h(uk) ⩽ c′′k−1 for all k ⩽ kn. Now, either we have
kn ⩾ n, in which case h(un) ⩽ c′′/n, or we have kn < n in which case by definition of kn
we have h(un) ⩽ h(ukn) ⩽ 2/n. In any case we have that un ⩽ h−1(c/n), so that we obtain
un ⩽ cγn, where γn is defined in (1.14), recalling also that an ≍ 1/n.

• Let us now treat the case wheremRn ⩽ 1− 1
n , with infnRn > 0. Let us set δn = 1−mRn ⩾ 1

n
and let us define define kn := min{k, h(uk) ⩽ Cδn} for some (large) constant C.

First, let us show that kn < n, provided that C has been fixed large enough. For k < kn
we use the inequality uk+1 ⩽ uk(1 − h(uk)), which thanks to (6.5) gives that h(uk) ⩽ c′′/k
for all k ⩽ kn and in particular kn − 1 ⩽ c′C−1/δn. Since δn ⩾ 1/n, this proves that kn < n
provided that C is large.

Then, for k ⩾ kn, we use the bound uk+1 ⩽ mRnuk to get that

un ⩽ (mRn)
n−knukn ⩽ (mRn)

n(1− δn)−knh−1(Cδn) ,

where we have also used the definition of kn for the last inequality. Now, since we have
kn ⩽ c′/δn, the term (1− δn)−kn remains bounded, while we have h−1(Cδn) ⩽ ch−1(δn). This
concludes the proof of the upper bound in Theorem 1.10.

The last inequality simply comes from Markov’s inequality, which gives P(Cn ⩾ Kγn) ⩽
K−1γnE[Cn] ⩽ cK−1.

6.2 Lower bound on Cn, E[Cn]

To obtain a lower bound on Cn, E[Cn], let us assume that (1.13) holds. We let (tn)n⩾1

be a truncation sequence (to be optimized later on), and as in 3.2, we consider a truncated
branching process T̃ with offspring distribution Z̃ := (Z ∧ tn) ∼ µ̃. Let also C̃n(v) be the
p-capacities associated with the Galton–Watson tree T̃n of depth n with reproduction law µ̃.
Since we have truncated the offspring distribution there is a coupling for which T̃ ⊂ T and
since the function g(x) = x

(1+xs)1/s
is increasing, we obtain that C̃n(v) ⩽ Cn(v) for all v ∈ T̃ .

In particular, we only need to obtain a lower bound on C̃n, E[C̃n].
We use the same method as in Section 4.1.2. By using the uniform flow and Thompson’s

principle, we have similarly to (4.2)

R̃p(ρ↔ ∂T̃n)
s ⩽

1

(W̃n)q

n∑
k=1

(m̃Rn)
−ks 1

m̃k

∑
|v|=k

W̃n(v)
q ,
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where W̃n(v) = m̃−(n−k)Z̃n(v) for |v| = k, W̃n = W̃n(ρ). Then, exactly as in (4.3), we obtain
the following bound for Cn:

P
(
Cn ⩽ ε1/s(ãn)

−1/s) ⩽ δε + ε1/2 ,

where

ãn :=

n∑
k=1

(m̃Rn)
−ksE

[
(W̃n−k)

q
]
. (6.6)

It only remains to show that (ãn)
−1/s ⩾ cγ̃n, with γ̃n defined in (1.14). We now need to

obtain an upper bound on (6.6). The lower bound on E[C̃n] ⩾ c′γ̃n then follows immediately.

Step 1. Estimate of E[(W̃ℓ)
p]. Let us prove that, under the assumption (1.13), there is a

constant c (independent of tn) such that for all ℓ ⩾ 1,

E
[
(W̃ℓ)

q
]
⩽ cL(tn)t

q−α
n . (6.7)

Let us start with the case where α ∈ (1, q), which can be treated easily with Proposi-
tion 3.4. Indeed, recalling Remark 1.11, when α < q, we have the bounds (3.2) on the tail of
Z. Then provided that tn is large enough, Proposition 3.4 shows that P(W̃ℓ > x) ⩽ cL(x)x−α

for all x ⩾ 1 and P(W̃ℓ > x) ⩽ t−αn e−c
′x/2tn for x ⩾ 2αtn/c

′ (assume also that tn ⩾ e). Then,
we obtain

E
[
(W̃ℓ)

q
]
= q

∫ ∞
0

xq−1P(W̃ℓ > x)dx

⩽ c

∫ 2αtn/c′

0
L(x)xq−α−1dx+ t−αn

∫ ∞
2αtn/c′

xq−1tα−c
′x/tn

n dx .

Then, by a simple change of variable u = x
tn
, we get

E
[
(W̃ℓ)

q
]
⩽ c′′L(tn)t

q−α
n + ct1−αn

∫ ∞
α/c′

uq−1e−c
′u/2du ⩽ c′′′L(tn)t

q−α
n ,

using that the last integral is finite and 1− α < q − α.
It remains to show (6.7) in the case where (1.13) holds with α = q. We actually provide

a proof that works as long as α ∈ ( q2 , q]. For any ℓ ⩾ 0 and k ⩾ 0, let us write W̃ℓ+k =
1
m̃k

∑Z̃k
i=1 W̃

(i)
ℓ , where (W̃

(i)
ℓ ) are i.i.d. copies of W̃ℓ, independent of Z̃k. Then, since E[W̃ℓ] = 1

for all ℓ, we can write

W̃ℓ+k − 1 =
1

m̃k

Z̃k∑
i=1

(
W̃

(i)
ℓ − 1) +

(
W̃k − 1

)
.

Then, by Lemma 3.1, we have that

E

[∣∣∣ Z̃k∑
i=1

(
W̃

(i)
ℓ − 1)

∣∣∣q ∣∣∣ Z̃k

]
⩽

Aq
q

m̃kq
(Z̃k)

θqE
[∣∣W̃ℓ − 1

∣∣q] ,
so that ∥∥W̃ℓ+k − 1

∥∥
q
⩽
Aq

m̃k
E
[
(Z̃k)

θq
]1/q∥∥W̃ℓ − 1

∥∥
q
+ ∥Wk − 1∥q . (6.8)

Note that if E[Zθq ] < +∞, in particular if α > θq = max(1, q2), then we have E[(Z̃k)
θq ] ⩽

E[(Zk)
θq ] = mkθqE[(Wk)

θq ] with E[(Wk)
θq ] bounded by a constant. All together, we obtain

that ∥∥W̃ℓ+k − 1
∥∥
q
⩽ cq

(mθq/q

m̃

)k∥∥W̃ℓ − 1
∥∥
q
+ ∥W̃k − 1∥q .
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Now, since θq < q, we can choose C large enough so that mθq/q < m̃ uniformly for tn ⩾ C,
and then we can fix kq large enough so that cq(m

θq/q/m̃)kq < 1. Then, iterating the above
inequality, we obtain that there is a constant such that

∥∥W̃ikq−1
∥∥
q
⩽ C ′∥W̃kq−1∥p for all i ⩾ 0.

Since kq is fixed, we can also apply (6.8) recursively to get that ∥W̃kq − 1∥q ⩽ C ′′∥W̃1 − 1∥q.
Since E[(W̃j)

p] is non-decreasing, we therefore end up with

sup
ℓ
∥W̃ℓ∥q = sup

i
∥W̃ikq∥q ⩽ C ′ + C ′′

(
∥W̃1 − 1∥q

)
,

so in particular E[(W̃ℓ)
q] ⩽ C + C ′E[Z̃q] for all ℓ ⩾ 1. Using (1.13), this concludes the proof

of (6.7).

Step 2. Estimate of ãn: proof that (ãn)
−1/s ⩾ cγ̃n. With (6.7) at hand and recalling the

definition (6.6) of ãn, we have the following upper bound

ãn ⩽ cL(tn)t
q−α
n

n∑
k=1

(m̃Rn)
−ks = ctsnh(1/tn)

n∑
k=1

(m̃Rn)
−ks , (6.9)

with h(x) ∼ L(1/x)xα−1 as x ↓ 0 (recall s = q − 1).
First of all, notice that we have the following identity for m̃:

m̃ = m̃(tn) = E[Z ∧ tn] = m−E[(Z − tn)1{Z>tn}] ⩾ m− cL(tn)t1−αn ,

where for the last inequality we have used that P(Z > x) ⩽ c2L(x)x
−α (this is always valid,

see Remark 1.11), so that E[(Z − tn)1{Z>tn}] =
∫∞
tn

P(Z > x)dx ⩽ cL(tn)t
1−α
n .

Let us now introduce the quantity δ̃n = δ̃n(tn) defined by m̃(tn) = (1− δ̃n)m and notice
that

δ̃n ⩽ cL(tn)t
1−α
n = ch(1/tn).

• Let us start with the case mRn ∈ [1− 1
n , 1+

1
n ]. We then choose tn such that h(1/tn) = 1/n

so that δ̃n ⩽ c/n. We then get that m̃Rn ⩾ (1 − 1
n)(1 − δn) ⩾ 1 − c′

n , and there exists a
constant C such that (m̃Rn)

−ks ⩽ C uniformly for k ⩽ n. All together, we get that

ãn ⩽ c tsnh(1/tn)
n∑

k=1

C = cC tsn .

We conclude that (ãn)
−1/s ⩾ c/tn with 1/tn = h−1(1/n) = γn = γ̃n, recalling (1.14).

• We now treat the case mRn ∈ [1 + 1
n , 2]. Choose tn such that h(1/tn) = c(mRn − 1)

with c small enough so that δ̃n ⩽ 1
4(mRn − 1). Then, we get that m̃Rn = mRn(1 − δ̃n) ⩾

1 + 1
2(mRn − 1), using that (1 + x)(1− 1

4x) ⩾ 1 + 1
2x for x ∈ [0, 1]. We end up with

ãn ⩽ c tsnh(1/tn)

n∑
k=1

(
1 +

mRn − 1

2

)−ks
⩽ ctsn(mRn − 1)

1

1− (1 + mRn−1
2 )−s

⩽ c′tsn .

We conclude that (ãn)
−1/s ⩾ c/tn with 1/tn = h−1(c(mRn − 1)) ⩾ cγn = cγ̃n, recall (1.14).

• Finally, we treat the case mRn ∈ (0, 1− 1
n ]. Simply using that m̃Rn < 1, we have that

ãn ⩽ c tsnh(1/tn)
(m̃Rn)

−(n+1)s − 1

(m̃Rn)−s − 1
⩽ c′tsn

h(1/tn)

1−mRn
(mRn)

−ns(1− δ̃n)−ns

where we have used that (m̃Rn)
−s − 1 ⩾ (mRn)

−s − 1 ⩾ c(1 − mRn) and also that m̃ =
(1 − δ̃n)m. Since we have δ̃n ⩾ ch(1/tn), we get that (1 − δ̃n)−ns ⩽ exp(cnh(1/tn)), which
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pushes us to choose tn such that h(1/tn) = 1/n. In particular, with this choice, (1− δ̃n)−ns ⩽ c

and h(1/tn)
1−mRn

= (n(1−mRn))
−1.

Then, we have

(ãn)
−1/s ⩾ ct−1n (mRn)

n
(
n(1−mRn)

)1/s
so that (ãn)

−1/s ⩾ γ̃n, recalling that t−1n = h−1(1/n) and the definition of γ̃n.
This concludes the proof.

A About the iteration of the random cluster model on trees

In this section, we prove Proposition 2.1. For u ∈ Tn, let us introduce the events

Au := {∃ open path from u to ∂Tn(u) inside Tn(u)} .

Denoting En(u) the set of edges in Tn(u), we also introduce the following notation: for any
A ⊂ {0, 1}En(u), let

Zu(A) = ZTn(u)
p,q (A) :=

∑
ω∈A

po(ω)(1− p)f(ω)qk(ω) = Ep

[
qKu1A

]
(A.1)

be the partition function of the (p, q)-RCM model on Tn(u) restricted to the event A; we
also denote Zu for the partition function with A = {0, 1}En(u). Here, we have rewritten the
partition function using Pp the distribution of the usual percolation model with parameter p,
i.e. under Pp the random variables (ωe)e∈En are i.i.d. Bern(p), and Ku is the random variable
that counts the number of percolation clusters in T̄n(u).

We are now going to show the following relations between Zu(Au), Zu(A
c
u) and Zv(Av), Zv(A

c
v)

for v ← u: denoting du := |{v, v ← u}| the number of children of u, we have

Zu(A
c
u) = q2−du

∏
v←u

(
(1− p)Zv + pq−1Zv(A

c
v)
)
, (A.2)

qZu(Au) + Zu(A
c
u) = q2−du

∏
v←u

(
Zv + p(q−1 − 1)Zv(A

c
v)
)
. (A.3)

The key observation is to write a relation between the number of clusters in T̄n(u) and those
in (T̄n(v))v←u: for every ω ∈ {0, 1}En , we have

Ku =
∑
v←u

Kv − (du − 1) + 1−
∑
v←u

1{ωuv=1}1{Ac
v} − 1Au (A.4)

Indeed, counting first the clusters in T̄n(u) if all edges uv, v ← u are open, we get that the
number of clusters in T̄n(u) is the sum of the number of clusters in (T̄n(v))v↔ minus du − 1,
because the wired boundary condition contracts the du clusters attached to each ∂T̄n(v) to a
single cluster, plus 1 to include the cluster of the root u. Then, adding the edges uv for which
ωuv = 1, this reduces the number of cluster by

• 1Ac
v
each time that ωuv = 1, since having ωuv connects two clusters that are not already

connected through ∂Tn(u) (which is wired);

• one (only once) on the event Au =
⋃

v↔u{ωuv = 1}∩Av, since then the root u is connected
to ∂Tn(u) so adding more than one open edge ωuv = 1 with Av will not decrease further
the number of clusters.
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Figure 1: Illustration of the identity (A.4) that relates the numbers of clusters in (T̄n(v))v←u to the number
of clusters in T̄n(u). We have illustrated two cases. On the left, the event Au is not verified i.e. u ̸↔ ∂Tn(u):
there are open edges uv (in thick red) only connecting to subtrees T̄n(v) where Av is not verified, and each
of these edges reduces the number of clusters by one. On the right, the event Au is verified i.e. u ↔ ∂Tn(u):
there are open edges uv (in thick red) connecting to subtrees T̄n(v) where Av is verified and all these open
edges reduce the global number of clusters only by one (other open edges connecting to subtrees T̄n(v) where
Av is not verified still reduce the number of clusters each by one).

We refer to Figure 1 for an illustration of the relation (A.4).
Let us now prove (A.2)-(A.3). Starting from (A.1) and since the event Ac

u can be written
as

⋂
v←u

(
{ωuv = 0} ∪ ({ωuv = 1} ∩Ac

v)
)
, we have that

Zu(A
c
u) = q2−duEp

[
1Ac

u

∏
v←u

qKvq−1{ωuv=1}1Ac
v

]
= q2−duEp

[ ∏
v←u

qKv
(
1{ωuv=0} + q−11{ωuv=1}1Ac

v

)]
,

where we have also used the relation (A.4) for the first identity. Using the independence of
the ωuv under Pp, we get (A.2).

On the other hand, starting again from (A.1) and the relation (A.4), we get that

qZu(Au) = q2−duEp

[
1Au

∏
v←u

qKvq−1{ωuv=1}1Ac
v

]
.

Writing 1Au = 1− 1Ac
u
, and recognizing the formula for Zu(A

c
u) from above, we get that

qZu(Au) + Zu(A
c
u) = q2−duEp

[ ∏
v←u

qKvq−1{ωuv=1}1Ac
v

]
= q2−duEp

[ ∏
v←u

qKv
(
1 + (q−1 − 1)1{ωuv=1}1Ac

v

)]
.

Again, using the independence of the ωuv under Pp, we get (A.3).
Now, from (A.2)-(A.3), noticing that Zu(Au) = πn(u)Zu and Zu(A

c
u) = (1−πn(u))Zu, we

get that

1− πn(u) = q2−du
∏

v←u Zv

Zu
×

∏
v←u

(
1− p+ pq−1 − pq−1πn(v)

)
1 + (q− 1)πn(u) = q2−du

∏
v←u Zv

Zu
×

∏
v←u

(
1− p+ pq−1 + pq−1(q− 1)πn(v)

)
,

so that dividing the first line by the second one we get that

1− πn(u)
1 + (q− 1)πn(u)

=
∏
v←u

1− γp,qπn(v)
1 + γp,q(q− 1)πn(v)

,
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with γp,q :=
pq−1

1−p+pq−1 = p
p+q(1−p) . This concludes the proof of (2.3).

Setting bn(u) := − logφq(πn(u)), inverting the relation (and noticing that φ−1q = φq) we
easily get that πn(u) = φq(exp(−bn(u))) = ψq(bn(u))

bn(u) =
∑
v←u

− logφq

(
ψq(β)ψq(bn(v))

)
,

where we have also written γ = φq(1 − p) = ψq(β). To conclude the proof of (2.4), it only
remains to observe that ψ−1q (x) = − logφq(x), since ψq(t) = φq(e

−t) and φ−1q = φq.

B Branching processes with (truncated) heavy tails

This section is devoted to the proof of Proposition 3.4. Recall that we assume that

P(Z > x) ⩽ L(x)x−α , P(Z̃ > x) ⩽ L(x)x−α1{x<t} ,

where t is a fixed truncation parameter that we assume to be large.

We start with the proof of the first inequality in Proposition 3.4: there is a constant c > 0

P(Wℓ > x) ⩽ cL(x)x−α for all x ⩾ 1 . (B.1)

(We recall that this inequality could be deduced from the proof of [15], but we provide here a
self-contained proof for completeness.) We start with a first general lemma — then, the proof
relies on an inductive use of this lemma.

Lemma B.1. Let (Xi)i⩾0 be independent non-negative random variables, with common mean
E[Xi] = 1 and which all satisfy

P(Xi > x) ⩽ κ1L(x)x
−α , for x ⩾ 1 . (B.2)

Let N be a N-valued random variable with mean µ > 1, independent of the Xi’s. Then there
is some constant c > 0 and δ > 0 (depending only on κ1, α and L(·)) such that, for x ⩾ 1,

P
( 1

µ

N∑
i=1

Xi > x
)
⩽ P

(
N > (1− µ−δ)µx

)
+ cµ−

1
2
αP

(
N > 1

2µx
)
+ cµ−

1
2
(α−1)L(x)x−α .

Proof. Let x ⩾ 1 and let us set ℓ1 := 1
2µx and ℓ2 = (1 − µ−δ)µx with δ > 0 fixed such that

δ < 1
2 ∧

α−1
2α . Then, we can split the probability as

P
( 1

µ

N∑
i=1

Xi > x
)
=

( ℓ1∑
ℓ=1

+

ℓ2∑
ℓ=ℓ1+1

+
∑
ℓ>ℓ2

)
P(N = ℓ)P

( ℓ∑
i=1

Xi > µx
)

=: T1 + T2 + T3 .

Notice already that for the last term T3, by definition of ℓ2, we simply have

T3 ⩽ P
(
N > ℓ2

)
= P

(
N > (1− µ−δ)µx

)
.

We now treat the remaining two terms. We use the following so-called one-big-jump behavior
for sums of heavy tailed random variables, see e.g. [29, 14] (or [6, Thm. 5.1 & Eq. (5.1)]
for a more convenient formulation, close to (B.3) below). We have the following statement:
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assuming (B.2), there is a constant c > 0 such that, uniformly for ℓ such that µx− ℓ ⩾ ℓ1−δ,
we have

P
( ℓ∑

i=1

Xi > µx
)
= P

( ℓ∑
i=1

(Xi −E[Xi]) > µx− ℓ
)
⩽ cℓ κ1L(µx− ℓ)(µx− ℓ)−α . (B.3)

Term T1. Using (B.3), recalling that ℓ1 = 1
2µx so that in particular µx − ℓ ⩾ 1

2µx, the first
term is bounded by

T1 ⩽ cL(µx)(µx)−α

1
2
µx∑

ℓ=1

ℓP(N = ℓ) ⩽ c′µ−α+δL(x)x−αE[N ] ,

using Potter’s bound [8, Thm. 1.5.6]. Since E[N ] = µ and since we chose δ < 1
2(α − 1), we

get that

T1 ⩽ cµ−
1
2
(α−1)L(x)x−α .

Term T2. Using (B.3), recalling that ℓ1 =
1
2µx and ℓ2 = (1−µ−δ)µx (which verifies µx− ℓ2 =

µ1−δx ⩾ (µx)1−δ ⩾ ℓ1−δ2 ), we get that

T2 ⩽ P
(
N > ℓ1

)
P
( ℓ2∑

i=1

Xi > µx
)
⩽ P

(
N > 1

2µx
)
× cκ1L((µx)1−δ)(µx)−(1−δ)α .

All together, using again Potter’s bound [8, Thm. 1.5.6] and since δ < 1/2 and x ⩾ 1 we end
up with

T2 ⩽ cµ−α/2P
(
N > 1

2µx
)
.

This concludes the proof.

Let us now obtain (B.1) simply by iterating Lemma B.1; note that our assumption is

that W1 satisfies the tail condition (B.2). We write that Wℓ+1 = 1
mℓ

∑Zℓ
i=1W

(i)
1 , where

(W
(i)
1 )i⩾1 are i.i.d. non-negative random variables with mean one, independent of Zℓ. Let

cℓ :=
∏ℓ

i=1(1−m−δℓ)−1 so that we have cℓ+1(1−m−δℓ) = cℓ. Then, applying Lemma B.1 and
noting that µ = E[Zℓ] = mℓ, we get that for any x ⩾ 1

P
(
Wℓ+1 ⩾ cℓ+1x

)
⩽ P

(
Wℓ ⩾ cℓx

)
+ cm−

1
2
(α−1)ℓL(x)x−α + cm−αℓ/2P

(
Wℓ ⩾

1
2cℓx

)
, (B.4)

where we also used that cℓ is bounded by a universal constant c∞ < +∞ to get the bound
L(cℓ+1x)(cℓ+1x)

−α ⩽ cL(x)x−α. Iterating (B.4), we get

P
(
Wℓ ⩾ cℓx

)
⩽ κℓL(x)x

−α ,

with κℓ+1 = κℓ + cm−
1
2
(α−1)ℓ + c′κℓm

−αℓ/2. All together, since κ := supℓ⩾1 κℓ < +∞, and
c∞ := supℓ⩾1 cℓ < +∞, we get (B.1) (up to a change in the constants).

We now turn to the second inequality of Proposition 3.4, on the martingale W̃ℓ associated
with the truncated branching process. First, notice that we also have P(Z̃ > x) ⩽ cL(x)x−α

for all x ⩾ 1, so by the first part of the Proposition we have that P(W̃ℓ > x) ⩽ cL(x)x−α,
uniformly in ℓ ⩾ 1. It therefore remains to prove the last inequality, i.e. that there is a
constant c′ > 0 such that, provided that t is large enough,

P(W̃ℓ > x) ⩽ t−c
′x/t for all x ⩾ t , (B.5)
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uniformly in ℓ ⩾ 1. For this, we use the following standard Chernov’s bound: for any λ > 0,
we have

P(W̃ℓ > x) ⩽ e−λxE
[
eλW̃ℓ

]
.

Then, our next task is to bound the Laplace transform of W̃ℓ, uniformly in ℓ. We prove that
there exists some c > 0 such that, for all ℓ ⩾ 1, provided that t is large enough,

E
[
ec

log t
t

W̃ℓ
]
⩽ 2 . (B.6)

Plugged into the above and choosing λ = c
t log t, we end up with P(W̃ℓ ⩾ x) ⩽ 2t−cx/t for all

x ⩾ 1, which proves (B.5). It remains to prove (B.6), and we rely on the following Lemma.

Lemma B.2. Let (Xi)i⩾0 be independent non-negative random variables, with common mean
E[Xi] = 1. Let y > 1 and assume that P(Xi ∈ [0, t]) = 1 and let σ2(t) be such that E[X2

i ] ⩽
σ2(t) for all i. Let N be a N-valued random variable with mean µ > 0, independent of the
Xi’s. Then, for all λ > 0,

E

[
exp

(
λ

µ

N∑
i=1

Xi

)]
⩽ E

[
exp

((
1 +

λ

µ
σ2(t)etλ/µ

)
× λ

µ
N

)]
.

Proof. First of all, notice that taking first the conditional expectation with respect to N , we
obtain

E
[
exp

(
λ
1

µ

N∑
i=1

Xi

)]
= E

[ N∏
i=1

E
[
e

λ
µ
Xi

]]
.

We now control the term

E
[
e

λ
µ
Xi

]
⩽ 1 +

λ

µ
+
λ2

µ2
E[X2

i ]e
λ
µ
t ⩽ exp

(λ
µ
+
λ2

µ2
E[X2

1 ]e
λt/µ

)
, (B.7)

where we used that ex ⩽ 1+x+x2etx for all x ∈ [0, t] and the fact that E[Xi] = 1. Bounding
E[X2

i ] ⩽ σ2(t) and combined with the previous identity, this gives the desired result.

We are now ready to conclude the proof of (B.6), using Lemma B.2 iteratively with

the recurrence relation W̃ℓ+1 = 1
m̃ℓ

∑Z̃ℓ
i=1 W̃

(i)
1 . Recalling that W̃1 ∈ [0, t] almost surely,

Lemma B.2 then gives that, for any λ > 0,

E
[
eλW̃ℓ+1

]
⩽ E

[
e(1+m̃−ℓελ)λW̃ℓ

]
, (B.8)

with ελ := λE[(W̃1)
2]eλt (bounding also eλt/m̃

ℓ
⩽ eλt).

Using the fact that we have P(Z̃ > x) ⩽ c2L(x)x
−α1{x<t}, we obtain that: if α ∈ (1, 2),

then E[(W̃1)
2] ⩽ c′2L(t)t

2−α; if α ⩾ 2, then E[Z̃] ⩽ L̂(tn) for α ⩾ 2, for some slowly varying
function (a constant if α > 2). We can therefore write that

ελ ⩽ cλL̂(t)t2−α∧2n eλt ,

for some slowly varying function L̂(·). Now, if we take λ ⩽ cα
log t
t with a constant cα :=

1
2(α∧2−1) > 0, we get that ελ ⩽ cα log tL̂(t)t

−2cαtcα , so in particular ε̃λ ⩽ 1, provided that t
is large enough.

Let us fix λ = δ log tt with δ := cα
∏

i⩾1(1 + m̃−i)−1, and let us define (λk)1⩽k⩽ℓ by setting

λ1 = λ and λk+1 := (1 + m̃k−ℓ)λk for 1 ⩽ k ⩽ ℓ − 1. Notice that λk ⩽ λℓ ⩽ cα
log t
t ; in

particular ελk
⩽ 1 for all k ∈ {1, . . . , ℓ}. Applying (B.8) iteratively, we then get that

E
[
eλW̃ℓ

]
= E

[
eλ1W̃ℓ

]
⩽ E

[
eλ2W̃ℓ−1

]
⩽ · · · ⩽ E

[
eλℓW̃1

]
.
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Similarly to (B.7), this last expression is bounded by

1 + λℓ + λ2ℓE[(W̃1)
2]eλℓt ⩽ 1 + λℓ(1 + ελℓ

) ⩽ 1 + 2λℓ ⩽ 2 ,

using again that ελℓ
⩽ 1 and then that λℓ ⩽ cα

log t
t ⩽ 1 if t is large enough. This concludes

the proof of (B.6) and thus of the second part of Proposition 3.4.
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