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The validation, verification, and uncertainty quantification of computationally expensive theoret-
ical models of quantum many-body systems require the construction of fast and accurate emulators.
In this work, we develop emulators for auxiliary field diffusion Monte Carlo (AFDMC), a powerful
many-body method for nuclear systems. We introduce a reduced-basis method (RBM) emulator
for AFDMC and study it in the simple case of the deuteron. Furthermore, we compare our RBM
emulator with the recently proposed parametric matrix model (PMM) that combines elements of
RBMs with machine learning. We contrast these two approaches with a traditional Gaussian Process
emulator. All three emulators constructed here are based on a very limited set of 5 training points,
as expected for realistic AFDMC calculations, but validated against O(103) exact solutions. We
find that the PMM, with emulator errors of only ≈ 0.1% and speed-up factors of ≈ 107, outperforms
the other two emulators when applied to AFDMC.

Introduction. In the next years, an explosion of new
data from laboratory experiments, such as the Facility for
Rare Isotope Beams (FRIB), and multi-messenger obser-
vations of neutron stars and their mergers [1–8] will pro-
vide exciting new information for nuclear physics. To
robustly analyze the information provided during this
data-rich era, reliable theoretical approaches with well-
quantified uncertainties are key. These approaches can
then be employed in statistical tools based on Bayesian
inference [1, 9–12]. Quantum Monte Carlo (QMC) meth-
ods [13], such as auxiliary field diffusion Monte Carlo
(AFDMC) [14], combined with interactions from chiral
effective field theory (EFT) [15–19] are some of the most
universal and reliable nuclear many-body approaches
used in the community. QMC algorithms can be ap-
plied to both atomic nuclei and nuclear matter using the
same input interactions, which enables us to straightfor-
wardly connect nuclear experiments with astrophysical
observations. QMC methods are also very accurate and
precise and provide non-perturbative, virtually exact so-
lutions to the Schrödinger equation [13, 20]. However,
these benefits incur a large computational cost, of the
order of several 100, 000 CPU-h per typical simulation.
The Bayesian approaches necessary for the upcoming

data-rich era typically require a large number of model
evaluations across a broad parameter space, rendering
their application to expensive numerical approaches, such
as QMC, prohibitively expensive. Emulators, i.e., algo-
rithms that mimic the behavior of a high-fidelity (HF)
model at a fraction of its computational cost, have been
proposed to circumvent this problem [21–27]. They can
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broadly be classified into two categories: intrusive and
non-intrusive [23]. Non-intrusive or data-driven emu-
lators are usually trained only on the inputs and out-
puts of the HF model and are agnostic to the underly-
ing physics. Common examples include Gaussian pro-
cess (GP) regression and artificial neural networks [26–
28]. Intrusive emulators, on the other hand, usually work
with high-dimensional structures (such as wave func-
tions), and respect certain physical aspects of the un-
derlying equations or dynamics of the system. Examples
are reduced order models, such as reduced basis meth-
ods (RBMs) [21, 24, 25, 29–31], or dynamic mode de-
composition and SINDy [32]. While significant effort
has been devoted to developing RBM-based emulators
for some many-body techniques [23, 25, 33, 34], emula-
tors for QMC methods are in their earlier stages [35, 36].
The primary obstacle to developing emulators for QMC
methods is the inability to calculate inner products be-
tween eigenstates of different Hamiltonians - something
that is crucial in the framework of RBMs for quantum
systems. Recently Ref. [36] proposed the floating block
method as a possible solution to this obstacle, and it was
successfully applied to lattice Monte Carlo calculations
of light nuclei.

In this letter, we develop different new emulators for
AFDMC. First, we develop an intrusive RBM-based em-
ulator using the Petrov-Galerkin projection method [21,
22] which circumvents the need to compute overlaps be-
tween exact AFDMC eigenstates of different Hamiltoni-
ans while maintaining the fully intrusive nature of the
emulator. Second, we implement the parametric matrix
model (PMM) [37], a machine learning algorithm that
combines elements of both intrusive and non-intrusive
emulators. Last, we compare these emulation meth-
ods to a traditional, non-intrusive GP emulator. Be-
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FIG. 1. Top: Averaged percentage error ⟨∆⟩ for the three
emulators with respect to Ntrain. For the PMM, Ndim = 5.
Bottom: ⟨∆⟩ of the PMM with respect to Ndim using 5
AFDMC deuteron calculations as training points. ⟨∆⟩ is com-
puted by averaging over 1000 validation errors, each corre-
sponding to a different validation sample.

cause AFDMC calculations are computationally expen-
sive, when training such emulators we are limited by a
very small set of training data, Ntrain ≈ 5. Therefore, in
this letter we require that our emulators achieve errors
of a few percent when validated against O(103) exact so-
lutions despite using a limited number of training data.
We find that the intrusive RBM and PMM emulators far
outperform the non-intrusive GP emulator, see Fig. 1.
Furthermore, the PMM performs best, with an average
emulation error of only ≈ 0.1% but with a gain in speed
of up to ≈ 107 with respect to the AFDMC method.

Methods. We employ the local chiral EFT two-nucleon
interactions of Refs. [15, 16, 19]. These interactions were
calibrated to neutron-proton phase shifts in Ref. [19] us-
ing Bayesian inference, which results in posterior distri-
butions over the low energy couplings (LECs). We can
then write the nuclear Hamiltonian as H(c⃗), where c⃗ is
a set of control parameters, i.e., the LECs. We then em-
ploy these interactions in AFDMC, a continuum diffusion
Monte Carlo (DMC) code [13, 14, 38]. Starting from a
trial wave function for a specific system, AFDMC per-
forms an evolution in imaginary time to project out the
ground state of the system. All integrals appearing in
this evolution are solved by means of Monte Carlo tech-
niques. In addition, AFDMC achieves a better polyno-
mial scaling with nucleon number than other DMC algo-
rithms by linearizing spin-isospin states using a Hubbard-
Stratonovich transformation [14]. However, as with all
QMC algorithms, AFDMC results carry statistical noise.
In this work, we develop emulators for the deuteron. Be-
cause the deuteron is the simplest atomic nucleus, we
can obtain exact solutions in a reasonable time by solv-
ing the homogeneous part of the Lippmann–Schwinger
(LS) equation [39]. Hence, it is easy to obtain validation
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FIG. 2. Posterior distribution function (PDF) for the
deuteron binding energy Eb calculated with the three em-
ulators and the exact LS solver. The PDFs result from a
Gaussian kernel density estimator calibrated to the predic-
tions obtained from the emulators and the exact LS solver.

data. All training and validation samples are drawn from
the posterior distributions of c⃗. We have checked that
the deuteron energies calculated by the AFDMC and LS
solvers agree to within 0.1%.
To construct an RBM, one typically obtains Ntrain HF

solutions, i.e. ground states {|ψ⟩}Ntrain
j=1 , corresponding to

{c⃗}Ntrain
j=1 . Then, for c⃗ not in the training set, one deter-

mines the ground state |ψ⟩ within the subspace spanned

by {|ψ⟩}Ntrain
j=1 , i.e. we impose |ψ⟩ ≈ ∑

j aj |ψj⟩. Under
this ansatz, the Schrödinger equation becomes∑

j

H|ψj⟩aj = E
∑
j

|ψj⟩aj . (1)

This equation is then projected onto a subspace spanned
by “test” or “projecting” functions [21]. In several cases,
these are chosen as ⟨ψi|, thereby casting Eq. (1) as a
generalized eigenvalue problem for the matrix Mij ≡
⟨ψi|H|ψj⟩ with the norm matrix Nij = ⟨ψi|ψj⟩. In QMC
approaches, these overlaps are dominated by stochastic
noise [13], see however Ref. [36] for a solution.

Here, we circumvent this problem using a novel ap-
plication of the Petrov-Galerkin projection method [21,
30, 31] by choosing the projecting functions used to act
on Eq. (1) not in the same subspace as that spanned by

{|ψ⟩}Ntrain
j=1 . Considering a different Ntrain dimensional

subspace spanned by {|ϕ⟩}Ntrain
i=1 , the non-orthogonal pro-

jection results in a generalized eigenvalue problem for the
matrix M̃ij ≡ ⟨ϕi|H|ψj⟩ with the corresponding norm

matrix Ñij ≡ ⟨ϕi|ψj⟩. Here, we choose the Ntrain trial
wave functions that are used as initial conditions for the
imaginary time evolution performed in AFDMC [13] as
projecting functions. These trial wave functions are opti-
mized using variational Monte Carlo [13] and have large

overlap with the fully evolved AFDMC states {|ψ⟩}Ntrain
j=1 .
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Since the trial wave functions are analytic, all required
overlaps and matrix elements can be readily computed in
AFDMC. Upon solving this generalized eigenvalue prob-
lem for a non-Hermitian matrix, we discard the complex
eigenvalues and then take the smallest real eigenvalue to
be our physical ground state energy. In a few cases, the
two smallest real eigenvalues were found to be very close
to each other, less than 0.1 MeV apart. In these cases,
we take the average of the two eigenvalues which does
not significantly change our results.

In addition to this RBM emulator, we implement the
PMM of Ref. [37] for AFDMC. Inspired by the reduced
equations obtained from RBMs [40], we assume that the
ground state energy of H(c⃗) can be well approximated
by the lowest eigenvalue of a matrix given by

A(c⃗) = A0 +
∑
i

ciAi . (2)

Here, the ci are the LECs of the chiral Hamiltonian and
we have used the fact that the LECs are affine. In con-
trast to the traditional RBM discussed above, we do not
compute the matrix elements of Ai from AFDMC wave
functions. Instead, we take a data-driven approach and
infer the matrices by fitting the lowest eigenvalue of A to
AFDMC results for the deuteron binding energy Eb for
different c⃗. A global optimizer, such as the basin-hopping
algorithm [41], helps find a suitable set of matrices that
reproduce the desired dynamics. We impose that the Ai

are real, symmetric matrices and that A0 is diagonal [37].
The dimensionality of the matrices Ai, Ndim, is a hyper-
parameter of the emulator.

We compare our RBM and PMM emulators with a
non-intrusive GP emulator. For the GP kernel, we
use a linear combination of the Matérn and the dot-
product kernels [28], since many of the other standard
kernels (such as the radial basis function) performed
poorly in comparison. The optimization of the kernel
hyperparameters was performed using the python pack-
age scikit-learn.
Results. We first discuss our results for leading-order

(LO) chiral EFT interactions. At LO, we draw 5 sam-
ples from the posterior distribution on the single spectral
LEC in the deuteron channel, C3S1

, obtained in Ref. [19].
These 5 interactions are then used in AFDMC calcula-
tions of Eb as well as the various overlaps required for
our RBM emulator. This set of 5 samples constitutes
our training set. We draw a different set of 1000 samples
from the same posterior distribution on C3S1

and com-
pute Eb for each interaction by solving the LS equation.
These calculations are used for validation. For the train-
ing samples, the AFDMC and LS results agree on the
sub-percent level.

In Fig 1, we show the performance of the three emu-
lators as a function of Ntrain. The averaged percentage
error is given as,

⟨∆⟩[%] =
1

N

N∑
i

∣∣∣∣Epred
b,i − ELS

b,i

ELS
b,i

∣∣∣∣× 100 , (3)
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FIG. 3. Computational accuracy vs. time plot [42] for each
model evaluation for our three emulators. Each dot corre-
sponds to a validation sample. The dashed lines indicate the
averages over all validation samples. The total CPU time re-
quired to perform a full AFDMC calculation isO(103)s, which
is indicated by the solid black vertical line.

where Epred
b,i (ELS

b,i ) is the deuteron binding energy pre-

dicted by the emulator (LS solver) for sample i, and the
sum is over the N validation samples. The PMM clearly
performs better than the other two methods, achieving
sub-percentage emulation errors for Ntrain ≥ 3. We have
checked that adding terms non-linear in ci to Eq. (2) does
not generally improve the accuracy of the PMM. We have
also studied the performance of the PMM with respect
to Ndim and found that it does not improve for Ndim ⪆ 5.
Therefore, we will use Ndim = 5 at leading order (LO) in
the rest of this letter. The RBM emulator performs worse
than the PMM. With Ntrain = 5, the RBM achieves an
average percentage error of 1.8%, which is comparable to
other RBMs reported in the literature [21, 36]. Finally,
we find that the GP emulator generally performs worst.

Next, we fix Ntrain = 5 and calculate the deuteron
binding energy for the 1000 samples in our validation
set. This results in emulated posterior distribution func-
tions (PDF) on the binding energy shown in Fig. 2. The
non-Gaussian PDF estimated from the exact LS solver
is shown as reference. We see that the PDFs obtained
from the PMM and the exact LS solver are virtually in-
distinguishable. The Kullback–Leibler (KL) divergence
between the two distributions is 5× 10−5. On the other
hand, the KL divergence of the PDF predicted by the
RBM (GP) emulator with respect to the LS solution is
0.008 (0.03). We find that the RBM emulator performs
comparably well and captures the general shape of the
PDF which results only in small differences for the per-
centiles of the PDF. In contrast, the PDF obtained from
the GP emulator shows significant deviations from the
exact one. This demonstrates the benefit of building in-
trusive or hybrid emulators when the training data set
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FIG. 4. Top: Behaviour of the PMM for local N2LO inter-
actions with respect to the number of training samples. The
average percentage error is calculated by validating against
5000 samples. Bottom: Relative error ∆ of the PMM emula-
tor for the 5000 validation samples with respect to the LECs
d2 and d6. The values of d2 and d6 for the training points are
shown are red.

is limited. The 5 training points range from −2.3 MeV
to −0.9 MeV and we find that the PMM accurately in-
terpolates and extrapolates. The RBM performs well for
interpolation but fails for extrapolation. Finally, the GP
emulator fails on both counts due to the limited nature
of the data set.

Fig. 3 depicts the percentage error for the emulators
as a function of the computation time for each validation
sample. We find that the PMM, in addition to being
more accurate than the other two methods, is faster by
almost an order of magnitude. The spread in the errors
provides an estimate of the outliers present in the data.
We find that the biggest outlier for the PMM has an er-
ror of ≈ 3%. On the other hand, both the RBM and
the GP contain a significant number of outliers with er-
rors as large as 20%. While expected for the GP, this
is somewhat surprising for the RBM given its intrusive
nature. Note that the emulators for QMC of Ref. [36] re-
sult in even bigger outliers. We found that the AFDMC
calculations of the overlaps ⟨ϕi|ψj⟩ are highly correlated
throughout the imaginary-time evolution. As a conse-
quence, our results carry larger stochastic noise. We will
investigate this AFDMC noise for different choices of nu-
clear systems, trial wave functions, and nuclear Hamilto-
nians in the future.

So far, we have considered only LO interactions that

contain only one spectral LEC in the deuteron channel.
We now study a larger parameter space by employing
interactions at N2LO. At this order, four independent
spectral LECs contribute to the deuteron. As we found
the PMM to perform best at LO, we focus on the PMM
for N2LO and draw up to 15 samples from the posteriors
on the LECs calculated in Ref. [19] for training. Since
the PMM requires only the energy of the deuteron for
training, we generate the binding energies using the LS
solver. For validation, we now use 5000 samples drawn
from the same posterior. We show our results for PMMs
with Ndim = 2 and Ndim = 3 in Fig. 4 (top). We find
that both PMMs achieve sub-percentage accuracies for
Ntrain ≥ 7, even in a 4 dimensional parameter space. For
the PMM with Ndim = 2 and Ntrain = 11, the average
error is 0.2% with the largest outlier having an error of
2.4%. Similar to the results of Fig. 2, the PDF on the
deuteron binding energy calculated with this PMM has a
vanishingly small KL divergence of 3×10−4 with respect
to the PDF evaluated with the LS solver. Finally, we see
that the PMM with Ndim = 3 performs slightly worse
than the one with Ndim = 2 for Ntrain < 10. We conclude
that in a 4−5 dimensional parameter space with a limited
training data set (Ntrain ≈ 10), PMMs with small values
for the hyperparameter Ndim are sufficient.

For the PMM with Ndim = 2 and Ntrain = 11, we fur-
ther study the relative errors within the parameter space
spanned by the 4 relevant spectral LECs. In Fig. 4 (bot-
tom), we show the relative error ∆ of the PMM for all
of our validation samples. We limit ourselves to a pro-
jection onto the plane spanned by the tensor coupling
d2 and the spin-orbit coupling d6 but other LEC choices
lead to similar results. We find that the PMM both in-
terpolates and extrapolates well even when the number
of unknowns (14) is larger than the number of training
points (11). The PMM is still very effective for parame-
ter values far from those of the training points and we see
some regions of particularly good performance outside of
the range of training points. Note that the same point in
d2−d6 space can have different ∆ due to different values
of the other LECs.

Conclusion. We have developed three emulators for
AFDMC calculations of the deuteron: a Petrov-Galerkin
RBM-based emulator, a PMM, and a GP emulator. We
found the RBM and PMM to be generally superior to a
traditional GP regression, both performing well despite
being trained on a very limited data set. We expect
that the RBM performance can be further optimized
in the future. This is an important goal because these
intrusive emulators give access to the complete wave
functions of the many-body system, which allows us to
easily compute other matrix elements of interest. On
the other hand, we have demonstrated that PMMs are
already a good choice for the purposes of emulating the
ground state energy of these systems. In addition to
their performance, the PMM’s almost straightforward
set-up establishes them as a valuable new emulation
tool for a broad class of systems. We believe that
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the calculations and tools developed in this work will
enable novel applications of chiral interactions and QMC
methods, such as their implementation in data analyses
pipelines used to interpret multi-messenger neutron star
observations.
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