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Abstract

For understanding the hierarchies of fermion masses and mixing, we extend the standard model

gauge group with U(1)X and Z2 symmetry. The field content of the Standard model is augmented

by three heavy right-handed neutrinos and two new scalar singlets. U(1)X charges of different

fields are considered after satisfying anomaly cancellation conditions. In this scenario, the fermion

masses are generated through higher dimensional effective operators. The small neutrino masses

are obtained through type-1 seesaw mechanism using the heavy right handed neutrino fields. We

discuss the flavor-changing neutral current processes which is originated due to the sequential

nature of U(1)X symmetry. We have written effective higher dimensional operators in terms of

renormalizable dimension four operators by introducing vector like fermions.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is the most successful theory which explains

how the fundamental particles of our universe, like quarks and leptons interact with each

other through gauge bosons and also explain how these fundamental particles get mass

through the Higgs mechanism.

In the SM all the fermions are directly coupled to a single scalar doublet known as Higgs

which after spontaneous symmetry breaking gets vacuum expectation value (vev) and the

fermions of the SM get masses. The mass of the fermion is equal to vev times corresponding

Yukawa coupling of the particular fermion field with Higgs. But experimentally we know

the masses of the different fermions in the SM vary over a wide range of magnitude, as such

the Yukawa couplings corresponding to different fermions are also required to vary over wide

range. As for example the Yukawa coupling corresponding to top quark and that of electron

differ by about 106. Neutrino masses are expected to be even smaller, of the order of 0.1

eV [1]. If one wants to get neutrino mass in the SM scenario, similar to charged fermions

then light right handed field may be introduced. But the corresponding Yukawa couplings

for neutrino with Higgs are required to be much smaller, almost 10−12 times top quarks

Yukawa coupling. Such a significant differences in order of Yukawa couplings for different

fermion masses are not suitable for perturbative approach of calculation in quantum field

theory. One may note that the mass of the top quark is of the same order as the vev of

Higgs and its Yukawa coupling is of O(1). But all other fermion masses are way below of

the top quarks mass and their Yukawa couplings are very small. In the SM, for quarks the

mixing between the 1st and 2nd generation are high but mixing between the 2nd and 3rd and

mixing between 1st and 3rd is very small. There is no explanation of that mixing pattern in

the SM. Also in SM the neutrinos are mass less but now from neutrino oscillation data it is

confirmed that the neutrino has very little mass and there are mixing in different flavour of

neutrino. A complete flavour theory should explain all those problems collectively known as

flavour puzzle of standard model. For basic introduction of flavour physics and mass matrix

model see e.g [2–7] The smallness of Yukawa couplings of fermions except top quarks indicate

that they may not be directly interacting with the Higgs and their masses are not directly

connected with Higgs vev. These small Yukawa couplings of the fermions could be realized

by introducing higher dimensional operator involving some new scalar fields. These operator
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will have some inverse power of mass dimension and then the corresponding dimensionless

Yukawa Couplings will be of O(1)[8, 9].

Flavour problems for charged fermions with different symmetries involving different fields

have been studied by different authors [2, 7, 9–14] but they only discussed the mass of charged

fermions and mixing of quarks but not discuss about neutrino mass and mixing. Later on

in [15–18] authors explain the neutrino masses and mixing. But their charge assignment is

random without considering the anomaly cancellation of that symmetry. This type of work

for different kind of Abelian flavour symmetry have been studies in different context [19–28].

Apart from Abelian symmetry there are other ways to explain the hierarchies of fermion

masses like context of left right symmetric model [29, 30], non abelian gauge symmetry[31],by

hierarchical fermion wave function [32] and by using discrete symmetry[33–35].

In this work, higher dimensional operator are introduced with some flavour symmetry

in such a way that only top quark has direct coupling the SM Higgs and direct coupling

between all the light fermions and Higgs are forbidden by the new flavour symmetry and

they will get mass from some higher dimensional effective operators generated by some new

scalar fields such a way that different element of the mass matrices have have get values

from different order of higher dimensional effective operators which are suppress by different

power of cutoff scale of the theory and when the new scalars get vev this flavour symmetry

is broken and the effective higher dimensional operators will give back the SM interaction

multiplied by some power of a small number ϵ, which is equal to vev of the new scalar

divided by cutoff scale of the theory. In this way we can generate the mass matrix which

can explain fermion masses and mixing by taking the Yukawa coupling of O(1).

We extended the fermion sector of SM by adding 3 heavy right handed neutrinos which

is necessary for generating small neutrino masses in seesaw mechanism. We have added

a extra U(1)X symmetry with the SM symmetry group. Using the anomaly cancellation

conditions[21, 36] we assign charges of fermions in such a way that the allowed interaction

provided the suitable mass matrices which give the proper masses as shown in [37]. This

anomaly free extra U(1)X naturally explained the inter generation mass hierarchy of quarks

and charged leptons but if we consider only U(1)X symmetry the inter- generational hierar-

chies of fermions. But to get the intra-generational mass hierarchies of fermions doublet we

need to introduce a Z2 symmetry. The discrete Z2 symmetry is used in extensively in differ-

ent context of models building in beyond SM like in two-Higgs-doublet model (2HDM)[38]
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and the minimal super symmetric SM (MSSM) [39]. When the new scalars χ1 and χ2

acquires vev those extra symmetries will be broken. The cut-off scale Λ can not be di-

rectly related to the fermion masses hierarchies of the SM, they only determine by a small

parameter(ϵ) equal to the ratio of the vev of the new scalars and the cutoff scale. In this

model, tree level flavour changing neutral current effect is predicted but they are with in

the experimental bounds. In section II, we have discussed the details of the model with

U(1)X and Z2 symmetry and various fields content with their charges based on the anomaly

cancellation conditions. The allowed higher dimensional operators based on the symmetries

are also discussed. In section III, we have calculated the masses and mixing of quarks and

leptons and hence discuss the CKM matrix for quarks and PMNS matrix associated with

leptons. In section IV we have discussed the phenomenological implication of the various

decay channels of new gauge boson Z ′ and various rare decay through Z ′. In section , we

discuss a possible ultra-violet (UV) complete theory by introducing some vector like fermions

with their charge assignment. In section VI we present concluding remarks. In appendix

VII, we have presented the best fit values of Yukawa couplings for fitting fermions masses

and mixing.

II. THE MODEL AND FORMALISM

In our model, the top quark is directly coupled to Higgs doublet and its mass is propor-

tional to the vev of the Higgs and all the other fermions masses are suppressed by a small

parameter ϵ such that all the Yukawa couplings becomes O(1). If we normalized the top

quark mass as 1 then mass of all other charged fermions and quarks mixing angles can be

written in terms a small parameter ϵ. For example, if we consider 0.02 < ϵ < 0.03 then

masses of quarks and charged lepton along with quarks mixing angles can be written in the

power of ϵ as

mt ≈ 1 mb ≈ ϵ ms ≈ ϵ ms ≈ ϵ2 mu ≈ ϵ3 md ≈ ϵ3

mτ ≈ ϵ mµ ≈ ϵ2 me ≈ ϵ3 sq12 ≈ ϵ sq23 ≈ ϵ sq13 ≈ ϵ2 (1)

where, sij = sin θij and θij is the mixing angle between ith and jth flavour of fermions. We

can generate this kind of suppression in masses of quarks and charged leptons and mixing

angles of quarks if the mass matrix of up-type, down-type quark and charged leptons takes
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the following form

mu =


ϵ3 ϵ 1

ϵ3 ϵ 1

ϵ3 ϵ 1

 md =


ϵ3 ϵ2 ϵ

ϵ3 ϵ2 ϵ

ϵ3 ϵ2 ϵ

 ml =


ϵ3 ϵ2 ϵ

ϵ3 ϵ2 ϵ

ϵ3 ϵ2 ϵ

 (2)

The neutrino mass and mixing can naturally be explained by type-1 seesaw mechanism.

We will discuss this in section III. For getting mass from these mass matrices we have to

diagonalized them. As theses matrices are not hermitian, we have to diagonalize these

matrices by bi-unitary transformations. By following the notation of [37] we get

mD = S†mR m2
D = S†mm†S m2

D = R†m†mR (3)

Where, mD is the diagonalized matrix corresponding to m and S and R are the two unitary

matrices. In other words we can say that the eigenvalues of m†.m or m.m† give mass square

of the fermions and the physical mixing matrix for quarks and leptons are CKM and PMNS

matrix given by

VCKM = Ru†Rd VPMNS = Rν†Rl (4)

where, Ru, Rd, Rl, Rν correspond to R matrix in (3) for m corresponding to up, down type

quarks, charged leptons and neutrino respectively. This CKM and PMNS matrix can be

parameterize by three angle and one phase in standard parameterization as [1]:

VCKM/VPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13

 (5)

where, sij = sin(θij) and cij = cos(θij) and δ is CP-violating phase as here our main goal is

to explain the hierarchy of fermion masses and mixing. For simplicity we will not consider

CP violation here. So, we will take all the Yukawa coupling to be real. Our main motivation

for this work to generate this kind of mass matrix as in Eq.(2) by some symmetry principle in

a minimal setup. For this, fermion sector of SM is extended by three right handed neutrinos

and gauge group of SM is extended by an extra U(1)X symmetry and calculate the anomaly

cancellation condition for this. The three right handed neutrino are singlet under the SM

gauge group. Let U(1)X charges of the fermions are given by

QLi → ni
1, uRi → ni

2, dRi → ni
3 LLi → ni

4 eRi → ni
5 NRi → ni

6 (6)

5



where QLi = (u, d)Li are left handed quark doublets (i = 1, 2, 3 for 1st, 2nd and 3rd generation

respectively), uRi are right handed up type quarks, dRi are right handed down type quarks,

LLi = (ν, e)Li are left handed lepton doublets, eRi are the right handed charged leptons and

NRi are the right handed heavy neutrinos. The anomaly cancellation conditions are given

as :

[U(1)Y ]
2U(1)X : 1/6ni

1 − 4/3ni
2 − 1/3ni

3 + 1/2ni
4 − ni

5 = 0

[U(1)X ]
2U(1)Y : ni

1

2 − 2ni
2

2
+ ni

3

2 − ni
4

2
+ ni

5

2
= 0

[SU(3)c]
2U(1)X : 2ni

1 − ni
2 − ni

3 = 0

[SU(2)L]
2U(1)X : 9/2ni

1 + 3/2ni
4 = 0

U(1)X : 6ni
1 − 3ni

2 − 3ni
3 + 2ni

4 − ni
5 − ni

6 = 0

[U(1)X ]
3 : 6ni

1

3 − 3ni
2

3 − 3ni
3

3
+ 2ni

4

3 − ni
5

3 − ni
6

3
= 0 (7)

Using the above anomaly cancellation conditions one may write different U(1)X charges in

term of n1 and n2 in the following way :

ni
3 = 2ni

1 − ni
2 ni

4 = −3ni
1 ni

5 = −(2ni
1 + ni

2) ni
6 = (ni

2 − 4ni
1) (8)

To create the matrix structure in (2) we need to assign a sequential U(1)X charges. If we take

(n1
1, n

2
1, n

3
1) = (0, 0, 0) and (n1

2, n
2
2, n

3
2) = (3, 1, 0) for 1st , 2nd and 3rd generation respectively,

then using Eq. (8) the charges of other fields in Eq.(6)

(n1
3, n

2
3, n

3
3) = (−3,−1, 0) (n1

4, n
2
4, n

3
4) = (0, 0, 0) (9)

(n1
5, n

2
5, n

3
5) = (−3,−1, 0) (n1

6, n
2
6, n

3
6) = (3, 1, 0) (10)

If the scalar sector of the model have one Higgs doublet and one scalar singlet χ1 with U(1)X

charges 0 and -1 respectively, then only 3rd generation of quarks and charged lepton get

masses from renormalizable dimension 4 operators through scalar doublet ϕ, 2nd and 3rd

generation of quarks and lepton will get mass from dimension 5 and dimension 7 operators

respectively through scalar singlet χ1. In this way, we can generate a hierarchy in masses of

different generations of up type quarks, down type quarks and charged leptons. But in SM

up and down sector of fermions have also possess a strong hierarchy among them self, these

type of hierarchies could be obtained by introducing another scalar singlet χ2 in our model

which couples to only 2nd and 3rd generation of quarks and leptons. This can be achieved
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by introducing Z2 symmetry with proper charges. The charges of all the particles in our

model with respect to different symmetries has been shown in Table I. With respect to this

TABLE I. Charges of scalars and fermions particles

Particles SU(3)C SU(2)L U(1)Y U(1)X Z2

QiL = (u, d)iL 3 2 1/6 (0,0,0) (+,+,+)

uiR 3 1 2/3 (3,1,0) (+,+,+)

diR 3 1 - 1/3 (-3,-1,0) (+,-,+)

LiL = (ν, l)iL 1 2 -1/2 (0,0,0) (+,+,+)

eiR 1 1 -1 (-3,-1,0) (+,-,+)

NiR 1 1 0 (3,1,0) (+,+,+)

ϕ 1 2 1/2 0 +

χ1 1 1 0 -1 +

χ2 1 1 0 0 -

charge assignment the Yukawa Lagrangian of quarks is given by

LY =
3∑

i=1

(χ1

Λ

)3
hu
i1Q̄iLϕ̃uR+

(χ1

Λ

)
hu
i2Q̄iLϕ̃cR+hu

i3Q̄iLϕ̃tR+

(
χ∗
1

Λ

)3

hd
i1Q̄iLϕdR+

(
χ∗
1χ2

Λ2

)
hd
i2Q̄iLϕsR +

(χ2

Λ

)
hd
i3Q̄iLϕbR +

(
χ∗
1

Λ

)3

hl
i1L̄1LϕeiR +

(
χ∗
1χ2

Λ2

)
hl
i2L̄2LϕµiR +

(χ2

Λ

)
hl
i3L̄3LϕτiR +

(χ1

Λ

)3
hν
i1L̄1Lϕ̃NiR +

(χ1

Λ

)
hν
i2L̄2Lϕ̃NiR + hν

i3L̄3Lϕ̃NiR +
Mi

2
N̄ c

iRNiR (11)

where, hij are the Yukawa couplings and the superscripts u, d, l, and ν are for up type

quarks, down type quarks, charged leptons and neutrinos respectively.

III. MASS AND MIXING OF FERMIONS

After the flavour symmetry breaking the χ1 and χ2 get vev and if we define v1
Λ

= ϵ and

v2
Λ
= ϵ

′
where, v1 and v2 are the vev of χ1 and χ2 respectively, then the effective Lagrangian

for Yukawa interactions for up and down type quarks are as follows :

LY
Q = ϵ3hu

i1Q̄iLϕ̃uR+ϵhu
i2Q̄iLϕ̃cR+hu

i3Q̄iLϕ̃tR+ϵ3hd
i1Q̄iLϕdR+ϵϵ′hd

i2Q̄iLϕsR+ϵ′hd
i3Q̄iLϕbR (12)
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The mass matrices of the quarks after χ1 and χ2 get vev

mu =


hu
11ϵ

3 hu
12ϵ hu

13

hu
21ϵ

3 hu
22ϵ hu

23

hu
31ϵ

3 hu
32ϵ hu

33

 v√
2
; md =


hd
11ϵ

3 hd
12ϵϵ

′
hd
13ϵ

′

hd
21ϵ

3 hd
22ϵϵ

′
hd
23ϵ

′

hd
31ϵ

3 hd
32ϵϵ

′
hd
33ϵ

′

 v√
2
; (13)

where, v is the vev of the Higgs field. We get masses of quarks by diagonalizing the above

mass matrices. Following Eq.(3), we write

m†
umu =


xu
11ϵ

6 xu
12ϵ

4 xu
13ϵ

3

xu
12ϵ

4 xu
22ϵ

2 xu
23ϵ

hu
13ϵ

3 hu
23ϵ xu

33

 m†
dmd =


xd
11ϵ

6 xd
12ϵ

4ϵ
′
xd
13ϵ

3ϵ
′

xd
12ϵ

4ϵ
′
xd
22ϵ

2ϵ
′2 xd

23ϵϵ
′2

xd
13ϵ

3ϵ
′
xd
23ϵϵ

′2 xd
33ϵ

′2

 (14)

where,

x11 = h2
11 + h2

21 + h2
31 x12 = h12h11 + h22h21 + h32h31

x22 = h2
12 + h2

22 + h2
32 x23 = h13h12 + h23h22 + h33h32

x33 = h2
13 + h2

23 + h2
33 x13 = h11h13 + h21h23 + h31h33 (15)

For up and down type quark replace x with xuand xd respectively and h are replaced with

hu and hd respectively. Following [37] we get the masses of the quarks as :

(mu,mc,mt) ≈

(√
xu
11x

u
23

2 + xu
12

2xu
33 − xu

11x
u
22x

u
33

xu
23

2 − xu
22x

u
33

ϵ3,

√
xu
22 −

xu
23

2

xu
33

ϵ,
√
xu
33

)
v√
2

(16)

(md,ms,mb) ≈

√xd
11x

d
23

2
+ xd

12
2
xd
33 − xd

11x
d
22x

d
33

xd
23

2 − xd
22x

d
33

ϵ3,

√
xd
22 −

xd
23

2

xd
33

ϵϵ
′
,
√
xd
33ϵ

′

 v√
2

(17)

and the mixing in up type quarks and down type quarks are given as :

(su12, s
u
23, s

u
13) ≈

(∣∣∣∣xu
13x

u
23 − xu

12x
u
33

xu
23

2 − xu
22x

u
33

∣∣∣∣ ϵ2, xu
23

xu
33

ϵ,
xu
13

xu
33

ϵ3
)

(18)

(sd12, s
d
23, s

d
13) ≈

(∣∣∣∣∣xd
13x

d
23 − xd

12x
d
33

xd
23

2 − xd
22x

d
33

∣∣∣∣∣ ϵ2ϵ′ , xd
23

xd
33

ϵ,
xd
13

xd
33

ϵ3

ϵ′

)
(19)

We can write the mixing matrices for up type and down type quarks in the leading order as

:

Ru =


1 su12 su13

−su12 1 su23

(su12s
u
23 − su13) su23 1

 Rd =


1 sd12 sd13

−sd12 1 sd23

(sd12s
d
23 − sd13) sd23 1

 (20)
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From Eq. (4) the CKM matrix is given by

VCKM = Ru†.Rd =


1 sd12 sd13

−sd12 1 (sd23 + su23)

(sd12(s
d
23 + su23)− sd13) (sd23 + su23) 1

 (21)

By following the same approach we can write the Yukawa interactions for charged leptons

after the new scalar field χ1 and χ2 get vev as :

LY
l = ϵ3hl

i1L̄iLϕe1R + ϵϵ′hl
i2L̄iLϕµ2R + ϵ′hl

i3L̄iLϕτ3R (22)

Then we can write the mass matrix of charged leptons as :

ml =


hl
11ϵ

3 hl
12ϵϵ

′
hl
13ϵ

′

hl
21ϵ

3 hl
22ϵϵ

′
hl
23ϵ

′

hl
31ϵ

3 hl
32ϵϵ

′
hl
33ϵ

′

 v√
2
; m†

lml =


xl
11ϵ

6 xl
12ϵ

4ϵ
′
xl
13ϵ

3ϵ
′

xl
12ϵ

4ϵ
′
xl
22ϵ

2ϵ
′2 xl

23ϵϵ
′2

xl
13ϵ

3ϵ
′
xl
23ϵϵ

′2 xl
33ϵ

′2

 (23)

where, xl
ij is same as defined in Eq.(15) only replace xij by xl

ij and hij by hl
ij. After

diagonalizing we get the masses and mixing angles of charged leptons as

(me,mµ,mτ ) ≈

√xl
11x

l
23

2
+ xl

12
2
xl
33 − xl

11x
l
22x

l
33

xl
23

2 − xl
22x

l
33

ϵ3,

√
xl
22 −

xl
23

2

xl
33

ϵϵ
′
,
√

xl
33ϵ

′

 v√
2

(24)

(sl12, s
l
23, s

l
13) ≈

(∣∣∣∣∣xl
13x

l
23 − xl

12x
l
33

xl
23

2 − xl
22x

l
33

∣∣∣∣∣ ϵ2ϵ′ , xl
23

xl
33

ϵ,
xl
13

xl
33

ϵ3

ϵ′

)
(25)

Rl =


1 sl12 sl13

sl12 1 sl23

(sl12s
l
23 − sl13) sl23 1

 (26)

Unlike mass generation of up quarks we need to consider some other mechanism to explain

very small masses of neutrinos. Here we consider type-1 seesaw mechanism for explaining

small neutrino masses. The effective Yukawa interactions for neutrinos after the new scalar

getting vev is given by

LY
ν = ϵ3hν

i1L̄1Lϕ̃NiR + ϵhν
i2L̄2Lϕ̃NiR + hν

i3L̄3Lϕ̃NiR +
Mi

2
N̄ c

iRNiR (27)

9



where Mi are the Majorana mass of the neutrinos. Then corresponding Dirac and Majorana

mass matrix for neutrino are given by :

MD =


hν
11ϵ

3 hν
12ϵ hν

13

hν
21ϵ

3 hν
22ϵ hν

23

hν
31ϵ

3 hν
32ϵ hν

33

 v√
2

MR =


m1 0 0

0 m2 0

0 0 m3

 (28)

where the m1, m2 and m3 are three heavy right handed neutrino masses. Now by using the

seesaw formula [40–43] we get the light neutrino mass matrix as :

Mν = MDM
−1
R MD

T ≈


hν
13

2

m3
+

hν
12

2ϵ2

m2

hν
13h

ν
23

m3
+

hν
12h

ν
22ϵ

2

m2

hν
13h

ν
33

m3
+

hν
12h

ν
32ϵ

2

m2

hν
13h

ν
23

m3
+

hν
12h

ν
22ϵ

2

m2

hν
23

2

m3
+

hν
22

2ϵ2

m2

hν
23h

ν
33

m3
+

hν
22h

ν
32ϵ

2

m2

hν
13h

ν
33

m3
+

hν
12h

ν
32ϵ

2

m2

hν
23h

ν
33

m3
+

hν
22h

ν
32ϵ

2

m2

hν
33

2

m3
+

hν
32

2ϵ2

m2

 (29)

After diagonalizing this effective light neutrino mass matrix we get the three light neutrino

masses as :

(mν1,mν2,mν3) ≈
(
0,

ϵ2(h2
12 (h

2
23 + h2

33)− 2h12h13(h22h23 + h32h33)

m2(h2
13 + h2

23 + h2
33)

+

h2
13 (h

2
22 + h2

32) + (h23h32 − h22h33)
2

m2 (h2
13 + h2

23 + h2
33))

,
h2
13 + h2

23 + h2
33

m3

)
(30)

(s12, s23, s13) ≈
(m2h

ν
13h

ν
23 +m3h

ν
12h

ν
22ϵ

2

m2hν
23

2 +m3hν
22

2ϵ2
,
m2h

ν
23h

ν
33 +m3h

ν
22h

ν
32ϵ

2

m2hν
33

2 +m3hν
23

2ϵ2
,
m2h

ν
13h

ν
33 +m3h

ν
12h

ν
32ϵ

2

m2hν
33

2 +m3hν
32

2ϵ2

)
(31)

As all off diagonal elements of Rl are at least suppressed by one power of ϵ’s so, we can say

the rotation matrix correspond to charged lepton are essentially identity matrix. So, the

PMNS matrix becomes

VPMNS = Rν†Rl ≈ Rν† (32)

where, the Rν† is parameterized by Eqn.(31). If we take the heavy right handed heavy

neutrino mass scale at around 1011 to 1014 GeV then these masses and mixing angles will

satisfy the the observed values of neutrino mass square differences and mixing angles with

O(1) value of dimensional less Yukawa couplings. We will discuss a bench mark values of

Yukawa coupling for all fermions in appendix.

IV. PHENOMENOLOGY OF THE MODEL

As all the fermions in our model couple to only one Higgs doublet, so the Yukawa matrices

and fermion mass matrices can be simultaneously diagonalized. Because of this, there are

10



no tree level flavour changing neutral current (FCNC) in the Higgs portal. [44, 45] which is

consistent with the phenomenological bound [1]. But as the different generations of up, down

type quarks and charged leptons have different charge so the there a is possibility of FCNC

through new gauge boson (Z
′
) interactions. There will be no mass mixing of Z−Z

′
as there

is no common vev which spontaneously break both U(1)X and SU(2)L×U(1)Y [46, 47] and

we consider that the kinetic mixing between Z−Z
′
is very small. Since Z ′ couples to quarks

and leptons according to U(1)X charges given in Table I, the branching ratio of Z ′ → e−e+

and Z ′ → µ−µ+ is for proportional to (n1,2
5 )2/

∑3
i=1 3((n

i
2)

2 + (ni
3)

2) + ((ni
5)

2 + (ni
6)

2.

Γ(Z ′ → e−e+)

Γ(Z ′ → µ−µ+)
=

(n1
5)

2

(n2
5)

2
= 9 (33)

This ratio can be used to distinguish this model with other U(1)X models. One interesting

thing is that the τ has zero U(1)X charge, so Z ′ → τ+τ− decay is not possible in this model.

Observation of Z ′ → τ+τ− decay will rule out our model. Since the U(1)X for different

family of fermion are not diagonal the gauge interactions of the new gauge boson with the

charged fermions are given as :

Lint = g
′

FZ
′
[
3ū

′

Rγ
µu

′

R + c̄
′

Rγ
µc

′

R − 3d̄
′

Rγ
µd

′

R − s
′

Rγ
µs

′

R − 3ē
′

Rγ
µe

′

R − µ̄
′

Rγ
µµ

′

R

]
+ h.c (34)

where, u
′
R, d

′
R, c

′
R, s

′
R, e

′
R, µ

′
R are in interaction eigenstates. To get their mass eigenstates we

need to rotate them by (20). Then the flavour changing interaction in leading orders is given

by

L′

int = g
′

FZ
′
[(
su23c̄RγµtR − sd23s̄γµbR − sl23µ̄RγµτR

)
− 4

(
sd12d̄RγµsR + sl12ēRγµµR

)
+ 4su12ϵ

2c̄RγµuR +
(
(3sd13 − 4sd12s

d
23)d̄RγµbR + (3sl13 − 4sl12s

l
23)ēRγµτR)

)]
+ h.c (35)

For an example using Eq.(35) we can study the rare µ− → e−e−e+ decay in the context of

this model. The amplitude of this process based on interaction lagrangian (35) is given by

M(µ− → e−e−e+) =
3sl12g

2
F

M2
Z′

[ūeγ
µ (1 + γ5)uµ] [v̄eγ

µ (1 + γ5)ue] (36)

Experimentally we know that branching ratio of the decay is less than 1.0× 10−12 [1]. This

gives the constraint

sl12

(
gFMW

MZ′

)4

< 2.5× 10−6 (37)

11



µ−
e−

e−

e+

Z ′

FIG. 1. Feynman diagram for µ→ eee via new gauge boson

where, MW is the W boson mass. Then for gF = 0.1 and sl12 ≈ 10−3. The lower bound of

MZ′ is 10 TeV. In the quark sector the flavor changing neutral current process are introduced

by the terms

(dRγµbR)
2 + h.c (sRγµbR)

2 + h.c (dRγµsR)
2 + h.c (38)

These will contribute to the mixing of B̄0 − B0, B̄0
s − B0

s and K̄0 − K0 mixing data. As

in [28] we can find the contribution of those operator in the mass splitting of the various

mesons as :

∆MB = 4.5× 10−2(3sd13 − 4sd12s
d
23)

2(g2F/m
2
Z′) (39)

∆MBs = 6.4× 10−2sd23(4s
d
12)

2(g2F/m
2
Z′) (40)

∆MK = 1.9× 10−3(sd23)
2(g2F/m

2
Z′) (41)

If we take M ′
Z = 10 TeV and gF = 0.1then this contribution and SM contribution can

explain the experimental values of this mass splittings [1].

V. RENOMALIZABLE DIMENSION 4 OPERATOR REALIZATION

We can describe the effective higher dimension operators of Eq.(11) in terms of dimension

four operators by adding some vector-like fermions as shown in Table II. Due to the vector-

like nature of the extra fermions, they will create no anomaly [48, 49]. With the above

charge assignments of vector like fermions and along with charge assignment given in Table

I for other fields, the renormalizable Yukawa interactions associated with up type quarks

and down type quarks are respectively :

Lu
Y = Q̄iLϕ̃f

u
0 +f̄0χ1f

u
1 +f̄u

1 χ1f
u
2 +f̄u

2 χ1u1R+Q̄iLϕ̃f
u
0 +f̄0χ1f

u
1 +f̄u

1 χ1u2R+Q̄iLϕ̃u3R+h.c (42)

12



TABLE II. Charges of vector-like fermions

Particles SU(3)C SU(2)L U(1)Y U(1)X Z2

fu0 3 1 2/3 0 +

fu1 3 1 2/3 1 +

fu2 3 1 2/3 2 +

fd0 3 1 -1/3 0 -

fd1 3 1 -1/3 -1 +

fd2 3 1 -1/3 -2 -

f l0 1 1 -1 0 -

f l1 1 1 -1 -1 +

f l2 1 1 -1 -2 -

ψiL u1R
fu0 fu1 fu2

ϕ̃ χ1 χ1 χ1

ψiL u2R
fu0

ϕ̃ χ1

ψiL u3R

ϕ̃

FIG. 2. Up type quarks mass generation through dimension four operators

Ld
Y = Q̄iLϕf

d
0+f̄d

0χ
∗
1f

d
1+f̄d

1χ
∗
1f

d
2+f̄d

2χ2d1R+Q̄iLϕf
∗
1+f̄d

0χ
∗
1f

d
2+f̄d

2χ2d2R+Q̄d
iLϕf

d
0+f̄d

0χ2d3R+h.c

(43)

The renormalizable Yukawa interactions associated with charged leptons are similar as down

ψiL d1R
fd0 fd1 fd2

ϕ χ∗
1 χ∗

1 χ∗
1

ψiL d2R
fd0 fd1

ϕ χ∗
1

χ2

ψiL d3R
fd0

ϕ χ2

FIG. 3. Down type quarks mass generation through dimension four operators

type quarks only replace fd
i with fd

i , Q̄iL with L̄iL and diR with liR. Integrating out these

fermions produces higher dimensional operators as discussed earlier.
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VI. CONCLUSION

After extending the SM gauge symmetry by extra U(1)X and Z2 symmetries we have

successfully explained the fermions masses and mixing hierarchies by augmenting the SM

field by three right handed neutrinos and two scalar singlets. The best fit values of all

fermion masses and mixing can be achieved for all Yukawa couplings in the range of 0.1

to 4. As the new U(1)X considered to be of sequential type, it produces tree level FCNC

process through the new gauge boson, but the decay width and cross sections of processes

are with in the experimental upper bounds of those quantities . We have also discuss possible

UV completion of the theory by considering some extra vector like fermions where all the

interaction are the renormalizable dimension 4 operators.

VII. APPENDIX

For calculating the best fit value of the Yukawa couplings we define a χ2 as :

χ2 =
3∑

i,j=1

(mui −mmodel
ui )2

σ2
mui

+
(mdi −mmodel

di )2

σ2
mdi

+
(mli −mmodel

li )2

σ2
mli

+
(sin θij − sin θmodel

ij )2

σ2
sin θij

+
∆m2

ij −∆m2
ij
model

σ∆m2
ij

+
(sin θνij − sin θνij

model)2

σ2
sin θij

(44)

The quantities with out superscripts indicates their observed values and the quantity with

superscripts model indicate the value of the quantity according to our model and we have

summed over all the 6 different quarks masses, 3 charged lepton masses, 3 quarks mixing

angles, 2 mass square differences of neutrino and 3 lepton mixing angles. The masses of the

charged fermion at about 1 TeV energy scale as given in [50] are :

(mt,mc,mu) ≈ (150.7± 3.4, 0.532+0.074
−0.073, (1.10

+0.43
−0.37)× 10−3)GeV

(mb,ms,md) ≈ (2.43± 0.08, 4.7+1.4
−1.3 × 10−2, 2.50+1.08

−1.03 × 10−3)GeV

(mτ ,mµ,me) ≈ (1.78± 0.2, 0.105+9.4×10−9

−9.3×10−9 , 4.96± 0.00000043× 10−4)GeV (45)

The mass square difference and sin2 θij corresponding to neutrino mixing in the case of

normal hierarchy are given by [1]

∆m2
21 = (7.53± 0.18)× 10−5eV 2 ∆m2

32 = (2.45± 0.0.033)× 10−3eV 2 (46)
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sin2(θ12) = 0.307± 0.013 sin2(θ23) = 0.546± 0.021 sin2(θ13) = (2.20± 0.07)× 10−2

(47)

To calculate the best fit value of the Yukawa couplings for our desirable interval, we minimiz-

ing the χ2. Considering ϵ1 ≈ ϵ2 ≈ 0.0236, m2 = 1011 GeV, m3 = 1014 GeV and considering

the variation of Yukawa couplings in the range of 0.1 to 4 (which is suitable for validity of

perturbation), we find the best fit value of the Yukawa couplings for quarks, charged leptons

and neutrinos as

hu =


0.10 0.30 0.46

3.35 0.10 0.35

0.11 0.44 0.64

 hd =


3.99 0.16 0.19

1.10 1.39 0.50

4 0.13 0.18



hl =


0.19 0.45 0.22

0.16 0.58 0.20

0.10 1.93 0.23

 yν =


1.64 2.23 0.11

2.47 2.70 3.23

1.99 0.1 4

 (48)
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