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Abstract
Stochastic video prediction enables the considera-
tion of uncertainty in future motion, thereby pro-
viding a better reflection of the dynamic nature of
the environment. Stochastic video prediction meth-
ods based on image auto-regressive recurrent mod-
els need to feed their predictions back into the la-
tent space. Conversely, the state-space models,
which decouple frame synthesis and temporal pre-
diction, proves to be more efficient. However, in-
ferring long-term temporal information about mo-
tion and generalizing to dynamic scenarios under
non-stationary assumptions remains an unresolved
challenge. In this paper, we propose a state-space
decomposition stochastic video prediction model
that decomposes the overall video frame genera-
tion into deterministic appearance prediction and
stochastic motion prediction. Through adaptive de-
composition, the model’s generalization capability
to dynamic scenarios is enhanced. In the context
of motion prediction, obtaining a prior on the long-
term trend of future motion is crucial. Thus, in the
stochastic motion prediction branch, we infer the
long-term motion trend from conditional frames to
guide the generation of future frames that exhibit
high consistency with the conditional frames. Ex-
perimental results demonstrate that our model out-
performs baselines on multiple datasets.

1 Introduction
Video prediction involves capturing the implicit environmen-
tal dynamics embedded in videos, aligning with the prior
knowledge of model-based reinforcement learning. There-
fore, reasonable predictions about the future from conditional
frames have many applications in decision tasks [Finn and
Levine, 2017; Piergiovanni et al., 2019; Dugas et al., 2022].
Video prediction aims to capture the dynamic representation
of the world by modeling the prior knowledge of how the
environment operates. Given the inherent stochastic nature
of the world [Denton and Fergus, 2018], deterministic ap-
proaches for video prediction [Wang et al., 2017; Jin et al.,
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2020; Wu et al., 2020; Gao et al., 2019] fall short of captur-
ing the complete dynamics of the environment. On the con-
trary, stochastic video prediction [Denton and Fergus, 2018;
Franceschi et al., 2020; Akan et al., 2021], not relying on de-
terministic generation rules, exhibits superior generalization
ability.

In stochastic video prediction, the key lies in how to cap-
ture the implicit motion cues embedded in the video. In con-
trast to the background (such as static room layout and indoor
furniture) exhibiting shifts with camera movements, the com-
plexity of motion subjects (such as pedestrians and moving
cars) is higher and characterized by randomness. Traditional
motion predictions often adopt deterministic approaches to
forecast changes in motion, neglecting the various plausible
possibilities of future motion. Alternatively, some predictions
assume that the background is stationary, limiting the applica-
bility of prediction models in fields such as navigation and au-
tonomous driving. SLAMP [Akan et al., 2021] decomposes
stochastic video prediction into appearance-motion compo-
nents but does not consider the long-term history of mo-
tion. Our insight is that the future development of motion has
stochasticity, while backgrounds, such as static room layout,
furniture, etc., exhibit deterministic shifts over time. Predict-
ing the movement of dynamic subjects like pedestrians, who
possess their independent consciousness, presents a challeng-
ing task. Therefore, we propose to decompose the overall
video prediction into deterministic appearance prediction and
stochastic motion prediction, aiming to adaptively focus on
challenging-to-predict parts of the dynamics and sample fu-
ture motion possibilities from the predicted distribution. Sim-
ilar to SRVP [Franceschi et al., 2020], our stochastic motion
prediction branch relies on learning the residual updates of
the latent states for stochastic variables to learn the system’s
temporal evolution. Deterministic appearance prediction, on
the other hand, involves determining the background’s tem-
poral evolution based on deterministic residual updates.

In videos, there is implicit long-term historical information
about motion. We aim to predict reasonable future frames
based on the given conditional frames. Humans often make
reasonable predictions about the future based on a few given
frames because they match the temporally historical informa-
tion inferred from the conditional frames with their long-term
memory, allowing them to anticipate what will happen next.
Therefore, inferring long-term motion trend from conditional
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Figure 1: Generative model p and Inference model q of our method,
where circles and diamonds represent stochastic and deterministic
variables, respectively. (a) In the generative model, the global mo-
tion trend variable z1 is generated from the conditional frames x1:k

(here k = 2), and the local dynamic variable zt is generated from
the previous motion variable yt−1. (b) In the inference model, z1

is inferred from the complete sequence x1:T , and the local dynamic
zt is inferred from the frame sequence x1:t. The motion variable yt

and the appearance variable wt are jointly decoded to generate the
frame x̂t.

frames is crucial for predicting the future. To achieve this, we
infer the overall long-term motion trend from the complete in-
put sequence as the global dynamic to assist in predicting the
inner-frame transition in stochastic motion prediction branch.

Our contributions are summarized as follows:
• We propose a state-space decomposition video pre-

diction model that decomposes frame prediction into
stochastic motion prediction and deterministic appear-
ance prediction. Building upon a Gaussian prior for mo-
tion variables, the deterministic appearance prediction
branch adaptively focuses on static features in frames.

• Our model utilizes a temporal transformer to infer the
prior of global dynamics from the conditional frames,
approximating the long-term motion trend. This results
in the generation of future long-term sequence consistent
with the ground truth.

• Experimental results demonstrate that the proposed ap-
proach achieves state-of-the-art performance on multi-
ple datasets for the task of stochastic video prediction.

2 Related Work
2.1 Future Frame Video Prediction
Video prediction aims to predict future frames from a few
conditional frames, requiring the extraction of reasonable
motion clues from the image frames. The temporal rela-
tionship implicit in the sequence of image frames is a fo-
cal point in the prediction task. Previous works have pre-
dominantly modeled the temporal dynamics from raw pixel
frames [Vondrick and Torralba, 2017; Chatterjee et al., 2021;
Ye and Bilodeau, 2023] or optical flow [Walker et al., 2016;
Liang et al., 2017; Gao et al., 2019; Akan et al., 2021].
Recurrent neural networks [Wang et al., 2018; Jin et al.,
2020] or transformers [Ye and Bilodeau, 2023; Farazi et al.,
2021] have been commonly employed to infer motion in prior
works. We also employ a recurrent model to infer frame-to-
frame changes. The generation of video prediction can be

deterministic [Xu et al., 2018; Chang et al., 2022], but it
struggles to capture the uncertainties present in the real world.
Modeling the randomness of the future through latent vari-
ables and sampling from the predicted future distribution to
generate upcoming image frames [Denton and Fergus, 2018;
Franceschi et al., 2020] aligns more closely with real-world
physical priors. Therefore, our work also captures com-
plex future motion trends by predicting the distribution of
future motion variables. This encompasses both local mo-
tion trends (frame-to-frame dynamics) and long-term motion
trend (overall motion types, such as running, dancing, etc.).

2.2 State-space Models
The state-space model excels in modeling temporal se-
quences in a low-dimensional latent space [Hafner et al.,
2019; Karl et al., 2016; Gregor et al., 2018; Franceschi et
al., 2020; Goel et al., 2022; Newman et al., 2023]. Un-
like many auto-regressive models [Weissenborn et al., 2019;
Kalchbrenner et al., 2017; Micheli et al., 2022; Denton and
Fergus, 2018; Akan et al., 2021] commonly employed in pre-
diction tasks, the temporal sequence in a state-space model
flows in the latent space, decoupling the tasks of temporal
prediction and frame generation. Consequently, the state-
space model reduces the dependence on the encoder for gen-
erating the next frame. The state-of-the-art state-space model
SRVP [Franceschi et al., 2020] models future sequence by
predicting frame-to-frame residual terms, generating dynam-
ically continuous sequences of future images. However, its
content variables are inferred solely from the initial frame,
limiting its applicability to tasks with a static background. In
our approach, we also adopt a state-space model but predict
the appearance variables that evolve over time, enabling adap-
tation to complex and dynamic scenarios. SLAMP [Akan et
al., 2021] decouples motion and appearance prediction, ex-
plicitly modeling the local motion history (optical flow) to
predict the next frame. However, it does not consider the
long-term motion trend. In our stochastic motion prediction,
we introduce global motion constraints aimed at guiding the
generation of future long-term sequence consistent with long-
term motion trend.

3 Method
3.1 Stochastic Motion Prediction
The image frame sequence contains the dynamic features
of moving subjects (such as motion type and speed of sub-
jects) as well as the static features of the background (such
as streets, trees, etc.). We define motion variable y and ap-
pearance variable w, representing dynamic features related
to the moving subject and static features associated with the
background in the image frames, respectively. Consequently,
at time step t, the original pixel frame xt can be decoded us-
ing the motion variable yt and the appearance variable wt

jointly. The image frame sequence x1:T is encoded to derive
the motion variables y1:T . Following the setup of the state-
space model, the video dynamics evolve over time in the la-
tent space of the motion variables. At time step t, the next
motion variable yt+1 explicitly depends on current motion
variable yt. Adhering to physical priors, the the motion of



Figure 2: Framework of our method. The original frames x1:T are mapped to a latent space through an encoder, and a LSTM captures
the temporal dynamics within this latent space in the motion prediction branch. In the appearance prediction branch, a ViT is employed to
encode the static features related to the background. To encourage the motion varibales to disregard static features, a standard Gaussian prior
is applied to the motion variables (right). The prior and posterior of the global dynamic variable z1 are inferred from the conditional frames
x1:k and input frames x1:T , respectively (middle). The frame x̂t is jointly decoded from the appearance variable wt and the motion variable
yt (left). The training pipeline and testing pipeline are detailed in Appendix B.

moving subject not only needs to adhere to the current local
motion trend (i.e., inter frame local dynamic) but also must
align with the long-term motion trend (i.e., global motion
context). For instance, predicting long-term future frames un-
der the condition of person running frames requires alignment
with the person’s long-term running context. Therefore, we
define variable zt (2 ≤ t ≤ T ) and z1 to represent the inter-
frame local dynamic of frame xt with respect to xt−1 and
the global motion trend embedded in the video, respectively.
This temporal evolution of video dynamics is modeled using
a residual network (ie., MLPθ) to encapsulate the frame-to-
frame transition as follows:

yt+1 = yt +MLPθ(yt, zt+1, z1) (1)
The overall generative model is illustrated in Figure 1(a). At
time step t, The local motion trend zt+1 is generated by the
motion variable yt, denoted as zt+1 ∼ N (µα(yt), σα(yt)).
Simultaneously, the global z1 is generated from the entire
sequence of conditional frames x1:k, indicated by z1 ∼
N (µλ(y1:k), σλ(y1:k)), where k is the length of the condi-
tional frames. To encourage motion variables to focus on dy-
namic features of the moving subject, we apply a standard
Gaussian prior to the initial motion variable y1 to discard un-
necessary information, i.e, y1 ∼ N (0, I). The pixel frame xt
are generated by both the motion variable yt and the appear-
ance variable wt, expressed as x̂t = Dec([wt,yt]).

3.2 Deterministic Appearance Prediction
In video prediction, moving subjects such as pedestrians and
vehicles exhibit intricate motion patterns, reflecting the un-

certainties present in the real world. Conversely, static ob-
jects in video streams, like room layouts, streets, and trees,
remain stationary and may appear shift due to camera mo-
tion. Some existing works [Denton and Birodkar, 2017;
Franceschi et al., 2020] separate the inference of content vari-
ables from motion prediction, but the assumption of invari-
ant content variables constrains their performance in dynamic
scenarios. Our insight is that static features associated with
the background (such as the position, appearance, spatial re-
lationships of static objects) undergo deterministic shifts over
time, relying on the shift of the background. Hence, we define
the variable zwt+1 to represent inter-frame transition dynamic
of appearance feature wt+1 with respect to wt. An MLP is
used to predict appearance variables evolving over time.

wt+1 = wt +MLPϕ(wt, z
w
t+1) (2)

Unlike the prediction of stochastic distributions of motion
variables, appearance variables transit deterministically. In
other words, zwt+1 is directly predicted from the previous ap-
pearance variable rather than sampled from a predicted distri-
bution. Additionally, in contrast to the strong Gaussian prior
for initial motion variable y1, the initial appearance variable
w1 is directly encoded from the initial frame x1.

The results from SRVP [Franceschi et al., 2020] have
demonstrate that the strong Gaussian prior for initial motion
variables encourages the motion variables to focus on the
complex motion of the moving subjects, thereby neglecting
unnecessary information for the motion of subjects. We em-
ploy a Vision Transformer (ViT) to encode appearance vari-



ables from pixel frames, as detailed in Section 3.4. The learn-
able appearance token encourages the ViT encoder to adap-
tively focus on some static background information in the
pixel frames.

3.3 Variational Inference
After deriving the appearance variables w, the complete evi-
dence lower bound (ELBO) of the model can be derived. The
conditional joint probability corresponding to the generative
graph model shown in Figure 1(a) is given by:
p(x1:T , z1:T ,y1:T |w1:T ) = p(z1|x1:k)p(y1)∏T

t=2 p(zt|yt−1)p(yt|yt−1, zt, z1)
∏T
t=1 p(xt|yt,wt)

(3)

It can be observed that the conditional joint probability de-
pends on the initial motion variable y1, the global dynamic
variable z1, and the local dynamic variables z2:T .

The latent variable z1 should reflect the long-term motion
trend embedded in video, such as motion type (running or
walking), direction, etc. Therefore, z1 is inferred from the
entire pixel frame sequence x1:T , and the latent variables zt
(2 ≤ t ≤ T ) are encouraged to reflect inter-frame dynamics
in the video sequence. The local motion trend depends on
the current frame and previous frames, and similar to prior
works [Franceschi et al., 2020; Denton and Fergus, 2018;
Akan et al., 2021], zt is inferred from the frame sequence
x1:t, while the initial motion variable y1 are inferred from
the initial two frames. To fit the true prior distribution of the
latent variables as closely as possible, we employ a deep vari-
ational inference model to simulate the distributions of vari-
ous latent variables. The overall inference model is designed
as shown in Figure 1(b), and the variational distribution ob-
tained from the inference model is:
qZ,Y = q(z1:T ,y1:T |x1:T ,w1:T ) = q(z1|x1:T )q(y1|x1:2)∏T

t=2 q(zt|x1:t)q(yt|yt−1
, zt, z1)

(4)
Combining the variational distributions from the inference
model, the lower bound of the likelihood for the pixel frame
sequence x1:T can be obtained (complete derivation is pro-
vided in Appendix A):

logp(x1:T |w) =

∫
z

∫
y

q(z1:T ,y1:T |x1:T ,w) log p(x1:T |w)dzdy

=E(z1:T ,y1:T )∼qZ,Y
[log p(xt|yt,wt)]−DKL(q(y1|x1:2)||p(y1))

− E(z1:T ,y1:T )∼qZ,Y

T∑
t=2

DKL[q(zt|x1:t)||p(zt|yt−1)]

−DKL(q(z1|x1:T )||p(z1|x1:k))
(5)

Here, DKL represents the KL divergence [Kullback and
Leibler, 1951]. For the initial motion variable, we adopt a
strong Gaussian prior aiming to encourage the motion vari-
ables to discard unnecessary information. For optimizing the
log-likelihood log p(xt|yt,wt), we compute the gradient by
calculating the negative log density function of x̂t with re-
spect to a normal distribution created by ground truth xt. For
the remaining KL divergence terms, we compute the gradient
using the reparameterization technique [Kingma and Welling,
2013]. For more training details, please refer to Appendix B.

3.4 Architecture
The overall framework of our method is illustrated in Fig-
ure 2. In the stochastic motion prediction branch, to infer the
local dynamics zt, we initially employ a convolutional neural
network to encode frames into hm1:T , i.e., hm1:T = Enc(x1:T ).
Subsequently, we use a LSTM to infer the posterior of zt in a
feed-forward fashion:

gt = LSTMβ(h
m
1:t))

µβ(t),σβ(t) = MLP(gt)
(6)

As described in Section 3.1, we derive the prior of local dy-
namic zt from the previous motion variable, denoted as :

µα(t), σα(t) = MLP(yt−1) (7)

For the initial motion variable y1, we infer it using the first
two frames, denoted as µψ, σψ = MLP(hm1:2). Regarding
the global dynamic z1, our perspective is that overall motion
trend, type must be inferred through the complete long-term
sequence. Therefore, we infer the posterior of z1 using the
complete sequence with a temporal transfomer. During test-
ing, when the complete sequence is not visible, we use the
conditional frames to generate the prior of z1:

µφ, σφ = Transformerφ(h
m
1:T )

µλ, σλ = Transformerφ(h
m
1:k)

(8)

For the deterministic appearance prediction branch, previous
works [Arnab et al., 2021; Ye and Bilodeau, 2023] demon-
strate the advantages of Vision Transformer (ViT) in adap-
tively extracting image features. We employ a ViT as the
appearance encoder to encode features related to the back-
ground. Building upon the strong Gaussian prior for mo-
tion variables to discard unnecessary information for mo-
tion, the learnable appearance token encourages ViT to adap-
tively focus on pixel patches related to the background, i.e.,
hwt = ViT(xt). where hwt is the static features encoded by
ViT, then a LSTM is used to generate inter-frame transition
dynamics of appearance features, i.e., z̃wt = LSTMϑ(h

w
1:t).

During testing, zwt is predicted from the previous appear-
ance variable. During training, z̃wt is used to supervise zwt
through L2 loss

∑T
t=2 ∥z̃wt − zwt ∥2. Additionally, to facil-

itate z2:T capturing local inter-frame dynamics, FlowDec
with the same architecture as Dec is employed to decode op-
tical flow f2:T from the output g2:T of the LSTMβ and warp
it into frame x̃2:T via differentiable warping [Jaderberg et al.,
2015].

f(t) = FlowDec(gt)

x̃t = warp(f(t),xt−1)
(9)

where FlowDec is trained using L2 loss
∑T
t=2 ∥x̃t − xt∥2.

Please note that predicting optical flow is solely intended to
encourage zt to focus on the inter-frame local dynamic of
frame xt with respect to xt−1 during training. The model
does not require optical flow to generate future frames.

4 Experiments
4.1 Datasets
To evaluate the proposed method’s effectiveness across di-
verse scenarios, experiments are conducted on datasets with
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Figure 3: The PSNR scores over timestep t for our proposed method and various baselines. Each score represents the mean value obtained
from five different samples generated by the models. Our proposed model achieved superior performance on the KTH, Human3.6M and
Cityscapes datasets, while demonstrating comparable performance to state-of-the-art models on the BAIR, SMMNIST and KITTI datasets in
terms of the PSNR metric.

both stationary and dynamic backgrounds, including SMM-
NIST [Denton and Fergus, 2018], BAIR [Ebert et al., 2017],
KTH [Schuldt et al., 2004], Human3.6M [Ionescu et al.,
2011], Cityscapes [Cordts et al., 2016], and KITTI [Geiger
et al., 2012]. SMMNIST involves moving two MNIST digits
[LeCun et al., 1998] with possible overlap. The BAIR Push
dataset features a robotic arm pushing an object to induce
movement. The KTH dataset encompasses human motion
videos with various patterns like walking and running. The
Human3.6M dataset includes videos of subjects performing
actions indoors, exhibiting more variability than KTH. For
assessing performance in complex real-world driving scenar-
ios with moving backgrounds, we also evaluate our method
on KITTI and Cityscapes datasets. KITTI footage was cap-
tured while driving in Karlsruhe, and Cityscapes includes
street driving videos from multiple cities, offering more di-
verse driving environments than KITTI. More details about
the datasets are provided in Appendix C.

4.2 Implementation Details
For the BAIR, KTH, SMMNIST, and Human3.6M datasets,
image frames are 64×64 pixels, and for KITTI and Cityscapes
datasets, frames are 128×128 pixels. During training, BAIR,
KITTI, Cityscapes, and KTH use the initial 10 frames as con-
ditionals for predicting the next 10 frames; Human3.6M uses
the initial 8 frames to predict the subsequent 8 frames; SMM-
NIST uses the initial 5 frames to predict the next 10 frames.
During testing, BAIR, Cityscapes, KITTI, and SMMNIST

predict the next 20 frames. For KTH, 30 frames are predicted,
and for Human3.6M, 45 frames are predicted. Our encoder-
decoder adopts the VGG16 [Simonyan and Zisserman, 2014]
architecture for a fair comparison with the previous methods
[Franceschi et al., 2020; Akan et al., 2021]. Additional train-
ing details are available in Appendix B.
Baselines and Evaluation Metrics: To evaluate our state-
space decomposition model for stochastic video prediction,
we compare it with leading variational methods (SVG [Den-
ton and Fergus, 2018], SAVP [Lee et al., 2018], SRVP
[Franceschi et al., 2020], SLAMP [Akan et al., 2021]) and
a deterministic approach (VPTR [Ye and Bilodeau, 2023]) on
various datasets. We use three standard metrics for future
frame prediction performance: Peak Signal-to-Noise Ratio
(PSNR) for reconstruction quality, Structural Similarity In-
dex (SSIM) for structural alignment, and Learned Perceptual
Image Patch Similarity (LPIPS [Zhang et al., 2018]) for dis-
similarity assessment based on feature maps.

4.3 Evaluation
Table 1 presents quantitative results of our method and base-
lines across various datasets. Our method achieves state-of-
the-art (SOTA) performance across multiple datasets, par-
ticularly excelling in the SSIM metric. In KTH dataset,
our method demonstrates superior performance in inferring
the long-term motion context coherently with the conditional
frames, as illustrated in Figure 4, in the case of human walk-
ing samples, our method accepts constraints from global dy-



Model dataset:SMMNIST(5→20) dataset:BAIR(10→20)
PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

SVG 14.50±0.04 0.7090±0.0015 - 19.85±0.26 0.8301±0.0088 0.0553±0.0034
SAVP - - - 19.39±0.25 0.8137±0.0092 0.0564±0.0026
VPTR - - - 20.41±0.27 0.8363±0.0088 0.0560±0.0036
SRVP 16.93±0.07 0.7799±0.0020 - 20.63±0.28 0.8448±0.0078 0.0521±0.0032
SLAMP 18.07±0.08 0.7736±0.0019 - 20.71±0.26 0.8402±0.0086 0.0575±0.0037
Ours 17.12±0.07 0.7809±0.0020 - 20.67±0.28 0.8459±0.0078 0.0520±0.0032

Model dataset:KTH(10→30) dataset:Human3.6M(8→45)
PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

SVG 28.06±0.29 0.8438±0.0054 0.0923±0.0038 23.94±0.19 0.8889±0.0028 0.0636±0.0018
SAVP 26.51±0.29 0.7564±0.0062 0.1120±0.0039 22.61±0.18 0.8036±0.0031 0.0764±0.0019
VPTR 28.77±0.31 0.8674±0.0055 0.0851±0.0035 24.82±0.21 0.8948±0.0026 0.0621±0.0018
SRVP 29.69±0.32 0.8697±0.0046 0.0736±0.0029 25.30±0.19 0.9074±0.0022 0.0509±0.0013
SLAMP 29.39±0.30 0.8646±0.0050 0.0795±0.0034 25.17±0.19 0.9032±0.0022 0.0549±0.0015
Ours 30.30±0.31 0.8766±0.0045 0.0743±0.0029 26.07±0.20 0.9160±0.0021 0.0501±0.0013

Model dataset:KITTI(10→20) dataset:Cityscapes(10→20)
PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

SVG 13.97±0.47 0.3572±0.0183 0.5537±0.0379 20.94±0.61 0.6211±0.0218 0.3094±0.0209
VPTR 14.13±0.44 0.3558±0.0198 0.5438±0.0243 21.24±0.53 0.6279±0.0221 0.3214±0.0235
SRVP 14.53±0.34 0.3637±0.0195 0.5264±0.0235 21.77±0.44 0.6349±0.0161 0.3147±0.0145
SLAMP 14.87±0.49 0.3698±0.0207 0.4912±0.0397 22.01±0.71 0.6513±0.0232 0.2937±0.0214
Ours 14.67±0.46 0.3781±0.0230 0.4572±0.0236 22.12±0.46 0.6555±0.0163 0.3014±0.0134

Table 1: Numerical results (mean and 95%-confidence interval) for PSNR, SSIM, and LPIPS of our proposed method and baselines.

Figure 4: Person walking. The top row shows the ground truth,
followed by the predictions from SRVP, SLAMP and our method.

Figure 5: Overlapping digits. This figure shows two overlapping
digits and the predictions from SRVP, SLAMP and our method.

namics, leading to more realistic leg details in the predic-
tions. Specifically, on the Human3.6M dataset, where only
8 frames are used to predict the next 45 frames, our method
outperforms baselines on all three metrics. The KITTI and
Cityscapes datasets contain real driving videos with chang-
ing backgrounds over time. As indicated in Table 1, our
method outperforms SRVP and SVG significantly on KITTI
and Cityscapes datasets, achieving a level comparable to
SLAMP while maintaining a computational advantage (see
Table 2). For SMMNIST dataset, the challenge lies in the sep-

Figure 6: Results on BAIR. Our method accurately predicts the long-
term displacement of the robotic arm compared to baselines.

aration prediction of intersecting digits. As shown in Figure
5, our method benefits from the guidance of the global motion
trend z1, successfully decoupling two digits even after their
intersection, and accurately predicting the motion direction
of each digit. On the BAIR dataset, our method surpasses
baseline methods in both PSNR and SSIM metrics, though
it falls behind SRVP in terms of LPIPS. When predicting the
long-term future, as shown in Figure 6, our method accurately
predicts the long-term displacement of the robotic arm.

In order to contrast the performance of our method and
baselines at each time step, we plot the relationship between
prediction quality and time steps in Figure 3. It cant be
seen that on the KTH and Human3.6M datasets, the pro-
posed method consistently outperforms baseline methods at
each step. On the challenging KITTI and Cityscapes datasets,
our method initially lags behind the state-of-the-art method
SLAMP in the first few steps. However, it gradually sur-
passes SLAMP in later steps, owing to the decoupling of
frame synthesis and temporal prediction by the state space
model, resulting in smoother sequence predictions. Specific



Figure 7: Results on KITTI (up) and Cityscapes (down). Our
method predicts richer details (red square) and achieves more ac-
curate positioning of the street trees (red arrow).

sequence visualizations are illustrated in Figure 7. For SM-
MIST, SLAMP exhibits superior performance in the initial
steps but experiences a rapid decline, falling short of SRVP
and our method. In the BAIR dataset, our method achieves
superior performance relative to baselines after step 20. Fea-
turing a rapidly moving robotic arm with continuously chang-
ing directions, all the models have noticeable discontinuities.

4.4 Experiments on State-space Decomposition
Our method decomposes video prediction into stochastic mo-
tion prediction and deterministic appearance prediction. The
Gaussian prior on the initial motion variable facilitates the
attention of motion variables on the dynamic features of the
subject. The learnable appearance token encourages the ViT
to focus on static features related to the background. To val-
idate the performance of different branches, we visualize se-
quences decoded separately from the appearance variable w
and the motion variable y in Figure 8. It can be observed
that the motion variables capture the movement of the subject
(i.e., the car), including the motion direction and displace-
ment, while appearance variables focuses more on static fea-
tures such as background contours and spatial relationships.
To further verify the ability of the stochastic motion predic-
tion branch to model inter-frame local dynamics, we visualize
the optical flow decoded from the output of LSTMβ in Fig-
ure 9. LSTMβ effectively captures local dynamics, demon-
strating the rationality of predicting the distribution of local
motion trend z2:T based on the output of LSTMβ in equation
6. Utilizing the ViT with a learnable appearance token allows
capturing static information in the frame sequence. We also
compare the case where VGG16 serves as the appearance en-
coder in Appendix D.

4.5 Ablation Studies
To further validate the impact of the appearance prediction
branch and the global dynamics, we compare the performance

Figure 8: Results decoded separately. This figure shows videos de-
coded separately from w and y, and the result of joint decoding.

Figure 9: Oplical flow. This figure shows the pixel sequence and the
opliacal flow decoded from the output of LSTMβ .

in the following settings: (i) Ours (w/o w), abandoning the
appearance prediction branch and adopting the same static
content variable scheme as SRVP [Franceschi et al., 2020],
(ii) Ours (w/o z1), Not considering the global dynamic z1
when predicting frame-to-frame transitions in the motion pre-
diction branch, and (iii) Ours method, as described in Chapter
3. The results are presented in Table 2, where each compo-
nent contributes to the predictive performance. These results
indicate the effectiveness of the deterministic appearance pre-
diction branch in adaptively encoding images and the global
dynamic z1 for predicting long-term frame transitions. Ad-
ditionally, the computational time increase introduced by the
added components is marginal compared to SRVP. For more
ablation experiments and visualization samples, please refer
to Appendix D.

Method PSNR↑ SSIM↑ LPIPS↓ Inf Time(s)↓
SRVP 14.53 0.3637 0.5264 0.035

SLAMP 14.87 0.3698 0.4912 0.369
Ours (w/o w) 14.79 0.3655 0.5068 0.043
Ours (w/o z1) 14.50 0.3723 0.4731 0.049

Ours 14.67 0.3781 0.4572 0.058

Table 2: Ablation results on KITTI regarding PSNR, SSIM, LPIPS,
and Inference Time (average inference time for testing 100 samples
on RTX 2080Ti).

5 Conclusion
In this paper, we propose a state space decomposition video
prediction model that decomposes the overall frame predic-
tion into stochastic motion prediction and deterministic ap-
pearance prediction. The stochastic motion prediction mod-
ule, when predicting inter-frame residuals, incorporates the
global dynamics extracted from the conditional sequence to
guide the motion predictions. Experimental results demon-
strate that the proposed method achieves state-of-the-art per-
formance on various datasets.
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Delasalles, Mickaël Chen, Sylvain Lamprier, and Patrick

Gallinari. Stochastic latent residual video prediction. In
International Conference on Machine Learning, pages
3233–3246, 2020.

[Gao et al., 2019] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth
Wang, Fisher Yu, and Trevor Darrell. Disentangling propa-
gation and generation for video prediction. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 9006–9015, 2019.

[Geiger et al., 2012] Andreas Geiger, Philip Lenz, and
Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
3354–3361, 2012.

[Goel et al., 2022] Karan Goel, Albert Gu, Chris Donahue,
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Täckström, and Jakob Uszkoreit. Scaling autoregressive
video models. In International Conference on Learning
Representations, pages 1–24, 2019.

[Wu et al., 2020] Yue Wu, Rongrong Gao, Jaesik Park, and
Qifeng Chen. Future video synthesis with object motion
prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5539–
5548, 2020.

[Xu et al., 2018] Jingwei Xu, Bingbing Ni, Zefan Li, Shuo
Cheng, and Xiaokang Yang. Structure preserving video
prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1460–
1469, 2018.

[Ye and Bilodeau, 2023] Xi Ye and Guillaume-Alexandre
Bilodeau. Video prediction by efficient transformers. Im-
age and Vision Computing, 130:104612, 2023.

[Zhang et al., 2018] Richard Zhang, Phillip Isola, Alexei A
Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 586–595, 2018.


	Introduction
	Related Work
	Future Frame Video Prediction
	State-space Models

	Method
	Stochastic Motion Prediction
	Deterministic Appearance Prediction
	Variational Inference
	Architecture

	Experiments
	Datasets
	Implementation Details
	Evaluation
	Experiments on State-space Decomposition
	Ablation Studies

	Conclusion

