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ABSTRACT

Database knob tuning is a critical challenge in the database com-

munity, aiming to optimize knob values (i.e., configurations) to

enhance database performance for specific workloads. Modern

Database Management Systems (DBMS) often feature hundreds

of tunable knobs, with each knob having continuous or discrete

values, posing a significant challenge for database administrators

(DBAs) to recommend an optimal configuration. Consequently, a

range of machine learning-based (ML-based) tuning methods has

been developed to automate this configuration process. Despite

the introduction of various optimizers, practical applications have

unveiled a new problem: these methods typically require numerous

workload runs to achieve satisfactory performance, a process that is

both time-consuming and resource-heavy. This inefficiency largely

stems from the optimal configuration often being substantially dif-

ferent from the default setting, necessitating multiple iterations

during tuning. Recognizing this, we argue that an effective starting

point could significantly reduce redundant exploration in less effi-

cient areas, thereby potentially speeding up the tuning process for

the optimizers. Based on this assumption, we introduce LLMTune, a

large language model (LLM)-based configuration generator designed

to produce an initial, high-quality configuration for new workload.

These generated configurations can then serve as the starting points

for various base optimizers, accelerating their tuning processes. To

obtain training data for LLMTune’s supervised fine-tuning, we

have devised a new automatic data generation framework capable

of efficiently creating a large number of <workload, configuration>

pairs. We have conducted thorough experiments to evaluate LLM-

Tune’s effectiveness with different workloads, such as TPC-H and

JOB. In comparison to leading methods, LLMTune demonstrates

a quicker ability to identify superior configurations. For instance,

with the challenging TPC-H workload, our LLMTune achieves a

significant 15.6x speed-up ratio in finding the best-performing

configurations.
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1 INTRODUCTION

Performance optimization of databasemanagement systems (DBMS)

is a complex yet critical task, with knob tuning serving as a cen-

tral technique. Specifically, knob tuning involves adjusting various

configuration parameters (a.k.a., “knobs”) within the DBMS to max-

imize the execution efficiency for a given workload. These knobs

control aspects such as memory allocation, query optimization

strategies, caching mechanisms, and concurrency settings. How-

ever, knob tuning is an NP-hard problem due to the presence of

numerous knobs in modern DBMS, sometimes numbering in the

hundreds [53]. This abundance of knobs results in an immense

search space of possible configurations, presenting a significant

challenge in identifying the optimal combination tailored to the

specific workload.

In recent years, there has been considerable attention on auto-

mated knob tuning techniques, which aim to automatically adjust

database configuration parameters through various intelligent al-

gorithms, adapting to varying workloads and operational environ-

ments. As a result, these techniques could alleviate the burden on

database administrators (DBAs) by reducing manual intervention.

Generally, these base optimizers could be classified into two main

categories [49]: Bayesian Optimization-based (BO-based) methods,

such as iTuned [8] and SMAC [12], and Reinforcement Learning-

based (RL-based) methods, such as CDBTune [48] and UDO [44].

Although these methods are good at finding suitable configu-

rations, they usually require a large number of workload runs to

achieve a satisfactory level of workload performance, which results

in poor tuning efficiency. For instance, BO-based methods typically

necessitate hundreds of iterations to model the distributions derived

from configurations and their corresponding performances. In each

iteration, the workload is executed under a specific configuration.

On the other hand, RL-based methods usually need additional on-

line training, which also involves hundreds of interactions with

environments (i.e., databases). Therefore, for real-world applica-

tions, it is crucial to reduce the workload runs needed to find a

satisfactory configuration.
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Figure 1: Illustration of the knob tuning processes with

default and high-quality starting points of configurations,

where “default config” indicates performing the knob tun-

ing method HEBO from a default configuration, and “HQ

config” means performing HEBO starting from high-quality

configurations. The results demonstrate that a high-quality

initial configuration can significantly enhance tuning effi-

ciency and concurrently lead to improved tuning outcomes.

In light of this, numerous transfer learning techniques have

been proposed to accelerate the tuning process by leveraging the

knowledge from the historical tuning tasks. Related studies in-

clude workload mapping [4, 41], model ensemble [50], model pre-

training [10, 21], and search space reduction [18, 52]. Typically, the

first three techniques involve initializing the tuning model by lever-

aging and transferring knowledge gleaned from historical tuning

tasks stored in a repository. Subsequently, for a new workload, this

initialized tuningmodel is further refined to recommend a good con-

figuration. Leveraging insights gained from past tuning tasks, the

initialized model could speed up the convergence process, thereby

enhancing tuning efficiency. The last technique differs slightly, as

it focuses on reducing the search space for the new workload based

on information learned from historical tuning tasks. By narrowing

down the search space, this technique could enhance the efficiency

of existing tuning methods.

Motivation.While various attempts have been made to expe-

dite the tuning process, they consistently initiate the search (or

iteration) from the default values of knobs, overlooking the signifi-

cance of the starting point’s influence. We posit that an appropriate

starting point can expedite the tuning algorithm’s convergence

towards a solution and enhance the likelihood of discovering the

global optimum. To substantiate this hypothesis, we conduct a pi-

lot study on two widely-adopted workloads, namely TPC-H and

JOB, employing a conventional BO-based approach called High-

Efficiency Bayesian Optimization (HEBO) for knob tuning. The

objective is to compare the effects of tuning from default values

versus a high-quality starting point of configurations.

The pilot study unfolds in three steps: (1) Obtain the best con-

figuration: Initially, HEBO optimizes knobs iteratively over 100

rounds, starting from default values, to obtain the best configu-

ration. (2) Perturb to obtain a high-quality starting point:

Subsequently, random noise is injected into the best configuration

derived from the first step. This slight perturbation may yield a

new configuration superior to the default yet inferior to the best

configuration, labeled as a high-quality configuration, which serves

SQLSQL
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Figure 2: The proposed generate-then-refine framework.

as the starting point for HEBO. (3) Tuning from the high-quality

starting point: By adjusting the magnitude of the random noise,

four different suboptimal configurations are generated as starting

points, and HEBO is performed on each individually. We record the

intermediate configurations during the tuning processes, evaluating

their latency in seconds and depict them in Figure 1.

It becomes evident that trials commencing from a high-quality

configuration swiftly achieve exceptional performance within as

few as 5 iterations. Furthermore, after a total of 100 iterations, an

advantageous initial configuration could lead to further refinement,

resulting in better performance than starting from the defaults.

Through the pilot study, we observe that finding a good initializa-

tion configuration for the workload may represent an unexplored

and efficient approach to accelerating the knob tuning process.

Building on the concept of transfer learning, we can train a ma-

chine learning or a deep learning model to discern the relationship

between database workloads and their near-optimal configurations

based on historical tuning tasks. This model can then infer the

initial configurations for various base optimizers like SMAC [12],

HEBO [7], GA [20], and OtterTune [41], thereby improving their

tuning efficiency. Nonetheless, the challenge lies in the question:

How can we effectively learn from historical tuning tasks and apply

this knowledge to new, unseen tasks? The complexity stems from the

myriad of knobs in databases, each with a wide range of potential

values, both continuous and discrete. The broad search space makes

it difficult for traditional machine learning or deep learning models

to efficiently extract insights from past tuning tasks.

Fortunately, the recent advancements in artificial intelligence,

especially with large language models (LLMs), offer a promising

avenue. These models have shown exceptional skill in modeling

intricate distribution mapping relationships, owing to the “atten-

tion” architecture and pre-training with large-scale corpora. For

example, LLMs have demonstrated their outstanding performance

in various complex tasks like solving math word problems [34],

text-to-SQL [22], KBQA [25], and competitive programming [26],

as indicated by various studies. This suggests that LLMs have the

potential to learn the complex distribution mapping between in-

put workloads and the resulting near-optimal configurations in

database systems.

Our Approach: The primary objective of this study is to accel-

erate the previous process of knob-tuning in databases by initiating

knob configurations from an advantageous starting point. In pur-

suit of this goal, we present LLMTune, an innovative data-driven

strategy that utilizes LLMs to recommend a high-quality initial

configuration for any database workload. This method is built upon

the insight that DBAs typically collect a vast amount of historical

tuning data, covering a broad spectrum of workloads and database

schemas. Then, LLMTune employs LLMs to learn valuable insights
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from these historical tuning tasks, allowing for generating a high-

quality initial configuration tailored to the specific features of a new

tuning task. Finally, starting with this initial setup, previous knob

tuning methods can then be applied for further refinement. There-

fore, our LLMTune adopts a “generate-then-refine” framework, as

illustrated in Figure 2. The innovation of LLMTune lies in its use

of LLMs to directly generate an initial configuration. This approach

circumvents the time-intensive and often inefficient “trial and error”

search process common in previous methods. Additionally, unlike

RL-based tuning methods, which typically require further online

tuning for new workloads, LLMs are inherently better at generaliz-

ing to new situations due to their extensive learnable parameters.

Consequently, once the model is fully trained, it can be readily

applied to a wide array of new workloads, thereby eliminating the

need for additional online tuning and its associated overheads.

The development of LLMTune hinges on accessing historical

tuning data from a vast array of workloads, ideally numbering in the

hundreds or thousands. Presently, such a comprehensive dataset is

not readily available within the open-source community. Moreover,

it’s crucial to know the tuning results for each workload to serve

as training labels. To overcome this limitation, we introduce a fully

automated data generation framework. This system is capable of

creating a diverse and substantial set of workloads for any specified

database, and it autonomously optimizes these workloads to ac-

quire the respective high-quality configurations. Specifically, in the

workload generation phase, we utilize GPT-4 to craft workloads,

drawing on the database’s schema and a selection of sampled values.

For the labeling phase, the HEBO algorithm is employed in place

of DBAs to optimize the knobs of the GPT-4-generated workloads,

thereby generating the necessary training labels. However, a chal-

lenge arises with the HEBO algorithm, which requires numerous

runs of each workload to effectively train a Gaussian Process model.

This necessity significantly escalates the time required for data gen-

eration. To address this bottleneck, we introduce a cost model that

substitutes actual execution. This model is designed to estimate the

running time of a workload under a specific configuration, thereby

streamlining the process.

The main contributions of this paper are as follows:

• We introduce a novel framework, LLMTune, designed to en-

hance the efficiency and effectiveness of current knob tuning

techniques. This is achieved by utilizing large language models to

recommend well-suited initial configurations. Importantly, once

LLMTune is trained, it possesses the inherent ability to adapt to

new, unseen workloads and database schemas, eliminating the

need for additional online tuning.

• To gather training data for LLMTune while reducing the need

for extensive human annotation labor, we have developed an

automated data generation framework. This system efficiently

synthesizes new workloads using GPT-4 and assigns appropriate

high-quality configurations as labels. For this labeling process,

we employ the HEBO algorithm, augmented with a cost model,

to ensure effective and accurate configuration optimization.

• To facilitate ongoing research within the database community,

we open-source the code, model checkpoints, databases, and all

generated workloads.

• We have carried out a comprehensive set of experiments to val-

idate the efficacy of LLMTune, focusing on a variety of new

workloads from both seen and unseen database schemas. Our

findings indicate that, compared to current leading methods,

LLMTune is capable of finding the most effective configuration

in significantly fewer tuning steps.

2 RELATEDWORK

We review current approaches for knob tuning and the application

of LLM in database optimization.

2.1 Knob Tuning

We survey works contributing to knob tuning, categorized into four

types: Bayesian Optimization (BO) based methods, Reinforcement

Learning (RL) based methods, Deep Learning (DL) based methods,

and Knowledge Transfer methods [53].

BO-based methods. BO-based methods utilize Gaussian Process

(GP) models as surrogate models. During each tuning step, a config-

uration is sampled from the GP model, applied to the database, and

the workload is executed against the database engine to acquire

performance metrics. These metrics are then employed to guide

the update of the GP model. The pioneering approach, iTuned [8],

adopts this methodology by refitting a GP model for each workload

without utilizing historical experience.

Subsequent works have further enhanced BO-based methods by

integrating additional workload and underlying data characteristics

into GP models. For instance, OnlineTune [51] incorporates query

arrival rates and types as query features, and data tuples and indexes

as data distribution features. CGPTuner [4] and RelM [16] consider

features and interactions across different system levels, such as

memory control across workloads, containers, and JVM setups.

Additionally, ResTune utilizes resource utilization metrics such as

CPU, memory, and I/O usage.

However, even with these advancements, when a completely

different workload arrives, BO-based models still require multi-

ple steps of iteration and updating to recommend configurations.

This iterative process can consume significant time, ranging from

approximately 30 minutes to several hours.

RL-based methods. RL-based methods exhibit superior generaliz-

ability compared to BO-based methods due to their trained neural

networks serving as both the actor and critic. CDBTune [48], the pio-

neer in employing Deep Deterministic Policy Gradient (DDPG) [32]

for database knob tuning, utilizes database runtime metrics for

state representation. QTune [21] enhances this representation by

incorporating query and execution information, thereby improving

adaptability to various workloads, although it encounters chal-

lenges when dealing with unfamiliar database schemas. Similarly,

WATuning [10] employs an attention-based network for workload

categorization primarily based on read-write ratios, offering a more

customized approach. However, there’s a risk of neglecting other

critical workload features. These RL-based methods often face diffi-

culties in convergence.

DL-basedmethods. Some approaches have employed deep learning-

based methods. The DNN Method [42] uses a deep neural network

with two hidden layers and Gaussian noise, aiding in exploring

3



diverse configurations. iBTune [33] specializes in tuning buffer

pool sizes, selecting candidates based on cache miss ratios, and

using neural networks for performance prediction. These DL-based

models typically serve as cost models to predict a workload’s per-

formance, substituting the role of executing against the database.

While this can enhance tuning efficiency, it may come at the cost

of sacrificing tuned performance.

Knowledge Transfer. In database knob tuning, knowledge trans-

fer methods encompass workload mapping, model pre-training,

and model ensemble, each with distinct approaches and varying

impacts on task generalization. Workload mapping, exemplified

by OtterTune [41] and CGPTuner [4], utilizes historical workload

similarities to initiate tuning models, offering a better starting point

of tuning models but potentially limiting adaptability to unique

or evolving workloads. Model pre-training, as seen in methods

proposed by QTune [21] and WATuning [10], integrates detailed

workload features into tuning models, enhancing specificity but

possibly at the cost of overfitting to particular workload types.

Lastly, Model ensemble approaches combine multiple well-trained

models to address a wider range of workloads, effectively tackling

the cold-start problem and ensuring adaptability, yet they may

face challenges in balancing the ensemble for optimal performance

across highly diverse workload scenarios [50]. In addition, a line

of studies [18, 52] uses knowledge learned from historical tuning

experience to optimize the search space. They usually dynamically

select a sub-set of important knobs and narrow the value range of

each knob to accelerate the tuning process.

2.2 Large Language Models for Databases

Recently, there has been a lot of research on using LLMs to en-

hance database systems. DB-GPT [57] introduces an automated

prompt strategy utilizing LLMs for query rewriting and index tun-

ing. DB-bert [37] implements the BERT model for database knob

tuning. CodeXDB [36] develops a framework built upon GPT-3 to

simplify complex SQL queries into manageable steps. Additionally,

Trummer [40] offers a tutorial aimed at DBAs on utilizing LLMs

for large-scale data management. Evaporate [1] proposes a com-

prehensive system for processing semi-structured documents into

queryable tables. Furthermore, the capability of GPT to undertake

additional database-related tasks, such as converting text to SQL, is

demonstrated in recent works [38, 39].

3 PROBLEM DEFINITION

We first introduce the preliminaries of LLM and then formalize the

database knob tuning problem.

3.1 Large Language Models

LLMs, which are primarily built on the Transformer architecture

introduced by Vaswani et al. [43], offer a robust framework for

learning from extensive textual data. This foundational architecture

has paved the way for the creation of highly complex models, such

as GPT-4 by OpenAI (2023) [26], PaLM [6], and LLaMa [34], that

boast billions of parameters. These parameters enable the models to

discern and replicate the nuanced patterns of human language. By

pre-training on wide-ranging and diverse datasets, models like GPT-

4 can assimilate a vast array of knowledge from different fields. This

extensive pre-training equips them to excel at a variety of language-

related tasks with impressive effectiveness, as demonstrated in the

work by Brown et al. [2], and even the complex decision-making

scenarios [3, 31].

While LLMs gain broad linguistic knowledge through pre-training,

they often require additional expertise for specific tasks. Supervised

Fine-Tuning (SFT) addresses this by further training the model with

task-specific labeled data, enhancing its pre-trained knowledge base

with targeted insights. In contrast, in-context learning allows LLMs

to adapt to new tasks through tailored prompts, bypassing the need

for SFT. This method’s success hinges on the prompt’s quality and

the model’s capabilities. For tasks like knob tuning, which involves

determining optimal settings based on specific metrics and work-

loads, the gap between the task’s technical nature and the LLM’s

language-based training makes in-context learning less feasible. As

such, preparing targeted supervised data for SFT emerges as the

preferred strategy to equip LLMs for these specialized tasks.

3.2 Problem Definition

Consider a database system endowed with a collection of adjustable

system parameters, denoted by 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑛}. These param-

eters, or “knobs”, encompass various configurable aspects of the

database, such as the size of work memory, and the maximum num-

ber of connections, among others. Each knob 𝑘𝑖 is associated with

a specific value 𝑠𝑖 that falls within a predefined range 𝑆𝑖 , meaning

𝑠𝑖 ∈ 𝑆𝑖 , which indicates the spectrum of permissible values for each

knob.

The entirety of possible knob settings forms a multidimensional

configuration space for the database system, represented by 𝑆 =

𝑆1 × 𝑆2 × ... × 𝑆𝑛 . A particular point within this space signifies

a unique database configuration, characterized by a set of knob

values s = (𝑠1, 𝑠2, ..., 𝑠𝑛) ∈ 𝑆 .
The aim of the knob tuning task for databases is to determine

the optimal configuration within this multidimensional space 𝑆 for

a given database 𝐷 , which includes details of the database engine’s

status, its schema, and its content, under a specific workload 𝑤 .

“Optimal” here refers to achieving the best outcome according to a

performance metric𝑀 , such as minimizing query execution time,

maximizing system throughput, or optimizing resource utilization.

Formally, knob tuning in this paper is defined as:

Problem 1. Given a databse𝐷 and a workload𝑤 , develop an LLM

with parameters Θ that serves as a mapping function:

LLMΘ : (𝐷,𝑤) → s

This function takes the database 𝐷 and workload 𝑤 as inputs

and outputs a configuration s = (𝑠∗
1
, 𝑠∗
2
, ..., 𝑠∗𝑛) ∈ 𝑆 that is chosen to

either maximize or minimize the metric𝑀 , depending on the specific

requirements of the metric.

The resulting configuration s can serve either as the final tuning

outcome or as a high-quality initial point for further refinement

using conventional tuning techniques. The primary aim of this

research is to identify an optimal configuration that minimizes the

need for additional tuning steps.

WorkloadGeneralization. Our approach, fundamentally a learning-

based model, necessitates an evaluation of its ability to generalize
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to workloads not seen during training. To assess this capability,

we train our model on a specific dataset and then test its perfor-

mance on a completely different set of workloads. Moreover, we

distinguish between in-schema and cross-schema workloads: in-

schema workloads refer to those within the same database schema

as the training data, while cross-schema workloads involve dif-

ferent database schemas, presenting a more rigorous test of the

model’s adaptability. A model that excels in both in-schema and

cross-schema tests demonstrates strong generalization capabilities.

Unlike traditional tuning methods such as BO and RL, which are

applicable to any workload irrespective of the schema but require

substantial tuning effort, our model aims to identify an effective

starting configuration for new workloads across both in-schema

and cross-schema scenarios. This approach seeks to reduce the

necessity for extensive subsequent tuning.

4 SYSTEM OVERVIEW

We propose LLMTune for knob tuning that unfolds in three main

stages. The overall framework is depicted in Figure 3.

Stage 1: LLM Training Data Construction (Section 5). The

first stage focuses on offline collection of training data to train

LLMs, addressing the lack of existing training data. This is achieved

through a fully automated data generation framework capable of

producing a vast array of workloads using GPT-4 across various

database schemas and determining their optimal configurations as

labels with a SOTA BO-based tuning method, HEBO [7].

For workload generation, we provide GPT-4 with detailed inputs

including the database schema, selected column values, and defini-

tions for workload types (OLAP and OLTP), guiding it to generate

realistic database workloads. These inputs are crafted to ensure that

GPT-4 produces a wide variety of workloads that reflect real-world

database operations. By specifying schema details and workload

characteristics, we enable GPT-4 to generate workloads that are not

only syntactically correct but also contextually relevant to typical

database usage scenarios.

HEBO, upon receiving a specific workload, dynamically adjusts

database parameters through 100-200 iterative cycles. Each iteration

involves stress testing on actual database instances, causing a total

tuning time of over tens of hours, which is highly time-intensive and

impractical for us to collect enough training data. To mitigate this

challenge, we collect and analyze data from each HEBO iteration to

train a surrogate cost model, effectively capturing the relationship

between configurations and database performance. This surrogate

model can be used to substitutes the database testing in the HEBO

cycle, significantly reducing the tuning time. Through the surrogate

model, we observe a reduction in tuning duration by a factor of 10

to 100, streamlining the optimization process while maintaining

accuracy in parameter selection.

Stage 2: LLM Training (Section 6). The second stage involves

offline fine-tuning of the LLM with the data collected in the first

stage, teaching it to generate optimal configurations based on given

workloads and database characteristics. We collect real-time per-

formance metrics and operational characteristics of the database

under various workloads. This includes recording a wide array

of data points such as query execution times, resource utilization

rates (CPU, memory, disk I/O), internal metrics, and transaction

latency. These metrics, alongside specific features of the workloads

(such as query complexity and read vs. write operations), serve as

inputs in our training dataset. As output, we generate the change

in normalized configuration.

Stage 3: Knob Tuning (Section 7). Once the model is trained, it

can perform inference. By outputting modifications for each knob

value, our model supports iterative inference, allowing for multiple

adjustments of knob values until there is no further improvement

in performance.
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GPT-4 Instruction

{ 
  "sql_num": <number>, 
  "workload": [ 
    "SELECT p.device_model, COUNT(DISTINCT e.event_id) AS 
total_events FROM ...;", 
    ...  ] 
} 

Here are the database schema followed by some column values that might assist 
you in generating predicates..... 
CREATE TABLE public.events_relevant ( 
    event_id integer NOT NULL: “336”, “444”… 
    device_id text: “-918417362937292”… 
); .....

You should craft <number> highly intricate <type> queries, incorporating elements 
such as multi-table JOINs — with a minimum of <x> and up to <y> tables.

OLAP: Recall the complex queries in the 
TPC-H, TPC-DS, and JOB databases... 
Ensure that the queries do not involve 
write operations like 'insert', 'update', or 
'delete'.  
Note 1: The key attributes of OLAP 
queries are as follows: ......

OLTP: Recall the simple queries in the 
Sysbench, TPC-C and OLTPBench 
databases... 
Generate several 'select', 'insert', 
'update' or 'delete' queries... 
Note 1: The key attributes of OLTP 
queries are as follows: ......

You are a helpful DBA, tasked with generating challenging OLAP / OLTP 
workloads and fulfill my goals.

Goal: Executable Workloads

Goal: Diverse Workloads

GPT-4 Response

Figure 4: The prompt for workload generation using GPT-4.

5 LLM TRAINING DATA CONSTRUCTION

We begin by providing a comprehensive overview of the entire

workflow, followed by detailed explanations of each component.

5.1 Data Construction Workflow

Our approach to generating training data hinges on pairing each

workload with its corresponding optimal configuration. This begins

with generating workloads (Section 5.2) using GPT-4, each tai-

lored to a specific database schema. To verify the accuracy of these

workloads, we execute them in the database, discarding any that

result in SQL errors. Subsequently, we apply HEBO [7], a SOTA

BO-based tuning method, to adjust the database knobs for these

workloads, aiming to find the most efficient configuration for label

collection (Section 5.3) of LLM training data.

A notable challenge in this process is that the HEBO algorithm

necessitates multiple runs of the database engine per workload

to assess the performance of sampled configurations, significantly

extending the data generation timeline. To tackle this issue and

streamline the data generation stage, we construct a cost model

(Section 5.4). Instead of executing a workload in real time to evalu-

ate its performance, we utilize the trained cost model to predict the

performance of a workload, thereby improving the overall efficiency

of our training data preparation.

5.2 Workload Generation

We instruct GPT-4 by prompts to generate workloads to satisfy the

following requirements:

• Executable. GPT-4’s robust capabilities in code generation en-

sure strict adherence to SQL syntax. However, beyond mere

syntax compliance, it is crucial that the generated SQL queries

accurately reference the relevant tables and columns within the

schema. To achieve this, GPT-4 is supplied with the schema cre-

ation statements of the database. Moreover, we pre-select values

for each column in tables to enrich its semantics, providing GPT-4

with references for generating SQL queries within workloads.

• Categorically Distinctive.Workloads typically fall into two pri-

mary categories: OLAP (Online Analytical Processing) and OLTP

(Online Transaction Processing). It is crucial that the workloads

generated possess clear categorical characteristics to enhance

their practical utility. The prompts explicitly define these cate-

gories, instructing GPT-4 to craft workloads with these specific

attributes. Notably, OLAP-type workloads are instructed to ex-

clude write operations.

• Diverse. Diversity in the generated workloads is assured by

clearly specifying in the prompt the expected number of SQL

queries and other characteristics, such as the average number of

join tables. This ensures a broad spectrum of workload scenarios.

To meet these requirements, we finalize the prompt design for

instructing GPT-4 as illustrated in Figure 4.

5.3 Label Collection

Given a database 𝐷 with simulated content and a workload 𝑊

generated by GPT-4, we tune the HEBOmodel to obtain the optimal

configuration s. After each tuning step, we apply the obtained

configuration and execute the workload on the database engine to

assess its performance. By comparing the current performance with

the previous performance, we can determine whether the current

configuration has improved and decide the next configuration to

be sampled. The final tuned configuration s serves as the label for
the current workload, resulting in the training data {(𝐷,𝑤, s)}.

To further support the multi-step inference of LLMTune as

introduced in Section 7, we also record the intermediate tuned

configurations at step 𝑡 that significantly enhance performance

compared to the configuration 𝜏 steps prior, resulting in the training

data {(𝐷,𝑤, {(s𝑡−𝜏 , s𝑡 )}}1.

5.4 Cost Model Construction

We train a cost model to efficiently predict a workload’s perfor-

mance instead of directly executing it on the database engine per

tuning step to obtain accurate performance metrics. Previous stud-

ies [49] have shown that Random Forest and Gradient Boosting

models consistently deliver superior accuracy when employed as

the cost model. Consequently, we adopt a regression ensemble

comprising these two models for our cost model. Building upon

previous research efforts [48, 49], we concentrate on optimizing 45

critical knobs identified by DBAs specifically for PostgreSQL.

Cost Model Input. The feasible range for each parameter is de-

termined based on the hardware’s capabilities. For example, the

shared buffer’s range is set from 0 to 40% of the available memory

size, as specified in the official documentation. In cases where a

specific range 𝑆𝑖 is not explicitly defined, we default it to a range

from zero to Python’s largest integer value. Utilizing the predefined

1𝜏 is set as 5 empirically.

6



value range, we perform min-max normalization for the value of

each knob, as follows:

𝑠𝑖 =
max(𝑆𝑖 ) − 𝑠𝑖

max(𝑆𝑖 ) −min(𝑆𝑖 )
, (1)

where 𝑠𝑖 denotes the value of the 𝑖-th knob and 𝑆𝑖 denotes the

value range of the 𝑖-th knob as defined in Section 3.2. Then ŝ =

(𝑠1, 𝑠2, · · · , 𝑠𝑛) represents a normalized configuration for the knobs.

In addition to the normalized configuration, we also integrate

features extracted from the workload, encompassing six metrics:

the frequency of table access, the number of SQL queries, the read-

write ratio, the average number of predicates per SQL query, and

the ratio of significant keywords including order by, group by, and

aggregation functions. Overall, the input of our cost model can be

summarized as:

Input : concat(ŝ, t, f), (2)

where ŝ denotes the normalized configuration, t denotes the vec-
tor consisting of the access frequency of each table in the given

workload, and f denotes the vector of the aforementioned six work-

load metrics. We omit the inclusion of database features due to

the significant differences in schema and content, which require

variable-length feature vectors to represent tables in a schema and

additional features to depict the content distribution in the data-

base, thus making feature representation complex. To address the

absence of database features, we train a separate cost model for

each database. This strategy proves efficient as the cost model is

lightweight, resulting in low training costs.

Cost Model Output. Since the scale of output performance for dif-

ferent workloads varies, and the objective is to distinguish between

good and bad performance among different configurations for the

same workload, we normalize the output performance within each

workload to the range [0,1]. This normalization enables us to inter-

pret configurations approaching 0 as good and those approaching

1 as bad. This interpretation aligns with our paper’s performance

metric, where lower average latency is considered better across all

SQL queries in a workload.

To achieve this, we aggregate configurations belonging to the

same workload and normalize them using the formula:

Output : 𝑝𝑖 𝑗 =
𝑝𝑖 𝑗 −min(𝑃𝑖 )

max(𝑃𝑖 ) −min(𝑃𝑖 )
(3)

where 𝑝𝑖 𝑗 denotes the performance of the 𝑗-th configuration for

the 𝑖-th workload, and 𝑃𝑖 denotes the set of performances for all

configurations belonging to the 𝑖-th workload. This normalization

approach is based on the understanding that our primary interest

lies not in the absolute performance metrics of database execution,

but rather in discerning the relative preference of configurations

for the same workload.

Cost Model Training Data. For each database, we select ap-

proximately 30 workloads to tune against the databases and obtain

the configurations at each step of the tuning process. Using these

(workload, configuration) pairs, we train the cost model until the

predicted performance closely matches the actual performance

obtained through execution.

Workload Features

LLM Output

"max_wal_senders": "reduce 12.0%", 
"autovacuum_max_workers": "increase 4.1%", 
"max_connections": "increase 82.7%", 

. . . . . 
"shared_buffers": "increase 7.0%"

LLM Input Instruction
You are an expert in DBMS, you are to optimize the 
parameters of database, please output in json format, for 
each field, output one of the change of parameters ......

number of sql queries: 14.0; 
read-write ratio: 1.0; 

    . . .
order-by ratio: 0.43;  

sort(aggregate(gather(aggregate ..",20);  
. . . 

sort(aggregate(sort(hash join(.#), 0.0); 

logical_reads_per_second: 43k;  
rows_updated_per_second: 0k;  

 . . . 
active_session: 6.0;

Query Plans

Internal Metrics
"max_wal_senders": 76.3%, 
"autovacuum_max_workers": 88.5%, 

. . . 
"shared_buffers": 32.0%,

Current Configuration 

Optimized Configuration 

size of workload: 14.0; 
read ratio: 1.0; 

    . . .
average predicate num: 0.43;  

LLM Input Instruction
You are an expert in DBMS, you are to optimize the 
parameters of database, please output in json format, for 
each field, output one of the change of parameters ......

Query Plans

Internal Metrics Current Configuration

LLM Output

Changed Configuration 

sort(aggr(gather(...,20); 
. . .

sort(aggr(sort((..), 0.0);  

logical_reads_per_second: 43k; 
rows_updated_per_second: 0k; 

 . . .
active_session: 6.0;

"max_wal_senders": 76.3%,
"autovacuum_max_workers": 88.5%,

. . .
"shared_buffers": 32.0%,

"max_wal_senders": "reduce 12.0%", 
"autovacuum_max_workers": "increase 4.1%", 

. . . . . 
"shared_buffers": "increase 7.0%"

Figure 5: Illustration of LLMTune’s input and output.

Once we have the cost model, we can use it to provide the per-

formance of the sampled configurations at each tuning step instead

of relying on actual database execution. This significantly reduces

tuning time, resulting in more efficient collection of the entire LLM

training data.

It’s important to note that for collecting the labels of configura-

tions, we still need to execute the workload under the configura-

tions against the database to evaluate its real performance. Only

configurations with superior performance compared to the default

configuration and the configuration 𝜏 steps prior are recorded in

the training data.

6 LLM TRAINING

This section provides a comprehensive explanation of the input

and output for LLM training, followed by an introduction to the

details of the LLM fine-tuning method.

6.1 LLM Input

In terms of the LLM’s input, it is imperative to provide extensive in-

formation pertinent to workload and hardware specifications. This

is crucial for enabling the model to adeptly discern the intricate

relationships between workloads and their corresponding knob val-

ues. We refer to the PostgreSQL official documentation and relevant

research on workload characterization, such as Qtune [21], Online-

Tune [51], and zero-shot [11] and select the following features as

LLM’s input.

• Workload Features. The workload features are selected the same

as those utilized for the cost model discussed in Section 5.4.

• Internal Metrics. Internal database metrics include metrics such

as “pg_stat_database” and “pg_stat_bgwriter” within the Post-

greSQL database engine. We utilize a serialization method to con-

vert workload features and internal metrics into natural language
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inputs. To enhance comprehension for the language model, we

simplify large numbers, such as converting 83,438,203 into 83.44

million, for simplicity and clarity.

• Query Plans. Drawing inspiration from Qtune [21], we incorpo-

rate the query plan as input information. Instead of embedding

them beforehand, we directly input the query plans associated

with all SQL queries in the workload into LLMs. In cases of tree-

like query plan structures, we represent their configuration using

nested parentheses, and additionally, we append each node with

the cost estimate provided by the PostgreSQL database engine.

6.2 LLM Output

Concerning the model’s output, the representation of database knob

values as large numbers significantly increases the complexity of

the model’s learning process. Therefore, we normalize these values

using the same method outlined in Eq. 1, which is applied to the

cost model’s input. Formally, based on the collected training data

{(𝐷,𝑊 , {(s𝑡−𝜏 , s𝑡 )})} introduced in Section 5.3, we normalize s𝑡

from step 𝑡 and s𝑡−𝜏 from step 𝑡 − 𝜏 into ŝ𝑡 and ŝ𝑡−𝜏 , respectively.
We then calculate their difference 𝛿 = ŝ𝑡 − ŝ𝑡−𝜏 as the configuration
change, which serves as the LLM output. To complement the change

output, we also include the old configuration ŝ𝑡−𝜏 as the LLM input.

In this manner, LLM is designed to take the previous configu-

ration as input and generate the configuration change, which is

conjectured to be easier for the model to learn compared to directly

outputting the new configuration. Additionally, with the incorpo-

ration of value changes, LLMTune can iteratively infer multiple

times, with each iteration based on previously predicted values,

thereby gradually approaching the optimal knob settings. Figure 5

illustrates LLM’s input and output.

6.3 LLM Fine-tuning

For LLM fine-tuning, we utilize the LLaMA-Factory framework
2

to train Mistral-7B [14] with PyTorch 2.1.2. Our model is trained

on a server running Ubuntu 22.04, equipped with 8 NVIDIA H100

80GB HBM3 GPUs and 2048GB of RAM. We accelerate training

using Huggingface Transformers [45] 4.36.2 and the DeepSpeed[29]

ZERO-3 [28] Optimizer.With a learning rate of 2e-5, a batch size of 4

per GPU, and gradients accumulated over 4 steps, we achieve a total

batch size of 128 across 8 GPUs. Training employs a cosine learning

rate scheduler and lasts for 4 epochs. After training, we deploy

models using the HuggingFace text-generation-inference package

on a separate server with the PostgreSQL engine for knob tuning.

Since we use a 7B-parameter backbone model, all experiments,

except training, can efficiently run on machines with a consumer-

grade GPU and at least 24GB VRAM.

7 KNOB TUNING

Generation. Once the model is trained, it can iteratively gener-

ate configurations through multi-step inference, facilitated by the

combination of the old configuration input and the configuration

change output. In each iteration, we apply the previously gener-

ated configuration on the database, run the workload against the

database engine, collect query plans and internal metrics, and then

2
Available at https://github.com/hiyouga/LLaMA-Factory/

Table 1: Data statistics

Name #Workloads #Tables Size

TPC-H 402 8 24.0GB

IMDB (JOB) 118 21 6.9GB

codebase_comments 420 4 2.4GB

language_corpus 420 6 17.0GB

movie_platform 425 5 3.2GB

bike_share_1 422 4 4.2GB

aminer_simplified 427 9 1.5GB

talkingdata 383 12 5.5GB

world_development_indicators 427 6 1.3GB

donor 427 4 2.7GB

feed them, along with the old configuration, into our tuned LLM to

obtain the configuration change. We then add this change to the

old configuration to derive the new configuration. By repeating

these iterations, we gradually converge towards a final configura-

tion as the predicted one. We halt the multi-step inference process

when there is no performance improvement observed for three

continuous steps.

Refinement. The generated configuration can serve as a starting

point for further tuning using base optimizers to refine it.

8 EXPERIMENT

In this section, we carry out experiments to assess the performance

of the proposed LLMTune by comparing it with other leading

methods. These comparisons are made within the context of knob

tuning tasks across four different datasets, under both in-schema

and cross-schema workload scenarios. Our primary focus is on

analyzing the tuning performance as well as the online runtime effi-

ciency of the various tuning approaches. Additionally, considering

that LLMTune features sophisticated component designs, includ-

ing both input features and output formats, which can potentially

affect its overall performance. Moreover, the choice of inference

strategy and LLM backbone are also likely to influence its effective-

ness. To evaluate the impact of each of these factors, we perform

extensive ablation studies, ensuring a thorough verification of each

component’s contribution to LLMTune’s performance.

8.1 Experimental Settings.

8.1.1 Datasets. Our evaluation employs 10 databases, encompass-

ing a total of 3,871 workloads. Among these, TPC-H and JOB are two

well-recognized databases, each accompanied by a single workload.

The remaining eight databases are sourced from BIRD [23], a bench-

mark frequently used for assessing text-to-SQL tasks. Utilizing these

databases, we emulate the database content and generate workloads

based on the methodology outlined in Section 5.2. Besides the prede-

fined workloads from TPC-H and JOB, we further create additional

workloads for each. The workloads are then divided into training

and testing sets for both in-schema and cross-schema evaluations.

Specifically, we randomly select 40 workloads from TPC-H, JOB,

and the first seven BIRD databases as the test set, allocating the rest

as training data. This setup constitutes our in-schema evaluation

framework, which is referred to TPC-H, JOB, and BIRD (in-schema).

8
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Table 2: Comparison of performance and efficiency. We present average performance improvements (percent, denoted as

Δ) and the total execution time to find the optimal configuration (minutes, denoted as 𝑇 ) of LLMTune and other baseline

methods, including the basic tuning models HEBO [7], SMAC [12], and CDBTune [48], as well as transfer learning methods

applied to these basic tuning models. Results are reported on in-schema benchmarks including TPCH [35], JOB [19], and BIRD

(in-schema), as well as the cross-schema benchmark, BIRD (cross-schema). The best results are bolded.

Methods
TPC-H [35] JOB [19] BIRD (in-schema) BIRD (cross-schema)

Δ (%) ↑ 𝑇 (min) ↓ Δ (%) ↑ 𝑇 (min) ↓ Δ (%) ↑ 𝑇 (min) ↓ Δ (%) ↑ 𝑇 (min) ↓
HEBO 61.7 1381.7 59.8 766.4 21.7 377.3 18.3 489.8

+ Workload Mapping 61.7 424.3 60.7 308.2 20.6 80.6 16.6 368.6

+ Model Ensemble 62.1 254.7 59.2 241.4 21.1 109.2 18.0 321.2

+ LLMTune 62.7 88.8 61.3 60.3 23.8 40.6 18.3 115.0

SMAC 58.9 1182.5 62.5 724.7 21.5 345.6 17.7 474.6

+ Workload Mapping 59.3 378.8 61.3 283.2 20.0 88.4 16.9 393.2

+ Model Ensemble 61.5 272.8 62.9 249.9 22.5 79.6 18.3 320.0

+ LLMTune 63.2 76.2 62.9 58.3 22.8 35.5 18.1 135.6

CDBTune (online tuning) 62.4 965.4 39.6 489.5 18.0 243.4 17.4 257.8

+ Model Pre-training (MP) 64.4 569.4 42.3 198.4 19.9 72.3 17.5 89.4

+ LLMTune 69.4 209.7 71.4 27.9 23.3 57.2 18.4 59.3

CDBTune w/ MP (no online tuning) 60.6 634.7 38.1 178.9 16.7 61.2 16.7 72.1

Pure LLMTune 62.9 45.3 59.4 34.5 21.4 26.0 16.7 56.2

For the cross-schema evaluation, all workloads from the last two

BIRD databases, “language_corpus” and “bike_share_1”, are allo-

cated to the test set, distinguishing them from the training data and

emphasizing their role in cross-schema assessment, which is named

as BIRD (cross-schema). We concentrate on generating complex

workloads to simulate the OLAP scenario in this paper. While knob

tuning in the OLTP scenario could potentially be addressed using

similar methods, this remains to be empirically validated in future

research.

8.1.2 Metrics. We respectively evaluate the effectiveness and effi-

ciency of each comparison method. Given the use of OLAP work-

loads, effectiveness is assessed through the average latency (sec-

onds) of each query in the workload. Additionally, to provide a

more intuitive understanding of the knob tuning performance, we

calculate the improvement in performance as:

Δ =
default latency − optimized latency

default latency

, (4)

where the default latency is obtained by executing the workload

before knob tuning, and the optimized latency is obtained after

configuring the tuned knobs. We then report the average latency

across all workloads.

Additionally, to assess the efficiency of different tuning methods,

we record the total time required online to obtain the best knobs

for each method. This encompasses the time from the initiation

of tuning until the optimal configuration is reached. The time re-

quired for each iteration is determined by various factors, including

recommending knobs, applying knobs, conducting stress tests, and,

for BO and RL-based methods, updating models. For BO-based

methods, the recommending knob time refers to the time taken for

sampling knobs according to the Gaussian Process. In RL-based

methods, the recommending knob time refers to the time required

for predicting a knob given the database’s internal metrics by the

actor. In workload mapping and ensemble techniques, the time also

includes workload matching time. For the proposed LLMTune, the

time encompasses the LLM inference time.

8.1.3 Baselines. We evaluate the performance of BO and RL, two

foundational tuning methodologies, integrating established transfer

learning approaches to harness historical tuned knowledge for

enhancing the efficiency of these primary tuning strategies. Here

are brief descriptions of the fundamental methods utilized:

• SMAC [12]: This method, grounded in BO, is employed for

database knob tuning and has been demonstrated to achieve

SOTA results in knob tuning endeavors. Our implementation of

SMAC relies on the Python SMAC3 library [24].

• HEBO [7]: Another BO-based strategy, HEBO is designed for op-

timizing hyperparameters and has shown notable success across

various optimization tasks. Due to the absence of publicly avail-

able code, we develop our own implementation of HEBO.

• CDBTune [48]: As the pioneering RL-based approach for knob

tuning, CDBTune’s implementation is accessible through the

open-source project OtterTune [41]. We leverage this available

implementation in our work.

The transfer learning techniques include:

• Workload Mapping: Introduced in OtterTune [41], workload

mapping aggregates historical tuning knowledge from similar

workloads to initialize an effective tuning model. This process

utilizes internal database metrics, such as “pg_stat_database” and

“pg_stat_bgwriter” in the PostgreSQL database engine, as features

to represent a workload. Similar workloads are identified through

dot product similarities, and historical tuned knowledge, i.e., (con-

figuration, latency) pairs, from these similar workloads are used

to construct the initial tuning model. We apply this technique

to enhance the performance of BO-based methods, HEBO and

SMAC. For these methods, leveraging historical (configuration,

latency) pairs enables the estimation of mean and variance for

the proxy model instantiated by the Gaussian Process, thereby

improving their efficiency and effectiveness.

• Model Ensemble: Proposed by Restune [50], this technique

leverages historically tuned models on similar workloads to pro-

vide a strong initialization for the new tuning model. Initially,
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it utilizes internal metrics from the database, along with work-

load tf-idf metrics, to represent workloads as features. It then

identifies similar workloads using dot product similarities and

selects models previously tuned on these similar workloads. In-

stead of relying solely on historically produced (configuration,

latency) pairs for initialization, it ensembles these selected mod-

els to initialize the new tuning model. For ensemble construction,

workload similarities are used to initialize the weights, which

are then dynamically updated based on the prediction accuracy

of matched tuned models during each tuning iteration. This

technique is also applied to accelerate BO-based methods. Con-

sequently, the model to be tuned remains a Gaussian process,

accepting knobs as input and predicting latency as output.

• Model Pre-training: This transfer learning technique is com-

monly employed in RL-based methods to leverage the historical

knowledge to initialize a good RL model. Specifically, the actor

in the RL model is pre-trained to take database internal met-

rics as input and produce configuration based on the historical

(internal metrics, configuration) pairs obtained during histori-

cal tuning processes. Meanwhile, the critic in the RL model is

also pre-trained to take a configuration and internal metrics as

input and predict latency based on historical (configuration, in-

ternal metrics, latency) triplets. This technique is implemented

using Deep Deterministic Policy Gradient (DDPG), following the

methodology outlined in [49].

The three transfer learning techniques are implemented using

PyTorch by our team. To ensure fairness, the workloads utilized for

these techniques are identical to the training data employed for the

proposed LLMTune.

Workload mapping and model ensemble are applied to both

HEBO and SMAC to initially match historical workloads for finding

a well-initialized HEBO or SMACmodel, followed by further tuning.

Model Pre-training is exclusively applied to CBDTune to pre-train

the actor and critic components before continuing to tune them

within an RL framework. Model pre-training is also solely employed

without further continuous tuning.

It takes about 0.5 hour for LLMTune fine-tuning on H100. The

proposed LLMTune is applied to all three basic tuning models, with

the inferred configuration serving as a starting point for continued

tuning of HEBO, SMAC, or CBDTune.

8.1.4 Setup. Weuse PostgreSQL 12.2 to host andmanage all databases

and select 45 important knobs by database administrators. All ex-

periments except supervised fine-tuning of LLMs, are performed on

a server equipped with an Intel(R) Xeon(R) CPU E5-2650 v4 CPU

(12 cores and 24 threads), 64GB RAM, and one NVIDIA RTX 3090

24GB GPU.

Currently, all tuning methods are trained and optimized for the

specific database engine and hardware environment to facilitate

empirical validation. However, the proposed LLMTune could po-

tentially be generalized to other database engines and hardware

environments by collecting data across various settings. We leave

this experiment for future exploration.

8.2 Evaluation on In-schema Workloads

Table 2 presents all experimental results, including performance

improvements and the runtime of the methods in the in-schema
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Figure 6: Case study of In-schema Evaluation.
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Figure 7: Case study of Cross-schema Evaluation.

setting, which includes TPC-H, JOB, and BIRD (in-schema). The

best-performing methods are highlighted in bold. Table 3 further

presents the number of tuning steps and the duration per step for

each method in TPC-H. Figure 6 illustrates the tuning processes of

two workloads in the in-schema test sets. Our general observation

is that, compared with all the baselines, the proposed LLMTune

not only offers a superior starting point for both BO- and

RL-based methods to expedite their search but also enhances

their performance to a certain extent. The specifics of our

findings via observing Table 2 are as follows:

• LLMTune without refining results in comparable perfor-

mance to basic BO methods. Even without subsequent tuning

by BO or RL-based methods, the pure inference results of LLM-

Tune demonstrate comparable performance on JOB and BIRD (in-

schema), and even show larger improvements on TPC-H, compared

with the basic HEBO, SMAC, and CDBTune methods. This is at-

tributed to LLMTune fine-tuning a powerful Mistral-7B LLM using

2,200+ supervised fine-tuning data pairs (workload, configuration),

enhancing Mistral-7B with a robust ability to recommend knobs by

generating optimized configurations.

• LLMTune with further tuning could achieve better perfor-

mance.When applying LLMTune to HEBO, SMAC, and CDBTune

on the three in-schema test sets, i.e., continuing to tune the rec-

ommended knobs by LLMTune using these basic tuning methods,

we observe that almost all performances have improved compared

to the pure recommended knobs by LLMTune . This indicates the

effectiveness of combining LLM inference results with traditional

lightweight tuning methods. However, while the improvements are
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generally not significant, and in some scenarios, the improvement

drops (i.e., on TPC-H, HEBO+LLMTune underperforms LLMTune

by 0.2%), suggesting that the directly recommended knobs are al-

ready quite effective. Moreover, this drop in improvement could be

avoided by discarding the continually tuned knobs while retaining

the initially recommended knobs.

• LLMTune outperforms other methods that also leverage his-

torical knowledge. In comparison with workload mapping, model

ensemble, and more pre-training techniques, the proposed LLM-

Tune offers a superior starting point for enabling HEBO, SMAC,

and CDBTune to achieve larger performance improvements. Both

workload mapping and model ensemble methods require matching

the most similar workloads and then leveraging either their cor-

responding historical tuned data or tuned models to initialize the

new tuning model. However, such similarity matching relies on the

exact matching of workload tokens or database internal metrics

values, which may fail to retrieve desired historical workloads when

the tested workloads are dissimilar from historical ones. Although

the model pre-training method pre-trains the actor and critic com-

ponents in the RL models on the same training data as ours, the

instantiated deep learning models are relatively small compared

to the LLMs we employ, potentially limiting their generalization

ability when directly applied to new workloads (CDBTune w/ MP

(no online tuning) vs. LLMTune). Even with subsequent online

tuning, the model pre-training method still underperforms ours

(CDBTune+Model Pre-training vs. CDBTune+LLMTune).

• LLMTune requires the least amount of time to achieve com-

parable or even superior performance improvements. Com-

pared pure LLMTune with basic tuning models, the reductions are

most pronounced, with reductions of 89% to 97% in terms of𝑇 (min-

utes), while maintaining similar performance improvements. Even

when continuing tuning after the initial knob recommendation,

significant time savings are still realized, with reductions of 76%

to 95% in terms of 𝑇 (minutes). Compared with transfer learning

methods that leverage historical knowledge, although they also ac-

celerate basic tuning models, their reduction in 𝑇 (minutes) is only

41% to 82%, which notably lags behind the proposed LLMTune.

When further examining the results on TPC-H as shown in

Table 3, we observe that the step duration for different tuning

methods is almost identical, with differences primarily lying in the

number of steps. This highlights that LLMTune requires the fewest

number of steps to obtain the optimal knobs.

The tuning process cases depicted in Figure 6 further illustrate

the convergence trends of different workloads. These plots demon-

strate that the proposed LLMTune exhibits the most rapid conver-

gence property with the lowest starting latency.

8.3 Evaluation on Cross-schema Workloads

We further evaluate the proposed LLMTune on cross-schema work-

loads, specifically BIRD (cross-schema), comparing it with all base-

lines, and presenting the results in Table 2. Our primary findings

are as follows:

• Challenges of Cross-schema Workloads: Cross-schema work-

loads pose greater difficulty for tuning. Comparing TPC-H, JOB,

BIRD (in-schema)with BIRD (cross-schema), we observe the largest

performance gap between HEBO and pure LLMTune on BIRD

Table 3: Comparison of time to find the best knobs. #Steps

denotes the number of iteration steps to find the optimal

configuration. Step duration is the time required for each

iteration, and total time denotes the total time differentmeth-

ods take to find the optimal knobs.

Methods #Steps ↓ Step duration (min.) ↓ Total time (min.) ↓
HEBO 86 16.06 1381.7

+ Workload Mapping 28 15.15 424.3

+ Model Ensemble 17 14.90 254.7

+ LLMTune 6 14.80 88.8

SMAC 78 15.16 1182.5

+ Workload Mapping 25 15.15 378.8

+ Model Ensemble 18 15.16 272.8

+ LLMTune 5 15.15 76.2

CBDTune (online tuning) 64 15.09 965.4

+ Model Pre-training (MP) 38 14.98 569.4

+ LLMTune 14 14.98 209.7

CDBTune w/ MP (no online tuning) 42 15.11 634.7

Pure LLMTune 3 15.10 45.3

(cross-schema) (18.3% - 16.7% = 1.6% on BIRD (cross-schema) vs.

1.2% on TPC-H, -0.4% on JOB, and -0.3% on BIRD (in-schema)).

This suggests that LLMTune exhibits greater ease in generalizing

to in-schema workloads due to their similar workload distribu-

tions. Similarly, when continuing to tune the knobs based on

recommended configurations by the basic tuning methods, the

reduction in tuning time in BIRD (cross-schema) is notably smaller

compared to other in-schema test sets. For example, LLMTune re-

duces HEBO’s tuning time by (489.8-115.0)/489.8 = 76.5% on BIRD

(cross-schema) but significantly reduces it by (1381.7-88.8)/1381.7

= 93.6% on TPC-H. These observations highlight the challenges

inherent in tuning cross-schema workloads.

• LLMTune ’s Superior Tuning Performance: Equipped with

subsequent basic tuning models, LLMTune achieves the best per-

formance improvement compared to other transfer learning meth-

ods on cross-schema test sets, even surpassing basic tuningmodels.

This indicates LLMTune’s ability to identify a strong starting point

for tuning even with out-of-distribution schemas.

• LLMTune ’s Optimal Speedup: Despite a weaker speedup on

BIRD (cross-schema) compared to in-schema test sets, LLMTune

still outperforms other transfer learning methods in achieving the

best speedup over basic tuning models. Workload mapping and

model ensemble techniques that rely on similar workload match-

ing are constrained by the breadth of historical workloads, making

them less effective for significantly distinct workloads. Similarly,

model pre-training methods suffer from limited generalization

ability due to their reliance on small pre-trained models.

Figure 7 presents two cases of the tuning process on BIRD (cross-

schema) test sets. Comparing with Figure 6, we observe that the

convergence speed of LLMTune is slower and the starting latency

is higher on BIRD (cross-schema) than on in-schema test sets, which

also indicates the difficulty of tuning the cross-schema workloads.

8.4 Ablation Study

We conduct ablation experiments and discussions on different com-

ponents of our method, focusing on the input workload and envi-

ronment features, inference strategy, output knob format, and LLM

backbone. The results are shown in Table 4.
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Table 4: Ablation studies of LLMTune.We present the perfor-

mance improvements Δ (%) ↑ compared to default PostgreSQL

settings for each model variation. IS and CS represent “in-

schema” and “cross-schema” respectively.

TPC-H JOB
BIRD BIRD

(IS) (CS)

Default 0.0 0.0 0.0 0.0

Pure LLMTune 62.9 59.4 21.4 16.7

Input Features

- Internal Metrics 60.4 52.5 19.4 14.6

- Workload Features 56.9 57.9 18.5 13.3

- Query Plans 51.1 39.1 14.0 2.0

LLM Inference Strategy

- Singe-step Inference 58.8 38.7 12.8 5.9

Knob Output Format

- Direct Value 15.0 11.2 8.4 0.6

- Normized Direct Value 59.7 55.6 13.7 13.2

Backbones

- CodeLLaMA-7B [30] 61.3 52.6 20.4 15.9

- LLaMA2-7B [34] 60.4 52.3 20.1 15.9

8.4.1 Input Features. As detailed in Section 6.1, our method’s input

features encompass query plans and estimated costs for SQL queries

within the workload, alongside database runtime internal metrics

and workload characteristics. In this section, we systematically

ablate these features. The three variations are:

• Internal metrics: Removing database internal metrics.

• Workload features: Removing workload features.

• Query plan: Replacing query plans with their corresponding SQL

statements.

The reduction in each feature input results in varying degrees

of performance degradation, indicating the correlation between

each feature and the optimal configurations of various knobs. This

correlation aids the model in making recommendation decisions.

Remarkably, removing the query plan feature notably impacts the

performance of cross-schema tasks. This is attributed to the model’s

need to implicitly learn the data distribution of tables when pre-

sented with SQL inputs, thus facing challenges in handling new

tables appearing in the SQL.

8.4.2 Multi-step Inference. As discussed in Section 5.3, we collect

tuning data from multiple intermediate steps and utilize all of them

to train LLMTune, enabling the model to predict the intermediate

tuned knobs. During inference, LLMTune infers the value changes

for knobs multiple times to gradually approach the optimal knob

values. To evaluate the necessity of this training approach, we

compare it with a single-step inference strategy.

• Single-step Inference: In this strategy, we do not collect any

tuning data from intermediate steps but directly use the finally

tuned optimal configuration. Accordingly, we perform a single

inference to obtain the desired configuration.

The results indicate that our multi-step inference strategy out-

performs the single-step approach. Firstly, the intermediate tuning

data provides the LLM with more comprehensive training data. Sec-

ondly, training on such intermediate tuning data equips LLMTune

with the ability of iterative reasoning, enabling it to improve its

inference performance through multiple rounds of inferences.

8.4.3 Output Knob Format. As outlined in Section 6.2, LLMTune

is trained to output the value change relative to each knob’s ini-

tial value. The initial value, represented by its original value, is

accepted by LLMTune as additional input, while the value change,

normalized as a percentage using Eq. 1, is accepted by LLMTune as

the output. By incorporating the value change into the initial value,

we can derive the tuned value. This input-output setting allows the

model to iteratively infer value changes, progressively approaching

the final optimal knob values. To verify the effectiveness of this

proposed value change format, we explore two alternative output

formats:

• Direct Value: Directly output the values of the knobs.

• Normalized Direct Value: For each knob, we divide its value

range into 𝑘3 equal-distance buckets and assign values falling

within each bucket to the corresponding bucket, effectively nor-

malizing the float values into discrete intervals.

The results indicate that outputting direct values performs the

worst. This is because the scope of values for each knob is extensive,

and the ranges of different knobs vary significantly. Consequently,

this presents substantial challenges for LLMTune to learn the under-

lying patterns of knob values. In contrast, normalized direct values

perform much better. By limiting the values to discrete intervals,

clearer patterns emerge for LLMTune to learn. However, even when

normalized, outputting direct values still lags behind outputting

value changes. This is because learning value changes is inher-

ently easier than directly learning the optimal values. Additionally,

with value changes, LLMTune can iteratively infer multiple times,

with each iteration based on previously predicted values, thereby

gradually approaching the optimal knob settings.

8.4.4 LLM Backbone. To explore the capabilities of different LLM

backbones for the knob tuning task, we adopt LLaMA2 [34] and

CodeLLaMA [30] respectively to replace the Mistral model used

in LLMTune. LLaMA2 is a text-focused LLM and CodeLLaMA is

a code-focused LLM. We utilize the officially released instruction-

tuned versions with 7B parameters for a fair comparison. In Table 4,

they are denoted as “LLaMA2-7B” and “CodeLLaMA-7B”. Most

models demonstrate commendable knob tuning capabilities, with

the Mistral model exhibiting the best performance among them.

9 CONCLUSION

This paper delves into methods for improving the efficiency of

database knob tuning, adopting an approach distinct from previous

transfer learning techniques. Our focus is on leveraging advanced

LLMs to generate effective configurations by effectively assimi-

lating knowledge from historical tuning tasks. The configuration

recommended by the LLM serves as the initial starting point for

various base optimizers like HEBO and SMAC. Through exten-

sive experimentation, we demonstrate that LLMTune significantly

enhances tuning efficiency and effectiveness over current state-

of-the-art methods, proving particularly effective in the complex

context of cross-schema scenarios.

3
We set 𝑘 as 5 in our experiments.
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