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Abstract. This paper aims to recover object materials from posed im-
ages captured under an unknown static lighting condition. Recent meth-
ods solve this task by optimizing material parameters through differ-
entiable physically based rendering. However, due to the coupling be-
tween object geometry, materials, and environment lighting, there is in-
herent ambiguity during the inverse rendering process, preventing previ-
ous methods from obtaining accurate results. To overcome this ill-posed
problem, our key idea is to learn the material prior with a generative
model for regularizing the optimization process. We observe that the
general rendering equation can be split into diffuse and specular shad-
ing terms, and thus formulate the material prior as diffusion models of
albedo and specular. Thanks to this design, our model can be trained
using the existing abundant 3D object data, and naturally acts as a
versatile tool to resolve the ambiguity when recovering material rep-
resentations from RGB images. In addition, we develop a coarse-to-
fine training strategy that leverages estimated materials to guide dif-
fusion models to satisfy multi-view consistent constraints, leading to
more stable and accurate results. Extensive experiments on real-world
and synthetic datasets demonstrate that our approach achieves state-of-
the-art performance on material recovery. The code will be available at
https://zju3dv.github.io/IntrinsicAnything/.

1 Introduction

Recovering the object’s geometry, material, and lighting from captured images,
also known as inverse rendering, is a long-standing task in computer vision and
graphics. These physical attributes of 3D objects are essential for many applica-
tions, such as VR/AR, movie production, and video games. Due to the inherent
complexity of interaction between real-world objects and environment lighting,
inverse rendering remains an ill-posed problem. Previous works overcome this
problem using sophisticated capture systems [16,20], or co-located flashlight and
camera in a dark environment [5,50,84]. However, these method requires special
hardware equipment or constrained environment, limiting their applications.
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Fig. 1: Two types of ambiguities in inverse rendering. (a) Ambiguity between
diffuse shading and albedo. For example, the Xbox is lit by a yellow light, and the
decomposed albedo from NVdiffrecMC [22] tends to be yellow. (b) Ambiguity between
shadow and albedo. For example, the porcelain toy is with self-occlusion, and Ten-
soIR [26] bakes the shadow into the recovered albedo. Our method well handles the
two types of ambiguities.

Based on differentiable physically based rendering and neural scene represen-
tations, recent methods [21, 26, 82, 85, 88, 89] are able to object materials from
images captured under natural lighting. They exploit neural networks to repre-
sent object materials and geometry, and combine these object attributes with
the learnable lighting to synthesize images, which are compared with captured
images to optimize the model paramaters. To achieve better performance of
inverse rendering, these methods have attempted to improve object represen-
tations [26, 85], lighting representations [21, 82], and training strategies [88, 89].
However, we argue that depending solely on the rendering loss is insufficient
for accomplishing accurate decomposition, due to the inherent ambiguity in the
inverse rendering process.

We observed that there are two categories of ambiguities, as shown in Fig. 1.
First, there is ambiguity between diffuse shading and albedo. Intuitively, when a
white object is lit by a yellow light, the decomposed albedo appears to be yellow.
Second, when an object is with self-occlusion and illuminated under a complex
lighting condition, the hard-cast shadow can be easily baked into the albedo.
Due to these ambiguities, the optimization process of previous methods tend to
gets trapped in local optimal, leading to the artifacts on the recovered material.

In this paper, we seek to use data-driven priors for ambiguity-free inverse
rendering. Our key idea is learning the distribution of albedo and specular shad-
ing with generative models, which is then used to regularize the optimization
process. Inspired by the recent progress of generative models [55], we exploit
the conditional diffusion model for modeling the material prior. Our choice of
material prior for albedo and specular shading is motivated by the fact that
the general rendering equation can be separated into diffuse and specular terms,
according to the Disney BRDF model, which thus has two advantages. First,
we can construct training data on albedo and specular using a large amount
of 3D objects [18] that contain various BRDF models. This enables our prior
model to generalize across different domains, as shown in Fig. 2. Second, our
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Fig. 2: Single-view intrinsic images decomposition results. Compared with the
objects-level method Yi et al . [76] as well as scene-level methods IIR [92] and IID [30],
our approach recovers more accurate and detailed intrinsic images and demonstrates
strong generalization capabilities across various objects and scenes.

designed prior can work as a versatile tool to resolve the ambiguity in the inverse
rendering process of many material representations in theory.

A challenge of applying diffusion models to regularize the optimization pro-
cess is that such generative model struggles to perform multi-view consistent
constraints. To address this problem, we propose a coarse-to-fine optimization
scheme. Our approach first leverages the diffusion prior to recover the coarse
object material and environment lighting. Then, the coarse albedo and specular
shading are used to guide the diffusion model to produce constraints with better
multi-view consistency, leading to more accurate material and lighting recovery.

For training our model, we create a dataset consisting of RGB, albedo, and
specular images based on the Objaverse dataset [18]. To validate the effective
of the proposed approach, we conduct extensive experiments on synthetic and
real-world data. Our method achieves state-of-the-art performance on several
benchmarks, as well as generalizing to internet images, as shown in Fig. 2.

2 Related Work

Learning priors for inverse rendering. Earlier approaches for inverse rendering
usually require controlled set-ups [17,32] and strong domain specific assumptions
to reconstruct scene properties from images [80]. With the advance of deep learn-
ing, the intrinsic properties of images can be directly learned from large-scale
synthetic datasets [35,37,60,92]. Shi et al . [60] leverages ShapeNet [9] and intro-
duces a dataset with image intrinsics to decompose the image into base color and
shading. Li et al . [33] introduces a large-scale scene dataset and lifts the model’s
capability to from object level to scene level. Subsequent works [36, 39, 59] have
attempted to further recover the BRDF and geometry of a scene. Recently, Kocsis
et al . [30] utilizes diffusion models to estimate the intrinsics of single view indoor
scene images and demonstrates a significant improvement on the generalization
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from synthetic images to real images. However, these learning based methods are
largely constrained by the photorealism of synthetic images because the ground
truth material properties and illumination for real scenes is prohibitively difficult
to obtain. To mitigate the lack of labeled data issue, [43,70,77,77,78] uses unsu-
pervised methods and introduces various physically and statistically motivated
constraints to achieve training without ground truth. [78] takes multiple images
as input and introduces multi-view stereo supervision to achieve training a single
view inverse rendering model without ground truth supervision. [77] decomposes
outdoor scenes via a physically based rendering constraint. [43] models inverse
rendering as an image translation problem and learns to map the image from the
image domain to the intrinsics domain. Although these supervised and unsuper-
vised learning based methods achieves promising progress on inverse rendering,
their inference on images from the same scene usually lacks of consistency. In con-
trast, our method combines the monocular diffusion models with the multiview
physically based rendering and thus achieved accurate material and illumination
estimation with multiview consistency.

Inverse rendering with neural representation. Inspired by the implicit represen-
tations of NeRF [47], various works [7,26,42,85,87] extend the neural representa-
tions to factorize a scene into material, geometry, and lighting. NeRV [63] lever-
ages a neural visibility field to reduce the computational cost and models indirect
lighting with known environment lighting conditions. InvRender [90] and NeILF
series [74,83] further model indirect illumination with a neural representation at
unknown light conditions. NvdiffrecMC [22] and NeFII [71] incorporate Monte
Carlo ray tracing to recover high-frequency details of lighting. [64] adopts a
coarse-to-fine manner to retrieve the materials and illumination of a scene. More
recently, GS-IR [38] and GIR [62] leverage Gaussian Splatting [29] to efficiently
modeling indirect lighting for inverse Rendering. Furthermore, [72,91] attempt
to scale up the neural representations for solving inverse rendering from object
to indoor scene. However, due to the inherit ill-posed feature of inverse rendering
problem, these methods are still suffered from disentangling the materials and
illumination properties from images. In contrast, by learning a strong material
and shading prior, we effectively tackled the ill-posed feature and received a sig-
nificant improvement on decomposing the image into BRDFs and illuminations.

Diffusion models. Recently, diffusion models have demonstrated unprecedented
performance on generation tasks, such as 2D generation [15, 23, 54, 58] and 3D
generation [3, 11, 12, 41, 51, 66], indicating the impressive capability of learning
the distribution of target data. Inspired this, some recent methods [14, 28] have
attempted to exploit the diffusion prior for ill-posed inverse problems, including
image denoising [73, 93], image completion [25, 57], and single-view reconstruc-
tion [19,65]. Diffusion posterior illumination [45] learns the distribution of envi-
ronment illumination with a diffusion model for material recovery. In contrast,
our method learns the material prior for supervision and design it as conditional
diffusion models of albedo and specular shading, enabling the direct supervision
on material estimation.
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Fig. 3: Overview of our pipeline. (a) Based on physically based rendering, our
model combines lighting, geometry, roughness, and albedo into RGB and specular
images, and optimizes the lighting and materials in a two-stage manner. In the first
stage, our model is supervised by images and diffusion priors to output coarse albedo
and roughness. Subsequently, the coarse materials are used to guide diffusion models to
provide more multi-view consistent constraints. (b) The guided sampling first calculates
the L2 loss between the guidance and one-step denoised signals, and then adds the
gradient of the L1 loss to the output of the noise predictor.

3 Method

Our method aims at recovering material and lighting parameters from multi-
view images under a single unknown illumination. We define object material
as albedo and roughness without considering the metallic attribute and use a
lat-long environment map for lighting. Due to the ill-posed nature of inverse
rendering [22, 89], ambiguities exist in the optimization process, leading to in-
accurate material estimation. We propose using data-driven prior to constrain
the optimization to eliminate these ambiguities. Inspired by the recent success
of generative models [55] on image generation, we use the conditional diffusion
model to learn the prior of object materials.

Fig. 3 presents the overview of our pipeline. In this section, we first introduce
our rendering model in Sec. 3.1, and then describe how to capture the material
prior using the diffusion model in Sec. 3.2. Finally, Sec. 3.3 describes our coarse-
to-fine optimization strategy for accurate material and lighting recovery.

3.1 Rendering Model

We adopt the physically based rendering [27] to recover the object material and
lighting from images. For a 3D point x, its outgoing light Lo at direction ωo is
defined as:

Lo(ωo;x) =

∫
Ω

Li(ωi)fr(x;ωo, ωi)(ωi · n)dωi, (1)



6 Chen. et al.

where Li(ωi) is the incident lighting along the direction ωi, n is surface normal
at x. We use the simplified Disney BRDF model [8] for fr, where the albedo kd

and roughness ρ parameters are set as learnable, and other parameters are set
as constant. The detailed formulation can be found in supplementary material.

In practice, we define the lighting as an optimizable longitude-latitude envi-
ronment map. The geometry is obtained using MonoSDF [81] which optimizes
an implicit SDF field using posed multi-view images. Then a triangulation mesh
can be extracted using Marching-Cubes [44]. We further use blender [6] to build
a UV mapping of the extracted mesh. The object material albedo kd and rough-
ness ρ are represented as learnable images on the UV space.

The RGB image is rendered by evaluating Eq. (1) with the environment
lighting, albedo image, roughness image, and scene mesh. We solve the integral
in Eq. (1) using Monte-Carlo sampling with Multiple Importance Sampling [68].
Given the rendered image, previous methods [21,26,89] usually optimize the ma-
terial and lighting parameters by minimizing the rendered and observed images.
However, these methods easily get trapped to local minima during training due
to the inevitable ambiguity, which is caused by the coupling of object material
and lighting.

Design of the material prior. To better decompose materials and lighting, we
propose to use data-driven priors to constraint the optimization process. Ide-
ally, we can directly apply prior distributions of albedo and roughness to narrow
down the solution space and effectively alleviate ambiguities. However, rough-
ness, being a concealed characteristic of a material, is difficult to observe and is
also hard to acquire on most large-scale synthetic datasets [18]. Because these
objects have a variety of material parameters but do not necessarily have a valid
roughness.

Fortunately, image rendering using the Disney BRDF model is composed of
specular shading and diffuse shading regardless of the choice of material pa-
rameters [8]. In the Disney BRDF model, the BRDF model fr is defined as:

fr(x;ωo, ωi) =
kd

π
+

D ·G · F
4(n · ωo)(n · ωi)

, (2)

where D,G,F mean the normal distribution, geometry attenuation, and Fresnel
effect, respectively. Then, the rendering equation is defined as:

Lo(ωo;x) =
kd

π

∫
Ω

Li(ωi)(ωi · n)dωi

+

∫
Ω

Li(ωi)
D ·G · F

4(n · ωo)(n · ωi)
(ωi · n)dωi

= Sdiff(x, Li, kd) + Sspec(ωo;x, ρ, Li).

(3)

The detailed explanation of the rendering equation is presented in the supple-
mentary material. Motivated by Eq. (3), we propose to apply priors on specular
shading which exists in all physically based renderings, instead of directly using
priors on roughness. Specular shading is closely linked to roughness and has the
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advantage of being more observable. Moreover, based on any synthetic object,
we can create the ground-truth specular shading for training the prior model.

3.2 Albedo and Specular Prior Models

Previous methods [34, 40, 61, 75, 77, 79] generally model the prior of object ma-
terial using a deterministic prediction network, which attempts to regress the
material from a single image. In contrast, we leverage generative models to cap-
ture the distribution of albedo and specular, considering that there could be
multiple solutions for the underlying object material given captured images [4].

The diffusion model is a probabilistic generative model that generates images
from pure Gaussian noise through a progressive de-noising process [23]. Each step
of the denoising process from xt to xt−1 is defined as:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− α̂t

ϵθ(xt, t)

)
+ σtz, (4)

where ϵθ is the learnable noise predictor, αt and σt are predefined constant
values, and z is a random value sampled from a standard Gaussian distribution.
The noise predictor is typically implemented as a UNet [56].

Given an RGB image I, we can model the conditional distribution of tar-
get albedo pθ(kd|I) and specular shading pθ(Sspec|I) by modifying the noise
predictor to accept I as its conditioning. Denote the modified noise predictor
as ϵθ(xt, t; I). Specifically, we first use the CLIP image encoder [52] to extract
a feature vector from the conditioning image. Then, to inject the conditioning
signal into the UNet, we utilize a transformer network [67] to perform the cross-
attention between the image feature vector and the intermediate feature maps
of the UNet. More details can be found in the supplementary.

The diffusion model can model complex distributions in a step-wise denoising
manner, which is crucial for albedo and specular shading recovery. Moreover, as a
generative model, the diffusion model facilitates a guided sampling procedure [13,
24,46], which permits us to steer the diffusion model toward producing samples
that align with multi-view image observations.

Handle high-resolution images. The diffusion prior models are constrained to
process images of limited resolutions (such as 256 × 256 × 3 in our implementa-
tion), which restricts their ability to handle high-resolution images and leads to
the loss of fine material details. To overcome this issue, we employ a strategy of
cropping the image into smaller patches with overlapping regions and leverage
the Diffusion Posterior Sampling (DPS) [13] to generate the detailed material
xf for each patch. Specifically, we first downsample the high-resolution image to
predict the coarse material xc using the diffusion model. Then, to obtain consis-
tent material across patches, the coarse material is used as the guidance signal
to generate detailed material xf for each patch based on the trained diffusion
model and the Diffusion Posterior Sampling:

ϵfθ (x
f
t , t; I) = ϵθ(x

f
t , t; I) + γc ▽xf

t
||G(x̂f

t )− xc
p||2, , (5)
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where ϵf is the predicted noise after guidance, xc
p is the corresponding patch of

the coarse material xc, xf
t is the noisy latents at timestamp t, x̂f

t is the denoised
material image of xf , and γc is the guidance scale. G is the Gaussian blur kernel
defined in DPS [13]. The final material output is obtained by computing the
weighted average of all overlapping patches. We demonstrate qualitative results
in Fig. 11.

3.3 Material Prior for Inverse Rendering

Based on the albedo and specular shading prior models, we design a two-stage
optimization process for inverse rendering, which effectively alleviates the ill-
posed problem. An overview of our method is presented in Fig. 3. We first
use the image-conditioned diffusion models to regularize the inverse rendering
process, which outputs an initialization of environemnt lighting, object albedo,
and object roughness. Then, the coarse material is used to guide the sampling of
the diffusion model, enabling it to produce more deterministic results and better
stabilize the optimization process.

Training with diffusion model. Given input multi-view images of the target ob-
ject, we utilize the conditional diffusion model to predict their albedo and spec-
ular shading components, which are used to supervise the model parameters.
Due to the probabilistic nature of the diffusion model, the generated albedo and
specular images are inconsistent across camera views in terms of intensity. To
overcome this problem, we apply shift and scale invariant loss [53] to compute
the difference between the predicted and generated material.

In the first stage, the training loss function is defined as:

Lcoarse =λ1||Î − I||+ λ2||SSI(k̂d,k
s
d)− ks

d||
+ λ3||Ŝspec − Ss

spec||+ λ4Lsmooth,
(6)

where SSI(a, b) aligns a to the scale and mean of b. Î, k̂d, Ŝspec are the image,
albedo, and specular shading to be optimized respectively, ks

d and Ss
spec are

samples from our diffusion models pθ(kd|I) and pθ(Sspec|I) respectively. We also
use a smoothness constraint Lsmooth on the optimized materials. λ1, λ2, λ3, λ4

are hyper-parameters. More details can be found in the supplementary material.

Training with guided diffusion samples. After the first stage, we obtain an ini-
tialization of the object material and the environment lighting. To better guide
the optimization process, we aimed to generate samples from the diffusion prior
models that are consistent with multiple viewpoints, aligned with observed light-
ing conditions, and still follow the distribution of priors. To this end, we leverage
the DPS [13] to guide the sampling process, and use the estimated albedo k̂d

and specular shading Ŝspec as guiding signals to re-generate samples. As shown
in Fig. 4, samples after guidance are multi-view consistent and fit observations
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Fig. 4: Effect of the guided sampling. We visualize the samples generated from the
albedo prior model of different viewpoints. Without the guided sampling, the materials
are inconsistent across multi-views and do not align with the material decomposition
from the observed lighting.

under the current lighting condition. Specifically, a guiding term g is added to
the denoising score in Eq. (4) to re-generate albedo k̃d and specular S̃spec:

ϵ̃θ(x̃t, t; I) = ϵθ(x̃t, t; I) + γ ▽x̃t
||x̃0

t − x̂||2, (7)

where x̃t and x̃0
t is the noisy latents and the denoised material image of k̃d

or S̃spec on step t, respectively. x̂ is k̂d or Ŝspec, and γ is a pre-defined scalar.
Finally, we use the re-generated multiview-consistent material k̃d or S̃spec from
the DPS to supervise the lighting and materials using Eq. (6). Experiments show
that the second stage gives an accurate decomposition of the object material and
environment lighting.

An alternative way to supervise the inverse rendering with diffusion models is
the Score Distillation Sampling (SDS) [51], which achieves consistency by finding
a mode in the distribution through optimization of the material field. However,
our experiments find that the SDS guidance usually produces blurry results. A
possible reason is that the SDS guidance relies on noise prediction that has a high
variance, which leads to unstable convergence as discussed in [69]. In constrast,
our pipeline uses guided image samples that are consistent with low variance.

4 Experiments

4.1 Implementation details

Prior Model Training. We create albedo and specular training data based on
Objaverse dataset [18]. We randomly select 350k objects, excluding those with
pure black or white albedos, and gather 180 HDR environment maps from [1]
for rendering. Each object is rendered under ten random poses with one random
HDR environment map each. We use a diffusion model fine-tuned from stable-
diffusion [55] for the image variation task [2] as a starting point and continue to
train for 100k iterations. The training process for each prior model takes around
7 days on 8 NVIDIA A100 (80GB) GPUS.

Inverse Rendering. The resolutions for texture maps and environment are 2048×
2048 and 512 × 256, respectively. We use Nvdiffrast [31] for rendering images
with 144 samples per pixel. We train the first stage of our method for 20k
iterations and the second stage for 15k iterations. The setting of hyperparameters
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is presented in the supplement materials. The inverse rendering for each scene
takes around 1.5 hours on a single NVIDIA RTX A6000 GPU.

4.2 Evulation

Dataset. We collect 4 CAD models with a variety of object shapes and materials.
Each object is rendered with 120 images with 100 for training and 20 images for
testing. The training views include the posed rgb images, and their corresponding
masks from Blender Cycles [6]. For evaluation, we also render 20 novel test views
under original lights and novel lights along with their ground truth BRDFs.

Baselines. We compare our methods with the following two types of baseline
methods. (1) Optimization-based methods [26,48,83,89,90]. InvRender [90]
and TensoIR [26] both models indirect illumination with MLPs and uses Spheri-
cal Gaussian(SG) as environment light. InvRender [90] uses MLP representations
while TensoIR is inspried by tensorial representation [10]. NeILF++ [83] models
an incident light field that includes both environemnt light and indirect light with
an MLP constrained by the outgoing radiance field. NvDiffRec [49], and NvD-
iffrecMC [22] extracted explicit topology from neural SDF and directly optimize
the 3D mesh with its PBR materils. Their illumination is expressed as an HDR
environment map, which can be optimized by NviDiffRec’s [48] split sum envi-
ronment lighting and NviDiffRec’s Monte Carlo ray tracing. (2) Data-driven
methods [43, 76]. We keep object and lighting models as the same and just
replace diffusion priors with single-view intrinsic image decomposition methods
for comparison. USI3D [43] models the decomposition task as domain transfer
from the image domain to the albedo or shading domain using generative mod-
els. We adopt only the predicted albedo to supervise the optimization because
their rendering model is not physically based. Yi. el [76] propose a network to
predict and remove specular shading and subsequently recover the albedo. We
use the predicted specular shading and albedo as the priors.

Evaluation protocol. We analyze our method and the baselines in the following
way. On the 4 synthetic datasets, we compare their reconstruction of albedo and
roughness quantitatively with the ground truths. With the estimated albedo and
lights, we also render the novel view images to further illustrate the quality of the
predicted materials and lights. Given the environment map from our novel light
dataset, we also make a comparison on the relighted images. Because Invrender
[89] and TensoIR [26] parameterize environment maps with SGs, we first optimize
an SG with 128 lobes through Stochastic Gradient Decent optimization. For
NvDiffRec [48], NvDiffRecMC [22], and NeILF++ [83], we render the relighted
image with Blender [6] using our extracted topology and material texture maps
with SPP=4096 and 4 bounces of lights. Due to the inevitable scale ambiguity
between lighting and albedo, previous methods [88] align the predicted albedo
to the ground truth before relighting and evaluation. Each channel is separately
aligned to the ground truth. However, this would cause the incorrectly baked
shading in the albedo to be removed during alignment. To this end, we align
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Table 1: Quantitative results on the synthetic dataset. “NvDiffrec*” and “NvD-
iffrecMC*” mean these methods are with our reconstructed mesh. “Ours w/o guided”
means our method without the guided sampling strategy. TensorIR and NvDiffrec have
strong capabilities of fitting observed images, but they struggle to recover correct ob-
ject materials. Replacing our diffusion priors with other priors [43, 76] leads to the
degradation of the performance on material recovery.

Albedo Aligned Albedo View Synthesis Relighting Roughness
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓

InvRender [90] 17.8181 0.9247 0.0645 23.7592 0.9491 0.0559 27.3051 0.9673 0.0386 24.3632 0.9621 0.0515 0.0420
TensoIR [26] 20.2972 0.9527 0.0631 24.9368 0.9564 0.0614 33.1234 0.9803 0.0264 21.3473 0.9543 0.0514 0.0456
NvDiffrec [48] 16.5467 0.9240 0.0706 21.5304 0.8972 0.1241 32.5778 0.9824 0.0190 21.9939 0.9550 0.0734 0.0777
NvDiffrec* [48] 14.5204 0.9021 0.0835 20.2280 0.9204 0.0659 31.0336 0.9784 0.0218 21.2452 0.9356 0.0638 0.0841

NvDiffrecMC [22] 13.0495 0.8815 0.1068 21.6770 0.9406 0.0699 30.1083 0.9674 0.0440 22.5337 0.9486 0.0797 0.1046
NvDiffrecMC* [22] 11.1353 0.8722 0.1176 19.8325 0.9305 0.0805 28.1634 0.9560 0.0440 21.0380 0.9332 0.0822 0.1411
NEILF++* [83] 13.8336 0.9172 0.0915 18.4543 0.9366 0.0831 29.3527 0.9775 0.0276 20.4878 0.9629 0.0590 0.0855

Yi et al . [76] 13.2029 0.8934 0.0833 18.8428 0.9133 0.0731 26.5091 0.9669 0.0393 21.156 0.9562 0.0507 0.1524
USI3D [43] 11.6713 0.8872 0.1051 18.9296 0.9344 0.0772 26.9653 0.9666 0.0480 20.2721 0.9587 0.0612 0.1241

Ours 24.6766 0.9562 0.0503 26.8829 0.9532 0.0378 30.2405 0.9741 0.0328 28.9721 0.9757 0.0289 0.0105
Ours w/o spec 17.2126 0.9316 0.0567 25.7389 0.9491 0.0444 29.4245 0.9728 0.0352 26.4743 0.9729 0.0363 0.0758

Ours w/o albedo 22.7111 0.9434 0.0571 24.3462 0.9381 0.0488 30.5998 0.9751 0.0261 27.2851 0.9743 0.0258 0.0118
Ours w/o guided 23.3507 0.9303 0.0652 24.6112 0.9208 0.0641 29.7937 0.9688 0.0339 27.7390 0.9683 0.0361 0.0168

OursInvRenderNvdi�recMCNvdi�rrecGround Truth TensoIR OursInvRenderNvdi�recMCNvdi�rrecGround Truth TensoIR

Fig. 5: Qualitative comparison in terms of relighting on the synthetic dataset.
Zoom in for details.

the average RGB of prediction to ground truth for a more faithful evaluation.
Because geometry affects the inverse rendering performance greatly, to make
sure the topology for NVDiffRec and NvdiffRecMC is well initialized, we make
another set of experiments for NvDiffRec and NvDiffRecMC with MonoSDF [81]
reconstructed geometry given and as a fixed topology along the training and
evaluation process.

Metrics. We use Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [86] as
metrics to evaluate the image quality of the aligned albedo, relighting images, and
novel view synthesis. Roughness is evaluated using Mean Squared Error(MSE).
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Fig. 6: Quantitative comparison with baselines on the synthetic dataset. Our
method estimates more accurate albedo and roughness than other methods.

Comparison with optimization-based methods. Tab. 1 quantitatively compares
our method with recent inverse rendering methods on the synthetic dataset. We
significantly outperforms baseline methods in terms of recovered albedo, rough-
ness, and relighting, demonstrating the effectiveness of the proposed material
prior. Although TensoIR [26] and NvDiffRec [49] shows good results on view
synthesis under the original environment lighting, it does not accurately esti-
mate the underlying materials, which will be further shown in the qualitative
results. Tab. 1 also shows that we further improve the performance of material
recovery by guiding the diffusion model with estimated albedo and specular.

Fig. 5 and Fig. 6 present the qualitative results on relighting and estimated
materials. Fig. 7 and Fig. 8 demonstrate the performance of our method on the
real-world data. More results on real data are presented in the supplementary
material. NvDiffrec and NeILF++ does not disentangle the albedo and light well
and show strong light color baked in albedo, as visualized in Fig. 6 and Fig. 7.
This failure case is further demonstrated in Fig. 5 and Fig. 8. Such baked-in
issue can be partially resolved by the InvRender’s sparsity constraint. However,
this sparsity constraint may result in lost of details, as shown in Fig. 6. With our
diffusion priors learned from the large-scale dataset, our method can disentangle
materials and lighting in a reasonable way.

Comparison with other data-driven priors. Tab. 1 presents the comparison with
data-driven priors [43,76]. Although these methods are able to prevent shadows
from being baked into albedo, they still struggle to separate shading from the
albedo of objects under complex lighting conditions, as shown in qualitative
results in Fig. 9. The incorrect priors will mislead the optimization process and
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Fig. 7: Qualitative results on DTU. Our method recovers reasonable materials on
real datasets. Baseline models can not disentangle illumination and materials which
results in the baked-in effect on materials estimation.
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Fig. 8: Qualitative results of relighting on DTU.

cause large errors in the estimated materials. In contrast, our prior models have
a better capacity to decouple shading from materials.
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Fig. 10: Ablation studies on two synthetic objects.

Ablation Study. We conduct ablation studies on our diffusion priors and the
guided diffusion for fine-level inverse rendering. Quantitative and qualitative
results are shown in Tab. 1 and Fig. 10, respectively.

"w/o spec." indicates training without the specular shading prior model.
This would result in recovering incorrect lighting and roughness, as the diffuse
shading and specular shading cannot be correctly separated by relying solely
on the albedo prior. As depicted in Fig. 10, the "hat"’s roughness prediction is
lower and the "ship"’s is higher in "w/o Spec." than ground truth, which result-
ing in inaccurate relighting outcomes. In "w/o albedo", the inverse rendering
is conducted without albedo prior. The recovered albedo has baked-in shading,
as shown in Fig. 10 where the two objects baked shading into the albedo caus-
ing incorrect relighting. This indicates that both priors are crucial for accurate
lighting and material decomposition.
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"w/o guided" is the result without the guided diffusion for fine-level optimiza-
tion. Due to the lack of multi-view consistency of diffusion prior, the optimized
materials are noisy and have baked-in shading, as shown in Fig. 10. This hurts
the relighting quality, as shown in qualitative results in Tab. 1. Therefore, the
training process using the guided diffusion model is essential for a smooth and
accurate material recovery.

Modeling indirect illumination and metallic materials. Following the setting of
InvRender [90], we extend our method to handle indirect lighting. Inspired by
[72], we precompute shading of indirect lighting for each image by tracing the
trained SDF and Color field. We also include metallic texture as an optimization
target. More details and results can be found in the supplementary materials.

Single-view intrinsic image decomposition results. We conduct experiments on
challenging in-the-wild images spanning diverse domains, including scenes, ob-
jects, and humans. We compare our method’s albedo prediction with an object-
level method Yi et al . [76], and two scene-level methods, IIR [92] and IID [30].
The specular shading prediction is compared against Yi et al . [76]. Qualitative
results are shown in Fig. 11. Yi et al . [76] and IIR [92] cannot disentangle shading
from materials, while our method recovers shading-free albedos. IID [30] distorts
the true color and introduces artifacts on the albedo, particularly noticeable on
human faces. In contrast, our methods maintain the original color and preserve
finer details. Our method also recovers better specular shading, whereas the
baseline mostly failed.

5 Conclusion

We proposed to learn the material prior for inverse rendering under an unknown
static lighting condition. To this end, the material prior is designed as conditional
diffusion models of albedo and specular shading components, according to the
general rendering equation. In addition, a two-stage training scheme is developed
for robustly regularizing the inverse rendering process with conditional diffusion
models, which uses coarse materials from the first stage training to guide diffu-
sion models to provide multi-view consistent constraints. The proposed model
significantly outperforms baseline methods on real-world and synthetic data.

Limitations. Although we achieved impressive results on material recovery, our
approach still has some limitations. First, we do not consider the inverse ren-
dering of transparent objects. A solution is revising the geometry representation
to a neural field of transparency and jointly optimizing it with object materials
and environment lighting. Second, the performance of our model is limited by
the accuracy of the reconstructed geometry. It is interesting to exploit diffusion
models to better learn the geometry prior for 3D reconstruction.
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