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Abstract. 3D Gaussians have recently emerged as an efficient repre-
sentation for novel view synthesis. This work studies its editability with
a particular focus on the inpainting task, which aims to supplement
an incomplete set of 3D Gaussians with additional points for visually
harmonious rendering. Compared to 2D inpainting, the crux of inpainting
3D Gaussians is to figure out the rendering-relevant properties of the
introduced points, whose optimization largely benefits from their initial
3D positions. To this end, we propose to guide the point initialization
with an image-conditioned depth completion model, which learns to
directly restore the depth map based on the observed image. Such a
design allows our model to fill in depth values at an aligned scale with
the original depth, and also to harness strong generalizability from large-
scale diffusion prior. Thanks to the more accurate depth completion,
our approach, dubbed InFusion, surpasses existing alternatives with
sufficiently better fidelity and efficiency (i.e., ∼ 20× faster) under various
complex scenarios. We further demonstrate the effectiveness of InFusion
with several practical applications, such as inpainting with user-specific
texture or with novel object insertion. Our code is public available at
https://johanan528.github.io/Infusion/.

Keywords: Gaussian splatting · 3D inpainting · Monocular depth com-
pletion

1 Introduction

Recent developments in 3D representation [4, 45, 65, 96] have highlighted 3D
Gaussians [14,45,93,102,107] as an essential approach for novel view synthesis,
owing to the ability to produce photorealistic images with impressive rendering
speed. 3D Gaussians offer explicit representation and the capability for real-time
processing, which significantly enhances the practicality of editing 3D scenes. The
study of how to editing 3D Gaussians is becoming increasingly vital, particularly
for interactive downstream applications such as virtual and augmented reality
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(VR/AR). Our research focuses on the inpainting tasks that are crucial for the
seamless integration of edited elements, effectively filling in missing parts and
serving as a foundational operation for further manipulations.

(a)

Input Depth LaMa OursMarigold + Alignment

(b)

Original Gaussian Inpainted Gaussian Editing on Inpainted Gaussian 

Fig. 1: We present InFusion, an innovative approach that delivers efficient, photore-
alistic inpainting for 3D scenes with 3D Gaussians. As demonstrated in (a), InFusion
enables the seamless removal of 3D objects, along with user-friendly texture editing
and object insertion. Illustrated in (b), InFusion learns depth completion with diffusion
prior, significantly enhancing the depth inpainting quality for general objects. We show
the visualizations of the unprojected points, which exhibit substantial improvements
over baseline models [44,92].

Initial explorations into 3D Gaussian inpainting have focused on growing
Gaussians from the boundary of the uninpainted regions, using inpainted 2D
multiview images for guidance [13, 29, 106]. This method, however, tends to
produce blurred textures due to inconsistencies in the generation process, and the
growing can be quite slow. Notably, the training quality for Gaussian models is
significantly improved when the initial points are precisely positioned within the
3D scene, particularly on object surfaces. A practical solution to improve the fine-
tuning of Gaussians is to predetermine these initial points where inpainting will
occur, thereby simplifying the overall training process. In allocating initial points
for Gaussian inpainting, the role of depth map inpainting can be pivotal. The
ability to convert inpainted depth maps into point clouds facilitates a seamless
transition to 3D space, while also leveraging the potential to train on expansive
datasets [62,63,84].

To this end, we introduce InFusion, an innovative approach to 3D Gaussian
inpainting that leverages depth completion learned from diffusion models [1, 9,
75,79]. Our method demonstrates that with a robustly learned depth inpainting
model, we can accurately determine the placement of initial points, significantly



InFusion 3

elevating both the fidelity and efficiency of 3D Gaussian inpainting. In particular,
we first inpaint the depth in the reference view, then unproject the points into
the 3D space to achieve optimal initialization. However, current depth inpainting
methodologies [44,67,92,106] are often a limiting factor; commonly, they lack the
generality required to accurately complete object depth, or they produce depth
maps that misalign with the original, with errors amplified during unprojection.
In this work, we harness the power of pre-trained latent diffusion models, training
our depth inpainting model with diffusion-based priors to substantially enhance
the quality of our inpainting results. The model exhibits a marked improvement
in aligning with the unpainted regions and in reconstructing the depth of objects.
This enhanced alignment capability ensures a more coherent extension of the
existing geometry into the inpainted areas, leading to a seamless integration
within the 3D scene. Furthermore, to address challenging scenarios involving
large occlusions, we design InFusion with a progressive strategy that showcases
its capability to resolve such complex cases.

Our extensive experiments on various datasets, which include both forward-
facing and unbounded 360-degree scenes, demonstrate that our method outper-
forms the baseline approaches in terms of visual quality and inpainting speed,
being 20 times faster. With the effective depth inpainting framework based
on a pre-trained LDM, we demonstrate that the integration of 3D Gaussians
with depth inpainting offers an efficient and feasible approach to completing 3D
scenes. The strength of LDMs [75, 79] is pivotal to our approach, allowing our
model to inpaint not just the background but also to complete objects. Beyond
the core functionality, our method facilitates additional applications, such as
user-interactive texture inpainting, which enhances user engagement by allowing
direct input into the inpainting process. We also demonstrate the adaptability
of our method for downstream tasks, including scene manipulation and object
insertion, revealing the broad potential of our approach in the context of editing
and augmenting 3D spaces.

2 Related Work

2.1 Image and Video Inpainting

Image and video inpainting is an important editing task [18,48,70,72,75,81,104,
109] that aims to restore the missing regions within an image or video by inferring
visually consistent content. Traditional works for image inpainting [2,3,5,23,27,
94] typically involve extracting low-level features to restore damaged areas. Simi-
larly, in video inpainting [33,38,69,70,86,91,101], the restoration process is often
approached as an optimization task based on patch sampling. However, these
methods generally lack capacity when handling images with large missing regions
or corrupted videos with complex motions. Recently, deep learning has not only
empowered inpainting models to overcome these challenges in restoration but has
also expanded their capacity to generate new, semantically plausible content [76].
State-of-the-art image inpainting methods [18, 24, 48, 52, 60, 75, 81, 92, 108] excel
at effectively handling large mask inpainting tasks on high-resolution images;
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cutting-edge techniques on video inpainting [5,31,51,53,56,104,111,112,117,118]
commonly leverage flow-guided propagation and video Transformers to restore
missing parts in videos with natural and spatiotemporally coherent content.

2.2 3D Scene Inpainting

With the increasing accessibility of 3D reconstruction models, there is a growing
demand for 3D scene editing [16, 35, 49, 73, 110, 114, 120]. 3D scene inpainting
is one prominent application to fill in the missing parts within a 3D space,
such as removing objects from the scene and generating plausible geometry and
texture to complete the inpainted regions. Early inpainting works mainly focuses
on performing geometry completion [20–22, 34, 42, 43, 74, 90, 97, 103]. Recent
advancements in 3D inpainting techniques have facilitated the simultaneous
inpainting of both semantics and geometry by successfully handling the interplay
between these two aspects [100]. They can be broadly categorized into two groups
based on the adopted 3D representation: NeRF [64] and Gaussian Splatting
(GS) [46]. Some NeRF-based methods [47, 49, 58, 68, 87] leverage CLIP [77] or
DINO features [10] to learn 3D semantics for inpainting; others [15,55,66,67,95,
98,99] typically rely on 2D image inpainting models with depth or segmentation
priors to optimize NeRFs through neural fields rendering. In contrast to inpaint-
ing on NeRF, several methods [13, 39, 41, 106] explore inpainting techniques on
GS models, thanks to their notable advantages such as impressive rendering
efficiency and high-quality reconstruction. In our paper, we further improve the
efficiency and the quality of 3D inpainting within GS settings.

2.3 Diffusion Models for Monocular Depth

The explicit nature of 3D Gaussians makes the accurate allocation of inpainted
points within 3D scenes (e.g., object surfaces) highly beneficial for 3D scene
inpainting via optimization. A direct and effective solution is to utilize the 2D
depth prior of reference views obtained through monocular depth estimation [8,
28,32,54,78,105,119] or completion [6,30,57,59,61,85,113,115] models to initialize
the inpainted 3D points. Thanks to the superior performance of latent diffusion
models (LDM) [7,9,36,75,79,80,88,89], it opens up the possibility of enhancing
depth learning by leveraging or distilling the capabilities of these models. Several
methods have attempted to employ diffusion priors for estimating monocular
depth [26, 40, 44, 82, 83, 116]. However, learning from LDM for monocular depth
completion (or inpainting) receives less attention. While some methods [67, 99]
employ LaMa [92] to inpaint depth in the Jet color space, the precision of the
resulting inpainted depth map is compromised due to the lossy quantization
process when converting metric depth to the Jet color space. To the best of our
knowledge, our work is the first resolve this problem by training an accurate
depth completion model from diffusion prior [75].
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Fig. 2: Illustration of Infusion driven by Depth Inpainting. Top: To remove a
target from the optimized 3D Gaussians, our InFusion first inpaints a selected one-
view RGB image and applies the proposed diffusion model for depth inpainting to
the depth projection of the targeted 3D Gaussians. The progressive scheme addresses
view-dependent occlusion issues by utilizing other unobstructed viewpoints. Bottom:
A detailed view of the training pipeline for the depth inpainting U-Net is presented.
We employ a mask-driven denoising diffusion for training of the U-Net, which utilizes
a frozen latent tokenizer by taking the RGB image and depth map as inputs.

3 Method

3.1 Overview

Formally, 3D scenes can be represented by 3D Gaussians Θ , given a collection
of multi-view images I = {Ii}ni=1, accompanied by respective camera poses
Π = {πi}ni=1 [46]. Our objective is to edit the scene Θ with a particular focus
on inpainting, which aims to supplement an incomplete set of 3D Gaussians.
The complexity of 3D Gaussian inpainting arises due to potential inconsisten-
cies in the supervision provided by the 2D inpainted images from multiview.
Nevertheless, three key observations inspire our solution design to address the
challenges:

– The reconstruction quality of the optimized 3D Gaussians for novel view
synthesis is highly sensitive to the initialization, especially when the view
number is limited. Hence, we are motivated to carefully place the initial
points within the inpainting regions for enhancing the inpainting quality.

– Contemporary research indicates that the initialization of 3D Gaussians
with unprojected depth maps [12, 19, 71] yields promising results due to
explicitness. This observation implies that using inpainted depth images for
initializing the missing region could be advantageous.

– Incorporating a diffusion prior [1,9,44,75,79] into depth estimation markedly
improved accuracy especially for general objects. This finding indicates that
a similar approach can be adopted to leverage diffusion priors for benefiting
depth inpainting.
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Leveraging the key observations discussed earlier, our pipeline is illustrated
in Figure 2. Starting with the 3D Gaussians Θ, we first segment out and discard
unwanted Gaussians under the guidance of masks M = {mi}ni=1, which delineate
the targeted regions for modification. As mentioned, depth inpainting can play
a crucial role in determining the initial placement of Gaussians. To achieve
this, we select a reference view and perform inpainting on both the image
and its corresponding depth map to facilitate accurate unprojection. Existing
depth inpainting models may not possess the versatility needed for precise depth
completion or may produce depths that are inconsistent with the unpainted
regions. Such misalignments lead to suboptimal inpainting outcomes. To address
this, we develop a more generalized depth inpainting model that harnesses the
strengths of natural diffusion processes. In situations with substantial occlusion,
relying on a single reference view may prove insufficient. To solve this, our
approach incorporates multiple reference views through a progressive inpainting
strategy.

The remainder of our methods are structured as the following. We describe
the specifics of the diffusion-based depth completion model in Sec. 3.2 and use
this model to do 3D scene inpainting in Sec. 3.3. Finally, we provide the details
of progressive inpainting in Sec. 3.4.

3.2 Diffusion Models for Depth Completion

A precise and reliable depth inpainting model is essential to obtain a well-founded
set of initial points for inpainting Gaussians. We build our depth completion
model on latent diffusion models (LDMs) [79] for the strong priors due to their
training on extensive, internet-scale collections of images. Given a set of color
images and their corresponding depth, as well as various random masks, we seek
to learn a model with the ability to inpaint the masked depth. The following
three sections describe our diffusion-based depth completion model in details.
Diffusion Models We formulate depth completion as a task of conditional
denoising diffusion generation. The LDMs operates by conducting diffusion pro-
cesses within a lower-dimensional latent space, facilitated by a pre-trained Vari-
ational Auto-Encoder (VAE) E . Diffusion steps are performed on these noisy
latents where a denosing U-Net ϵθ iteratively removes noise to get clean latents.
During inference, the U-Net is applied to denoise pure Gaussian noise into a
clean latent. The image recovery is then achieved by passing these refined latents
through the VAE decoder D. This ensures that the depth completion model
benefits from the powerful generative capabilities inherent in LDMs while also
maintaining efficiency by operating within a compressed latent space.
Training We develop our model on top of a pre-trained text-to-image LDM
(Stable Diffusion [79]) to save computational resources and enhance training
efficiency. Modifying the existing model architecture, we adapt it for image-
conditioned depth completion tasks. An outline of the refined fine-tuning process
is presented in Fig. 2.

Our depth completion diffusion model accepts a trio of inputs: a depth map
d, a corresponding color image I, and a mask m. Leveraging the frozen VAE,
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we encode both the color image and the depth map into a latent space, which
serves as the foundation for training our conditional denoiser. To accommodate
the VAE encoder’s design for 3-channel (RGB) inputs when presented with
a single-channel depth map, we duplicate the depth information across three
channels to create an RGB-like representation. We apply a linear normalization
to ensure the depth values predominantly reside within the interval [−1, 1] fol-
lowing Marigold [44], thereby conforming to the VAE’s expected input range.
This normalization is executed via an affine transformation delineated as follows:

d′ =
d− d2
d98 − d2

× 2− 1, (1)

where d2 and d98 represent the 2nd and 98th percentiles of individual depth maps,
respectively. Such normalization facilitates the model’s concentration on affine-
invariant depth completion, enhancing the robustness of the algorithm against
scaling and translation.

The normalized depth d′ and the color image are first encoded into the latent
space with the encoder of the VAE:

z(d
′) = E(d′), z(I) = E(I), (2)

The encoder produces a 4-channel feature map that has a lower resolution than
the original input. To construct the image-conditioned depth completion model,
we initially resize the mask m to align with the dimensions of z(d

′), yielding
m′ = downsample(m). We then create a composite feature map by concatenating
the noisy latent depth code z

(d′)
t , the element-wise product of the clean latent

depth code and the downscaled mask z
(d′)
m = z(d

′) ⊙ m′, and the latent image
code z(I), along with m′, as follows:

zt = cat(z(d
′)

t , z(d
′)

m , z(I),m′), (3)

along the channel dimension, where z
(d′)
t = αtz

(d′) + σtϵ. The concatenated
feature map zt, comprising 4 + 4+ 4+ 1 = 13 channels, is subsequently fed into
the U-Net-based denoiser ϵθ.

At training time, U-Net parameters θ are updated by taking a data pair
(I, d,m) from the training set, noising d with sampled noise ϵ at a random
timestep t, computing the noise estimate ϵ̂ = ϵθ(zt) and minimizing the denoising
diffusion objective function following DDPM [36]:

L = Ed,ϵ,t∥ϵ− ϵθ(zt)∥22, (4)

where t ∈ {1, 2, ..., T} indexes the diffusion timesteps, ϵ ∈ N (0, I), and zt, the
noisy latent at timestep t, is calculated as Eq. (3).
Inference The inference of our depth completion model commences with an
input comprising a depth map d, its corresponding color image I, and a mask m
that delineates the target completion region. The color image I undergoes SDXL-
based [75] image inpainting, resulting in Ĩ = FI(I,m), where FI represents the
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image inpainting model. Subsequently, we generate the concatenated feature
map as defined in Eq. (3), which is then progressively refined according to
the fine-tuning scheme. Leveraging the non-Markovian sampling strategy from
DDIM [89] with re-spaced steps facilitates an accelerated inference. The final
depth map is then derived from the latent representation decoded by the VAE
decoder D, followed by channel-wise averaging for post-processing.

3.3 Inpainting 3D Gaussians with Diffusion Priors

The trained diffusion model generates plausible depth completions, thereby serv-
ing as an effective initialization for the 3D Gaussians. Upon removing undesired
points from 3D Gaussians, a set of reference views {Is(ij)}rj=1 is selected, where
s(ij) ∈ {1, 2, ..., n} and r denotes the total number of chosen views. For forward-
facing and certain 360-degree inward-facing datasets, a single reference view
(r = 1) is usually sufficient, whereas for more complex 360-degree scenes with
occlusions, multiple reference views (r > 1) are required. In instances with r > 1,
a progressive inpainting strategy is employed, detailed further in Sec. 3.4. The
current discussion is focused on the r = 1 scenario.

Assuming without loss of generality, for r = 1, we designate the s(i1)
th view

as the single reference. Initially, the color image Is(i1)⊙ms(i1) is inpainted using
an SDXL-based inpainting model to yield the restored image Ĩs(i1). The depth
for the s(i1)

th view is then determined analogous to color rendering in GS:

ds(i1) =
∑

i∈Ns(i1)

ziαi

i−1∏
j=1

(1− αj), (5)

where zi denotes the z-coordinate in the world coordinate system, and αi rep-
resents the density of the corresponding point. It is important to note that
the resulting depth d is incomplete, as it derives from Θ. To address this, we
apply our diffusion-based depth completion model Fd, which produces the refined
depth map:

d̃s(i1) = Fd(ds(i1), Ĩs(i1),ms(i1)). (6)

With the completed depth map d̃s(i1), the inpainted image Ĩs(i1), and the corre-
sponding camera pose Πs(i1), we unproject d̃s(i1) and Ĩs(i1) from image space
to 3D coordinates to form a colored point cloud Ps(i1). This point cloud is
then merged with the original 3D Gaussian point cloud to achieve a robust
initialization Θ′ for subsequent GS fine-tuning.

Ultimately, the preliminary Gaussian model Θ′ are fine-tuned merely 50∼150
iterations to yield the final Gaussian model Θ̃, using solely the selected view
image Is(i1). The optimization is also guided by L1 combined with D-SSIM at
the s(i1)

th view:

Ls(i1) = (1− λ)∥I ′s(i1) − Ĩs(i1)∥1 + λ · D-SSIM(I ′s(i1), Ĩs(i1)), (7)
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where I ′s(i1) denotes the image rendered from the s(i1)
th viewpoint. We set λ =

0.2 across all experiments and provide comprehensive details of the learning
schedule and additional experimental settings in Sec. 4.1.

3.4 Progressive Inpainting

For occlusion-rich, complex scenes, multiple reference views (r > 1) are impera-
tive. To solve these challenges, we implement a progressive inpainting approach.
Commencing with the initial reference view s(i1) from the selected views S =
{s(i1), s(i2), ..., s(ir)}, we apply Gaussian inpainting as delineated in Sec. 3.3.
Subsequent to this, we render the color image, depth map, and associated mask
from the next reference view s(i2). This process is iterated, employing Gaussian
inpainting for each successive reference view until the view s(ir) is addressed.
This progressive technique effectively accommodates the complexities, especially
for occlusions.

4 Experiments

4.1 Experiments Setup

Training settings To train a diffusion model with broad generalizability for
depth inpainting and to facilitate generalized Gaussian inpainting, we train our
LDM models using the SceneFlow dataset [62], which comprises FlyingThings
and Driving scenes. This dataset offers an extensive collection of over 100,000
frames, each accompanied by ground truth depth, and rendered from a vari-
ety of synthetic sequences. During training, masks are randomly generated for
each iteration using either a square, random strokes, or a combination of both
techniques. We initialize the LDM with pre-trained depth prediction weights
sourced from the Marigold [44]. We also tested other pre-trained weight which is
presented in the supplementary. The training process spans 200 epochs, with an
initial learning rate of 1e-3, which is scheduled to decay after every 50 epochs.
Utilizing eight A100 GPUs, the training process is completed within one day.
Evaluation settings We evaluate our method across a variety of datasets,
which include forward-facing scenes and the more complex unbounded 360-
degree scenes. For the forward-facing datasets, we adhere to the rigorous evalu-
ation settings established by SPIn-NeRF [67]. To further demonstrate the text-
guided 3D inpainting capabilities of our method, we also introduce our own
captured sequences including large occlusion between objects. The challenging
unbounded 3D scenes are taken from the Mip-NeRF [4], featuring large central
objects within realistic backgrounds, and the 3DGS, which includes a variety of
intricate objects from free-moving camera angles. These datasets are particularly
challenging for 3D inpainting. We emphasize that our LDM depth inpainting
methods were not trained on any of these datasets. For scene masking, we used
masks from SAM-Track [17], dilating them by 9 pixels to reliably remove any
undesired parts.
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Input Masked Gaussian OursSPIn-NeRF Gaussian-Grouping

Fig. 3: Qualitative Comparison with Baselines. Zoom in for details. Our method
exhibits sharp textures that maintain 3D coherence, whereas baseline approaches often
yield details that appear blurred.

Baseline selection Our method has been benchmarked against three distinct
baselines, each representing a different approach to inpainting. Spin-NeRF [67]
stands out as one of the best NeRF-based methods for 3D inpainting, offering 3D-
aware results. For techniques leveraging 3D Gaussians, Gaussian-grouping [106]
is the state-of-the-art, building on the InstructNeRF2NeRF [35] framework to
incorporate a pre-trained diffusion model for the inpainting task. Lastly, we
include a critical baseline where we forgo the depth diffusion inpainting process
and instead directly optimize 3D scenes using the inpainted reference image with
the aid of Stable Diffusion XL [75].

4.2 Results Comparison

We conduct comparison with baseline methods in several aspects. For our quan-
titative analysis, we evaluate based on two key metrics: Image quality and
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Input Masked Gaussians SPIn-NeRF Gaussian-Grouping Ours

Fig. 4: Qualitative Comparison with Baselines. We delve into more challenging
scenarios, including those with multi-object occlusion, where our method uniquely
stands out by accurately inpainting the obscured missing segments.

Speed. Image quality is evaluated following the previous works; we report
the LPIPS and FID scores for inpainted scenes following the settings in SPIn-
Nerf [67]. As detailed in Tab. 1, our method outperforms the baseline techniques
in both metrics, achieving the best scores. In terms of speed, our method demon-
strates a significant advantage. Thanks to the precision of our initial inpainted
points and the efficiency of our fine-tuning process—which necessitates only a
minimal number of iterations (around 100)—our approach is considerably faster
than baseline methods.

Fig. 3 illustrates a side-by-side comparison of the inpainted results and cor-
responding novel views generated by our method against those from baseline
methods. While baselines are capable of reconstructing the broad outlines of
missing regions, they often yield textures that lack sharpness. Our approach,
on the other hand, consistently produces fine-detailed textures across all views.
Moreover, as shown in Fig. 4, our method can handle more difficult cases which
include multi-object occlusion.

Masked Gaussians SPIn-NeRF Gaussians Grouping Ours
LPIPS ↓ 0.594 0.465 0.454 0.421
FID ↓ 278.32 156.64 123.48 92.62
Time ↓ 20min 5h 20min 40s

Table 1: Quantitative evaluation. We conducted a quantitative evaluation of 3D
inpainting techniques on the inpainted areas of held-out views from the SPIn-NeRF
dataset. Our method achieves optimal results in perceptual metric (LPIPS) and feature-
based statistical distance (FID). Additionally, our method significantly reduces the
optimization time compared to previous methods.
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Fig. 5: Ablation study on depth inpainting, we present comparative results against
widely-used other baselines, along with the corresponding point cloud visualizations.
The comparisons distinctly reveal that our approach successfully inpaints shapes that
are correctly aligned with the existing geometry.

Furthermore, we extend our comparative analysis to include additional ca-
pabilities of our method relative to the baselines. Owing to our method’s uti-
lization of the reference image, it inherently supports interactive 3D texture
inpainting—an operation the baseline methods cannot accommodate. Addition-
ally, our LDM-based approach facilitates object completion in forward-facing
scenes. These advanced functionalities are exemplified in the application section
of this paper.

4.3 Ablation Study

In order to validate the components within our pipeline, we conducted a series
of ablation studies on the key design elements.
Depth Inpainting: A common approach prior to our work involved using
image-based inpainting methods, such as LaMa or SDXL Inpainting, for depth
inpainting [67,99]. However, because of the domain gap and the model capability,
the inpainted results are less accurate as in Fig. 5 and Fig. 1. Another stream
involves using monocular depth estimation followed by depth alignment [29]. As
depicted in Fig. 5, this method often results in depth discontinuities within the
inpainted regions, leading to misalignment with the scene’s original depth. While
depth alignment techniques can mitigate this error, significant discrepancies
persist.
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Initial Reference Pair Novel Views

Original Inpainted Input w/o prog w/ prog

Fig. 6: Ablation study on progressive inpainting. InFusion can adeptly handle
inpainting tasks for views that substantially deviate from the initial reference frames.

Input Vanilla InFusion w/ User Interactive Editing

Fig. 7: User-interactive Texture Inpainting. InFusion allows users to modify the
appearance and texture of targeted areas with ease.

Progressive InFusion: Progressive design has a direct impact on performance
for difficult cases. As evidenced in our results, augmenting the number of views
enhances the handling of occlusions (Fig. 6). Nonetheless, this boost in per-
formance comes at the expense of increased inference time. In simpler scenes,
where the task is to remove the outermost object, utilizing a single reference
view suffices.

4.4 Applications

To showcase the practical utility of our proposed method, we present two key
downstream applications:
Interactive Texture Editing Our framework facilitates user-interactive tex-
ture editing within inpainted regions by allowing modifications to the reference
image. As illustrated in Fig. 7, users can seamlessly integrate custom text into
3D scenes, enhancing the personalization of the 3D environment.
Object Insertion Leveraging our diffusion-based depth inpainting approach,
we enable effortless object insertion within frontal-face scenes, as depicted in
Fig. 8. This capability extends to the insertion of user-selected objects into the
inpainted 3D scenes, offering a versatile tool for scene customization.
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Original Scenes Object Insertion Inpainted Points

Fig. 8: Object Insertion. Through editing a single image, users are able to project
objects into a real three-dimensional scene. This process seamlessly integrates virtual
objects into the physical environment, offering an intuitive tool for scene customization.

Original 3D Scene NVS of Inpainted Scene

Fig. 9: Limitations. As the lighting of the surrounding region increasingly differs from
the reference, the inpainted area becomes less harmonious with these views. InFusion
struggles to adapt inpainted regions to variations in lighting conditions.

4.5 Limitation

While the proposed method achieves impressive results in 3D inpainting, it en-
counters two main limitations: first, in scenarios with significant lighting changes
across various angles, the inpainted sections can struggle to integrate flawlessly
with adjacent areas, as highlighted in Fig. 9; second, the method falls short
in text-guided inpainting of highly complex objects within 360-degree scenes,
limited by the current consistency of inpainting models.

5 Conclusion

In conclusion, our proposed methodology, InFusion, effectively delivers high-
quality and efficient inpainting for 3D scenes using Gaussian models. Our eval-
uations, both quantitative and qualitative, attest to its performance and ease of
use. Moreover, we demonstrate that incorporating diffusion priors significantly
enhances our depth inpainting model. We are confident that this improved depth
inpainting model holds promise for a variety of 3D applications, particularly in
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the realm of novel view synthesis. However, our method currently has limitations
in handling variations in lighting and reconstructing highly complex structured
objects. Despite these challenges, our approach forges a connection between
LDM and 3D scene editing. This synergy harbors significant potential for future
advancements and optimizations.
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The appendix are structured as follows: We begin with a detailed description
of our implementation, including the specifics of our training configurations and
the outlier removal process for the point cloud. Subsequently, we undertake an
in-depth examination of various issues discussed within the paper. To conclude,
we provide a broader set of results, encompassing a wider array of scenes and
viewpoints.

1 Implementation Details

1.1 Training details

The Depth inpainting model is initialized with the Marigold [44] weights. The
architecture of the neural network is consistent with that of Stable Diffusion
v1.5 [79], with the exception of the first convolutional layer. Moreover, during
both training and inference phases, the input to the text encoder is persistently
an empty string. The UNet has 9 additional input channels (4 for the encoded
masked-depth, 4 for the guided encoded image and 1 for the mask itself) whose
weights were zero-initialized. During training, we generate synthetic masks and,
in 30% mask everything. In the context of data processing, we maintain the
original aspect ratio of the images during both the training and inference stages,
resizing them to a maximum resolution of 768 pixels on the longest side.

Input Depth From SD v1.5 From Marigold

Fig. 1: Analysis on Pre-trained Weights.

1.2 Outliers removal

we unproject depth map and reference image from image space to 3D coor-
dinates to form a colored point cloud. Before this point cloud is merged into
original 3D Gaussian point cloud, we need process outliers to improve rendered
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image quality. To eliminate Gaussian outliers along the edges of the mask, we
initially construct a KDTree from the unprojected point cloud. Subsequently, this
KDTree is employed to locate the nearest points within the original point cloud,
returning points from the original cloud that are within a specified distance
threshold. Subsequently, we utilize the ′remove_radius_outlier′ method from
the point cloud data (pcd) library to identify points in the original point cloud
that have an insufficient number of neighbors within a specified radius. An
intersection of these points and the similar points previously determined using a
KDTree is performed, thereby efficiently removing Gaussian outliers at the edges
of the mask. Additionally, there are various Gaussian segmentation [11,25,37,50,
106] techniques that can be employed for outlier removal, taking advantage of
the explicit properties of Gaussian models. Nevertheless, these are not the focal
point of the present study and will not be deliberated here.

2 Analysis
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Fig. 2: Analysis on Depth Inpainting. It is evident that the image-based inpainting
models, lacking proper guidance, fail to adequately complete the geometric details.
Regarding the monocular estimation methods, while a depth alignment method is
implemented, they often lead to discontinuities within the inpainted regions

2.1 Analysis on pre-trained weights

For the task of depth completion, we employed two distinct sets of initial weights:
one derived from Marigold and the other based on Stable Diffusion v1.5. As
demonstrated in Fig. 1, we display the results under conditions of equivalent data
volume and identical training epochs. It is discerned that models initialized with
weights from Stable Diffusion v1.5 encountered greater challenges in mastering
the depth completion task, a difficulty that was particularly pronounced in
complex scenes. In contrast, models that began with Marigold weights exhibited
superior proficiency in completing depth, due to prior training on depth maps
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that reduced the gap between the RGB and depth domains. Following the same
training regimen, these models demonstrated an enhanced ability for depth
completion and achieved better alignment with the input images.

Novel ViewsReference Image

Fig. 3: Qualitative Results. Zoom in for details. Our method exhibits sharp textures
that maintain 3D coherence. We respectfully invite you to view the video featured on
the webpage within our supplementary materials

2.2 Analysis on depth inpainting

We include feature additional results, comparing our method with various cutting-
edge baselines, such as SD XL inpainting [75] and DepthAnything [105], with
a focus on alignment accuracy. As shown in Fig. 2, while SD XL inpainting
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yields visually appealing results in the RGB domain, a closer inspection of the
reprojected point clouds reveals noticeable inaccuracies, akin to those observed
in LaMa. Similarly, DepthAnything struggles with discontinuities, leading to a
pronounced gap between inpainted areas and their adjacent regions, much like
the issues seen with MariGold. Consequently, our learned depth inpainting is
critical in securing high-fidelity results.

3 More Results

As shown in Fig. 3, we present the single reference images for several scenes ,
along with multiple novel views, to validate the robust 3D consistency achieved
by InFusion. Additionally, we have consolidated all scenes into a webpage
included in our supplementary materials and extend an invitation for you to
view them.
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