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Abstract:  

Non-Hermitian optics has revealed a series of counterintuitive phenomena with profound implications for 

sensing, lasing, and light manipulation. While the non-Hermiticity of Hamitonians is well-recognized, recent 

advancements in non-Hermitian physics have broadened to include scattering matrices, uncovering 

phenomena such as simultaneous lasing and coherent perfect absorption (CPA), reflectionless scattering 

modes (RSMs), and coherent chaos control. Despite these developments, the investigation has 

predominantly focused on static and symmetric configurations, leaving the dynamic properties of 

non-Hermitian scattering in detuned systems largely unexplored. Bridging this gap, we extend certain 

stationary non-Hermitian scattering phenomena to detuned systems. We delve into the interplay between 

bi-directional RSMs and RSM exceptional points (EPs), and elucidate the global existence conditions for 

RSMs under detuning. Moreover, we introduces a novel category of EPs, characterized by the coalescence 

of transmission peaks, emerging independent with the presence of Hamiltonian EPs. The transmission EPs 

(TEPs) exhibit flat-top lineshape and can be extended to a square-shaped spectrum when detuning is 

involved, accompanied by a distinctive phase transition. Significantly, we demonstrate the applications of 

the TEPs in a one-dimensional coupled cavity system, engineered to enhance sensing robustness against 

environmental instabilities such as laser frequency drifts, which can exceed 10 MHz. This capability 

represents a substantial improvement over traditional sensing methods and an important improvement of 



fragile EP sensors. Our findings not only contribute to the broader understanding of non-Hermitian 

scattering phenomena but also paves the way for future advancements in non-Hermitian sensing 

technologies. 

  



I. INTRODUCTION 

 Owing to the abundance and controllable non-conservative processes in optical systems, non-Hermitian 

optics has attracted tremendous interests and inspired a host of exotic phenomenon [1–6] with gain and loss 

engineering, such as loss-induced transparency [7], laser reviving [8], laser-absorbers [9], unconventional 

topologies [10,11], to name only a few. A central topic of these advancements is the EP, known as the 

spectral coalescences of both eigenvalues and eigenvectors of non-Hermitian operators, triggering exciting 

applications such as improved sensing [12–15], chiral response [16–18] and single mode lasers [19–21].  

 Recently, the dialogue has expanded beyond classical Hamiltonian EPs to degeneracies associated with 

the non-Hermitian scattering matrix, particularly absorbing EPs [22,23] that have been observed to support 

electromagnetic induced transparency lineshapes. Based on these insights, phenomena such as coherent 

perfect absorption (CPA) and its generalization, RSMs gained their own EPs [24–26], exhibiting a unique 

quartic lineshape [27] which enables chiral absorption [22] and the suppression of backscattering [26]. 

However, discussions on these scattering-related EPs have primarily been confined to stationary and 

geometrically symmetric coupled systems without detuning, thereby omitting the critical dynamic properties 

essential for applications in sensing and beyond. 

 EPs are characterized by a nonlinear transition where the parametric response can be unprecedented 

high [28]. This sensitivity, while beneficial for sensing applications, limits the utility of EP-based sensors 

due to their susceptibility to fabrication errors and structural instability. Therefore, new strategies for robust 

EP sensing, such as considering exceptional surfaces [29–31], is quite desired for the practical high sensitive 

applications. 

 In this Letter, we explore various non-Hermitian scattering phenomenon in symmetric and detuned 

systems, by both the widely used temporal coupled mode theory (TCMT) and a rigorous scattering matrix 

approach. We first dissect the stationary behavior of RSMs, encompassing the bi-directional RSMs, RSM 

EPs, and the global RSM existing conditions with detuning. Next, we propose the concept of transmission 



exceptional points (TEPs) and its relationship with transmission maximum. We discovered that TEPs persist 

even in the absence of the Hamitonian EPs, exhibiting distinctive phase transition, detuning symmetry and 

the square-shaped spectrum. For practical application, we induce a TEP within an one-dimensional 

non-Hermitian coupled cavity, where the detuning is introduced by linear motions. This configuration yields 

an abnormal flat-top spectrum, which we propose could significantly enhance the sensing robustness, 

ensuring operational stability amidst challenges such as probing laser frequency drifts exceeding 10 MHz, 

which surpasses the capabilities of traditional cavity-based sensors. This work offers a broader 

understanding of non-Hermitian scattering engineering and paves the way for robust EP sensing, potentially 

revolutionizing the development of non-Hermitian optical EP devices and their application to other coupled 

entities. 

II. RESULT 

TCMT model    

Due to the simplicity and comprehensible physical picture, TCMT formalism has been widely used in 

describing weak-coupled on-chip whispering gallery mode (WGM) cavity systems (Fig. 1a) especially for 

the modeling of the EPs [4,5]. However, although the spatial one-dimensional cavity system (Fig. 1b) 

coupled through transmitted light (in contrast to the evanescent coupling of WGMs) would share similar 

nontrivial behavior with the WGM modes, it still relies more on simple scattering models for analysis, thus 

lacking descriptions of critical conditions for some special phenomena. We start from the Hamitonian of the 

coupled mode equations [27]: 
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Where 1,2  and 1,2  denote the resonant angular frequencies and total loss rates (including intrinsic losses 

1,2  and radiative losses 1, 2c c ) of the two sub-cavities.  

 According to quantum scattering formalism [27,32], the corresponding 2 2  scattering matrix of H 



within linear approximation could be written as:  
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Where 1,2r  and t  denote the reflection and transmission coefficients of two probing ports, respectively. 

1,2 1,2 1,2 / 2i     with 1,2 1,2    . The difference between 1  and 2  is the detuning, which 

quantifies the extent of resonance mismatch. For instance, in coupled ring microcavities, it can arise from 

discrepancies in refractive indices or lengths due to temperature variations or stress, or in symmetrically 

coupled Fabry-Pérot (FP) cavities, from the displacement of the coupling mirrors. 

 Based on Eqs. (1-2), various types of exceptional points could be predicted when the system keep 

stationary, i.e., 1 2    . For example, the coalescence of eigenvalues of the Hamitonian corresponds to a 

Hamitonian EP, the degeneracy of the zeros of the scattering matrix correspond to an absorption EP. In 

particular, CPA EP or RSM EP occurs when the absorption EP or the reflection zeros drop to the real axis of 

complex plane [22,24,27]. In the following text, we will use loss analysis as a starting point to explore the 

connections between several non Hermitian scattering phenomena, and then extend them to detuned systems. 

In order to avoid the errors caused by the TCMT approximation, we adopt the rigorous scattering matrix 

method to verify the results of the analysis (see supplements). 

 



 

Fig. 1. RSM EP and bi-directional RSMs in the non-detuned coupled systems. (a) Coupled WGM 

microcavities. (b) Coupled FP cavities. (c) With critical coupling condition, an RSM EP occurs at 1  . 

Left: In the complex plane, two RSMs approach each other along the real axis as   decreases, 

subsequently bifurcating into two separate R-zeros. Right: The reflection spectrum as a function of  . 

Parameters: 1 50 MHz  , 2 100 MHz  , 1 200 MHzc  , 2 350 MHzc  . (d) Under the condition of 

loss proportional, the evolution of real and imaginary parts of the R-zeros with   upon illumination from 

the two ports. The right and bottom projections respectively show the behavior of quadratic splitting for the 

real and imaginary parts of R-zeros as   varies. The unique bi-directional RSM occurs at 1  , 

highlighted by an orange sphere. The two gray lines on the left side, of equal length, represent equal 

distances between the R-zeros and the complex plane origin before the R-zeros coalesce. (e) Corresponding 

reflection spectra of (d) with several specific  . It is evident that the proportional losses ensure that the 

reflections from two ports are always identical for any   when 0  . Parameters: 1 50 MHz  , 

2 100 MHz  , 1 150 MHzc  , 2 300 MHzc  .  



RSM properties without detuning 

Reflection elimination is a desirable target as it could avoid unwanted signal echoes in photonic and 

microwave networks and enable secure information transmission and analog computation [33,34]. The RSM 

is used to describe the zero-reflection phenomenon [24], which has been observed in metamaterials [33,35–

37], microresonators [22,27,38] and magnonics [34], revealing surprising applications as programmable 

routers [33], unidirectional invisibility [39], thermal mapping [37] and coherent control of chaos [38,40]. 

Theoretically, RSMs could be taken as a direct result of critical coupling [41], \emph{e.g.}, the incident 

coupling equals to the total loss (including inner loss and output loss) for a lossy FP cavity. But the RSMs 

are usually unidirectional, \emph(i.e.), only one incident direction without reflection, except for purely 

lossless symmetric FP cavities or central mirror mediated asymmetric cavities [24]. Here, we show that the 

bi-directional RSMs how to survive in lossy coupled cavities with proper parametric design. 

 Taking the case of incidence at port 1 as an example, for a lossy cavity without detuning ( 1,2, 1, 2 0c c   

and 1 2    ), 1,2 0r   yields: 
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RSMs call for purely real 
R0  that could exist in two situations. The first situation is a single RSM at 

0  , which requires: 

 RSM,1 1 1 2 1 1

1
,  

2
c c                                         (4) 

Similarly we have  RSM,2 2 2 1

1

2
c      for the port-2 incidence scenario. The second situation is when 
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As shown by the left panel of Fig. 1(c), the R-zeros always hold a purely real number when 
2 2    if the 

critical coupling is satisfied. A quartic reflection lineshape (as shown by the right panel of Fig. 1(c)) appears 



when 2 2    where the two RSMs coalesce at 0   and the so-called RSM EP occurs. The 

degeneracy behavior of RSM EP are convenient to observe by the coalesce of reflection dips. Once entering 

the regime of 
2 2   , all the RSMs vanish.  

 Moreover, if 1 2  =0 ( 0)r r   , we get the bi-directional RSM conditions with RSM,1 RSM,2  : 
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Where   denotes the asymmetry of the system. We term Eq. (6) as a loss proportional condition which 

determines the symmetric reflection for two ports even if the overall structure is asymmetric ( 1 2 , 

1 2c c  ). This condition means the product of R-zeros for both incident directions is equal, manifesting as 

identical distance between R-zeros and the origin before they become purely imaginary (Fig. 1(d)). 

Decreasing  , the RSMs of two ports coincident at the real plane when 
bi-RSM  , where both the ports 

become reflectionless, as shown by Fig. 1(e). 

 Above discussions elucidate that the bi-directional RSM EP, defined as the simultaneous occurrence of 

RSM EPs and bidirectional RSMs, can exclusively manifest in lossless ( 1 2 0   ), structural symmetric 

( 1 1c c  ) systems. In addition, we note that some previous works have attributed the unidirectional RSMs 

to the EPs of permuted scattering matrix [35,37,39,42]. Here we can see that the RSMs are always 

unidirectional except for the Eqs. (6-7) are satisfied. And it has been argued that the EP of a higher 

dimension permuted scattering matrix is no longer correspond to an RSM [24]。 

Global RSM existence with detuning 

Now we turn to the situation of 1 2  . For simplicity, we take an anti-symmetric detuning 

2 0 0 1        . The analysis of where the RSM could survive with detuning aids in manipulating the 

global characteristics of RSMs through detuning. Considering the reflection at port 1 as an example, Fig. 2(a) 

maps the parameter space of 1c   to delineate where RSMs occur. In the regime where 1 1c  , the 



incident cavity is undercoupled, forbidding the existence of RSMs for any values of   and  . For 

1 1c  , RSMs manifest in the blue region where RSM  , but vanish in the orange region where 

RSM  . 

 

Fig. 2. RSM existence condition with detuning. (a) Illustration of 1~ c   2-dimensional parameter space. 

The gray shadowed region forbidden any RSMs, the blue region allows the RSMs beyond 0   and the 

orange region forbidden them. (b)-(e) Top panels: the motion of R-zeros with detuning for the point 1~4 in 

(a). Bottom panels: reflection spectra before (blue lines) and after (gray lines) detuning for points 1~4. The 

gray arrows, hollow triangles, and solid triangles represent detuning, R-zeros, and RSMs, respectively.  

 Specifically, with RSM   and critical coupling (as depicted in Fig. 2(b) at point 1), two R-zeros, 

initially coalesced at the origin, diverge from the real axis under detuning, leading to the disappearance of 

RSMs. Similarly, point 2 in Fig. 2(c) represents a scenario where critical coupling is maintained without 

equality, resulting in the simultaneous vanishing of two previously separated RSMs. At a more general 

position (point 3), although there was no RSM at the beginning, detuning can lead an R-zero to the real axis, 

giving rise to an new RSM, as shown in Fig. 2(d). This means that the critical coupling ceases to be a 

necessary condition for the existence of RSMs at non-zero  . Finally for point 4, Fig. 2(e) elucidates that 

two RSMs originally on opposite sides of the real axis cannot be brought to it through detuning, precluding 

the emergence of new RSMs.  



Transmission maximum and TEP without detuning 

The RSMs allow one to design signal transmission without unwanted reflection signals from one or both 

sides. Furthermore, the high efficiency of the communication devices demands high transmission. We start 

from the transmission spectrum without detuning. According to Eq. (2) The highest transmission for fixed 

parameters 
1,2  and varied   reads (see supplements for derivation): 
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Fig. 3(a) gives the comparison of ( )maxT   with different 1,2 . It is worth noting that when 1 2    (here 

we name it loss matching condition),  
max

T   becomes a constant equals to Eq. (8) that is independent of 

 . This means that as long as the losses of the two sub-cavities match each other, the maximum 

transmission at any frequency position will remain at the same level no matter how the coupling strength 

changes. 

 On the other hand, two transmission peaks would coalesce to a single at 0   when (see supplements 

for derivation): 
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Eq. (10) defines a transmission EP (TEP) characterized by the square-root dependence of the transmission 

peak frequency on the coupling strength by, as shown by the top panel of Fig. 3(b) and 3(c). To our best 

knowledge, this kind of EP has not been well-described before. In contrast to the description in ref. [27], the 

transmission peak is not actually situated at the poles of the S-matrix, and the point where the transmission 

peaks merge is not the coalesce of the poles. An intuitive counterexample emerges when 1 2   , under 

which, for a finite  , scattering poles never coalesce, hence precluding the presence of Hamitonian EPs. 

However, as demonstrated in Fig. 3(c), TEPs do exist and merge with Tmax as Eq. (9) is equivalent to Eq. 

(10).  



 

Fig. 3. Transmission maximum and TEPs without detuning. (a) Dependence of maxT  on   with 

different 2 . The green line shows that when loss match, the maximum transmission is a constant. (b) Top 

panel: Transmission peak frequencies as a function of coupling strength when 1 2   . The TEP occurs 

when TEP  . Bottom panel: The transmission spectrum with different   and they coalesce at a TEP, 

featuring by a quartic lineshape. As   continues to increase, the single peak transmission touches the 

maximum at Tmax  and then gradually decrease. The vertical gray dotted lines denote the coupling strength 

corresponds to the maximum transmission. (c) When loss matching condition 1 2    holds, TEP Tmax  , 

where the top of the quartic line shape coincides with Tmax. (d) A TEP meets a bi-directional RSM EP when 

1 2    and the inner loss is totally removed. The fitting results use quartic (blue dashed) and Lorentzian 

(gray dashed) functions . Parameters: 1 100 MHz  , 2 50 MHz  , 1 300 MHzc  , 2c  is the variable. 

 The transmission spectra with different   (bottom panels of Fig. 3(b-c)) demonstrate that the 

prominent feature of TEPs is the flat-top quartic lineshape ( 4( 0) ( )T T     ), which is similar to the CPA 

EP [27] and RSM EP [24] but not rely on special loss settings. When 2 100 MHz  , as   gradually 

decreases from 5 TEP , the two transmission peaks (
TP ) gradually approach and increase. Once the system 

bypasses the TEP , they will merge into a single peak and continue to increase until Tmax , and then 



gradually decrease with larger  . Especially, when 1 2   , the quartic TEP directly corresponds to the 

maximum of transmission spectrum. 

 According to Eq.(8), only if 1 2 0   , emph{i.e.}, the cavity is totally lossless, maxmax[ ( ) 1]T    

with 1 2 / 2c c  , at which the Tmax is coincident with the bi-directional RSM. Furthermore, if the 

coupling losses are symmetric ( 1 2c c  ), the critical coupling, proportional losses and loss matching 

condition coincident and thus the bi-directional RSM EP, Tmax and TEP occurs simultaneously (Fig. 3(d)). 

Beyond this critical scenario, the one-port RSM and maximum transmission could also coexist when the 

incident cavity is lossless ( 1  or 2  vanishes), which is of great significance for non-Hermitian filter 

design.  

 In practical optical applications, people are more interested in the spectrum characteristics rather than 

the commonly discussed resonant modes. In systems with inexact parity-time symmetry, the scattering poles 

and zeros do not form complex conjugate pairs [43], leading to an inherent deviation of the spectrum peaks 

from the resonant modes in purely lossy systems. This deviation has recently inspired the idea of using the 

spectral degeneracy point to enhance the signal-to-noise ratio of non-Hermitian sensors [44]. In this binary 

system, the Hamitonian EP condition reads HEP 1 2| | /4     [5], which is always smaller than TEP  

except for the exact parity-time symmetric scenario (
1 2   ) where 

TEP HEP  . For example, consider a 

specific passive non-Hermitian coupled cavity only with unilateral loss, it can be derived that 

TEP HEP2  . Especially in the case of 
1 2   , the Hamitonian EP disappears, whereas the TEP still 

exists and maintain the square-root properties. Furthermore, due to its merging with Tmax, the resulting flat 

transmission peaks (varying with  ) facilitates calibration and control during practical measurements.  

Square-shaped scattering spectrum with detuning 

 Next, we demonstrate that the quartic transmission spectrum characterized by TEP could be generalized 

to a square-shaped transmission map and the square-root dependence of TP  on   is independent with its 



relationship with the detuning. Considering the anti-symmetric detuning situation where 1    and 

2    with 1 2     , the transmission spectrum given by TCMT could be simplified as: 
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Fig. 4. Transmission detuning symmetry and the TEP phase transition. (a) Dependence of the 

transmission peaks on detuning and mutual coupling strength. (b)-(d) Transmission spectra versus detuning 

and incident frequency with (a) TEP  , (b) TEP  , (c) TEP  . The blue lines denote the 

transmission peaks. As   decreases, the quadratic dependence of transmission peak frequency on the 

detuning transform into linear and then square-root dependence. 

 It is obvious that ( , ) ( , )T T      which indicates the transmission is always symmetric for any  . It 

should be emphasized that the detuning symmetry for T requires both the loss matching condition and 

anti-symmetric detuning which is natural in the one-dimensional coupled cavity (Without this premise the 

special symmetry would break, see supplements). As the parameters in Eq. (11) are all positive, the 

transmission peak points reads: 

2
2 2( )

4
TP 


                                  (12) 

  



 The discrepancy between transmission peaks and S-matrix poles could be elucidated here: the 

transmission peaks only demand that C attains a local minimum, while the scattering poles necessitate that 

( , ) 0C    . Based on Eq. (12), we give a three-dimensional dependency amongst ,  TP   and  , as 

depicted in Fig. 4(a). A phase transition phenomenon emerges around the critical condition distinguishing 

Tmax and TEP, / 2   , at which the transmission peak points vary linearly with detuning. This distinction 

effectively bifurcaites the behavior into regimes characterized by quadratic ( / 2   ) and square-root 

( / 2   ) dependencies, as illustrated by Fig. 4 (b-d). The TEP demonstrates a detuning response markedly 

distinct from that observed in Hamitonian EPs [5,14,45]. For both phenomena, as   increases, the 

frequency of the transmission peak and the eigenfrequency undergo quadratic changes with detuning, 

exhibiting an anti-crossing in the transmission maps. Diminishing  , in the former case, leads to a linear 

variation of the transmission peak frequency with detuning at the TEP, followed by the emergence of a 

lock-in-like region [46] insensitive to detuning upon further reduction. Conversely, in the latter case, the 

eigenfrequency responds to detuning with a square-root behavior at the Hamitonian EP, evolving towards a 

linear response as   continues to decrease. Fig. 4(d) reveals that outside the detuning-insensitive zone 

associated with TEP, an enhanced square-root response is observed, akin to the EP-enhanced Sagnac 

effect [14,15]. Moreover, this detuning-insensitive zone has a boundary as the coupling decreases, which, 

according to Eq. (12), occurs at / 2   .  

 It is noteworthy that the detuning symmetry elucidated here and the square-shaped transmission spectra 

depicted in Fig. 4(c) are also present in the reflection spectra. However, their occurrence in the reflection 

spectra necessitates an additional condition of critical coupling (See supplements). Additionally, the phase 

transition of TEP with loss matching condition, while superficially similar to the band characteristics of 

non-Hermitian photonic crystal slabs [47], is fundamentally different. There the horizontal axis represented 

by the wave vector essentially reflects the coupling strength but here the horizontal axis of the TEP spectrum 

map is detuning.  



Roubustness given by the square-shaped spectrum  

Metrological applications utilizing a single cavity critically depend on a movable mirror to transduce 

displacement and vibration into detectable variations in the light wave phase or intensity [48]. Nonetheless, 

the constancy of the probe laser frequency, indispensable for high-precision measurements, is compromised 

by mechanical instabilities and thermal perturbations. To counteract these fluctuations, sophisticated 

frequency stabilization mechanisms, including injection locking and active feedback loops [49], are 

mandated. However, these supplementary apparatus often contribute to system bulkiness, rendering the 

minimization of their footprint a paramount objective in the design of streamlined metrological devices. 

 The detuning of the one-dimensional cavity consists of two sub-cavities comes from the asymmetric 

cavity lengths, which could also be used for measuring displacements or vibrations by the central mirror 

movements. For example, it is an effective platform to achieve quantum Fock state read-out [50]. Here we 

take the simplest case of 1 2 0    and 1 2c c  , where both the R and T spectrum have quartic 

properties to expound our robust metrology protocol. 

 

FIG. 5. Comparison of displacement sensing via linear and square-shaped spectra. The 



three-dimensional plots illustrate the dependence of transmission on displacement and incident frequency for 

(a) a single FP cavity and (b) a non-Hermitian coupled cavity, respectively. Left insets depict the 

corresponding sensing systems. Right inset of (a) gives the displacement signal. In (a) and (b), points A and 

B represent the light intensities at two displacement positions under unperturbed frequency conditions, while 

A' and B' denote the responses at an alternate frequency position following perturbation. Panels (c)-(e) 

display the detuning responses of both systems to an input displacement signal, subject to random frequency 

disturbances of magnitudes (c) 1 MHz, (d) 5 MHz, and (e) 10 MHz, respectively. 

 Fig. 5(a) illustrates the relationship among the transmission of a single FP cavity, incident frequency and 

central mirror displacement, widely applied in fundamental detection devices such as displacement and 

acceleration detection, due to its high sensitivity and excellent linear response Typically, the detection 

approach involves irradiating the cavity with a narrow-band laser near one peak, such as at point A (not 

necessarily at the peak), whereupon displacement causes a reduction in light intensity to point B. However, 

should the laser frequency jitter, the light intensity oscillates between points A, B, A', and B', rendering the 

displacement readout unstable. In contrast, employing the proposed square-shaped spectrum for detection, as 

depicted in Fig. 5(b), ensures stable light intensity response to displacement within a certain range of 

frequency jitter, as the intensity at points A and B is virtually indistinguishable from that at A' and B'. For 

instance, applying a sinusoidal vibration signal ( ) sinc( )d t t  to the central mirror, both detection methods 

can replicate it through variations in light intensity ( )T t , yet exhibit marked differences under varying 

degrees of frequency disturbance, as shown in Figs. 5(c)-(e) for f  equals to 1 MHz, 5 MHz, and 10 MHz. 

It is evident that with increasing frequency perturbation, the response of the Hermitian cavity quickly 

becomes overwhelmed by noise, whereas the non-Hermitian cavity demonstrates robust resistance to 

frequency noise. These results highlight the self-stabilizing capability of square spectral response-based 

displacement or vibration detection, potentially reducing the footprint required for frequency stabilization 

equipment. 



Conclusion 

In conclusion, this study broadens the scope of non-Hermitian scattering explorations to encompass dynamic 

and detuned systems. The robustness of our findings is demonstrated through both analytical methods, 

employing TCMT and a rigorous scattering matrix approach. Leveraging three specific loss conditions, we 

explored several unique non-Hermitian scattering phenomena and the connections among them, both static 

and dynamic. The critical coupling condition ensures that R-zeros remain on the real axis in the complex 

plane until their eventual coalescence. The loss proportional condition mandates identical reflection at the 

central frequency for two ports, highlighting the intricacies of system symmetry. Most notably, the loss 

matching condition unveils multifaceted functionalities: without detuning, it aligns the TEPs with the 

transmission maxima, maintaining constant maximum transmission across the spectral range. With detuning, 

this condition preserves the transmission detuning symmetry, showcasing its versatility. 

 A groundbreaking discovery in our study is the ubiquitous quartic spectral lineshapes, which previously 

identified as the unique behavior of RSM EPs or CPA EPs. In the detuned case, it evolves to a square-shaped 

spectral map and exhibit distinct phase transition properties. We designed a practical application scenario 

that significantly enhances the robustness of displacment sensing against environmental instabilities, such as 

laser frequency drifts. This represents a considerable improvement over existing sensing technologies, 

reinforcing the practicality and utility of EP-based sensors. Overall, this work not only expands the 

theoretical framework of non-Hermitian scattering but also lays the groundwork for the development of 

more sophisticated and dependable non-Hermitian sensors, paving the way for future innovations in optical 

physics.  
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Supplementary material of Enhanced Robustness via Loss Engineering 

in Detuned Non-Hermitian Scattering Systems 

S1. Rigorous scattering analysis for the one-dimensional coupled cavity 

In the one-dimensional scattering system, the phase accumulation during a round trip in the left or right 

sub-cavity are given by: 

](

( , ) exp[ 2 ( )]

exp[ 2 ( ), ) )(

L

R v

v x ik l x

x i k i l x



 

   

    
                             (S1) 

Calculate the effective reflection and transmission coefficients of the middle and right mirrors as a whole: 
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Then the total reflection and transmission spectra under left incident waves take the form: 
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The rigorous SMA could help us check the efficiency of TCMT for the one-dimensional cavity. The 

radiative coupling through the side mirrors with reflection coefficients Lr  and Rr  are 

1, 2 ,2ln( ) /c c L Rr cL   , where L  is the whole cavity length. It should be noted that the mutual coupling 

constant here is derived as acosh(1/ ) /cr cL   based on the Hamitonian EP condition with the help of the 

scattering matrix approach. As shown by Fig. S1, the TCMT works well at weak coupling regime before 

1,2 , but when the coupling becomes stronger, a little discrepancy occurs. 



 

Fig. S1. Comparison of reflection, transmission and absorption spectra of the coupled FP system obtained by 

TCMT and SMA under weak and strong coupling regimes. Beyond 1  , a deviation (shown by the light 

yellow region) between the two arises, indicating that the TCMT approximation gradually fails. Parameters: 

1 50   MHz, 2 100   MHz, 1 150c   MHz, 2 300c   MHz. 

  



S2. Derivation of transmission maximum and the transmission EP  

Transmission maximum. Considering the two sub-cavities do not have detuning and the central mirror is 

transmissive ( 0  ), the transmission spectrum given by TCMT is written as: 
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where 0    , 1 1 1c    , 2 2 2c    , 
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   . for any   and specific δ, the 

maximum transmission could be obtained: 
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Where 2 B   corresponds to the maximum. Eq. (S5) gives Fig. 2(a) in the main text. It is obvious that 

max max( ) (0 )T T    and the equal sign holds only if the loss matching condition 
1  2  is satisfied, 

where 1
m
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 , as depicted by the green line in Fig. 2(a) in the main text. 

For the symmetric case with 
1 2 1 2 1 2 ,  , c c c              , the device could achieve a highest 

transmission   2

max
(0 )cT      when 2   .  

 

Transmission EP. For any δ and specific  , according to Eq. (S4), the peak frequency of transmission 

could be obtained by find the minimum of 4 2 22M B     . It can be simplified as: 
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The peak frequency reads: 
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It follows that the two transmission peaks coalesce at: 
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When TEP  , the single peak remains at 0  . The prominent feature of TEP is the quartic transmission 

spectrum, which can be proved by: 
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S3. Detuning symmetry for transmission spectra 

 The detuning symmetry of transmission spectrum have two premises: 

 1) loss matching condition 1 2     ; 

 2) anti-symmetric detuning 
1 2 1,2 1,2. ( )D D D        .  

 Fig. S2 plots the comparison of the symmetric situation and two asymmetric situations without the 

premise 1) or 2). 

 

Fig. S2. The transmission map as a function of   and  . (a) The symmetric case. (b) Non-symmetric case 

with 1 2

3

4
   . (c) Non-symmetric case with 2 12D D . 

  



S4. Detuning symmetry for reflection spectra 

 The reflection spectrum map with detuning could also be symmetric. We derive its criteria by solving 

1 1( , ) ( , )R R     ( 0  ), which yields (we have * *
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It follows that: 
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                                  (S10) 

 In order for symmetric reflection maps to be realized, both of the loss matching condition and critical 

coupling condition must be simultaneously satisfied. An intuitive understanding is that when critical 

coupling is satisfied, the critical coupling makes the distribution of the R-zeros being symmetrically 

centered around the origin. Conversely, symmetric transmission maps ( ( , ) ( , )T T     ) necessitate 

solely the satisfaction of 1 2   , as the numerator of T is independent of   and  .  

 It should be emphasized that the R-zeros could not intuitively correspond to the reflection behavior 

before it comes to the real axis. As a result, As evidence, considering the symmetric detuning   caused by 

the movement of central mirror. 1 0r   yields that: 
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It follows that: 
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In Fig. S3, we present the R1 spectrum for with/without detuning when 1 1 2c    where Eq. (S12) is 

simplifies as 
2 2

R-zero 2

1

2
i      . In such scenarios, detuning merely results in the lateral, opposed 

displacement of the two R-zeros in the complex plane, without introducing variation in the imaginary 

components. Nonetheless, the two reflection peaks forfeit their detuning symmetry when   comes, 



indicating that the magnitude of the imaginary parts of the zeros does not correspond to the reflectance peak 

heights or bandwidths. 

.  

Fig. S3. Reflection spectra with/without detuning when 1 1 2c   . The R-zeros move horizontally but 

the two reflection peak becomes asymmetric. 

  



S5. RSM existence conditions with cavity detuning 

 As dictated in the main text, the RSM1,2 exist when 
1,2   for the detuned coupled models. Here we 

analyze the number of RSMs with different parameters. RSMs call for purely real 
R-zero  (Eq. (S12)), it 

requires that: 
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Where  1 1 1 2 / 2c      is the RSM condition for the port 1 without detuning. Eq. (S10) ensures that 

the RSMs with detuning demands: 
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 The first condition of Eq.(S14) is the overcoupling requirement inherited from the no detuning situation. 

The second condition indicates that when   exceeds the criterion of the RSM without detuning, it is 

possible to achieve one or more RSMs by inducing detuning at (as illustrated in Fig. 2(d) of the main text 

and Fig. S4): 
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Conversely, for 
1  , RSM is no longer achievable. This result indicates that there is only one RSM for a 

given   except for the critical coupling scenario.  

 Fig. S4 shows the characteristics of the reflection spectrum of the port 1 with cavity detuning but ignore 

the incident cavity loss (
1 0  ). The RSM numbers under different parameters has analyzed by the R-zero 

plots in the main text, here exhibit additional properties of RSMs. On the one hand, it is clearly that the 

RSM existence condition requires 
1   otherwise there could only exist one R-zero at 0   and 0  . 

On the other hand, when total loss 
1 2( = )c   holds and 

1 0.5  c   (critical coupling), the reflection 

map exhibits a symmetric behavior against   and the RSM always occurs at 0  .  



 

Fig. S4. Reflection map of the port 1 with detuning, as a function of the external coupling and inner coupling. 

1 0.5  c   and 
1   are obviously the phase transition boundaries for RSMs. The detuning is indicated 

by x . In particular, the square reflection spectrum located in the center arises when 
1 0  . 

  

 


