FRACTIONAL-DIFFRACTION-OPTICS CAUCHY PROBLEM: RESOLVENT-FUNCTION SOLUTION OF THE MATRIX INTEGRAL EQUATION

Murat O. Mamchuev ${ }^{1}$, Felix N. Chukhovskii ${ }^{1}$

Abstract

The fractional diffraction optics theory has been elaborated using the Green function technique. The optics-fractional equation describing the diffraction X-ray scattering by imperfect crystals has been derived as the fractional matrix integral Fredholm-Volterra equation of the second kind. In the paper, to solve the Cauchy problems, the Liouville-Neumann-type series formalism has been used to build up the matrix Resolvent-function solution. In the case when the imperfect crystal-lattice elastic displacement field is the linear function $f(\mathbf{R})=a x+b$, $a, b=$ const, the explicit solution of the diffraction-optics Cauchy problem has been obtained and analyzed for arbitrary fractional-order-parameter $\alpha, \alpha \in(0,1]$.

MSC 2010: Primary 35F35;
Secondary 35F40, 35A08, 35C15, 35L40, 45F05, 35Q70, 35Q92;
Key Words and Phrases: Diffraction optics system of fractional differential equations, the Gerasimov-Caputo differential operator, the Cauchy problem, matrix Resolvent-function solution, matrix Fredholm-Volterra integral equation of the second kind, the Liouville-Neumann-type series;

1 Introduction

Usually, the diffraction optics (DO) has been formulated and based on the known differential Takagi-Taupin (TT) equations when the fractional-order-parameter $\alpha=1$ (see, e.g., [1], [2, 3], 4], 5], [6, [7], 8] for details). At the same time, in the last decades, substantial progress has been achieved in mathematical physics using equations with fractional-order derivatives [9, [10], [11, [12, [13], 14], [15], [16]. Indeed, the different theory-physics models for solving the Cauchy problems using systems of fractional differential equations have been treated in [17], [18], [19], [20], [21], [22], [23], [24], [25].

Following this logic, one can push one step further in the DO now founded on the TT-type equations with the fractional derivatives of the arbitrary order $\alpha \in(0,1]$ along the crystal depth.

In the paper, using Green's function technique, one derives the matrix Fredholm-Volterra integral equation of the second kind and builds up the matrix Resolvent-function solution of the DO Cauchy problem. A goal of working is to develop the integral formalism of the DO theory earlier proposed
by authors [26] and to build up the matrix Resovent-function solution of the fractional Cauchy problem.

As an example, for an arbitrary fractional-order-parameter (FOP) $\alpha, \alpha \in$ $(0,1]$, when the crystal-lattice displacement field function $f(\mathbf{R})$ is a linear function, namely: $f(\mathbf{R})=a x+b, a, b=$ const, one finds out an explicit analytical solution of the DO Cauchy problem.

Accordingly, the original system of fractional DO equations has the form (cf. [26])

$$
\begin{gather*}
\left(\begin{array}{cc}
\partial_{0 t}^{\alpha}-\frac{\partial}{\partial x} & 0 \\
0 & \partial_{0 t}^{\alpha}+\frac{\partial}{\partial x}
\end{array}\right)\binom{E_{0}(x, t)}{E_{h}(x, t)}= \\
=i\left(\begin{array}{cc}
\gamma & \sigma \exp [i f(x, t)] \\
\sigma \exp [-i f(x, t)] & \gamma
\end{array}\right)\binom{E_{0}(x, t)}{E_{h}(x, t)}, \tag{1.1}
\end{gather*}
$$

with the DO Cauchy problem's condition

$$
\begin{equation*}
\binom{E_{0}(x, 0)}{E_{h}(x, 0)}=\binom{\varphi_{0}(x)}{\varphi_{h}(x)}, \quad-\infty<x<\infty \tag{1.2}
\end{equation*}
$$

where $\varphi_{0}(x)$ and $\varphi_{h}(x)$ are the given real-valued functions.

2 Preliminaries

Following up to [13], the Gerasimov-Caputo fractional derivative beginning at point a is determined as (cf. [13])

$$
\begin{equation*}
\partial_{a t}^{\nu} g(t)=\operatorname{sgn}^{n}(t-a) D_{a t}^{\nu-n} \frac{d^{n}}{d t^{n}} g(t), \quad n-1<\nu \leq n, \quad n \in \mathbb{N}, \tag{2.1}
\end{equation*}
$$

where $D_{a y}^{\nu}$ is the Riemann-Liouville fractional integro-differential operator of order ν is equal to

$$
D_{a y}^{\nu} g(y)=\frac{\operatorname{sgn}(y-a)}{\Gamma(-\nu)} \int_{a}^{y} \frac{g(s) d s}{|y-s|^{\nu+1}}, \quad \nu<0
$$

for $\nu \geq 0$ the operator $D_{a y}^{\nu}$ can be determined by recursive relation

$$
\begin{equation*}
D_{a y}^{\nu} g(y)=\operatorname{sgn}(y-a) \frac{d}{d y} D_{a y}^{\nu-1} g(y), \quad \nu \geq 0 \tag{2.2}
\end{equation*}
$$

$\Gamma(z)$ is the Euler gamma-function.
Note that in the limit case of the FOP $\alpha=1$ the operator $\partial_{0 t}^{\alpha} g(t)$ reduces to the standard derivative $\frac{d}{d t} g(t)$.

Formula for the composition of operators of fractional integration is valid as 13

$$
\begin{equation*}
D_{0 t}^{\nu} D_{0 t}^{\delta} g(t)=D_{0 t}^{\nu+\delta} g(t), \quad \nu<0, \quad \delta<0 . \tag{2.3}
\end{equation*}
$$

There is a formula for fractional integration by parts, namely [13]:

$$
\begin{equation*}
\int_{0}^{t} g(t, \xi) D_{0 \xi}^{\nu} h(\xi) d \xi=\int_{0}^{t} h(\xi) D_{t \xi}^{\nu} g(t, \xi) d \xi, \quad \nu<0 \tag{2.4}
\end{equation*}
$$

Further, we denote the Fourier transform of the function $f(x)$ by $(f(x))_{k}$, the Laplace transform of the function $g(t)$ by $(g(t))_{p}$, and respectively, the double Fourier-Laplace transform of the function $h(x, t)$ by $(h(x, t))_{k, p}$.

By using the following formula [14, p. 98]

$$
\left[\partial_{0 t}^{\alpha} H(x, t)\right]_{p}=p^{\alpha}[H(x, t)]_{p}-p^{\alpha-1} H(x, 0),
$$

one can get

$$
\begin{equation*}
\left[O_{ \pm}^{\alpha} H(x, t)\right]_{k, p}=\left(p^{\alpha} \pm i k\right)[H(x, t)]_{k, p}-p^{\alpha-1}[H(x, 0)]_{k}, \tag{2.5}
\end{equation*}
$$

The following series

$$
\phi(\beta, \rho ; z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\beta k+\rho)}, \quad \beta>-1, \quad \rho \in \mathbb{C}
$$

defines the Wright function [27] which depends on two parameters ρ and μ.
Accordingly, the following differentiation formula is valid [27]:

$$
\begin{equation*}
\frac{d}{d z} \phi(\beta, \rho ; z)=\phi(\beta, \beta+\rho ; z), \quad \beta>-1 . \tag{2.6}
\end{equation*}
$$

Let $\beta \in(0,1)$, and $\mu, \nu \in \mathbb{R}$, and the inequality takes place

$$
\beta \in(0,1), \quad 0 \leq|\arg \lambda|<\frac{1-\beta}{2} \pi,
$$

then the formula

$$
\begin{equation*}
D_{0 y}^{\nu} y^{\mu-1} \phi\left(-\beta, \mu ;-\lambda y^{-\beta}\right)=y^{\mu-\nu-1} \phi\left(-\beta, \mu-\nu ;-\lambda y^{-\beta}\right) \tag{2.7}
\end{equation*}
$$

is valid [28].
The following formula take place [29]

$$
\begin{equation*}
\left(y^{\delta-1} \phi\left(-\beta, \mu ;-t y^{-\beta}\right)\right)_{p}=p^{-\mu} e^{-p^{\beta} t} . \tag{2.8}
\end{equation*}
$$

Correspondingly, the integrals

$$
\begin{gather*}
\int_{0}^{\infty} \frac{\cos k x}{k^{2}+\rho^{2}} d k=\frac{\pi}{2 \rho} e^{-\rho x} \tag{2.9}\\
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{e^{-x \sqrt{p^{2}+\sigma^{2}}} e^{p t} d p}{\sqrt{p^{2}+\sigma^{2}}}=J_{0}\left(\sigma \sqrt{t^{2}-x^{2}}\right) \Theta(t-|x|), \tag{2.10}
\end{gather*}
$$

are held on, where $\Theta(x)$ is the Heaviside function, and $J_{0}(x)$ is the zero-order Bessel function of real argument.

The properties-in-details of the function

$$
G_{\alpha, \gamma}(x, t)=\frac{1}{2} \int_{|x|}^{\infty} e^{i \gamma \tau} J_{0}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right) \frac{1}{t} \phi\left(-\alpha, 0 ;-\frac{\tau}{t^{\alpha}}\right) d \tau
$$

have been analyzed in the 30].
Note, in limit of the FOP $\alpha=1$, the function $G_{\alpha, \gamma}(x, t)$ can be cast into the form

$$
\lim _{\alpha \rightarrow 1} G_{\alpha, \gamma}(x, t)=e^{i \gamma|x|} J_{0}\left(\sigma \sqrt{t^{2}-x^{2}}\right) \Theta(t-|x|)
$$

The estimate

$$
\begin{equation*}
\left|\frac{\partial^{m}}{\partial x^{m}} D_{0 t}^{\nu} G_{\alpha, \gamma}(x, t)\right| \leq C|x|^{-\theta} y^{\alpha(1-m+\theta)-\nu-1}, \quad \theta \geq 0 \tag{2.11}
\end{equation*}
$$

holds on for arbitrary $m \in \mathbb{N} \cup\{0\}$ and $\nu \in \mathbb{R}$, where C is the positive constant [30].

Accordingly, the following estimate

$$
\begin{equation*}
\left|\frac{\partial^{m}}{\partial x^{m}} D_{0 t}^{\nu} G_{\alpha, \gamma}(x, t)\right| \leq C \exp \left(-\sigma_{0}|x|^{\varepsilon} t^{-\alpha \varepsilon}\right), \tag{2.12}
\end{equation*}
$$

holds on as $|x| \rightarrow \infty$ for all $t<\infty$ 30, and for arbitrary $m \in \mathbb{N} \cup\{0\}, \nu \in \mathbb{R}$; here and further $\sigma_{0}<(1-\alpha) \alpha^{\alpha \varepsilon}, \varepsilon=\frac{1}{1-\alpha} ; C$ is the positive constant.

Lemma 2.1. [21, p. 172]. For $0<\mu, \nu<1$ the estimate

$$
\begin{equation*}
\int_{x-\delta_{1}}^{x+\delta}|x-y|^{\mu-1}|y-\xi|^{\nu-1} d y \leq C_{\gamma}|x-\xi|^{\gamma-1} \tag{2.13}
\end{equation*}
$$

holds on, where

$$
\gamma=\min \{\mu, \nu\}, \quad C_{\gamma}=\left[\frac{2}{\gamma}+B(\mu, \nu)\right]\left(\delta_{1}+\delta_{2}\right)^{\mu+\nu-\gamma}
$$

Lemma 2.2. [21, p. 176]. Let $0<\eta<s<t<T, \sigma_{2}<\sigma_{3}<\sigma_{1}$, then the inequality

$$
\begin{equation*}
\int_{x \pm \delta}^{ \pm \infty} \exp \left[-\frac{\sigma_{1}|x-y|^{\varepsilon}}{(t-s)^{\alpha \varepsilon}}\right] \exp \left[-\frac{\sigma_{2}|y-\xi|^{\varepsilon}}{(s-\eta)^{\alpha \varepsilon}}\right] d y \leq C \exp \left[-\frac{\sigma_{2}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right] \tag{2.14}
\end{equation*}
$$

takes place, where

$$
C=\frac{\sigma_{1}-\sigma_{3}}{\varepsilon T^{\varepsilon \alpha}} \delta^{1-\varepsilon} \exp \left[-\frac{\sigma_{1}-\sigma_{3}}{T^{\varepsilon \alpha}} \delta^{\varepsilon}\right] .
$$

Furthermore, one needs the following formulae (see [31, p. 201])

$$
\begin{gather*}
\int_{0}^{\tau} \frac{\eta}{\sqrt{\tau^{2}-\eta^{2}}} \cos \left(\rho \sqrt{\tau^{2}-\eta^{2}}\right) J_{0}(\sigma \eta) d \eta=\frac{1}{k} \sin (k \tau), \tag{2.15}\\
\int_{0}^{\tau} \frac{J_{1}(\sigma \eta)}{\sqrt{\tau^{2}-\eta^{2}}} \cos \left(\rho \sqrt{\tau^{2}-\eta^{2}}\right) d \eta=\frac{1}{\sigma \tau} \cos (\rho \tau)-\frac{1}{\sigma \tau} \cos (k \tau), \tag{2.16}
\end{gather*}
$$

where $k=\sqrt{\sigma^{2}+\rho^{2}}$.
Under formula (2.16), one can obtain

$$
\begin{gather*}
\int_{0}^{\tau} \sin \left(\rho \sqrt{\tau^{2}-\eta^{2}}\right) J_{1}(\sigma \eta) d \eta=\rho \int_{0}^{\tau}\left(\xi \int_{0}^{\xi} \frac{\cos \left(\rho \sqrt{\xi^{2}-\eta^{2}}\right)}{\sqrt{\xi^{2}-\eta^{2}}} J_{1}(\sigma \eta) d \eta\right) d \xi= \\
=\frac{\rho}{\sigma} \int_{0}^{\tau}[\cos (\rho \xi)-\cos (k \xi)] d \xi=\frac{1}{\sigma} \sin (\rho \tau)-\frac{\rho}{\sigma k} \sin (k \tau) \tag{2.17}
\end{gather*}
$$

The Stankovic's transformation integral (see [32, p. 84])

$$
\begin{equation*}
\int_{0}^{\infty} \exp (\lambda \tau) t^{\nu-1} \phi\left(-\mu, \nu ;-\tau t^{-\mu}\right) d \tau=t^{\mu+\nu-1} E_{\mu}\left(-\lambda t^{\mu} ; \mu+\nu\right) \tag{2.18}
\end{equation*}
$$

takes place for any $\lambda \in \mathbb{C}, \mu \in(0,1), \nu \in \mathbb{R}$, where

$$
E_{\rho}(z ; \mu)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\mu+\rho k)}
$$

is the Mittag-Leffler-type function [33, c. 117].

3 Matrix integral formalism of the DO Cauchy problem

Let us convert the DO Cauchy problem in the 'differential form' (1.1)(1.2) to the matrix Fredholm-Volterra-type integral equation of the second kind. The latter takes a special sense to build up the Resolvent-function solution of the DO Cauchy problem in terms of the Liouville-Neumanntype series, which in turn is very important to computer-aided modeling and recovering the crystal-lattice displacement field function $f(\mathbf{R})$ from the X-ray DO microtomography data.

The system of differential TT-type equations (1.1) may be rewritten into the form

$$
\left(\begin{array}{cc}
O_{-}^{\alpha}-i \gamma & 0 \tag{3.1}\\
0 & O_{+}^{\alpha}-i \gamma
\end{array}\right) \mathbf{E}=i \sigma \mathbf{K E}
$$

where

$$
\begin{gathered}
O_{+}^{\alpha}=\partial_{0 t}^{\alpha}+\frac{\partial}{\partial x}, \quad O_{-}^{\alpha}=\partial_{0 t}^{\alpha}-\frac{\partial}{\partial x}, \\
\mathbf{E} \equiv \mathbf{E}(x, t)=\binom{E_{0}(x, t)}{E_{h}(x, t)}, \quad \mathbf{K} \equiv \mathbf{K}(x, t)=\left(\begin{array}{cc}
0 & e^{i f(x, t)} \\
e^{-i f(x, t)} & 0
\end{array}\right) .
\end{gathered}
$$

Acting onto both sides of (3.1) by the operator $\operatorname{diag}\left(O_{+}^{\alpha}-i \gamma, O_{-}^{\alpha}-i \gamma\right)$, one obtains

$$
\begin{gather*}
\left(\begin{array}{cc}
O_{+}^{\alpha}-i \gamma & 0 \\
0 & O_{-}^{\alpha}-i \gamma
\end{array}\right)\left(\begin{array}{cc}
O_{-}^{\alpha}-i \gamma & 0 \\
0 & O_{+}^{\alpha}-i \gamma
\end{array}\right) \mathbf{E}= \\
=i \sigma\left(\begin{array}{cc}
O_{+}^{\alpha}-i \gamma & 0 \\
0 & O_{-}^{\alpha}-i \gamma
\end{array}\right) \mathbf{K E} \tag{3.2}
\end{gather*}
$$

and after some straightforward routine calculations, one finds out

$$
\begin{align*}
& \left(\begin{array}{cc}
O_{+}^{\alpha}-i \gamma & 0 \\
0 & O_{-}^{\alpha}-i \gamma
\end{array}\right) \mathbf{K E}=\left[\partial_{0 t}^{\alpha}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{\partial}{\partial x}-i \gamma\right](\mathbf{K E})=\partial_{0 t}^{\alpha}(\mathbf{K E})+ \\
& +\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left[\left(\frac{\partial}{\partial x} \mathbf{K}\right) \mathbf{E}+\mathbf{K}\left(\frac{\partial}{\partial x} \mathbf{E}\right)\right]+\mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right)-\mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right)-i \gamma \mathbf{K E}= \\
& =\mathbf{K}\left(\begin{array}{cc}
O_{-}^{\alpha}-i \gamma & 0 \\
0 & O_{+}^{\alpha}-i \gamma
\end{array}\right) \mathbf{E}+\partial_{0 t}^{\alpha}(\mathbf{K E})+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\frac{\partial}{\partial x} \mathbf{K}\right) \mathbf{E}-\mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right)= \\
& \quad=\mathbf{K}\left(\begin{array}{cc}
O_{-}^{\alpha}-i \gamma & 0 \\
0 & O_{+}^{\alpha}-i \gamma
\end{array}\right) \mathbf{E}+\left(\partial_{0 t}^{\alpha}+i f_{x}^{\prime}\right)(\mathbf{K E})-\mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right) . \tag{3.3}
\end{align*}
$$

The column vector $\mathbf{E}=\mathbf{E}(x, t)$ is nothing else the solution of Eq. (3.1) and \mathbf{K}^{2} is equal to Unit matrix, from Eq. (3.3) it directly follows

$$
i \sigma\left(\begin{array}{cc}
O_{+}^{\alpha}-i \gamma & 0 \\
0 & O_{-}^{\alpha}-i \gamma
\end{array}\right) \mathbf{K E}=-\sigma^{2} \mathbf{E}+i \sigma\left(\partial_{0 t}^{\alpha}+i f_{x}^{\prime}\right)(\mathbf{K E})-i \sigma \mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right)
$$

The last allows us to rewrite down Eq. (3.2) into the form

$$
\begin{gather*}
\left(\begin{array}{cc}
\left(O_{+}^{\alpha}-i \gamma\right)\left(O_{-}^{\alpha}-i \gamma\right)+\sigma^{2} & 0 \\
0 & \left(O_{-}^{\alpha}-i \gamma\right)\left(O_{+}^{\alpha}-i \gamma\right)+\sigma^{2}
\end{array}\right) \mathbf{E}= \\
=i \sigma\left(\partial_{0 t}^{\alpha}+i f_{x}^{\prime}\right)(\mathbf{K E})-i \sigma \mathbf{K}\left(\partial_{0 t}^{\alpha} \mathbf{E}\right) . \tag{3.4}
\end{gather*}
$$

Keeping in mind Eq.(2.5), and applying the double Fourier-Laplace transform to Eq. (3.4), one can obtain

$$
\begin{gather*}
{\left[\left(O_{+}^{\alpha}-i \gamma\right)\left(O_{-}^{\alpha}-i \gamma\right) E_{0}(x, t)\right]_{k, p}=\left(p^{\alpha}-i \gamma+i k\right)\left[\left(O_{-}^{\alpha}-i \gamma\right) E_{0}(x, t)\right]_{k, p}-} \\
-p^{\alpha-1}\left\{\left[\left(O_{-}^{\alpha}-i \gamma\right) E_{0}(x, t)\right]_{t=0}\right\}_{k}=\left(p^{\alpha}-i \gamma+i k\right)\left(p^{\alpha}-i \gamma-i k\right)\left[E_{0}(x, t)\right]_{k, p}- \\
-p^{\alpha-1}\left\{\left(p^{\alpha}-i \gamma+i k\right)\left[E_{0}(x, 0)\right]_{k}+i \sigma\left[e^{i f(x, 0)} E_{h}(x, 0)\right]_{k}\right\}, \tag{3.5}
\end{gather*}
$$

and

$$
\begin{align*}
& {\left[\left(O_{-}^{\alpha}-i \gamma\right)\left(O_{+}^{\alpha}-i \gamma\right) E_{h}(x, t)\right]_{k, p}=\left(p^{\alpha}-i \gamma-i k\right)\left(p^{\alpha}-i \gamma+i k\right)\left[E_{h}(x, t)\right]_{k, p}-} \\
& \quad-p^{\alpha-1}\left\{\left(p^{\alpha}-i \gamma-i k\right)\left[E_{h}(x, 0)\right]_{k}+i \sigma\left[e^{-i f(x, 0)} E_{0}(x, 0)\right]_{k}\right\} \tag{3.6}
\end{align*}
$$

Here, one has used the relationships (cf. (3.1))

$$
\begin{aligned}
{\left[\left(O_{-}^{\alpha}-i \gamma\right) E_{0}(x, t)\right]_{t=0} } & =i \sigma e^{i f(x, 0)} E_{h}(x, 0), \\
{\left[\left(O_{+}^{\alpha}-i \gamma\right) E_{h}(x, t)\right]_{t=0} } & =i \sigma e^{-i f(x, 0)} E_{0}(x, 0) .
\end{aligned}
$$

Thus from Eqs.(3.4) - (3.6) it directly follows

$$
\begin{gathered}
\binom{E_{0}(x, t)}{E_{h}(x, t)}_{k, p}=\frac{p^{\alpha-1}}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}} \times \\
\times\left\{\left(\begin{array}{cc}
p^{\alpha}-i \gamma+i k & 0 \\
0 & p^{\alpha}-i \gamma-i k
\end{array}\right)\binom{E_{0}(x, 0)}{E_{h}(x, 0)}_{k}+i \sigma\binom{e^{i f(x, 0)} E_{h}(x, 0)}{e^{-i f(x, 0)} E_{0}(x, 0)}_{k}\right\}+ \\
+\frac{1}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}}\left\{\left(\begin{array}{cc}
\partial_{0 t}^{\alpha}+i f_{x}^{\prime} & 0 \\
0 & \partial_{0 t}^{\alpha}+i f_{x}^{\prime}
\end{array}\right)\binom{i \sigma e^{i f} E_{h}(x, t)}{i \sigma e^{-i f} E_{0}(x, t)}-\right.
\end{gathered}
$$

$$
\left.-\left(\begin{array}{cc}
0 & i \sigma e^{i f} \tag{3.7}\\
i \sigma e^{-i f} & 0
\end{array}\right)\binom{\partial_{0 t}^{\alpha} E_{0}(x, t)}{\partial_{0 t}^{\alpha} E_{h}(x, t)}\right\}_{k, p} .
$$

Applying the Efros's theorem for operational calculus [34, p. 512], the equalities (2.6)-(2.10), and using the inverse double Fourier-Laplace transform, the following elations take place

$$
\begin{aligned}
& \left(\frac{1}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}}\right)_{x, t}=\frac{1}{i(2 \pi)^{2}} \int_{-i \infty}^{i \infty} d p \int_{-\infty}^{\infty} \frac{e^{p t+i k x}}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}} d k= \\
& =\frac{1}{2} \int_{|x|}^{\infty} e^{i \gamma \tau} J_{0}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right) \frac{1}{t} \phi\left(-\alpha, 0 ;-\frac{\tau}{t^{\alpha}}\right) d \tau=G_{\alpha, \gamma}(x, t), \\
& \left(\frac{p^{\alpha-1}}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}}\right)_{x, t}=\frac{1}{i(2 \pi)^{2}} \int_{-i \infty}^{i \infty} d p \int_{-\infty}^{\infty} \frac{p^{\alpha-1} e^{p t+i k x}}{\left(p^{\alpha}-i \gamma\right)^{2}+k^{2}+\sigma^{2}} d k= \\
& =D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x, t)=\frac{1}{2} \int_{|x|}^{\infty} e^{i \gamma \tau} J_{0}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right) t^{-\alpha} \phi\left(-\alpha, 1-\alpha ;-\frac{\tau}{t^{\alpha}}\right) d \tau .
\end{aligned}
$$

As a result, from (3.7) one obtains the DO integral matrix equation

$$
\begin{equation*}
\mathbf{E}(x, t)=\left(\mathbf{A}^{\alpha, \gamma} \mathbf{E}(x, t)\right)(x, t)+\left(\mathbf{B}^{\alpha, \gamma} \mathbf{E}(x, 0)\right)(x, t), \tag{3.8}
\end{equation*}
$$

where the following notations are introduced

$$
\begin{gathered}
\left(\mathbf{A}^{\alpha, \gamma} \mathbf{E}(x, t)\right)(x, t)=-i \sigma \int_{0}^{t} d v \int_{-\infty}^{\infty} G_{\alpha, \gamma}(x-u, t-v) \cdot\left\{D_{0 v}^{\alpha-1} \frac{\partial}{\partial v}[\mathbf{K}(u, v) \mathbf{E}(u, v)]+\right. \\
\left.+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left[\frac{\partial}{\partial u} \mathbf{K}(u, v)\right] \mathbf{E}(u, v)-\mathbf{K}(u, v) D_{0 v}^{\alpha-1} \frac{\partial}{\partial v} \mathbf{E}(u, v)\right\} d u \\
\left(\mathbf{B}^{\alpha, \gamma} \mathbf{E}(x, 0)\right)(x, t)=\int_{0}^{t} d v \int_{-\infty}^{\infty} D_{t v}^{\alpha-1} G_{\alpha, \gamma}(x-u, t-v) \times \\
\times\left(\begin{array}{cc}
O_{+}^{\alpha}-i \gamma & i \sigma e^{i f(u, 0)} \\
i \sigma e^{-i f(u, 0)} & O_{-}^{\alpha}-i \gamma
\end{array}\right) \mathbf{E}(u, 0) \delta(v) d u
\end{gathered}
$$

where $\delta(v)$ is the Dirac delta-function.

Using the formula for integration by parts and its fractional analogue (2.4), the estimates (2.11) and (2.12), definition of the fractional RiemannLiouville derivative, one finds out

$$
\begin{gather*}
\left(\mathbf{A}^{\alpha, \gamma} \mathbf{E}(x, t)\right)(x, t)=-i \sigma \int_{0}^{t} d v \int_{-\infty}^{\infty} \mathbf{K}_{1}(x, t ; u, v) \mathbf{E}(u, v) d u- \\
\quad-i \sigma \int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{K}(u, 0) \mathbf{E}(u, 0) d u \tag{3.9}
\end{gather*}
$$

where

$$
\begin{gathered}
\mathbf{K}_{1}(x, t ; u, v)=D_{v t}^{\alpha} G_{\alpha, \gamma}(x-u, t-v) \cdot \mathbf{K}(u, v)+ \\
+i f_{u}^{\prime}(u, v) \cdot G_{\alpha, \gamma}(x-u, t-v) \mathbf{K}(u, v)+D_{v t}^{\alpha}\left[G_{\alpha, \gamma}(x-u, t-v) \mathbf{K}(u, v)\right] .
\end{gathered}
$$

In view of (2.3) the $\left(\mathbf{B}^{\alpha, \gamma} \mathbf{E}(x, 0)\right)(x, t)$ may be rewritten as

$$
\begin{gather*}
\left(\mathbf{B}^{\alpha, \gamma} \mathbf{E}(x, 0)\right)(x, t)=-\int_{-\infty}^{\infty} D_{0 t}^{2 \alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{E}(u, 0) d u- \\
-i \gamma \int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{E}(u, 0) d u+ \\
+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{E}^{\prime}(u, 0) d u+ \\
+i \sigma \int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{K}(u, 0) \mathbf{E}(u, 0) d u \tag{3.10}
\end{gather*}
$$

Taking into account Eqs. (3.9), (3.10), the integral matrix equation (3.8) may be to reduce

$$
\begin{equation*}
\mathbf{E}(x, t)+i \sigma \int_{0}^{t} d v \int_{-\infty}^{\infty} \mathbf{K}_{1}(x, t ; u, v) \mathbf{E}(u, v) d u=\mathbf{F}(x, t) \tag{3.11}
\end{equation*}
$$

where the following notations are introduced

$$
\mathbf{F}(x, t)=\left(\mathbf{B}^{\alpha, \gamma} \mathbf{E}(x, 0)\right)(x, t)-i \sigma \int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} G_{\alpha, \gamma}(x-u, t) \mathbf{K}(u, 0) \mathbf{E}(u, 0) d u
$$

4 Matrix Resolvent-function solution of the DO Cauchy problem

Let $A(x)$ be the matrix with entries $a_{i j}(x)$. By notation $|A(x)|_{*}$ one denotes a scalar function taking the maximum absolute value of entries $a_{i j}(x)$ of the $\operatorname{matrix} A(x)$ for each x; i.e., $|A(x)|_{*}=\max _{i, j}\left|a_{i j}(x)\right|$.

Let $f(x, t)$ and $f_{t}(x, t)$ be the continuous, bounded functions.
From the Eqs. (2.11) - (2.14) one obtains following estimates for the matrix kernel function \mathbf{K}_{1}

$$
\begin{gather*}
\left|\mathbf{K}_{1}(x, t ; \xi, \eta)\right|_{*} \leq C|x-\xi|^{-\theta}(t-\eta)^{\beta-1} \tag{4.1}\\
\left|\mathbf{K}_{1}(x, t ; \xi, \eta)\right|_{*} \leq C(t-\eta)^{\beta-1} \exp \left[-\frac{\sigma_{0}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right] \tag{4.2}
\end{gather*}
$$

where $\beta=\alpha \theta, \theta \in(0,1), \sigma_{0}<(1-\alpha) \alpha^{\alpha \varepsilon}, \varepsilon=\frac{1}{1-\alpha}$.
Further, let us find out the corresponding estimates for iterative kernels functions, namely:

$$
\mathbf{K}_{n}(x, t ; \xi, \eta)=\int_{\eta}^{t} d v \int_{-\infty}^{\infty} \mathbf{K}_{n-1}(x, t ; u, v) \mathbf{K}_{1}(u, v ; \xi, \eta) d u .
$$

From estimates (4.1) and (4.2) it follows

$$
\begin{gather*}
\left|\mathbf{K}_{2}(x, t ; \xi, \eta)\right|_{*} \leq \\
\leq \int_{\eta}^{t} d v\left(\int_{x-\delta_{1}}^{x+\delta_{2}}+\int_{-\infty}^{x-\delta_{1}}+\int_{x+\delta_{2}}^{\infty}\right)\left|\mathbf{K}_{1}(x, t ; u, v) \mathbf{K}_{1}(u, v ; \xi, \eta)\right|_{*} d u \leq \\
\leq C C_{2, \beta, \theta}(t-\eta)^{2 \beta-1}\left(|x-\xi|^{-\theta}+\exp \left[-\frac{\sigma_{0}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right]\right), \tag{4.3}
\end{gather*}
$$

where

$$
C_{2, \beta, \theta}=\frac{\Gamma^{2}(\beta) C_{1-\theta}}{\Gamma(2 \beta)} .
$$

Accordingly, from (4.3), keeping in mind $0<e^{-s}<1$, for $s>0$, one obtains

$$
\begin{gather*}
\left|\mathbf{K}_{2}(x, t ; \xi, \eta)\right|_{*} \leq C C_{2, \beta, \theta}|x-\xi|^{-\theta}(t-\eta)^{2 \beta-1} \tag{4.4}\\
\left|\mathbf{K}_{2}(x, t ; \xi, \eta)\right|_{*} \leq C C_{2, \beta, \theta}(t-\eta)^{2 \beta-1} \exp \left[-\frac{\sigma_{0}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right] . \tag{4.5}
\end{gather*}
$$

Under the above, the following estimates take place

$$
\begin{gather*}
\left|\mathbf{K}_{n}(x, t ; \xi, \eta)\right|_{*} \leq C C_{n, \beta, \theta} \Gamma(n \beta)|x-\xi|^{-\theta}(t-\eta)^{n \beta-1} \tag{4.6}\\
\left|\mathbf{K}_{n}(x, t ; \xi, \eta)\right|_{*} \leq C C_{n, \beta, \theta}(t-\eta)^{n \beta-1} \exp \left[-\frac{\sigma_{0}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right] . \tag{4.7}
\end{gather*}
$$

where

$$
C_{n, \beta, \theta}=\frac{\Gamma^{n}(\beta) C_{1-\theta}^{n-1}}{\Gamma(n \beta)}
$$

The matrix Resolvent-function solution of the Eq. (3.11) takes the form

$$
\begin{equation*}
\mathbf{R}(x, t ; \xi, \eta)=\sum_{n=1}^{\infty} \mathbf{K}_{n}(x, t ; \xi, \eta) \tag{4.8}
\end{equation*}
$$

From estimates (4.1)-(4.7), it follows the Liouville-Neumann-type series (4.8) converges and can be estimated as a value of

$$
\begin{aligned}
|\mathbf{R}(x, t ; \xi, \eta)|_{*} & \leq C \Gamma(\beta)(t-\eta)^{\beta-1} E_{\beta}\left[C_{1-\theta} \Gamma(\beta)(t-\eta)^{\beta} ; \beta\right] \times \\
& \times\left(|x-\xi|^{-\theta}+\exp \left[-\frac{\sigma_{0}|x-\xi|^{\varepsilon}}{(t-\eta)^{\alpha \varepsilon}}\right]\right)
\end{aligned}
$$

On the other hand, since the Mittag-Leffler-type function $E_{\beta}(s ; \beta)$ is bounded on the interval $[0, T]$, the estimates of (4.1)-(4.2) are proved and valid also for the matrix Resolvent-function solution as a whole.

So, one can state the unique solution of the matrix integral Eq. (3.11) takes the form

$$
\mathbf{E}(x, t)=\mathbf{F}(x, t)+\int_{0}^{t} \int_{-\infty}^{+\infty} \mathbf{R}(x, t ; \xi, \eta) \mathbf{F}(\xi, \eta) d \xi d \eta
$$

5 The DO Cauchy problem. The FOP $\alpha=1$

In the case when FOP $\alpha=1$, the basic system (3.1) reduces to

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{\partial}{\partial t}-\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial t}+\frac{\partial}{\partial x}
\end{array}\right)\binom{E_{0}(x, t)}{E_{h}(x, t)}= \\
=i\left(\begin{array}{cc}
\gamma & \sigma \exp [i f(x, t)] \\
\sigma \exp [-i f(x, t)] & \gamma
\end{array}\right)\binom{E_{0}(x, t)}{E_{h}(x, t)} .
\end{gathered}
$$

As was shown earlier [26], one can find out that for $\alpha \rightarrow 1$ integral equation (3.8) can be written down into the form

$$
\mathbf{E}(x, t)=\left(\mathbf{A}^{1, \gamma} \mathbf{E}(x, t)\right)(x, t)+\left(\mathbf{B}^{1, \gamma} \mathbf{E}(x, 0)\right)(x, t),
$$

where

$$
\begin{aligned}
& \left(\mathbf{A}^{1, \gamma} \mathbf{E}(x, t)\right)(x, t)=i \sigma \int_{0}^{t} d v \int_{x-t+v}^{x+t-v} G_{1, \gamma}(x-u, t-v) \times \\
& \quad \times\left(\begin{array}{cc}
0 & O_{+} e^{i f(u, v)} \\
O_{-} e^{-i f(u, v)} & 0
\end{array}\right) \mathbf{E}(u, v) d u \\
& \left(\mathbf{B}^{1, \gamma} \mathbf{E}(x, 0)\right)(x, t)=\int_{0}^{t} d v \int_{x-t+v}^{x+t-v} G_{1, \gamma}(x-u, t-v) \times \\
& \quad \times\left(\begin{array}{cc}
O_{+}-i \gamma & i \sigma e^{i f(u, 0)} \\
i \sigma e^{-i f(u, 0)} & O_{-}-i \gamma
\end{array}\right) \delta(v) \mathbf{E}(u, 0) d u
\end{aligned}
$$

and respectively,

$$
G_{1, \gamma}(x, t)=\frac{1}{2} e^{i \gamma t} J_{0}\left(\sigma \sqrt{t^{2}-x^{2}}\right) \Theta[t-|x|] .
$$

6 The DO Cauchy problem. The crystal-lattice displacement field function $f(\mathbf{R})=a x+b$

Here we will build up a solution of the basic fractional DO Cauchy problem when the crystal-lattice displacement field function $f(\mathbf{R})=a x+b$.

After trivial exponentional substitutions for the wave amplitudes $E_{0}(x, t)$, $E_{h}(x, t)$, the system (1.1) can written down as (for simplicity, further, the same notations for the wave amplitudes $E_{0}(x, t), E_{h}(x, t)$, are to be saved)

$$
\begin{align*}
& \left(\partial_{0 t}^{\alpha}-\frac{\partial}{\partial x}\right) E_{0}(x, t)=i \gamma E_{0}(x, t)+i \sigma e^{i a x} E_{h}(x, t), \\
& \left(\partial_{0 t}^{\alpha}+\frac{\partial}{\partial x}\right) E_{h}(x, t)=i \sigma e^{-i a x} E_{0}(x, t)+i \gamma E_{h}(x, t) . \tag{6.1}
\end{align*}
$$

Substituting the functions $E_{0}(x, t), E_{h}(x, t)$ as

$$
E_{0}(x, t)=\exp \left(i \frac{a x}{2}\right) \mathcal{E}_{0}(x, t), \quad E_{h}(x, t)=\exp \left(-i \frac{a x}{2}\right) \mathcal{E}_{h}(x, t),
$$

one obtains

$$
\begin{align*}
& \left(\partial_{0 t}^{\alpha}-\frac{\partial}{\partial x}\right) \mathcal{E}_{0}(x, t)=i\left(\gamma+\frac{a}{2}\right) \mathcal{E}_{0}(x, t)+i \sigma \mathcal{E}_{h}(x, t), \\
& \left(\partial_{0 t}^{\alpha}+\frac{\partial}{\partial x}\right) \mathcal{E}_{h}(x, t)=i \sigma \mathcal{E}_{0}(x, t)+i\left(\gamma+\frac{a}{2}\right) \mathcal{E}_{h}(x, t), \tag{6.2}
\end{align*}
$$

and the initial condition

$$
\begin{equation*}
\binom{\mathcal{E}_{0}(x, 0)}{\mathcal{E}_{h}(x, 0)}=\binom{\psi_{0}(x)}{\psi_{h}(x)}=\binom{e^{-i a x / 2} \varphi_{0}(x)}{e^{i a x / 2} \varphi_{h}(x)}, \quad-\infty<x<\infty . \tag{6.3}
\end{equation*}
$$

Then, let us introduce the notations

$$
\begin{gather*}
\boldsymbol{\Gamma}(x, t)=\frac{1}{2} \int_{|x|}^{\infty} g(t, \tau) \mathbf{Q}(x, \tau) d \tau+\boldsymbol{\Gamma}_{0}(x, t) \tag{6.4}\\
\mathbf{Q}(x, \tau)=\left[\begin{array}{cc}
\left.-\sigma \frac{\tau-x}{\sqrt{\tau^{2}-x^{2}} J_{1}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right)} \begin{array}{cc}
i \sigma J_{0}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right) & -\sigma \frac{\tau+x}{\sqrt{\tau^{2}-x^{2}}} J_{1}\left(\sigma \sqrt{\tau^{2}-x^{2}}\right) \\
\Gamma_{0}(x, t)=g(t,|x|)\left[\begin{array}{cc}
\Theta(-x) & 0 \\
0 & \Theta(x)
\end{array}\right] \\
g(t, \tau)=\frac{e^{i(\gamma+a / 2) \tau}}{t} \phi\left(-\alpha, 0 ;-\tau t^{-\alpha}\right),
\end{array}\right]
\end{array},\right. \tag{6.5}\\
 \tag{6.6}\\
i
\end{gather*}
$$

$\Theta(x)$ is the Heaviside function, $J_{m}(z)$ is the m-order Bessel function of the argument z.

According to [25], the basic matrix solution of the DO Cauchy problem (6.2) - (6.3) has the form

$$
\begin{equation*}
\mathcal{E}(x, t)=\int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} \Gamma(x-\xi, t) \psi(\xi) d \xi, \tag{6.7}
\end{equation*}
$$

in the class of function

$$
\mathcal{E}(x, t) \in C(\bar{\Omega}), \quad \partial_{0 t}^{\alpha} \mathcal{E}(x, t), \frac{\partial}{\partial x} \mathcal{E}(x, t) \in C(\Omega),
$$

where $\psi(x)=\left[\psi_{0}(x), \psi_{h}(x)\right]^{t r} \in C(-\infty, \infty)$ is the function, which satisfies the Hölder condition, and the following relation as $|x| \rightarrow \infty$

$$
\psi(x)=O\left(\exp \left(\rho|x|^{\varepsilon}\right)\right) \quad \varepsilon=\frac{1}{1-\alpha}, \quad \rho<(1-\alpha)\left(\alpha T^{-1}\right)^{\frac{\alpha}{1-\alpha}} .
$$

Underline the solution to the Cauchy problem (6.2) - (6.3) is unique in the class of functions, which satisfy the condition

$$
\mathcal{E}(x, t)=O\left(\exp \left(k|x|^{\varepsilon}\right)\right), \quad \text { as } \quad|x| \rightarrow \infty,
$$

for some $k>0$.
From Eqs. (6.3) - (6.7) it follows the solution of the Cauchy problem (6.1), (1.2) can be cast into the form

$$
\begin{equation*}
\mathbf{E}(x, t)=\int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} \mathbf{G}(x, \xi, t) \varphi(\xi) d \xi, \tag{6.8}
\end{equation*}
$$

where the following notations are introduced

$$
\begin{gather*}
\mathbf{G}(x, \xi, t)=\frac{1}{2} \int_{|x-\xi|}^{\infty} g(t, \tau) \mathbf{S}(x, \xi, \tau) d \tau+\mathbf{G}_{0}(x, \xi, t), \tag{6.9}\\
\mathbf{S}(x, \xi, \tau)=\left[\begin{array}{cc}
-\sigma e^{i a X_{1} / 2} \frac{\tau-X_{1}}{\sqrt{\tau^{2}-X_{1}^{2}}} h_{1}\left(\tau, X_{1}\right) & i \sigma e^{i a X_{2} / 2} h_{0}\left(\tau, X_{1}\right) \\
i \sigma e^{-i a X_{2} / 2} h_{0}\left(\tau, X_{1}\right) & -\sigma e^{-i a X_{1} / 2} \frac{\tau+X_{1}}{\sqrt{\tau^{2}-X_{1}^{2}}} h_{1}\left(\tau, X_{1}\right)
\end{array}\right], \\
h_{0}\left(\tau, X_{1}\right)=J_{0}\left(\sigma \sqrt{\tau^{2}-X_{1}^{2}}\right), \\
h_{1}\left(\tau, X_{1}\right)=J_{1}\left(\sigma \sqrt{\tau^{2}-X_{1}^{2}}\right) \tag{6.10}\\
\mathbf{G}_{0}(x, \xi, t)=\left[\begin{array}{cc}
e^{-i \gamma X_{1}} \Theta\left(-X_{1}\right) & 0 \\
0 & e^{i \gamma X_{1}} \Theta\left(X_{1}\right)
\end{array}\right] \frac{1}{t} \phi\left(-\alpha, 0 ;-\left|X_{1}\right| t^{-\alpha}\right), \\
X_{1}=x-\xi, \\
X_{2}=x+\xi .
\end{gather*}
$$

7 Case of the function $f(\mathbf{R})=a x+b$ and $E_{0}(x, 0)=$ 1, $E_{h}(x, 0)=0$

Let us consider the case when the initial conditions for the wavefield amplitudes $E_{0}(x, 0)$ and $E_{h}(x, 0)$ are constant and equal to

$$
\begin{equation*}
E_{0}(x, 0)=\varphi_{0}(x) \equiv 1, \quad E_{h}(x, 0)=\varphi_{h}(x) \equiv 0 . \tag{7.1}
\end{equation*}
$$

Then, the formulae (6.8)-(6.10) can be simplified and expressed in terms of the Mittag-Leffler-type functions.

Keeping in mind Eq. (7.1), Eq. (6.8) for $\mathbf{E}(x, t)$ can be written down as

$$
\mathbf{E}(x, t)=\int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} \mathbf{G}(x, \xi, t)\binom{1}{0} d \xi=
$$

$$
\begin{align*}
& =\frac{1}{2} \int_{-\infty}^{\infty} d \xi \int_{|x-\xi|}^{\infty} D_{0 t}^{\alpha-1} g(t, \tau) \mathbf{S}(x, \xi, \tau)\binom{1}{0} d \tau+ \\
& +\int_{-\infty}^{\infty} D_{0 t}^{\alpha-1} \mathbf{G}_{0}(x, \xi, t)\binom{1}{0} d \xi \equiv \mathbf{I}_{1}(x, t)+\mathbf{I}_{2}(x, t) \tag{7.2}
\end{align*}
$$

By changing the integration order, let us evaluate the integral $\mathbf{I}_{1}(x, t)$

$$
\begin{align*}
& \mathbf{I}_{1}(x, t)=\frac{1}{2} \int_{0}^{\infty} D_{0 t}^{\alpha-1} g(t, \tau) d \tau \int_{x-\tau}^{x+\tau} \mathbf{S}(x, \xi, \tau)\binom{1}{0} d \xi= \\
& \quad=\frac{1}{2} \int_{0}^{\infty} D_{0 t}^{\alpha-1} g(t, \tau) d \tau \int_{-\tau}^{\tau} \mathbf{S}(x, x-\eta, \tau)\binom{1}{0} d \eta . \tag{7.3}
\end{align*}
$$

From the Eqs. (2.15) $-(2.17)$, it directly follows up

$$
\begin{align*}
& \int_{-\tau}^{\tau} e^{ \pm i a \eta / 2} J_{0}\left(\sigma \sqrt{\tau^{2}-\eta^{2}}\right) d \eta=\frac{2}{k} \sin (k \tau), \tag{7.4}\\
& \int_{-\tau}^{\tau} e^{ \pm i a \eta / 2} \frac{\tau \mp \eta}{\sqrt{\tau^{2}-\eta^{2}}} J_{1}\left(\sigma \sqrt{\tau^{2}-\eta^{2}}\right) d \eta= \\
& =-\frac{1}{\sigma}\left[2 \cos (k \tau)-i \frac{a}{k} \sin (k \tau)-2 e^{-i a \tau / 2}\right], \tag{7.5}
\end{align*}
$$

where $k=\sqrt{a^{2} / 4+\sigma^{2}}$.
Accordingly, from Eqs. (7.4), (7.5) one obtains

$$
\begin{align*}
& \int_{-\tau}^{\tau} S_{11,22}(x, x-\eta, \tau) d \eta=-\sigma \int_{-\tau}^{\tau} e^{ \pm i a \eta / 2} \frac{\tau \mp \eta}{\sqrt{\tau^{2}-\eta^{2}}} J_{1}\left(\sigma \sqrt{\tau^{2}-\eta^{2}}\right) d \eta= \\
&=2 \cos (k \tau)-i \frac{a}{k} \sin (k \tau)-2 e^{-i a \tau / 2} \tag{7.6}\\
& \int_{-\tau}^{\tau} S_{12,21}(x, x-\eta, \tau) d \eta=i \sigma e^{ \pm i a x} \int_{-\tau}^{\tau} e^{\mp i a \eta / 2} J_{0}\left(\sigma \sqrt{\tau^{2}-\eta^{2}}\right) d \eta= \\
&=i \sigma \frac{2}{k} e^{ \pm i a x} \sin (k \tau) \tag{7.7}
\end{align*}
$$

where $S_{i j}(x, x-\eta, \tau)(i, j=1,2)$ are the elements of matrix $\mathbf{S}(x, x-\eta, \tau)$.
Following equalities

$$
\begin{gather*}
e^{i a_{1} \tau}\left[2 \cos (k \tau)-i \frac{a}{k} \sin (k \tau)\right]= \\
=\left(1-\frac{a}{2 k}\right) e^{i\left(a_{1}+k\right) \tau}+\left(1+\frac{a}{2 k}\right) e^{i\left(a_{1}-k\right) \tau}, \tag{7.8}\\
-2 e^{i a_{1} \tau} e^{i a \tau / 2}=-2 e^{i \gamma \tau}, \tag{7.9}\\
e^{i a_{1} \tau} \sin (k \tau)=\frac{i}{2} e^{i\left(a_{1}-k\right) \tau}-\frac{i}{2} e^{i\left(a_{1}+k\right) \tau}, \tag{7.10}
\end{gather*}
$$

hold, where

$$
a_{1}=\gamma+\frac{a}{2}, \quad k=\sqrt{a^{2} / 4+\sigma^{2}} .
$$

Next, exploiting calculations (7.6)-(7.10), from (7.3) one obtains

$$
\begin{equation*}
\mathbf{I}_{1}(x, t)=\int_{0}^{\infty} t^{-\alpha} \phi\left(-\alpha, 1-\alpha ;-\tau t^{-\alpha}\right) \mathbf{N}(x, \tau)\binom{1}{0} d \tau \tag{7.11}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{N}(x, \tau)=\mathbf{N}_{1}(x) e^{i\left(a_{1}+k\right) \tau}+\mathbf{N}_{2}(x) e^{i\left(a_{1}-k\right) \tau}-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) e^{i \gamma \tau}, \\
\mathbf{N}_{1,2}(x)=\frac{1}{2}\left(\begin{array}{cc}
1 \mp \frac{a}{2 k} & \pm \frac{\sigma}{k} e^{i a x} \\
\pm \frac{\sigma}{k} e^{-i a x} & 1 \mp \frac{a}{2 k}
\end{array}\right) .
\end{gathered}
$$

From (6.10) one finds out

$$
\begin{equation*}
\mathbf{I}_{2}(x, t)=\int_{0}^{\infty} t^{-\alpha} \phi\left(-\alpha, 1-\alpha ;-\eta t^{-\alpha}\right) e^{i \gamma \eta}\binom{1}{0} d \eta \tag{7.12}
\end{equation*}
$$

Applying formula (2.18) to equalities (7.11) and (7.12), the total solution (7.2) can be cast into the form

$$
\mathbf{E}(x, t)=\frac{1}{2}\left(\begin{array}{cc}
1-\frac{a}{2 k} & 1+\frac{a}{2 k} \tag{7.13}\\
\frac{\sigma}{k} e^{-i a x} & -\frac{\sigma}{k} e^{-i a x}
\end{array}\right)\binom{E_{\alpha, 1}\left(i\left(a_{1}+k\right) t^{\alpha}\right)}{E_{\alpha, 1}\left(i\left(a_{1}-k\right) t^{\alpha}\right)} .
$$

In the case when the FOP $\alpha \rightarrow 1$, the total solution (7.13) is reduced to

$$
\mathbf{E}(x, t)=\frac{1}{2}\left(\begin{array}{cc}
1-\frac{a}{2 k} & 1+\frac{a}{2 k} \tag{7.14}\\
\frac{\sigma}{k} e^{-i a x} & -\frac{\sigma}{k} e^{-i a x}
\end{array}\right)\binom{e^{i\left(a_{1}+k\right) t}}{e^{i\left(a_{1}-k\right) t}} .
$$

Finally, putting on the parameters $\gamma=0$ and $a=0$, the solution (17.14) goes into the pendulum solutions of the canonic TT equations regarding the Bloch wavefield amplitudes in the perfect crystal (cf. [26])

$$
E_{0}=\cos \sigma t, \quad E_{h}=i \sin \sigma t
$$

8 Conclusion

In this paper, a goal of our study is to elaborate the novel mathematics framework for processing the DO data based on a concept of the matrix integral equation to solve the inverse Radon problem that arose in the computer microtomography (see, e.g., [5], 8]).

In the case when FOP $\alpha=1$, the above results obtained can be applied to the standard X-ray DO using the computer diffraction microtjmography technique (cf. [26]).

In contrast to [7], 8], some advantage of our study is to open a window to develop the theory models of the X-ray and electron diffraction scattering by imperfect crystals. The fractional DO theory operates based on the matrix Fredholm-Volterra integral equation of the second kind. The matrix Resolventfunction solution of the Fredholm-Volterra integral equation of the second kind allows us to model the X-ray diffraction scattering by imperfect crystals. Besides, it can modify the optimizing procedure of the χ^{2}-target function in trial to solve the inverse Radon problem in the DO microtomography investigating the crystal-lattice defects structure.

The common approach of the DO imaging, the FOP $\alpha=1$, has to be rethinked using the fractional derivatives formalism $\partial_{0 t}^{\alpha} E$ in the sense of the Gerasimov-Caputo approach (2.1). Accordingly, in the fractional DO, it is also worth noting alternative interest due to the possibility of using the fractional Riemann-Liouville derivative $D_{0 t}^{\alpha} E$ (2.2). The latter is a good topic for future work in the fractional DO.

Список литературы

[1] S. Takagi, Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr. 15, (1962), 1311-1312.
[2] S. Takagi, A Dynamical Theory of Diffraction for a Distorted Crystal. J. Phys. Soc. Jpn., 26, (1969), 1239-1253.
[3] D. Taupin, Théorie dynamique de la diffraction des rayon X par les cristaux déformés, Bull. Soc. Jpn. Fr. Miner. Crist., 87, (1964), 469511
[4] D. K. Bowen, B. K. Tanner, High Resolution X-Ray Diffractometry and Topography. Taylor \& Francis, New York (1998).
[5] A. Authier, Dynamical Theory of X-ray Diffraction. Oxford University Press, New York (2001).
[6] F.N. Chukhovskii, P.V. Petrashen'. A general dynamical theory of the X-ray Laue diffraction from a homogeneously bent crystal, Acta Cryst., A33, (1977), 311-319.
[7] A.P. Honkanen, C. Ferrero, J.P. Guigay, V. Mocella, A finite-element approach to dynamical diffraction problems in reflection geometry. J. Appl. Crystallogr. 51(2), (2018). 511-525.
[8] F.N. Chukhovskii, P.V. Konarev, V.V. Volkov, Towards a solution of the inverse X-ray diffraction tomography challenge: theory and iterative algorithm for recovering the 3D displacement field function of Coulombtype point defects in a crystal. Acta Cryst., A76, (2020), 16-25. https://doi.org/10.1107/S2053273320000145
[9] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, N.Y., London: Academic; Press, (1974).
[10] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, (1993).
[11] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
[12] R. Hilfer, Applications of fractional calculus in physics, World Scientific, New Jersey, (2000).
[13] A.M. Nakhushev, Fractional calculus and its applications, Moscow: Fizmatlit, (2003). (In Russian).
[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North Holland Mathematics Studies, 204, Elsevier Science, Publishers BV, Amsterdam, (2006).
[15] V.V. Uchaikin, The method of fractional derivatives, Artishok, Ulianovsk, (2008). (In Russian).
[16] T.M. Atanackovic, S. Pilipovic, B.Stankovic and D. Zorica, Fractional calculus with applications in mechanics : wave propagation, impact and variational principles, John Wiley and Sons, (2014).
[17] M.O. Mamchuev, Fundamental Solution of a System of Fractional Partial Differential Equations. Differential Equations, 46, No. 8. (2010), 1123-1134.
[18] M.O. Mamchuev, Cauchy problem in non-local statement for a system of fractional partial differential equations. Differential Equations, 48, No. 3. (2012), 354-361.
[19] A. Heibig, Existence of solutions for a fractional derivative system of equations, Integral Equation and Operator Theory, 72, (2012), 483-508.
[20] A.N. Kochubei, Fractional-hiperbolic systems, Fractional Calculus and Applied Analysis 16, No 4. (2013), 860-873. DOI: 10.2478/s13540-013-0053-4
[21] M.O. Mamchuev, Boundary value problems for equations and systems with the partial derivatives of fractional order, Publishing house KBSC of RAS, Nalchik, (2013). (In Russian).
[22] M.O. Mamchuev, Mixed problem for loaded system of equations with Riemann-Liouville derivatives, Mathematical notes, 97, No. 3. (2015), 412-222.
[23] M.O. Mamchuev, Mixed problem for a system of fractional partial differential equations, Differential Equations, 52, No. 1. (2016), 133138.
[24] M.O. Mamchuev, Non-local boundary value problem for a system of equations with the partial derivatives of fractional order, Mathematical notes of NEFU, 26, No. 1. (2019), 23-31. (In Russian).
[25] M.O. Mamchuev, Cauchy problem for a system of equations with the partial Gerasimov - Caputo derivatives, Reports of Circassian International Academy of Sciences, 21, No. 4. (2021), 15-22. (In Russian).
[26] M.O. Mamchuev, F.N. Chukhovskii, Towards to solution of the fractional Takagi - Taupin equations. The Green function method, Fract. Calc. Appl. Anal., 26, No. 2. (2023), 851-863, DOI: 10.1007/s13540-023-00137-4.
[27] E. M. Wright, The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. Ser. II, 38, (1934), 257-270.
[28] A. Pskhu, Fundamental solutions and Cauchy problems for an oddorder partial differential equation with fractional derevative, Electronic Journal of Differential Equations, 21, (2019), 1-13.
[29] B. Stankoví, On the function of E. M. Wright. Publications de l'Institut Mathe'matique, 10, No 24, (1970), 113-124.
[30] M.O. Mamchuev, Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method, Fract. Calc. Appl. Anal., 20, No. 1. (2017), 190-211, DOI: 10.1515/fca-2017-0010.
[31] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series. Special functions, Nauka, Moscow, Main editorial office of physical and mathematical literature, (1983). (In Russian).
[32] A.V. Pskhu, Fractional Partial Differential Equations, Nauka, Moscow (2005). (in Russian).
[33] M.M. Dzhrbashyan, Integral transformations and representations of functions in the complex domain, Nauka, Moscow, (1966), (In Russian).
[34] M.A. Lavrentiev, B.V. Shabat, Methods of the theory of functions of a complex variable, Nauka, Moscow, (1973). (In Russian).
${ }^{1}$ Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center RAS, "Shortanov"Str., 89A
360000 Nal'chik, Russian Federation
e-mail: mamchuev@rambler.ru (Corr. author)
e-mail: f_chukhov@yahoo.ca
Received: March 20, 2024

