
ar
X

iv
:2

40
4.

11
62

2v
1 

 [
qu

an
t-

ph
] 

 8
 A

pr
 2

02
4

Dyons with phase δθ = nθ
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Abstract

In a recent paper (Heras in Eur. Phys. J. Plus 138:329, 2023), we have demon-
strated that when a dyon encircles an infinitely long solenoid enclosing electric
and magnetic fluxes, its wave function accumulates a quantum phase invariant
under electromagnetic duality transformations. In this paper, we show that this
phase, in conjunction with the Witten effect, gives rise to a topological phase
proportional to the vacuum angle θ and thereby connected with CP violation.
We show that this phase becomes quantised in a vacuum state δθ = nθ and
that the most general vacuum state associated with this quantisation identifies
with an Abelian form of the θ-vacua. We discuss two hypothetical interference
effects in the vacuum where the angle θ could manifest.

Dyons are hypothetical particles having electric and magnetic charges. These particles
hold significant appeal as they offer an explanation for the quantisation of electric
charge [1, 2, 3] and are a prediction of grand unified theories [4]. The concept of
dyons was initially put forward in 1968 by Schwinger [1] and by Zwanziger [2], both
of who derived the Schwinger-Zwanziger (SZ) quantisation condition

q1g2 − q2g1 = N
~c

2
, (1)

which holds for any pair of dyons with electric and magnetic charges (q1, g1) and
(q2, g2), where N is an integer and Gaussian units are adopted. In 1979, Witten
[5] noted that Eq. (1), was satisfied not only by the standard quantisation rules for
electric and magnetic charges: q = nqe and g = ngg0, where nq and ng are integers, e
is the electron charge strength, and g0 = e/(2α) is the quantum of magnetic charge,
with α denoting the fine structure constant, but also by the quantisation rules

q = nqe+ ng
eθ

2π
, g = ngg0, (2)

∗e-mail: ricardo.heras@ou.ac.uk

1

http://arxiv.org/abs/2404.11622v1


where θ is the vacuum angle, indicating that Eq. (2) hold for theories violating CP
symmetry. The θ-term in Eq. (2) characterises the Witten effect and has played an
influential role in supersymmetric gauge theories [6, 7, 8]. While Witten derived the
quantisation rules in Eq. (2) within the framework of non-Abelian gauge theories,
Coleman [9] subsequently demonstrated that these rules apply also to Abelian gauge
theories, which will be our primary interest in this paper. More specifically, we will
examine the implications of the Witten effect on the recently discussed quantum
phase [10]

δD =
n

~c
(qΦm − gΦe), (3)

that accumulates the wave function of a dyon of charges q and g upon encircling an
infinitely long solenoid enclosing uniform magnetic and electric fluxes Φm and Φe.
We shall refer to this solenoid as a dual flux tube and Eq. (3) as the dyon phase.
This phase is topological because it depends on a winding number n characterising
the number of times the dyon encircles the dual flux tube and reflects a nonlocal
interaction since the enclosed fluxes act on the dyon in a region where they vanish.
The dyon phase is also invariant under electromagnetic duality transformations pro-
viding a unified model of the Aharonov-Bohm (AB) phase [11] with its corresponding
dual-phase [12, 13] (see also the related work [14]). Moreover, the dyon phase can be
used to heuristically derive the SZ quantisation condition1 in a manner akin the AB
phase is used to obtain the Dirac quantisation condition [15].

Consider first the standard quantisation rules q = nqe and g = ngg0 in the dyon
phase to obtain

δD =
n

~c
(nqeΦm − ngg0Φe). (4)

1If we envision a dyon of charges (q2, g2) as the end of a semi-infinite dual Dirac string lo-
calised along the negative z-axis, then this configuration has the associated fields B = Bd + Bs

and E = Ed + Es, where Bd = g2r̂/r
2 and Ed = q2r̂/r

2 denote the fields of the dyon, while
Bs = 4πg2δ(x)δ(y)Θ(−z)ẑ and Es = 4πq2δ(x)δ(y)Θ(−z)ẑ denote the fields of the semi-infinite
string attached to the dyon, where Θ is the Heaviside step function. The fields of the string have
the corresponding fluxes Φs

m =
∫
Sε

Bs · dS = 4πg2Θ(−z) and Φs
e =

∫
Sε

Es · dS = 4πq2Θ(−z), where

Sε is the infinitesimal surface pierced by the string. Now, if a dyon of charges (q1, g1) encircles the
string once, it appears reasonable to argue that its wave function would acquire the dyon phase
δD = (q1Φ

s
m
− g1Φ

s
e
)/(~c) = Θ(−z)4π(q1g2 − q2g1)/(~c) = 4π(q1g2 − q2g1)/(~c), where Θ(−z) = 1

because the encircling dyon lies at at z < 0. By requiring the string to be “unobservable,” we impose
a trivial value for the dyon phase δD = 2πN , leading to the SZ quantisation condition. However,
this argument is heuristic and subject to criticism for the following reasons: (i) it is not possible
to define a set of global vector potentials As and Cs associated with the semi-infinite string fields
Bs and Es (this can only be accomplished with an infinite string), (ii) setting the dyon phase to a
trivial value δD = 2πN does not imply the string is unobservable: its interference effects would be
undetected, but the string would still be observable through the Lorentz force and the electromag-
netic angular momentum since the string fields Bs and Es are non-vanishing, and (iii) considering
that a semi-infinite string and a infinite string are not homeomorphic (topologically equivalent), it
cannot be assumed a priori that the phase δD predicted with an infinite string [10] also arises with
a semi-infinite string.
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Interestingly, this phase vanishes δD = 0 when considering a dyon with elementary
charges (nq = ng = 1) and when the fluxes through the dual flux tube are given
by the magnetic and electric flux quanta (Φ0

m = 2π~c/e, Φ0
e = 2π~c/g0). We will

subsequently provide an explanation for this result.
We now consider the Witten effect on the dyon phase. In this case, we use Eq. (2)

and obtain

δD =
n

~c
(nqeΦm − ngg0Φe) + δθ, (5)

where the θ-phase is defined by

δθ = nng
θeΦm

2π~c
. (6)

Since this phase depends on the vacuum angle θ, then we can say that this phase
is a manifestation of CP violation. Indeed, this is the case except for two mutually
excluding values of the angle θ in which CP is conserved [5]: θ = 0 and θ = π. The
former value implies that dyons follow the integer electric charge quantisation q =
nqe, whereas the latter that dyons follow the fractional electric charge quantisation
q = nqe + nge/2. We have obtained Eq. (4) by assuming the standard quantisation
rules q = nqe and g = ngg0 and this means we have tacitly assumed θ = 0 when
CP is conserved, which implies: δθ = 0 (we will discuss the case θ = π at the end
of this paper). We also note that when we apply the transformation θ → θ + 2π to
the dyon phase in Eq. (5), it preserves its form because this transformation shifts its
electric charge number nq → nq + ng. Accordingly, the dyon phase is periodic in θ
and therefore the transformation θ → θ + 2π is a symmetry of this phase, which is
consistent with the fact that relevant physical quantities should be periodic in the
angle θ [9].

We can alternatively express the θ-phase in Eq. (6) using the relation ng = 2αg/e,
which follows from the quantisation rule g = ngg0 with g0 = e/(2α). The alternative
form reads

δθ = n
αθgΦm

π~c
, (7)

which shows that the θ-phase is topological because it depends on the winding number
n and is nonlocal because the magnetic charge g of the dyon is affected by the magnetic
flux Φm in a region where this flux is excluded. In particular, if g = g0 and Φm =
Φ0

m=2π~c/e then the θ-phase becomes

δθ = nθ. (8)

This particular form of the θ-phase describes a topological quantisation (n is a winding
number) of the vacuum angle θ (under the assumption that θ is a universal constant
[16]). When n = 1, it follows that θ = δθ and this means that the angle θ may be
interpreted as a topological phase whose origin is the dyon phase given by Eq. (5). We
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also note that Eq. (8) can alternatively be obtained from Eq. (5) when the dyon has
the elementary electric and magnetic charges (nq = ng = 1) and the fluxes through
the dual flux tube are given by the flux quanta (Φ0

m = 2π~c/e and Φ0
e = 2π~c/g0).

A Hamiltonian treatment allows us to see that the topological quantisation of the
θ-phase in Eq. (8) corresponds to a vacuum state. The Hamiltonian of the system
formed by a non-relativistic dyon encircling the dual flux tube is given by [10]

Ĥ =
1

2m

(
− i~∇− (qA+ gC)

c

)2

+ V, (9)

where m is the mass of the dyon, V is a scalar potential associated with a mechanical
force that keeps the dyon encircling the dual flux tube, A is the magnetic vector
potential associated with the magnetic flux Φm, and C is the electric vector potential
associated with the electric flux Φe. Using Eq. (9), we obtain the time-independent

Schrödinger equation: Ĥ |ψ〉=E |ψ〉, where |ψ〉 is the state of the dyon with energy
E. Since the fields outside the dual flux tube vanish B = ∇ × A = 0 and E =
−∇×C = 0, then the potentials can be expressed as [10, 17]: A = ∇χ and C = ∇ξ,
where χ = φΦm/(2π) and ξ = −φΦe/(2π) are multi-valued functions of the azimuthal
coordinate φ. Using these results and following the procedure given in Ref. [10], we
obtain the corresponding solution

|ψ〉=ein(qΦm−gΦe)/(~c)ei
∫
γ
[(qA+gC)/(~c)]·dx′ |ψ0〉 , (10)

where |ψ0〉 is the state when A = 0 and C = 0 in Eq. (9). The first phase in Eq. (10)
is the dyon phase δD, which deals with the number of times the dyon encircles the
dual flux tube. The second phase is a local phase accounting for the open trajectory
γ the dyon takes before completing another turn around the dual flux tube. We note
that the states |ψ〉 and |ψ0〉 have a winding number dependency: |ψ〉 = |ψ(n)〉 and
|ψ0〉 = |ψ0(n)〉 because both states are defined in the non-simply connected space:
R

3 − {S1 × R} (the Euclidean space minus the infinite cylinder).
The minimum value of the Hamiltonian corresponds to a vacuum state [18, 19].

In our case, the vacuum state depends on whether or not CP is violated. We note
that if V = 0, then the dyon would cease to encircle the dual flux tube. Therefore, we
set V = V0, where V0 represents minimum potential required to maintain the motion
of the dyon around the dual flux tube. The identification of the potential V = V0
remains valid irrespective of whether CP is conserved or not.

Consider first the case in which CP is conserved. If we assume a dyon with the
elementary charges q = e and g = g0 and consider the flux quanta Φ0

m = 2π~c/e and
Φ0

e = 2π~c/g0, then we obtain the relation eΦ0
m − g0Φ

0
e = 0, which yields a vanishing

conjugate momentum (qA+gC)/c = 0. Considering this result together with V = V0
in Eq. (9), we obtain the minimised Hamiltonian Ĥ = −~

2
∇

2/(2m)+V0 and the state
in Eq. (10) reduces to |ψ〉 = |ψ0〉. This shows that in a CP-conserving vacuum, we
have the vanishing of the dyon phase δD = 0 and this explains our earlier observation
as to why this phase vanishes when considering the elementary charges and the flux
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quanta. We will now consider the case in which CP is not conserved. Equation (2)
with nq = ng = 1 yields a dyon with the elementary charges q = e + eθ/(2π) and
g = g0. These values together with the flux quanta Φ0

m = 2π~c/e and Φ0
e = 2π~c/g0

yield the conjugate momentum

(qA+ gC)

c
= ~∇β, (11)

where β = θφ/(2π) is a multi-valued function of the azimuthal coordinate. Using
Eq. (11) together with V = V0 in Eq. (9), we obtain the minimised Hamiltonian for
the case in which CP is violated

Ĥ =
~
2

2m

(
i∇+∇β

)2

+ V0. (12)

The corresponding state of the dyon follows from Eq. (10), which takes the specific
form

|ψ〉 = ein(eΦ
0
m−g0Φ0

e)/(~c)einθeΦ
0
m/(2π~c)ei

∫
γ
∇

′β·dx′ |ψ0〉 = einθeiφθ/(2π) |ψ0〉 , (13)

where we have used the results eΦ0
m − g0Φ

0
e = 0, eΦ0

m/(2π~c) = 1, and
∫
γ
∇

′β · dx′ =

φθ/(2π). For convenience, we adopt the notation |n〉 = eiφθ/(2π) |ψ0〉 , where |n〉 is a
state that depends on the winding number n since |ψ0〉 = |ψ0(n)〉. In terms of |n〉,
the state of the dyon in Eq. (13) becomes

|ψ〉 = einθ |n〉 . (14)

This equation describes a vacuum state characterised by the definite winding number
n. We clearly identify in Eq. (14) the quantised θ-phase: δθ = nθ. Accordingly,
we have shown that when the dyon is in a CP-violating vacuum, the dyon phase in
Eq. (5) reduces to the quantised θ-phase in Eq. (8).

We note that Eq. (14) does not represent the most general vacuum state. If the
dyon takes a further turn around the dual flux tube, then φ → φ + 2π and its state
changes to |ψ〉 = ei(n+1)θ |n+ 1〉, or equivalently, |ψ〉 = ein

′θ |n′〉 , which now describes
a vacuum state characterised by the definite winding number n′ = n + 1. Since
n 6= n′, then the states |ψ〉 = einθ |n〉 and |ψ〉 = ein

′θ |n′〉 correspond to different
vacua. This method implies that there are an infinite number of equivalent vacua
corresponding to different winding numbers. However, we would expect that the
most general vacuum state should be invariant under dyon rotations. We can solve
this problem by noting that the state |n〉 forms a complete basis, and therefore we
can obtain the superposition

|θ〉 =
+∞∑

n=−∞

einθ |n〉 , (15)
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which is form invariant under the transformation φ → φ + 2π modulo a constant
phase factor. Therefore, Eq. (15) represents the most general vacuum state of the
dyon. Interestingly, Eq. (15) has the form of the θ-vacua of non-Abelian gauge theories
[20] (see also [18, 21]). However, Eq. (15) is Abelian since the potentials in Eq. (11)
are U(1) gauge fields, and also |θ〉 is a state function and not a state functional as
in the non-Abelian θ-vacua [20]. The fact that the Abelian θ-vacua in Eq. (15) and
the non-Abelian θ-vacua have the same form illustrates the topological nature of the
CP-violating vacuum. We believe that this is because the Witten effect is topological
and therefore manifests itself in Abelian and non-Abelian theories [9]. We also note
that Wilczek [22] suggested that dyons in non-Abelian theories should have a vacuum
structure similar to Eq. (15).

We will now briefly discuss two hypothetical vacuum interference effects, where
the angle θ could manifest. Consider first a two-slit interference experiment in which
a dyon propagates from a source passes through one of the two slits on a first screen
and is detected on a second screen. If we insert a dual flux tube between the screens,
then the normalised state of the dyon is given by a superposition of states going to
the left and right of the dual flux tube: |ψ〉 = (|ψL〉 + |ψR〉)/

√
2. The states |ψL〉

and |ψR〉 follow from Eq. (13) when we set n=0 since none of these states encircle
the dual flux tube separately. But since the difference in the trajectories γL and γR,
associated with the states |ψL〉 and |ψR〉, forms a loop C=γR−γL enclosing the dual
flux tube once, then the state of the dyon reads

|ψ〉 = 1√
2

[
|ψ0

L〉+ ei
∮
C
∇β·dx |ψ0

R〉
]
, (16)

where we have dropped an unimportant overall phase factor. Using β = θφ/(2π) in
the phase shift in Eq. (16), we obtain an alternative representation of the angle θ
given by

∮

C

∇β · dx = θ. (17)

Since ∇β=(qA+gC)/(~c) in a vacuum state, as seen in Eq. (11), then we can say that
the angle θ is a vacuum manifestation of the dyon phase in Eq. (5) characterised by
the winding number n = 1. It follows that the angle θ in Eq. (17) should manifest in
the interference shift on the second screen. Following the procedure in Refs. [23, 24],
we can show that this interference shift is given by

∆x =
Lλ

d

(
δ̄0 +

θ

2π

)
, (18)

where δ̄0 = δ0/2π, with δ0 being the phase angle due to the momentum of the dyon
having the de Broglie wavelength λ, L is the distance between the two screens, d is
the separation between the two slits on the first screen, and we have assumed the
condition L >> d.
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A second possible manifestation of the angle θ in a vacuum state characterised
by the winding number n = 1 is through its associated differential scattering cross
section due to a scattered dyon in the x-y plane outside a dual flux tube. In the limit
where the radius of the dual flux tube tends to zero (a dual flux line or string), we
can follow the procedure given in Ref. [10] and obtain the differential scattering cross
section attributed by the angle θ, which is given by

dσθ
dΩ

=
sin2(θ/2)

2πk sin2(φ/2)
, (19)

where σθ is the cross-section, Ω is the solid angle, and k is the magnitude of the dyon’s
wave vector.

We should note that the potential realisation of the above outlined interference
experiments to detect the angle θ faces at least two fundamental problems: (i) the
existence of dyons, which are still undetected but whose experimental search has
recently begun [25]. (ii) the idealisation of an infinitely long dual flux tube (a long
solenoid does not completely confine the fields). This problem could be addressed by
replacing the idealised infinitely long dual flux tube with a “less-idealised” toroidal
dual solenoid (we note that the most convincing evidence of the AB effect was done
using a toroidal solenoid [26] and not a long solenoid. The toroidal solenoid may be
reasonably modelled by a closed flux line whose theoretical treatment has recently
been discussed [24])

It is interesting to note that the dyon phase in Eq. (5) takes the trivial value
δD = 2πN , with N integer, in the hypothetical case that the fluxes of the dual flux
tube satisfy presumable quantisation rules analogous to those in Eq. (2) for the case
of the dyon charges, i.e., the flux quantisation rules

Φe = nΦe
Φ0

e + nΦm

Φ0
eθ

2π
, Φm = nΦm

Φ0
m, (20)

where nΦe
and nΦm

are integers and Φ0
m and Φ0

e are the flux quanta. In fact, if we
use Eq. (20) in Eq. (5) it follows δD = 2πN with N = n(nqnΦm

− ngnΦe
). However,

following Witten’s method [5] that led to the electric charge quantisation in Eq. (2),
we can show that Eq. (20) cannot be established for the fluxes in Eq. (5). Witten’s
method demands two basic conditions: (i) the time-component of the Noether current
associated with an infinitesimal rotation in the Lagrangian (in particular, Witten used
the Lagrangian of the Georgi-Glashow model plus a θ-term) must be non-vanishing
and (ii) the fields in the Lagrangian must satisfy

∮
S
B · dS 6= 0 and

∮
S
E · dS 6= 0 at

spatial infinity [8]. When this method is applied to the fluxes in Eq. (5) neither the
condition (i) nor (ii) are fulfilled. The time-component of the corresponding Noether
current vanishes because the Lagrangian does not depend on time derivatives of gauge
potentials and the fields satisfy

∮
S
B · dS = 0 and

∮
S
E · dS = 0 at spatial infinity

(there are no free charges in a dual flux tube [17]). Thus, the quantisation rules in
Eq. (20) do not hold for the fluxes in the dual flux tube. We conclude that following
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Witten’s approach, the angle θ affects the charges of the dyon but not the fluxes in
the dual flux tube.

Finally, let us comment on the value θ=π associated with the only non-zero CP
preserving angle. Recent experimental bounds yield [27] θ < 1.98× 10−10, indicating
that CP is weakly violated. However, θ=π has applications in topological insulators
[28, 29, 30, 31]. But in this case, the angle θ is not a universal constant but a quantity
characterising the space filled by the insulator. In such configurations, a version of
the Witten effect is realised by considering the concept of “emergent monopoles.”
Hence, our results for θ=π could have some applicability in topological insulators.

Summarising. We have demonstrated that the dyon phase and the Witten effect
imply the θ-phase, which is topological, connected with CP violation, and quantised
in a vacuum state: δθ = nθ. We have shown that the most general vacuum state
corresponding with the quantised θ-phase is an Abelian form of the θ-vacua. We
have discussed two hypothetical interference effects in the vacuum where the angle
θ could manifest. We have argued that the angle θ affects the dyon charges but not
the fluxes of the dual flux tube. Although dyons are still unobserved, the possible
detection of the θ-phase would provide indirect evidence of these particles.
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