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The American Mathematics Competitions program of the Mathematical Association of America
consists of a series of examinations for middle school, high school, and college students, designed
to build problem solving skills, foster a love of mathematics, and identify and nurture talented
students across the United States. The final round at the high-school level is the USA Mathe-
matical Olympiad (USAMO). This competition follows the style of the International Mathematics
Olympiad: it consist of three problems each on two consecutive days, with an allowed time of four
and a half hours both days.

The 49th annual USA Mathematical Olympiad was given on Friday, June 19, 2020 and Saturday,
June 20, 2020. About 230 students were invited to take the exam; for the first time in history, the
competition was administered online. The names of winners and honorable mentions, as well as
more information on the American Mathematics Competitions program, can be found on the site
https://www.maa.org/math-competitions.

The problems of the USAMO are chosen – from a large collection of proposals submitted for this
purpose – by the USAMO Editorial Board, whose co-editors-in-chief are Evan Chen and Jennifer
Iglesias, with associate editors John Berman, Zuming Feng, Sherry Gong, Alison Miller, Maria
Monks Gillespie, and Alex Zhai. This year’s problems were created by Ankan Bhattacharya, An-
tonia Bluher, Zuming Feng, Carl Schildkraut, David Speyer, Richard Stong, and Alex Zhai.

The solutions we present here are composed by the present author, and are based on the compe-
tition papers of Ankit Bisain (11th grade, Canyon Crest Academy, CA), Jeffrey Kwan (12th grade,
Harker Upper School, CA), Rupert Li (12th grade, Jesuit High School, OR), Holden Mui (11th
grade, Naperville North High School, IL), Yuru Niu (12th grade, Suncoast High School, FL), Ishika
Shah (12th grade, Cupertino High School, CA), and Brandon Wang (12th grade, Saratoga High
School, CA). Each problem was worth 7 points; the nine-tuple (n; a7, a6, a5, a4, a3, a2, a1, a0) states
the number of students who submitted a paper for the relevant problem, followed by the numbers
who scored 7, 6, . . . , 0 points, respectively.

Problem 1 (186; 143, 4, 0, 0, 0, 8, 16, 15) Let ABC be a fixed acute triangle inscribed in a circle ω
with center O. A variable point X is chosen on minor arc AB of ω, and segments CX and AB
meet at D. Denote by O1 and O2 the circumcenters of triangles ADX and BDX, respectively.
Determine all points X for which the area of triangle OO1O2 is minimized.

Solution. Let points M , N , R, and S denote, in order, the midpoints of CX, DX, AD, and DB.
Since C and X are equidistant from O, OM is the perpendicular bisector of CX. Similarly, RO1

is the perpendicular bisector of AD, SO2 is the perpendicular bisector of DB, and O1N and O2N
are both perpendicular bisectors of DX; in particular, O1, N , and O2 are collinear. We then see
that RS = 1

2AB and MN = MX −NX = 1
2CX − 1

2DX = 1
2CD.
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Since in quadrilateral RDNO1 the angles at D and O1 are supplementary, the angles ∠ADC
and ∠RO1O2 are equal; therefore, RS = O1O2 sin∠ADC and thus

O1O2 =
AB

2 sin∠ADC
.

Furthermore, since lines OM and O1O2 are parallel, the distance from O to O1O2 equals MN .
We can now see that the area of triangle OO1O2 equals

1

2
·O1O2 ·MN =

AB · CD

8 sin∠ADC
.

Note that CD is minimized when CD ⊥ AB, and sin∠ADC is maximized when ∠ADC = π/2.
This is a happy coincidence, as the same point X works for both of these conditions: the area of
triangle OO1O2 is minimized when X is the (unique) point with CX ⊥ AB. 2

Problem 2 (156; 57, 35, 8, 2, 3, 9, 7, 35) An empty 2020×2020×2020 cube is given, and a 2020×2020
grid of square unit cells is drawn on each of its six faces. A beam is a 1 × 1 × 2020 rectangular
prism. Several beams are placed inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite faces of the cube.
(Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1× 2020 faces of each beam touch either a face of the cube
or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Solution. Let n be a positive even integer, and consider an n × n × n cube. We claim that the
smallest positive number of beams satisfying the three analogous conditions (where 2020 is replaced
by n) is 3n/2 (and thus equals 3030 for the case of n = 2020).
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To facilitate our deliberation, we place the cube into the Cartesian coordinate system so that
its edges are parallel to the coordinate axes and that one of its corners is at the origin and another
at the point (n, n, n). We can then label the n3 cells of the cube by their corners furthest from
the origin. For positive integers a, b ≤ n, we then let Bx(a, b) denote the type x beam consisting of
cells (t, a, b) with t = 1, 2, . . . , n; similarly, we let By(a, b) denote the type y beam consisting of cells
(a, t, b), and Bz(a, b) denote the type z beam consisting of cells (a, b, t).

To see that there is a valid configuration with 3n/2 beams, consider the collection consisting of
beams

Bx(1, 1), Bx(3, 3), . . . , Bx(n− 1, n− 1),

By(1, n), By(3, n− 2), . . . , By(n− 1, 2),

and
Bz(2, 2), Bz(4, 4), Bz(6, 6), . . . , Bz(n, n),

illustrated here for n = 10.
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Clearly, our collection consists of 3n/2 beams satisfying the first requirement.
We can verify that our collection also satisfies the second condition, as follows. Note that

• each type x beam in the collection consists of cells whose second and third coordinates are
odd,

• each type y beam consists of cells whose first coordinate is odd and third coordinate is even,
and

• each type z beam consists of cells whose first and second coordinates are even.

Therefore, no two beams in the collection have intersecting interiors, and thus the second required
condition holds.

3



Finally, to see that our third condition is satisfied, consider first a type x beam B. We see that
the interior of each horizontal face (that is, each face perpendicular to the z axis) of B touches the
interior of a type y beam or the a face of the cube, and the interior of each vertical face (that is,
each face perpendicular to the y axis) of B touches the interior of a type z beam or the a face of
the cube. Since analogous observations apply to type y beams and type z beams, we conclude that
our collection of beams satisfies all three required conditions.

It remains to be shown that any valid construction must use at least 3n/2 beams. Let Nx, Ny,
and Nz denote the number of beams of type x, y, and z, respectively. If any two of these three
quantities are zero, then the third must equal n2, since the collection must then contain all possible
beams of that type. As n2 > 3n/2, we may assume that at least two of Nx, Ny, or Nz are nonzero.

Next, we prove that Nx + Ny ≥ n. By a horizontal beam, we mean a beam of type x or type
y; by the previous paragraph, we must have at least one horizontal beam. According to the third
condition, the interior of each horizontal face of each horizontal beam must touch the face of the
cube or the interior of a face of another beam; clearly, this other beam would also need to be
a horizontal beam. Repeating this observation, we find that we must have at least n horizontal
beams, proving our claim.

By a similar argument, we have Ny +Nz ≥ n and Nz +Nx ≥ n, and so

Nx +Ny +Nz =
1

2
(Nx +Ny) +

1

2
(Ny +Nz) +

1

2
(Nz +Nx) ≥

3

2
n,

proving our claim. 2

Problem 3 (148; 30, 1, 1, 0, 5, 3, 11, 97) Let p be an odd prime. An integer x is called a quadratic
non-residue if p does not divide x− t2 for any integer t.
Denote by A the set of all integers a such that 1 ≤ a < p, and both a and 4 − a are quadratic
non-residues. Calculate the remainder when the product of the elements of A is divided by p.

Solution. We prove that the requested remainder is 2. As one can easily see that for p = 3 we
have A = {2}, from here we will assume that p ≥ 5, and work in the finite field Fp, which here we
identify with the set {0, 1, 2, . . . , p− 1} with operations carried out mod p.

An element n of Fp is a quadratic residue when n = t2 holds for some t ∈ Fp (it can be easily seen
that there are at most two such t) and is a quadratic non-residue otherwise (this corresponds to the
definition as stated in the problem). We will need the following facts: the product of two quadratic
residues is a quadratic residue; the product of two quadratic non-residues is a quadratic residue;
and the product of a quadratic residue and a quadratic non-residue is a quadratic non-residue.1

We let A be the set of all elements a ∈ Fp such that both a and 4−a are quadratic non-residues,
and we let B denote the set of all b ∈ Fp for which both b and 4 − b are quadratic residues. Note
that 0 ∈ B, 4 ∈ B, and 2 ∈ A ∪B.

Now consider an element n ∈ A∪B. Since n(4− n) is then either the product of two quadratic
residues or two quadratic non-residues, it must be a quadratic residue. Furthermore, the element
4− n(4− n) is a quadratic residue as well, because it is equal to (n− 2)2. This then implies that
n(4− n) ∈ B.

Conversely, we prove that for every b ∈ B, there is an element n ∈ A∪B such that n(4−n) = b.

1For a proof of these claims and other properties of quadratic residues see, for example, Chapter VI in An
introduction to the theory of numbers, by G. H. Hardy and E. M. Wright, Sixth edition, Oxford University Press,
Oxford, 2008.
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Indeed, since b ∈ B, we have 4 − b ∈ B as well, so there must be an element n ∈ Fp for which
(n− 2)2 = 4− b, that is, n(4− n) = b. But b is a quadratic residue, so either both n and 4− n are
quadratic residues or they are both quadratic non-residues, so n ∈ A ∪ B. Moreover, we can see
that, unless b = 4, in which case n = 2 is the only solution, the equation n(4− n) = b has exactly
two solutions, n and 4− n.

We thus see that there is a bijection between the unordered pairs {n, 4 − n} (allowing for the
pair {2, 2}) of A ∪ B and the elements of B, given by the map {n, 4 − n} 7→ n(4 − n). Note that
{0, 4} maps to 0, and {2, 2} maps to 4. Consequently, when 2 ∈ A, the product of the elements of
(A∪B) \ {0, 2, 4} equals the product of the elements in B \ {0, 4}. This means that the product of
the elements in A \ {2} must be 1, and thus the product of the elements in A equals 2.

The situation is similar when 2 ∈ B, but this time the product of the elements of (A∪B)\{0, 2, 4}
equals twice the product of the elements in B \{0, 4}. This implies that the product of the elements
in A again equals 2. 2

Problem 4 (179; 73, 1, 0, 0, 0, 0, 88, 17) Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct
ordered pairs of nonnegative integers. Let N denote the number of pairs of integers (i, j) satisfying
1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1. Determine the largest possible value of N over all possible
choices of the 100 ordered pairs.

First Solution. We claim that the answer isN = 2n−3 for n ≥ 2 ordered pairs (197 for n = 100). Let
P1 = (a1, b1), . . . , Pn = (an, bn). We say that points Pi and Pj are enchanted if |aibj−ajbi| = 1; note
that, by the Shoelace Formula, this is equivalent to triangle OPiPj (where O is the origin) having
area 1/2. It is easy to see that the n points P1 = (0, 1), P2 = (1, 2), P3 = (1, 3), . . . , Pn = (1, n)
contain 2n − 3 enchanted pairs: P1 is enchanted with the other n − 1 points, and Pi is enchanted
with Pi+1 for each i = 2, 3, . . . , n− 1.

We will now use induction to prove that N ≤ 2n − 3 for every n ≥ 2. This being trivial
for n = 2, assume that our claim holds for each collection of n − 1 points for some n ≥ 3, and
consider a collection P1 = (a1, b1), . . . , Pn = (an, bn). Without loss of generality, we assume that
an + bn ≥ ai + bi for all 1 ≤ i ≤ n. By our inductive assumption, it suffices to show that Pn is
enchanted with at most two other points.

If this were not the case, then we would have two points Pi and Pj that have the same distance

from line OPn and are on the same side of that line. But then PiPj is parallel to OPn, so
−−→
PiPj =

t ·
−−→
OPn = ⟨tan, tbn⟩ for some scalar t, and we may assume that t > 0. Since Pi and Pj have integer

coordinates, tan and tbn are integers, so |bitan − aitbn| = t is an integer as well. Therefore, t ≥ 1,
and since Pi ̸= O, we arrive at aj + bj = (ai + tan) + (bi + tbn) > an + bn, contradicting our choice
of Pn. 2

Second Solution. First, we recall that the Farey sequence of order m is the increasing sequence
of fractions a/b of relatively prime integers a and b with 0 ≤ a ≤ b ≤ m. The property of Farey
sequences that we need here is that a/b and a′/b′ are consecutive terms in some Farey sequence if,
and only if, |a′b− ab′| = 1.2

Suppose now that (a1, b1), (a2, b2), . . . , (an, bn) are distinct ordered pairs of nonnegative integers,
so that there are N pairs of integers (i, j) satisfying 1 ≤ i < j ≤ n and |aibj − ajbi| = 1. We shall
use induction to prove that N ≤ 2n− 3 for every n ≥ 2. This obviously holds for n = 2 and n = 3,

2For this and other interesting features of Farey sequences see, for example, Chapter III in An introduction to the
theory of numbers, by G. H. Hardy and E. M. Wright, Sixth edition, Oxford University Press, Oxford, 2008.
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so let n ≥ 4. Without loss of generality, we arrange our points so that max(an, bn) ≥ max(ai, bi)
for each 1 ≤ i ≤ n; furthermore, we may assume that an ≤ bn, since if this were not the case, we
could instead consider the mirror image of our n points with respect to the line y = x. Note that
our assumptions imply that bn ≥ 2, since we can only have bn = 1 for n ≤ 3. Our goal is to show
that there are at most two indices 1 ≤ i ≤ n − 1 for which |aibn − anbi| = 1; our claim will then
follow by induction.

Observe that if |aibn − anbi| = 1, then ai ≤ bi. Indeed, if this were not the case, then we would
have ai ≥ bi + 1, so

1 = |aibn − anbi| = aibn − anbi ≥ (bi + 1)bn − anbi = bi(bn − an) + bn ≥ bn ≥ 2,

a contradiction. Note also that |aibn−anbi| = 1 implies that bi ̸= 0 and gcd(ai, bi) = gcd(an, bn) = 1.
Therefore, ai/bi and an/bn are consecutive terms in some Farey sequence; we need to show that
this can happen for at most two indices i. But this is clearly the case: an/bn appears only in Farey
sequences of order bn or more; it can have at most two neighbors in the Farey sequence of order
bn; and if ai/bi and an/bn are not consecutive in the Farey sequence of order bn, then they are also
not consecutive in one with order more than bn.

To show that N = 2n− 3 is achievable, we may start with any two fractions a/b and a′/b′ that
are consecutive in some Farey sequence; inserting (a + a′)/(b + b′) between them results in three
consecutive fractions, since |b(a + a′) − a(b + b′)| = 1 and |b′(a + a′) − a′(b + b′)| = 1. Repeating
this process then yields n points with N = 2n − 3 pairs with the desired property. (For example,
starting with 0/1 and 1/2, and inserting the just-described fraction next to 0/1 each time, yields
the sequence 0/1, 1/n, 1/(n− 1), . . . , 1/2, corresponding to the example of the first solution.) 2

Problem 5 (140; 21, 9, 1, 9, 17, 17, 49, 17) A finite set S of points in the coordinate plane is called
overdetermined if |S| ≥ 2 and there exists a nonzero polynomial P (t), with real coefficients and of
degree at most |S| − 2, satisfying P (x) = y for every point (x, y) ∈ S. For each integer n ≥ 2,
find the largest integer k (in terms of n) such that there exists a set of n distinct points that is not
overdetermined, but has k overdetermined subsets.

Solution. Recall that for every nonempty finite set S in the coordinate plane consisting of points
with distinct x coordinates, there exists a unique polynomial fS , called the interpolating polynomial
of S, which has real coefficients and degree at most |S| − 1, and which satisfies f(x) = y for every
point (x, y) ∈ S. Thus we can say that S is overdetermined if, and only if, it has at least two
elements and its interpolating polynomial has degree at most |S| − 2. (Note that sets containing
points that share their x coordinates do not have interpolating polynomials.)

Let n ≥ 2, and consider the set

A = {(1, 2)} ∪ {(2, 1), (3, 1), . . . , (n, 1)}.

Then

fA(x) = 1 +
1

(n− 1)!
(2− x)(3− x) · · · · · (n− x),

so A is not overdetermined; however, each of its subsets not containing (1, 2) and having size
at least 2 has interpolating polynomial of degree 0 and is thus overdetermined. So we found a
non-overdetermined set of size n with at least(

n− 1

2

)
+

(
n− 1

3

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−1 − n (1)
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overdetermined subsets; we will prove that we cannot do better.
Let A be a set of n ≥ 2 distinct points in the coordinate plane; we will prove that if it has

more than 2n−1−n overdetermined subsets, then it is overdetermined. Let Nm denote the number
of overdetermined m-subsets of A; by (1) above, it suffices to show that if Nm >

(
n−1
m

)
for some

2 ≤ m ≤ n − 1, then A is overdetermined. We will, in fact, prove the stronger statement that if
Nm >

(
n−1
m

)
for some 2 ≤ m ≤ n − 1, then not just A but all its subsets of size at least m are

overdetermined.
Keeping m as fixed, we use induction on n. Suppose first that n = m+1 ≥ 3 and that Nm > 1.

Let P1 = (x1, y1) and P2 = (x2, y2) be distinct points in A for which A \ P1 and A \ P2 are
overdetermined. Then fA\P1

and fA\P2
are polynomials of degree at most |A| − 3; since they agree

on |A|−2 values of x, they must equal for all values of x, and thus fA\P1
(x1) = fA\P2

(x1) = y1 and
fA\P2

(x2) = fA\P1
(x2) = y2. This means that A has an interpolating polynomial and it is of degree

at most |A| − 3, which then implies that A and all its subsets of size |A| − 1 are overdetermined, as
claimed.

Suppose now that our claim holds for all sets of size n− 1, and consider a set A of size n with
Nm >

(
n−1
m

)
for some 2 ≤ m ≤ n − 1. Since each m-subset of A is in n −m subsets of size n − 1

and since (
n−1
m

)(
n−2
m

) =
n− 1

n−m− 1
>

n

n−m
,

at least one of the n subsets of A of size n− 1 has more than
(
n−2
m

)
overdetermined subsets of size

m; let one such subset be A \ {P}. By our inductive assumption, all subsets of A \ {P} of size at
least m are overdetermined. Since Nm >

(
n−1
m

)
, there is an overdetermined set of A of size m that

is not a subset of A \ {P}; let S be one of these sets. Let Q ̸∈ S, and consider A \ {Q}.
Note that the

(
n−2
m

)
m-subsets of A \ {Q,P} are all overdetermined, and so is S. Therefore, by

our inductive hypothesis again, all subsets of A \ {Q} of size at least m are overdetermined. By
now we have at least two overdetermined subsets of A of size n− 1, so A is overdetermined as well.

It remains to be shown that all subsets of A containing both P and Q and having size between
m and n − 1, inclusive, are overdetermined. For this purpose, we let R be an arbitrary element
of A \ {P,Q}, and show that all subsets of A \ {R} of size at least m are overdetermined. Note
that all m-subsets of A \ {P,R} and all m-subsets of A \ {Q,R} are overdetermined, giving a total
of more than

(
n−2
m

)
overdetermined m-subsets of A \ {R}, so our claim follows from our inductive

hypothesis. Our proof is now complete. 2

Problem 6 (88; 4, 2, 1, 0, 0, 0, 1, 80) Let n ≥ 2 be an integer. Let x1 ≥ x2 ≥ · · · ≥ xn and
y1 ≥ y2 ≥ · · · ≥ yn be 2n real numbers such that

0 = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn

and
1 = x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n.

Prove that
n∑

i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

.

Solution. We will use the Rearrangement Inequality, which can be stated as follows. Suppose that
x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn are real numbers. Let Sn be the set of permutations of
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{1, 2, . . . , n}, and for each σ ∈ Sn, set f(σ) =
∑n

i=1 xiyσ(i). With these notations, f(σ) is maximized
when σ is the identity permutation (that is, σ(i) = i for each 1 ≤ i ≤ n) and minimized when σ is
the reverse identity permutation (that is, σ(i) = n+ 1− i for each 1 ≤ i ≤ n).3

We will also need the following.
Lemma. Suppose that a1, . . . , ak are real numbers, with a1 ≥ ai ≥ ak for all 1 ≤ i ≤ k. Suppose

that 0 =
∑k

i=1 ai and A =
∑k

i=1 a
2
i . Then

a1 − ak ≥ 2
√
A/k.

Proof of Lemma. Let a = (a1 + ak)/2. Then

k∑
i=1

(ai − a)2 =

k∑
i=1

a2i − 2a

k∑
i=1

ai +

k∑
i=1

a2 ≥ A.

Note that (a1−a)2 = (ak−a)2 ≥ (ai−a)2 for all 1 ≤ i ≤ k, so a1−a ≥
√
A/k and a−ak ≥

√
A/k;

adding these two inequalities proves our claim.
We will now compute

∑
σ∈Sn

f(σ) and
∑

σ∈Sn
f2(σ) under the conditions of this problem. The

first of these is easy: since
∑n

i=1 xi = 0, we have

∑
σ∈Sn

f(σ) =
∑
σ∈Sn

n∑
i=1

xiyσ(i) =
n∑

i=1

xi
∑
σ∈Sn

yσ(i) = 0.

In order to compute
∑

σ∈Sn
f2(σ), we first rewrite it as

∑
σ∈Sn

(
n∑

i=1

xiyσ(i)

)2

=
∑
σ∈Sn

 n∑
i=1

x2i y
2
σ(i) +

∑
i ̸=j

xixjyσ(i)yσ(j)

 =
n∑

i=1

x2i
∑
σ∈Sn

y2σ(i)+
∑
i ̸=j

xixj
∑
σ∈Sn

yσ(i)yσ(j).

Here
∑n

i=1 x
2
i = 1, and

∑
i ̸=j

xixj =

(
n∑

i=1

xi

)2

−
n∑

i=1

x2i = 02 − 1 = −1.

Next, note that for each 1 ≤ i, i′ ≤ n there are exactly (n − 1)! permutations σ ∈ Sn for which
σ(i) = i′, so ∑

σ∈Sn

y2σ(i) = (n− 1)!

n∑
i′=1

y2i′ = (n− 1)! · 1.

Similarly, observe that for each 1 ≤ i, i′, j, j′ ≤ n with i ̸= j and i′ ̸= j′ there are exactly (n − 2)!
permutations σ ∈ Sn for which σ(i) = i′ and σ(j) = j′, so∑

σ∈Sn

yσ(i)yσ(j) = (n− 2)!
∑
i′ ̸=j′

yi′yj′ = (n− 2)! · (−1).

3See Chapter 10 in Inequalities, by G. H. Hardy, J. E. Littlewood, and G. Pólya, Second Edition, Cambridge
University Press, London, 1952.
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In summary, we find that∑
σ∈Sn

f2(σ) = 1 · (n− 1)! · 1 + (−1) · (n− 2)! · (−1) = n(n− 2)!.

Now let σ1, σ2, . . . , σn! be the elements of Sn in some order so that σ1 is the identity permutation
and σn! is the reverse identity permutation. Set k = n! and ai = f(σi). Then, by the Rearrangement
Inequality, we have f(σn!) ≤ f(σi) ≤ f(σ1), so our Lemma yields

f(σ1)− f(σn!) ≥ 2
√
n(n− 2)!/n!

or
n∑

i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

,

as claimed. 2
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