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Abstract: We characterize the quantum states dual to entanglement wedges in ar-

bitrary spacetimes, in settings where the matter entropy can be neglected compared

to the geometric entropy. In AdS/CFT, such states obey special entropy inequalities

known as the holographic entropy cone. In particular, the mutual information of CFT

subregions is monogamous (MMI). We extend this result to arbitrary spacetimes, using

a recent proposal for the generalized entanglement wedge e(a) of a gravitating region a.

Given independent input regions a, b, and c, we prove MMI: Area[e(a)] + Area[e(b)] +

Area[e(c)]−Area[e(ab)]−Area[e(bc)]−Area[e(ca)]+Area[e(abc)] ≤ 0. We expect that

the full holographic entropy cone can be extended to arbitrary spacetimes using similar

methods.
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1 Introduction

Holography has emerged as a powerful framework guiding our search for quantum

gravity. Initially, the holographic principle referred to the observation that the matter

entropy in a gravitating spatial region is sometimes bounded by its surface area [1–3]

and thus highly subextensive. A covariant formulation (Bousso bound) [4, 5] replaces

spatial regions by lightsheets; in this form, the bound appears to hold for all surfaces

in our universe.

Today, holography has become almost synonymous with the AdS/CFT correspon-

dence [6]. The CFT is a complete theory, not just a principle. It supplies a Hamiltonian

that can be used, in principle, to construct a unitary S-matrix for the formation and

evaporation of a black hole. But it describes quantum gravity only in asymptotically

Anti-de Sitter spacetime, and not, for example, in cosmology.

Thus, the holographic principle is a surprising and general property of semiclassi-

cal gravity and the gravitational path integral, which applies in arbitrary spacetimes

including our universe. Holography in the sense of AdS/CFT is a much stronger, but

also much narrower result.

The two notions of holography intersect when we study the entanglement structure

of the fundamental quantum states dual to spacetime regions. In AdS/CFT, to leading

order in the G or 1/N expansion, the entanglement entropy of a spatial CFT subregion

B is given by

S(B) =
Area[RT (B)]

4G
, (1.1)

where G is Newton’s constant and Area[RT (B)] is the area of the minimal [7] (or, more

precisely, the minimal stationary [8]) surface homologous to B in the AdS spacetime.

The homology region enclosed between B and RT (B) is called the entanglement wedge

of B. It constitutes the gravitating region reconstructible from CFT data on B [9].
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The RT proposal was initially understood to pertain to AdS/CFT specifically. In

fact, however, it follows from an application of the gravitational path integral [10] sim-

ilar in spirit to the Gibbons-Hawking computation of the thermal black hole partition

function [11]. Thus it is not tied to an asymptotically-AdS setting. In effect, the RT

prescription is a geometric shortcut for computing the n-th Renyi entropy from the

gravitational path integral and analytically continuing to n = 1, all in one step.

Therefore, if the fundamental theory (the CFT) was not already known, the RT

proposal should properly be viewed as a prediction for the entropy of the states of

an unknown quantum gravity theory dual to AdS. Even without explicit CFT com-

putations to compare these predictions to, this interpretation of the RT proposal is

supported by its several highly nontrivial properties: the quantity it computes obeys

strong subadditivity [9, 12], suggesting that it represents a von Neumann entropy;

and the entanglement wedge obeys nesting and complementarity [9], suggesting that it

represents a reconstructible region.

Based in part on this observation, Bousso and Penington recently proposed a defini-

tion of generalized entanglement wedges that applies in arbitrary spacetimes, including

our own universe [13, 14]. Generalized entanglement wedges, too, can be proven to sat-

isfy strong subadditivity; moreover, they obey appropriate generalizations of nesting

and complementarity. These highly nontrivial properties suggest that they represent

reconstructible regions, and that their areas represent von Neumann entropies. In AdS,

the proposal reduces to the usual entanglement wedges. In any other setting, the quan-

tum gravity theory whose entropy is computed by generalized entanglement wedges

is not known. Thus, generalized entanglement wedges can be used to constrain its

structure.

In addition to strong subadditivity, which is obeyed by all quantum states, the

RT prescription at leading order satisfies an infinite set of inequalities known as the

holographic entropy cone [15]. The simplest of these inequalities is the monogamy of

mutual information (MMI) [16]: for disjoint boundary regions A,B,C,

S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC) , (1.2)

where AB denotes the union.

Unlike strong subadditivity, these additional inequalities are not universal. They

must hold only in states for which the original, leading-order RT prescription given

in Eq. (1.1) approximates S(B) well. When matter is present in the bulk, the RT

prescription must be modified [17, 18] so that S(B) receives a contribution from the

matter entropy in the entanglement wedge. This contribution can be made arbitrarily

large, with negligible backreaction, by adding dilute matter near the boundary, so it
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can dominate at any value of G or 1/N . Thus it would not be correct to say that the

cone characterizes holographic theories as a whole.

Rather, the holographic entropy cone characterizes certain states in the holographic

theory: those dual to bulk entanglement wedges whose matter entropy can be neglected

compared to A/4G. In other words, it captures the specific entanglement structure

associated with the emergence of gravitating spacetime itself, divorced from the effects

of matter fields.

It is therefore of great interest to understand whether the holographic entropy

cone, like the RT prescription, extends beyond AdS/CFT. Do the areas of generalized

entanglement wedges obey the same infinite set of inequalities as those of RT surfaces,

when the matter entropy can be neglected? Here we initiate a study of this question by

proving that generalized entanglement wedges obey the simplest of these inequalities:

MMI.

Since the required definitions and proofs are somewhat involved, let us warm up

by proving MMI for the special “static” case analogous to the original RT proposal.

Suppose that the spacetime (which is otherwise arbitrary and in particular need not

be asymptotically AdS) contains a time-reflection symmetric Cauchy slice Σ. In this

case the required definitions and the proof of MMI simplify considerably. We begin by

reviewing the definition of a generalized entanglement wedge, immediately specializing

to the “classical” case where matter entropy can be neglected.

Definition 1. In the remainder of the introduction, Σ will denote a time-reflection

symmetric Cauchy slice. We define Area(a) of any subset a of Σ as the area of its

boundary, ∂a.

Definition 2 (Static Generalized Entanglement Wedge, Classical Limit [13]). Let

a ⊂ Σ be open (so that a is a partial Cauchy slice, i.e., a spatial region). The static en-

tanglement wedge E(a) is the open subset of Σ that contains a, has the same conformal

boundary as a (if any), and has the smallest boundary area among all such sets.

Definition 3 (Static Wedge Union [13]). Let a, b ⊂ Σ be open, with boundaries ∂a

and ∂b in Σ. The wedge union of a and b is

a ⋓ b ≡ a ∪ b ∪ (∂a ∩ ∂b) . (1.3)

Whenever possible, we use the abbreviated notation

ab ≡ a ⋓ b . (1.4)

– 3 –



Theorem 4 (MMI for generalized entanglement wedges, static case). Let a, b and c

be open subsets of Σ such that1

a ∩ E(bc) = b ∩ E(ca) = c ∩ E(ab) = ∅ . (1.5)

Then

Area[E(a)] + Area[E(b)] + Area[E(c)]

−Area[E(ab)]− Area[E(bc)]− Area[E(ca)]

+Area[E(abc)] ≤ 0 . (1.6)

Proof. Rearranging components of the areas as in figure 1:

Figure 1: The proof of MMI proceeds in two major steps, shown here for the special

case where all relevant regions lie on a time-reflection symmetric Cauchy slice. Left:

area portions of E(ab), E(bc), and E(ca) can be rearranged to form the boundaries

of 4 new regions, yielding Eq. (1.7). (The dashed red lines indicate portions of the

boundaries of the first 3 regions appearing on the right hand side of that inequality.)

Right: defining properties of then entanglement wedge imply that the areas decrease

further when these new regions are deformed into E(a), E(b), E(c), and E(abc).

1In AdS/CFT, the CFT degrees of freedom in disjoint subregions of a boundary Cauchy slice

are mutually independent. However, generalized entanglement wedge reconstruction implies that the

disjoint gravitating regions a, b, c need not be fundamentally independent [13, 14]. Eq. (1.5) provides

a suitable notion of independence.
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Area[E(ab)] + Area[E(ac)] + Area[E(bc)] ≥
Area[(E(ab) ∩ E(ac)) \ E(bc)] + Area[(E(bc) ∩ E(ba)) \ E(ac)]

+Area[(E(cb) ∩ E(ca)) \ E(ab)] + Area[E(ab) ⋓ E(ac) ⋓ E(bc))] . (1.7)

(This need not be an equality since the wedge union can erase boundary portions.)

By Def. 2 (inclusion) and Eq. (1.5), a ⊂ E(ab) ∩ E(ac) \ E(bc). Similarly b and c are

contained, respectively, in the second and third set on the right hand side. Again by

Def. 2 (inclusion), abc ⊂ E(ab) ⋓ E(ac) ⋓ E(bc). By Def. 2 (area-minimization),

Area[(E(ab) ∩ E(ac)) \ E(bc)] + Area[(E(bc) ∩ E(ba)) \ E(ac)]

+Area[(E(cb) ∩ E(ca)) \ E(ab)] + Area[E(ab) ⋓ E(ac) ⋓ E(bc))] ≥
Area[E(a)] + Area[E(b)] + Area[E(c))] + Area[E(abc)] . (1.8)

In the remainder of this paper, we will generalize this result to generalized entan-

glement wedges in time-dependent settings. (This is analogous to extending [9] MMI of

AdS boundary regions [19] from the original static context of the RT prescription [7] to

the time-dependent setting of the Hubeny-Rangamani-Takayanagi prescription [8]; we

will now do this for generalized entanglement wedges [13, 14].) In Sec. 2, we reproduce

relevant definitions from Ref. [14] and fix notation. In Sec. 3 prove MMI for generalized

entanglement wedges, building on some novel definitions and Lemmas.

Together with strong subadditivity [14], our result establishes the holographic en-

tropy cone for n ≤ 4 independent subregions. We leave the derivation of the full cone

for generalized entanglement wedges to future work.2

2 Preliminary Definitions

Definition 5. Let (M, g) be a globally hyperbolic manifold with Lorentzian metric,

and let s ⊂ M . The domain of influence of s, I(s), is the union of s with the set of

points that can be reached from some point p ∈ s by a timelike curve. The domain of

dependence of s, D(s), is the set of points q such that every causal (i.e., timelike or

null) curve through q intersects s.

2Interestingly, aside from MMI, the holographic entropy cone for the time-dependent case (HRT)

has not been established even in AdS/CFT. The maximin proof [9] of MMI in AdS/CFT does not

generalize to more complicated inequalities; see this talk by M. Headrick. It will be interesting to

study whether the proof techniques we use here are better adapted to this task. Our proof methods

differ substantially as they pertain to generalized entanglement wedges where maximin is not useful

in any case.
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Definition 6. The spacelike complement of a set s ⊂ M is defined by

s′ ≡ int[M \ I(s)] . (2.1)

where int denotes the interior of a set. (Thus, s′ is necessarily open.)

Definition 7. A wedge is a set a ⊂ M that satisfies a = a′′.

Remark 8. Let a be a wedge. By Def. 6, a is an open set; a′ is also a wedge; and the

intersection of two wedges a, b is a wedge.

Definition 9. The edge ða and Cauchy horizon H(a) of a wedge a are defined by

ða ≡ ∂a ∩ ∂a′ , (2.2)

H(a) ≡ ∂D(a) \ ða . (2.3)

where ∂ denotes the boundary of a set. It will also be convenient to define

a ≡ a ⊔H(a) ; (2.4)

we use the symbol ⊔ to indicate that the union is disjoint.

Remark 10. Any wedge a induces a decomposition of the spacetime M into disjoint

sets:

M = a ⊔ a′ ⊔ I(ða) ⊔H(a) ⊔H(a′) (2.5)

= a ⊔ a′ ⊔ I(ða) . (2.6)

Definition 11. The wedge union of two wedges a, b is the wedge

a ⋓ b ≡ (a′ ∩ b′)′ . (2.7)

As in the static case, we will suppress the symbol ⋓ and simply write ab whenever

possible.

Definition 12. The area of a wedge a is defined as the area of its edge.

Remark 13. By Def. 9, Area(a) = Area(a′).

Definition 14. Let θ±(a, p) be the expansions [20] at p of the null congruences or-

thogonal to ða that enter H±(a′). The wedge a is called extremal at p ∈ ða if

θ+(a, p) = θ−(a, p) = 0. Similarly, the wedge is called normal at p if both expan-

sions are positive or zero, and antinormal if both are negative or zero.
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Figure 2: A wedge a induces a decomposition of the spacetime as shown. Here H(a)

is the Cauchy horizon of a. I(ða) is the domain of influence of the edge ða of a. The

remaining part of the spacetime consists of the complement wedge a′ and its Cauchy

horizon H(a′).

Definition 15. The spacetime (M, g) is weakly classically focussing (WCF) if the

expansion of a null congruence is nonincreasing at all points where it vanishes.

Remark 16. The WCF property is a classical version of the restricted [21] Quantum

Focussing Conjecture [22]. It holds in particular if the null curvature condition is

satisfied on (M, g), and hence if Einstein’s equations are satisfied with the null energy

condition holding for matter.

Definition 17 (emax). Given a wedge a, let F (a) ≡ { f : I ∧ II ∧ III } be the set of

all wedges that satisfy the following properties:

I. f ⊃ a and ð̃f = ð̃a ;

II. f is antinormal at points p ∈ ðf \ ða ;

III. f admits a Cauchy slice Σ such that

(a) Σ ⊃ ða ;

(b) Area(h) > Area(f) for any wedge h ̸= f such that a ⊂ h, ðh ⊂ Σ, and

ðh \ ðf is compact in M .

The classical max-entanglement wedge of a, emax(a), is their wedge union:

emax(a) ≡ ⋓f∈F (a) f . (2.8)

Definition 18 (emin). Given a wedge a, let G(a) ≡ { g : i ∧ ii ∧ iii } be the set of all

wedges that satisfy the following properties:
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i. g ⊃ a ;3.

ii. g is normal;

iii. g′ admits a Cauchy slice Σ′ such that Area(h) > Area(g) for any wedge h ̸= g

such that g ⊂ h, ðh ⊂ Σ′, and ðh \ ðg is compact.

The classical min-entanglement wedge of a, emin(a), is their intersection:

emin(a) ≡ ∩g∈G(a) g . (2.9)

Remark 19. In general, emax(a) and emin(a) need not agree. (This is also true in

the special case of entanglement wedges of conformal boundary regions in AdS/CFT.

However, in that case they can only disagree if the bulk matter is in an incompressible

quantum state [23, 24], whereas more generally they can already disagree at the classical

level.) If emax(a) = emin(a), we will denote them as e(a). In this case, Area[e(a)]

satisfies strong subadditivity and is expected to represent a von Neumann entropy in

a fundamental quantum gravity theory [14].

3 Proof of MMI

Definition 20. Let a be a wedge, and let p ∈ ða. If ða is a C1 submanifold at p, there

are 4 null geodesics that begin at p and are orthogonal to ða. We define γ+
p (a), γ

−
p (a),

γ+
p (a

′), and γ−
p (a

′) to be their intersection with H+(a), H−(a), H+(a′), and H−(a′),

respectively; see Fig. FFF. We further define the broken null geodesics

γp(a) ≡ γ+
p (a) ⊔ p ⊔ γ−

p (a) ; (3.1)

γp(a
′) ≡ γ+

p (a
′) ⊔ p ⊔ γ−

p (a
′) . (3.2)

Definition 21. Let a, b, and c be wedges. We define

ðabc ≡ { p ∈ ða \ b′ \ c′ \ (b ∩ c) : γp(a) ∩ b ∩ c ̸= ∅ } . (3.3)

and

ða′bc ≡ { p ∈ ða \ b′ \ c′ \ (b ∩ c) : γp(a
′) ∩ b ∩ c ̸= ∅ } . (3.4)

3In Ref. [14], the additional condition ð̃f = ð̃a was required as part of property i. However, this

condition interferes with the proof that emin(a) ∈ G(a) (Theorem 23 of [14]; specifically one needs that

M ∈ G(a)). In fact, under reasonable conditions on the asymptotic structure, the condition ð̃f = ð̃a
is unnecessary, since wedges in G(a) with a larger conformal boundary will contain subwedges with

ð̃f = ð̃a that satisfy properties i–iii.
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Figure 3: Every point p on the edge of a wedge is the starting point of two null

geodesics γp(a)
± that lie on the past and future Cauchy horizon, H±(a).

Remark 22. Intuitively, it is helpful to think of ðabc as the portion of the edge of a whose

orthogonal null geodesics towards a enter b∩c. For example, generically Eq. (3.3) could

be replaced by ðabc ≡ { p ∈ ða \ (b ∩ c) : γp(a) ∩ b ∩ c ̸= ∅ }. The above definition

is designed to handle marginal cases correctly, for example when ða ⊂ H[(b ∩ c)′].

Accounting for these cases is tedious but straightforward, and we will not spell out

all the possible marginal configurations in proofs. On a first reading, we recommend

making a generic assumption about the spacetime, so that such cases will not occur.

Lemma 23. Let a, b, and c be wedges. Then the four sets ðabc, ðabc′ , ðab′c, and ðab′c′
are mutually disjoint. Moreover, the four sets ða′bc, ða′bc′ , ða′b′c, and ða′b′c′ are mutually

disjoint.

Proof. For contradiction, suppose that p ∈ ðabc∩ðabc′ . By the first portion of Eq. (3.3),

p /∈ c ∪ c′ . (3.5)

We now recall Def. 9, that c = c ∪ H(c) and c′ = c′ ∪ H(c′). By the second portion

of Eq. (3.3) (the criterion after the colon), γp(a) intersects c and also c′. By Eq. (2.5)

and Theorem 9.3.11 of Ref. [20] (see also Ref. [25]), this requires that γp(a) contain

an unbroken null geodesic with endpoints p1 ∈ c and p2 ∈ c′. Since γp is broken at

p, this implies p ∈ c ∪ c′; this contradicts Eq. (3.5). Similarly one shows that that all

other pairs among the first four sets are disjoint, and that all of the second four sets

are mutually disjoint.
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Lemma 24. Let a, b, and c be wedges, and suppose that they are normal at points on

ðabc, ðbca, and ðcab. Then

Area(a ∩ b ∩ c) ≤Area(ða ∩ b ∩ c) + Area(ðb ∩ c ∩ a) + Area(ðc ∩ a ∩ b)

+
1

2
[Area(ðabc) + Area(ðbca) + Area(ðcab)] . (3.6)

Proof. Every point in ð(a ∩ b ∩ c) lies either in one of the sets appearing in the first

line, or on the intersection of two broken null geodesics γ originating from two distinct

sets of the second line. (See Fig. 4 for an example.)

Figure 4: Example illustrating the second line of Eq. (3.6). Here, the set

{ p ∈ ð(a ∩ b ∩ c) : p = γq(a) ∩ γr(b) , q ∈ ðabc , r ∈ ðbca } (red dot) forms a portion of

ð(a ∩ b ∩ c). By the weak focusing condition, the area of this portion is smaller than

that of either “origin” set, ðabc (green dot) and ðbca (blue dot), and hence smaller than

or equal to half their sum.

Lemma 25. Let a and b, and c be wedges, and suppose that they are normal at points

on ðbca′ , ðca′b, ðab′c, ðcab′ , ðabc′ , and ðbc′a; and antinormal on ða′bc, ðb′ca, ðc′ab, ða′b′c′ ,
ðb′c′a′ , and ðc′a′b′ . Then

Area(a′ ∩ b ∩ c) + Area(a ∩ b′ ∩ c) + Area(a ∩ b ∩ c′) + Area(a′ ∩ b′ ∩ c′)

≤ Area(a) + Area(b) + Area(c) . (3.7)
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Proof. By the preceding Lemma,

Area(a′ ∩ b ∩ c) + Area(a ∩ b′ ∩ c) + Area(a ∩ b ∩ c′) + Area(a′ ∩ b′ ∩ c′)

≤ Area(ða ∩ b ∩ c) + Area(ðb ∩ c ∩ a′) + Area(ðc ∩ a′ ∩ b)

+Area(ða ∩ b′ ∩ c) + Area(ðb ∩ c ∩ a) + Area(ðc ∩ a ∩ b′)

+Area(ða ∩ b ∩ c′) + Area(ðb ∩ c′ ∩ a) + Area(ðc ∩ a ∩ b)

+Area(ða ∩ b′ ∩ c′) + Area(ðb ∩ c′ ∩ a′) + Area(ðc ∩ a′ ∩ b′)

+
1

2
[Area(ða′bc) + Area(ðbca′) + Area(ðca′b)

+Area(ðab′c) + Area(ðb′ca) + Area(ðcab′)
+Area(ðabc′) + Area(ðbc′a) + Area(ðc′ab)

+Area(ða′b′c′) + Area(ðb′c′a′) + Area(ðc′a′b′)] (3.8)

Consider the 8 portions of ða that appear on the right hand side; they correspond to

the first term on each of the 8 lines. The first 4 of these terms are mutually disjoint;

and their union is disjoint from all of the remaining 4 terms. By Lemma 23 these

remaining 4 terms are pairwise disjoint:

ðab′c ∩ ðabc′ = ∅ ; ða′bc ∩ ða′b′c′ = ∅ . (3.9)

It follows that any point p ∈ ða that lies outside the first four portions appears at most

twice in the remaining four portions. The factor of 1/2 ensures that the sum of the

areas of the first term in each line will not exceed Area(a):

Area(ða ∩ b ∩ c) + Area(ða ∩ b′ ∩ c) + Area(ða ∩ b ∩ c′) + Area(ða ∩ b′ ∩ c′)

+
1

2
[Area(ða′bc) + Area(ðab′c) + Area(ðabc′) + Area(ða′b′c′)] ≤ Area(a) . (3.10)

Similarly one finds that the second and third terms of each line contribute less area

than Area(b) and Area(c), respectively.

Convention 26. In the remainder of this paper, let x, y, and z be wedges, such that

emin = emax for x, y, z and for all their wedge unions. We can thus denote the entan-

glement wedges by e and define a = e(yz), b = e(zx), and c = e(xy). We will assume

that they satisfy the independence conditions x ⊂ a′, y ⊂ b′, and z ⊂ c′.

Lemma 27. a, b, and c as defined in Convention 26 satisfy the assumptions of Lemma 25.

Proof. Since a, b and c are min-entanglement wedges, they are everywhere normal. It

remains to be shown that they are extremal (and hence anti-normal) on ða′bc, ðb′ca,
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ðc′ab, ða′b′c′ , ðb′c′a′ , and ðc′a′b′ . We will show this for ða′bc and ða′b′c′ ; the proofs for the

remaining 4 sets obtain by cyclic permutation.

By Eq. (3.4), ða′bc ∩ b′ = ∅ and ða′bc ∩ c′ = ∅. The independence assumption in

Convention 26 implies y ⊂ b′ and z ⊂ c′. Hence ða′bc ∩ ðy = ∅ and ða′bc ∩ ðz = ∅.

While y ⊂ b′, Def. 17 implies that z ⊂ b; hence y and z are mutually spacelike. It

follows that ð(yz) ⊂ ðy ∪ ðz. Combining these results we find that ða′bc ∩ ð(yz) = ∅.

By Lemma 4.14 of Ref. [13], ða′bc is extremal.

Similarly, ða′b′c′ ∩ b = ∅, ða′b′c′ ∩ c = ∅, y ⊂ c, and z ⊂ b imply that ða′b′c′ is

extremal.

Lemma 28. With a, b, and c defined as in Convention 26, the wedges a′∩b∩c, a∩b′∩c,
a ∩ b ∩ c′, and a′ ∩ b′ ∩ c′ are normal.

Proof. Suppose for contradiction that a′∩b∩c is not normal at the point q ∈ ð(a′∩b∩c).
By virtue of being min-entanglement wedges, b, and c are normal. Hence b∩c is normal.

This implies that q ∈ b∩ c∩ γp(a
′). By Theorem 21 of [14], a is extremal except where

its edge overlaps with ðy or ðz, so weak focusing implies p ∈ ðy ∪ ðz. (Here we

used the fact that y and z are mutually spacelike; see the proof of Lemma 27 above.)

Hence there exists a causal curve from b ∩ c to y ∪ z. This contradicts at least one

of the independence conditions y ⊂ b′, z ⊂ c′. Hence a′ ∩ b ∩ c is normal. By cyclic

permutation, a ∩ b′ ∩ c and a ∩ b ∩ c′ are also normal.

Suppose for contradiction that a′∩b′∩c′ is not normal at the point q ∈ ð(a′∩b′∩c′).
Again using Theorem 21 of [14], this implies [I(ab)∩xy]∪ [I(bc)∩yz]∪ [I(ca)∩zx] ̸= ∅.

But in fact this set must be empty, by the independence conditions of Convention 26

and property i in Def. 18; the latter applies since emin(x) ∈ G(x)) by Theorem 23

of [14].

Theorem 29. (Monogamy of Mutual Information):

With x, y, and z as in Convention 26,

Area[e(xy)] + Area[e(yz)] + Area[e(zx)]

≥ Area[e(x)] + Area[e(y)] + Area[e(z)] + Area[e(xyz)] (3.11)

Proof. By Lemma 27 and Lemma 25,

Area[e(xy)] + Area[e(yz)] + Area[e(zx)]

≥ Area[e(xy) ∩ e(yz) ∩ e(zx)′] + Area[e(xy) ∩ e(yz)′ ∩ e(zx)]

+Area[e(xy)′ ∩ e(yz) ∩ e(zx)] + Area[e(xy) ⋓ e(yz) ⋓ e(zx)] (3.12)

Nesting of emin (Theorem 27 of [14]) implies e(x) ⊂ e(xy) and e(x) ⊂ e(zx). The

independence conditions state that x ⊂ e(yz)′ and imply (using nesting) that yz ⊂

– 12 –



e(x)′; the No-Cloning (Theorem 29 of [14]) then implies e(x) ⊂ e(yz)′. Combining

these results, we find that

e(x) ⊂ e(xy) ∩ e(yz)′ ∩ e(zx) , (3.13)

e(y) ⊂ e(yz) ∩ e(zx)′ ∩ e(xy) , (3.14)

e(z) ⊂ e(xy) ∩ e(yz)′ ∩ e(zx) , (3.15)

where the second and third line follow by cyclic permutation. By Theorem 23 of [14],

emin(x) ∈ G(x); let Σ′
min(x) be the Cauchy surface of emin(x)

′ guaranteed to exist by

Property iii of Def. 18. Property iii and Lemma 28 imply

Area[e(x)] ≤ Area[e(xy) ∩ e(yz)′ ∩ e(zx) ∩ Σ′
min(x)] ≤ Area[e(xy) ∩ e(yz)′ ∩ e(zx)] ;

(3.16)

and cyclic permutation yields analogous inequalities for Area[e(y)] and Area[e(z)].

Nesting also implies

e(xyz) ⊃ e(xy) ⋓ e(yz) ⋓ e(zx) . (3.17)

By Theorem 19 of [14], emax(xyz) ∈ F (xyz); let Σmax(xyz) be the Cauchy surface of

emax(xyz) guaranteed to exist by Property III of Def. 17. Property III and Lemma 28

imply

Area[e(xyz)] ≤ Area[e(xy)′ ∩ e(yz)′ ∩ e(zx)′ ∩ Σmax(x)] ≤ Area[e(xy) ⋓ e(yz) ⋓ e(zx)] .

(3.18)

Combining all of the above area inequalities yields Eq. (3.11).
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