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External coherent fields can drive quantum materials into non-equilibrium states, revealing exotic
properties that are unattainable under equilibrium conditions—an approach known as “Floquet en-
gineering.” While optical lasers have commonly been used as the driving fields, recent advancements
have introduced nontraditional sources, such as coherent phonon drives. Building on this progress,
we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons
can induce an electronic steady state characterized by a persistent quantized current along the wire.
The quantization of the current is achieved due to the coupling of electrons to the nanowire’s vi-
brational modes, providing the low-temperature heat bath and energy relaxation mechanisms. Our
findings underscore the potential of using non-optical drives, such as coherent phonon sources, to
induce non-equilibrium phenomena in materials. Furthermore, our approach suggests a new method
for the high-precision detection of coherent phonon oscillations via transport measurements.

Introduction—Recent advances in the creation of
phonon sources have enabled on-demand access to co-
herent phonon beams across a broad spectrum of fre-
quencies [1–8]. These phonon excitations in solids [9–
16] can induce new optical properties [17, 18], strong
correlation physics [19–24], tunable magnetic properties
[1, 13, 25, 26], and acousto-electric effects [27–32]. The
unique characteristics of coherent phonons—specifically
their finite momentum, low energy, and coupling to the
electrons—pave the way for Floquet engineering of non-
equilibrium spatial-temporal electronic phenomena [33–
36]. Notably, terahertz (THz) frequency phonons [37–40]
can potentially serve as tools for the dynamic manipula-
tion of materials with narrow bandwidths, such as moiré
systems [37, 41, 42]. Recent proposals have demonstrated
that coherent phonon beams can be used for Floquet en-
gineering of nontrivial band topology in trivial materials
[33, 36].

We demonstrate that a continuous propagating wave
of coherent THz phonons can drive a quantum wire into a
non-equilibrium Floquet steady state, resulting in a per-
sistent charge current [see Fig. 1(a)]. Furthermore, under
optimal conditions of doping and driving strength, this
current can achieve a quantized value, J = eω/π, where
ω represents the phonon driving angular frequency and
e is the electron charge [see Fig. 1(b)]. In the adiabatic
limit, ω → 0, the quantization of current aligns with the
principles of a topological pump [43–47]. Remarkably,
we find that quantized transport can be maintained over
a wide range of THz frequencies, even beyond the adia-
batic limit. This suggests a robust mechanism underpin-
ning the quantization, stabilized by the non-equilibrium
electronic steady state, which is set by the coupling to a
bath of low-temperature thermal phonons and electron-
electron interactions [48–52].

A device for robust generation of quantized current on
demand through coherent phonon illumination has nu-
merous potential applications in metrology [53–58], elec-
tronics, and quantum computing [59–62]. Furthermore,
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FIG. 1. (a) Schematic experimental setup. A THz-frequency
coherent phonon wave (with atomic displacements sketched
by red arrows) of momentum q and angular frequency ω in-
duces a quantized current J = eω/π in a CNT. A screening
material of dielectric constant ϵ surrounds the CNT, and anti-
reflective material minimize reflection of the phonon wave.
(b) Current J vs. Floquet gap ∆/ℏω for different ϵ (see in-
set). Vertical line: gap below which the drive is non-adiabatic
(∆ < ℏω). Inset: ∆∗ vs. ϵ, where ∆∗ is the minimal Floquet
gap at which J = 0.96eω/π. (c) Band structure of a (10, 0)
armchair CNT. Inset: Fermi energy lies near the band bottom
of the lowest positive-energy band, and the electronic density
ne is chosen to be commensurate to q. (d) Quasienergy spec-
trum of the driven system. Blue shading on the α = 0 band:
optimal filling of the bands resulting in quantized current.
Scattering transitions (black arrows) generated by incoherent
phonons relax electrons into the α = 0 band.

this device can be used as a tool for the characteriza-
tion and detection of coherent phonons through transport
measurement. Traditionally, the detection of coherent
phonons has relied on optical methods such as reflectivity
measurements [63–67]. Leveraging current quantization
as a probe of the phonon field offers a more direct and
sensitive method of coherent phonon detection.

In this work, we focus on a concrete experimental setup
of carbon nanotube (CNT) [68–73] coupled to a continu-
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ous source of coherent phonons. The phonon waves prop-
agate from the right to the left end of the CNT, where
they are absorbed by the absorbing material, see Fig.
1(a). Anti-reflective material with appropriately chosen
thickness on both ends of the CNT [see blue slabs in Fig.
1(a)] suppress reflected phonon waves that destructively
interfere with the coherent phonon mode. The electronic
steady state in the CNT is formed from the balance be-
tween the interaction with the coherent phonon wave, as
well as interactions with incoherent phonons of the CNT
and other electrons. In our model, we consider a detailed
microscopic description of the phononic spectrum of the
CNT that serves as the low-temperature heat bath for
the phonons and the electron-electron interactions.

Phonon-driven carbon nanotube.—To analyze the
steady state properties of this setup, we use an effective

model of the CNT. We define ψ̂
†
k,s ≡

(
ψ̂†
k,A,s ψ̂†

k,B,s

)

as the creation operator of a Bloch state on the CNT,
where ψ̂†

k,j,s creates an electron of crystal momentum
k on sublattice j = A,B, and k is the Bloch momen-
tum in the direction k̂∥ along the tube axis. The index
s = 0, . . . , N − 1 enumerates the electronic momentum
sk⊥ along the direction k̂⊥ around the circumference of
the tube. Here, k⊥ = (2π/P )k̂⊥, P is the perimeter of
the CNT, N is the number of graphene unit cells con-
tained in a length |T | along the tube axis, and the CNT
is periodic along the tube axis by translations of vector
T . The electronic momentum k ∈ [−π/|T |, π/|T |] along
k̂∥ is approximated as continuous for a long tube. Corre-
sponding eigenenergies of the electronic states are given
by Esν(k), where ν = +,− denote the conduction and
valence bands, respectively, see Fig. 1(c).

We focus on a semiconducting CNT whose Fermi sur-
face in equilibrium lies near the bottom of the lowest
conduction band [see inset of Fig. 1(c)]. The lowest con-
duction and highest valence bands are described by the

effective Hamiltonian Ĥe =
∫
dk/2π ψ̂

†
kHe(k)ψ̂k, where

He(k) = ℏvF (δkk̂⊥+kk̂∥) ·σ, δk is a constant dependent
on the chirality indices (see the Supplemental Materials
[74] for details), vF is the Fermi velocity of graphene,
σ = (σx, σy) is a vector of Pauli matrices acting in the
graphene sublattice basis, and the x axis is aligned along
a bond between carbon atoms. In what follows, we omit
the index s, assuming only the two bands described by
ν = +,− with eigenergies Eν(k) and eigenstates |νk⟩.

To describe electron-phonon interactions in the CNT,

we consider the Hamiltonian Ĥep(t) =
∑

λ Ĥ
(λ)
ep (t),

where Ĥ
(λ)
ep (t) =

∫
d2r ψ̂

†
rV̂

(λ)(r, t)ψ̂r and V̂ (λ)(r, t) =

ℏvF Â
(λ)

ph (r, t) · σ + ϕ̂
(λ)
ph (r, t) describe electronic cou-

pling to a phonon mode indicated by λ, r = (x, y)

is the spatial coordinate along the tube, and ψ̂
†
r =

P−1
∫
dk/(2π)e−i(δkk̂⊥+kk̂∥)·rψ̂

†
k. The electrons interact

with the phonons through the effective vector potential

Â(λ)

ph (r, t) =
√
3β/(2a)(û

(λ)
xx (r, t) − û

(λ)
yy (r, t), 2û

(λ)
xy (r, t))

and through the local scalar potential ϕ̂
(λ)
ph (r, t) =

D[û
(λ)
xx (r, t)+ û

(λ)
yy (r, t)]I, where a = 0.246 nm, β ≈ 3.14,

and deformation potential D = 15 eV [37, 75]. Here,

û(λ)(r, t) is the displacement operator of the phonon

mode, û
(λ)
b (r, t) is its b-th component, and û

(λ)
bc (r, t) =

[∂bû
(λ)
c (r, t) + ∂cû

(λ)
b (r, t)]/2.

We assume that a source of phonons [see Fig. 1(a)]
generates a coherent sound mode with index λ = λ0
that propagates through the CNT, while the rest of
the phonons are in low-temperature thermal equilibrium.
The phonon mode λ0 has momentum q = qk̂∥, angular
frequency ω, and finite displacement expectation value
⟨û(λ0)(r, t)⟩ = u0 cos(q · r − ωt)k̂∥, where u0 is the dis-
placement amplitude [76].

The electronic dynamics can be divided to coher-
ent components described by the time- and spatially-

periodic Hamiltonian Ĥ0(t) = Ĥe + Ĥ
(λ0)
ep (t) and

incoherent components due to coupling to ther-

mal phonon modes, Ĥb(t) =
∑

λ̸=λ0
Ĥ

(λ)
ep (t) [77].

The single-particle Hamiltonian Ĥ0(t) can be diag-
onalized by the Floquet-Bloch states, |ψkα(r, t)⟩ =

e−i(k·r+εkαt/ℏ)∑
n∈Z e

−in(q·r−ωt)|ϕ(n)kα ⟩ [33–35, 78]. Here,
εkα is the quasienergy satisfying

(εkα +mℏω)|ϕ(m)
kα ⟩ = He(k +mq) +

∑

m′ ̸=0

Vm−m′ |ϕ(m
′)

kα ⟩

(1)
where α enumerates the Floquet bands and Vn are the
Fourier harmonics of ⟨V̂ (λ0)(r, t)⟩, i.e., ⟨V̂ (λ0)(r, t)⟩ =∑

n ̸=0 e
−in(q·r−ωt)Vn. The quasienergy spectrum εkα

arises from replicas of the original energy bands Eν(k)
shifted in energy and momentum bymℏω andmq, respec-
tively, where m ∈ Z [see light grey, dashed curves in Fig.

1(d)]. Rabi-like gaps of size ∆ ≈ qu0[D+ k̂y∥ℏvF
√
3β/2a]

open at momenta k = k∗ +mq where the Floquet repli-
cas cross, resulting in the quasienergy spectrum sketched
with solid curves in Fig. 1(d) (see the Supplemental Ma-
terials [74] for details). Remarkably, the quasienergy sat-
isfies the periodicity condition εkα = εk+q,α − ℏω, which
is the basis for the quantized current presented in this
work. Specifically, the current is given by [79]

J =
2e

ℏ
∑

α

∫ q

0

dk

2π

dεkα
dk

Fkα. (2)

Here, Fkα(t) = ⟨f̂†kα(t)f̂kα(t)⟩ is the occupation of the

Floquet state |ψkα(r, t)⟩ created by operator f̂†kα(t) [80].
When only the α = 0 band is fully-occupied, J = eω/π,
resulting in quantized current.
Floquet-Boltzmann Equation.—To model the dynamics

under electron-phonon interactions, we consider the mi-
croscopic Hamiltonian Ĥb(t) for electronic coupling to in-
coherent bath phonons. The incoherent low-energy longi-
tudinal acoustic phonons of speed cph, momentum p, and
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energy ℏωl(p) = ℏcph|sk⊥ + pk̂∥| dominate the electron-
phonon scattering near the Fermi surface of the CNT.
Additionally, we consider electron-electron coupling:

Ĥee =

∫
dk1dk2dp

(2π)3
Vk1,k2

(p)ĉ†k1+p,+ĉ
†
k2−p,+ĉk2,+ĉk1,+,

(3)

where Vk1,k2
(p) = U(p)Wk1,pWk2,−p/(2ϵ), Wk,p ≡

⟨+, k + p|+, k⟩ is the form-factor, U(p) is the Coulomb
potential, ϵ is the dielectric constant of the surround-
ing screening medium, and ĉkν creates an electron in the
eigenstate |νk⟩ of Ĥe. We consider scattering within the
ν = + band only, because the Fermi level [see inset of Fig.
1(c)] is energetically well-separated from other bands, re-
stricting scattering to small momentum transfers p ≲ q
near the Fermi surface. For small p, we approximate
U(p) ≈ 1 eV, consistent with estimates in Refs. [81, 82].

We assume that the CNT incoherent phonons are
coupled to an external heat bath and remain in ther-
mal equilibrium at temperature T . Under these con-
ditions, the electrons form a steady state distribu-
tion with occupations Fkα(t) determined by solving the
Floquet-Boltzmann equation (FBE) [83–86], Ḟkα(t) =
Ibkα[{Fkα(t)}] + Ieekα[{Fkα(t)}], for Ḟkα(t) = 0. The FBE

is valid when Ĥee and Ĥb weakly scatter electrons be-
tween single-particle Floquet eigenstates. Here, we use
the Fermi golden rule modified for transitions between
Floquet states [83, 84] to calculate the electron-phonon
and electron-electron collision integrals Ibkα[{Fkα(t)}] and
Ieekα[{Fkα(t)}], respectively. (For details, see the Supple-

mental Materials [74].) The coherences ⟨f̂†kα(t)f̂kα′(t)⟩
for α ̸= α′ are suppressed when 1/τphkαα′ + 1/τ elkαα′ ≪
|εkα − εkα′ |/ℏ, where 1/τphkαα′ and 1/τ elkαα′ are respec-
tively the electron-phonon and electron-electron inter-
band scattering rates between bands α and α′ ̸= α
[83, 84, 87]. Interband scattering transitions also broaden
the electronic spectral function by an energy scale of
roughly δε ≈ ℏ/τ totkαα′ , relaxing energy conservation in
the FBE.

Phenomenological rate equation.—The current in Eq.
(2) attains a quantized value when Fkα = F opt

kα , where

F opt
k0 = 1, and F opt

k,α ̸=0 = 0. Our goal in this section is to
find the conditions on the scattering rates that lead to
Fkα ≈ F opt

kα in the steady state. To this end, we identify
the key scattering processes that contribute to the steady
state, indicated by arrows in Fig. 2(a)-(b). These pro-
cesses connect three patches of Floquet states denoted by
S+, S−, and S0, with approximately uniform electronic
occupation F+, F−, and F0 respectively. The patch S0

includes Floquet states with momentum k∗ ≤ k < q/2
in the α = 0 band, while S+ and S− encloses those with
momentum −q/2 ≤ k < k∗ in the α = 1 and α = 0
bands, respectively [see Fig. 2(a)].

To estimate the electronic occupations of the patches,
let us first consider the limit ϵ→ ∞ and Ieekα → 0 in which
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FIG. 2. (a) Floquet bands upon driving by a coherent phonon
wave. Dashed light purple arrows (1-3): dominant electron-
phonon intraband and cooling processes relaxing electrons
into the α = 0 band. Solid red arrows (4-5): electron-phonon
heating processes exciting electrons into the α = 1 band,
which are kinematically suppressed when ∆ ≫ δε. (b) Pairs
of zigzag and squiggly red arrows: electron-electron scattering
exciting electrons into the α = 1 band. Dashed light purple
arrow: electron-phonon process relaxing excited electrons into
S+. (c)-(e) Occupation Fi of the patches Sj for i = +,−, 0
[see panel (a)] vs ∆ for various dielectric constants ϵ. Vertical
lines: ∆ = ∆∗. Note F+ → 0, F− → 1 as ∆ → ∆∗, resulting
in quantized current.

scattering is mediated by acoustic phonons. Averaging
the FBE over the patches, we obtain rate equations for
their occupations, Ḟi =

∑
j [RjiFj(1 − Fi) − RijFi(1 −

Fj)], where i, j = +,−, 0 and Rij denotes the average
scattering rate of an electron from patch Si to Sj . We
begin by assuming that the system is optimally doped,
i.e., ne = q, where ne is the density of the electrons.
The optimal steady state distribution F opt

kα , correspond-
ing to F− = F0 = 1, and F+ = 0, is obtained when the
“Floquet-cooling” processes R+0, R0− and R−0 [dashed,
light purple arrows numbered 1-3 in Fig. 2(a)] dominate
the scattering rates. The rest of the scattering rates Rij

create excitations in S+, giving rise to deviations from
F opt
kα and therefore are dubbed “Floquet-heating” rates

[solid red arrows numbered 4-5 in Fig. 2(a)].

When the incoherent phonons remain at tempera-
ture T = 0, all “Floquet-heating” processes mediated
by acoustic phonons require a small energy and large
momentum transfer. This kinematically constrains the
rates R+− and R0+ at high drive intensities, i.e., when
∆ > δε, disabling all “Floquet-heating” processes. Si-
multaneously, the processes described by the rates R0−
and R−0 are kinematically allowed. These processes are
of the Floquet-Umklapp (FU) type and therefore increase
with the drive intensity as (∆/ℏω)2 yielding Fkα → F opt

kα

[78, 84, 88]. This is a remarkable result that shows that
the coupling to acoustic phonons can stabilize a quan-
tized current in the non-adiabatic regime δε < ∆ < ℏω.
In contrast, in the low intensity limit (∆ → 0) of the
drive, the rates R0− and R−0 vanish, whereas the rates
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FIG. 3. (a) Steady state occupation of the phonon-driven
CNT for a weak phonon drive (∆ < ∆∗), dielectric constant
ϵ = 80, and optimal doping ne = q. Inset shows excitations
in the α = 1 band near the Floquet gap. (b) Same as (a)
but for a strong drive amplitude (∆ > ∆∗) where the occu-
pation of the α = 1 band is negligible, and the α = 0 band
is fully occupied. (c)-(d) Same as (b), but with two different
electronic densities ne away from optimal doping. (e) Steady
state current vs ne evaluated at ∆ = 0.8ℏω > ∆∗ for ϵ = 80.

R−+ and R0+ become kinematically enabled. This situ-
ation leads to F+ = F0 = 1 and F− = 0, recovering the
equilibrium Fermi-Dirac distribution.

A finite incoherent phonon temperature kBT < ℏω and
electron-electron interactions (finite ϵ) cause deviations
of the steady state from F opt

kα in the regime ∆ > δε. Ab-
sorption of incoherent phonons yields a finite but weak
electron-phonon heating rate R0+, generating small elec-
tron and hole densities in S+ and S− respectively. Heat-
ing processes due to electron-electron interactions excite
electrons into the patch S+ in the α = 1 band [pairs
of squiggly red arrows in Fig. 2(b)]. Other electron-
electron scattering processes [pairs of zigzag arrows in
Fig. 2(b)] excite electrons to states elsewhere in the
α = 1 band, which are relaxed to S+ by electron-phonon
cooling [dashed, light purple arrow in Fig. 2(b)]. These
processes result in a net increase in F+ and reduced cur-
rent response. The electron-electron heating can be sup-
pressed by increasing the drive intensity, since the phase
space for such scattering processes is constrained to small
energy and momentum transfers near the Floquet gap
[see Fig. 2(b)] and is reduced as ∆ is increased. In
Fig. 2(c)-(e), we show the average occupations of the
patches as a function of ∆ for various dielectric constants
ϵ. We define ∆∗ as the minimal Floquet gap at which
J = 0.96eω/π. The equilibrium Fermi-Dirac distribution
(F+ = F0 = 1−F− = 1) transitions to F opt

kα as ∆ → ∆∗.
Numerical analysis.—To test our prediction, we solve

the FBE numerically in the steady state. We consider
a coherent acoustic phonon mode of angular frequency
ω = 6 meV/ℏ with speed of sound cph = 20 km/s, inco-
herent phonon modes at temperature T = 7 K, and op-

timal electronic density ne = q. Fig. 3(a)-(b) compares
the steady state distributions for weak (δε < ∆ < ∆∗)
and strong (∆∗ < ∆ < ℏω) non-adiabatic drives. As pre-
dicted using the phenomenological model, the density of
excitations in the α = 1 band is suppressed in the strong
drive limit, approaching the optimal distribution F opt

kα .
Fig. 1(b) shows the current J as a function of ∆/ℏω for

different dielectric constants ϵ. The vertical line indicates
∆ = ℏω, the boundary between the non-adiabatic and
adiabatic drive regimes. The current approaches quan-
tization in the non-adiabatic regime ∆ < ℏω when ϵ is
sufficiently large, verifying the phenomenological model.
The inset of Fig. 1(b) shows that the optimal Floquet
gap ∆∗ decreases as a function of ϵ.
Finally, we study the current as a function of the dop-

ing. The optimal distribution, F opt
kα , is obtained at opti-

mal doping ne = q. Fig. 3(c)-(d) compares the steady
state distributions for electronic densities below (ne < q)
and above (ne > q) optimal doping, where the steady
state deviates significantly from F opt

kα . Fig. 3(e) shows J
as a function of ne for ∆ ≈ 0.8ℏω > ∆∗ and ϵ = 80. The
quantized current is reached at optimal doping.

Experimental realization.—Lastly, let us comment on
the experimental setup needed to detect a phonon-
induced quantized current. In Fig. 1(a), we show a CNT
surrounded by a dielectric material of relative permittiv-
ity ϵ. The source of coherent phonons is placed on the
right end of the CNT, and the CNT is enclosed on both
ends with a conducting anti-reflective material of speed of
sound crph and thickness of 2πcrph/(4ω) tuned to minimize
reflection of the phonon wave. The current is measured
using gold leads attached to the anti-reflective material.
Lastly, the phonon drive amplitude u0 must be much
weaker than that which causes melting, i.e., u0 ≪ 0.1q−1

as predicted by the Lindemann criterion [89, 90]. The in-
set of Fig. 1(b) shows that, for experimentally accessible
values of ϵ, ∆∗/ℏω ∼ 0.5, corresponding to the coherent
phonon amplitude u∗ ∼ 0.001a≪ 0.1q−1.

Conclusion.—Phonon-driven systems exhibit exciting
non-equilibrium physics. Our work shows that screened
quantum wires can exhibit quantized transport when
driven non-adiabatically by coherent phonons. Low-
temperature incoherent phonons relax electronic occu-
pation to a topological Floquet energy band [see Fig.
1(c)] that hosts a quantized current response. Because
the topological transport does not rely on adiabaticity,
the quantized current is realized for short-wavelength
phonons with weak amplitudes (∆ < ℏω). This phe-
nomenon differs from the non-interacting and adiabatic
drive limit realizing a Thouless pump [43–46, 91], or
the quantized acousto-electric effect induced by GHz-
frequency phonons [92–97]. While the adiabatic quan-
tized acousto-electric effect induces nano-Ampere quan-
tized currents, our proposal may be realized for higher,
THz-frequency phonons which result in much stronger
quantized currents on the order of 0.1 µA. It also differs
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from proposals to realize quantized transport in systems
far from equilibrium via strong disorder [98], or one-way
transport without guaranteed quantized current in driven
open systems [99].

The setup can serve as a new detector of coherent
phonons relying only on transport measurements, in con-
trast to conventional methods utilizing optical reflectivity
measurements [63–66]. Carbon nanotubes [see Fig. 1(a)]
could provide a suitable experimental platform to realize
such phonon detection. The detection would be sensi-
tive even to weak coherent phonon amplitudes [see Fig.
1(b)] because adiabaticity is not required. Topological
transport in higher-dimensional phonon-driven systems
is a subject of future work, in which the direction of the
transport could be sensitively controlled by the direction
of the coherent phonon propagation.
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[61] C. Bäuerle, D. Christian Glattli, T. Meunier, F. Portier,
P. Roche, P. Roulleau, S. Takada, and X. Waintal, Re-
ports on Progress in Physics 81, 056503 (2018).
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S. Lim, E. H. Hároz, L. G. Booshehri, J. Kono, and
R. Saito, Phys. Rev. B 79, 205434 (2009).

[69] D. Fathi, Journal of Nanotechnology 2011 (2011),
10.1155/2011/471241.

[70] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932
(1997).

[71] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
haus, Phys. Rev. B 46, 1804 (1992).

[72] J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys.
Rev. Lett. 68, 631 (1992).

[73] N. Hamada, S.-i. Sawada, and A. Oshiyama, Phys. Rev.
Lett. 68, 1579 (1992).

[74] See Supplemental Material at [url] for details of deriva-
tions and numerical calculations, which includes Refs.
[100, 101].

[75] F. von Oppen, F. Guinea, and E. Mariani, Phys. Rev.
B 80, 075420 (2009).

[76] While we consider coherent longitudinal phonon modes,
coherent transverse modes should induce similar behav-
ior.

[77] For simplicity, we assume that the wavelength of the
coherent phonon mode is commensurate with the peri-
odicity of the CNT along the tube axis.

[78] M. S. Rudner and N. H. Lindner, “The floquet engi-
neer’s handbook,” (2020).

[79] I. Esin, M. S. Rudner, G. Refael, and N. H. Lindner,
Phys. Rev. B 97, 245401 (2018).

[80] The factor of two in Eq. (2) accounts for spin degener-
acy.

[81] H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402
(2004).

[82] E. Malic, M. Hirtschulz, F. Milde, M. Richter,
J. Maultzsch, S. Reich, and A. Knorr, physica status
solidi (b) 245, 2155 (2008).

[83] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.
Rudner, and G. Refael, Phys. Rev. B 99, 014307 (2019).

[84] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.
Rudner, and G. Refael, Phys. Rev. X 5, 041050 (2015).

[85] M. Genske and A. Rosch, Phys. Rev. A 92, 062108
(2015).

[86] D. W. Hone, R. Ketzmerick, and W. Kohn, Phys. Rev.
E 79, 051129 (2009).

[87] W. Kohn, Journal of Statistical Physics 103, 417 (2001).
[88] I. Esin, G. Gupta, E. Berg, M. Rudner, and N. Lindner,

Nature Communications 12 (2021), 10.1038/s41467-
021-25511-9.



7

[89] S. A. Khrapak, Phys. Rev. Res. 2, 012040 (2020).
[90] F. Lindemann, Z. Phys. 11, 609 (1910).
[91] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[92] V. I. Talyanskii, D. S. Novikov, B. D. Simons, and L. S.

Levitov, Phys. Rev. Lett. 87, 276802 (2001).
[93] P. J. Leek, M. R. Buitelaar, V. I. Talyanskii, C. G.

Smith, D. Anderson, G. A. C. Jones, J. Wei, and D. H.
Cobden, Phys. Rev. Lett. 95, 256802 (2005).

[94] M. R. Buitelaar, P. J. Leek, V. I. Talyanskii, C. G.
Smith, D. Anderson, G. A. C. Jones, J. Wei, and
D. H. Cobden, Semiconductor Science and Technology
21, S69–S77 (2006).

[95] F. Ahlers, N. Fletcher, J. Ebbecke, and T. Janssen,
Current Applied Physics 4, 529–533 (2004).

[96] J. Ebbecke, C. J. Strobl, and A. Wixforth, Phys. Rev.
B 70, 233401 (2004).

[97] N. E. Fletcher, J. Ebbecke, T. J. B. M. Janssen, F. J.
Ahlers, M. Pepper, H. E. Beere, and D. A. Ritchie,
Phys. Rev. B 68, 245310 (2003).

[98] A. Kundu, M. Rudner, E. Berg, and N. H. Lindner,
Phys. Rev. B 101, 041403 (2020).

[99] C. Shu, K. Zhang, and K. Sun, “Loss-induced univer-
sal one-way transport in periodically driven systems,”
(2023).

[100] S. A. Sato, J. W. McIver, M. Nuske, P. Tang, G. Jotzu,
B. Schulte, H. Hübener, U. De Giovannini, L. Mathey,
M. A. Sentef, A. Cavalleri, and A. Rubio, Phys. Rev.
B 99, 214302 (2019).

[101] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch,
Phys. Rev. Lett. 73, 902 (1994).



1

Supplemental Material:
Quantized Acoustoelectric Floquet Effect in Quantum Nanowires

Christopher Yang, Will Hunt, and Gil Refael, Iliya Esin

I. EFFECTIVE DESCRIPTION FOR
ADIABATIC DRIVES

In this section, we derive an effective model for the
steady states and quantized transport in 1D systems
driven adiabatically by coherent phonons, in the regime
∆ ≫ ℏω. Systems adiabatically driven by GHz-frequency
surface acoustic phonon waves have been observed ex-
perimentally to host a quantized acousto-electric current
response [1–6].

We first consider the time-averaged current

J =
2e

ℏ
1

T

∫ T

0

dt

∫ q

0

dk

2π
Tr

[
∂H0(k, t)

∂k
ρ(k, t)

]
(S1)

where the factor of two accounts for spin degener-
acy, T = 2π/ω, ρ(k, t) is the density matrix for
an electron with crystal momentum k, and Ĥ0(t) =∫ q

0
dk/(2π)ψ̂

†
kH0(k, t)ψ̂k [see main text for definition].

The actual value of ρ(k, t) is controlled by the free prop-
agation Hamiltonian, Ĥ0(t), collisions with incoherent
phonon modes, described by Ĥb(t), and electron-electron
interactions. We assume that the incoherent phonons
are in a low-temperature thermal equilibrium, serving
as a low-temperature heat bath for the electrons. In
the regime where the characteristic relaxation is faster
than the drive frequency, 1/τ ≫ ℏω, we approximate
the relaxation dynamics of the electrons in the CNT due
to scattering processes by the Lindbladian L{ρ(k, t)} ≡
−1/τ [ρ(k, t) − ρeq(k, t)]. Here, the electrons relax to a
thermal equilibrium state in the instantaneous basis of
Ĥ0(t), denoted by ρeq(k, t). The time evolution of the
density matrix can then be described by the master equa-
tion [7, 8]

ρ̇(k, t) =
i

ℏ
[ρ(k, t), H0(k, t)] + L{ρ(k, t)}. (S2)

In the limit where coupling strength of the coherent

electrons via the vector potential Â(λ)

ph (r, t) is much
smaller than the separation between the lowest conduc-
tion and highest valence bands, i.e., ℏvFβa−1 ≪ ℏvF δk
[see definitions of δk and β in the main text], we can
further approximate V (r, t) ≈ ∆cos(qr − ωt), where

V (r, t) ≡ ⟨V̂ (λ0)(r, t)⟩, r = rk̂∥ is the spatial position
along the tube axis of the CNT. We also approximate
E+(k) ≈ ℏ2k2/(2m) + ℏvF δk where m is the effective
mass at the band bottom [see Fig. 1(c) in the main text].
For details of the derivation, see Sec. II.

To solve the Lindblad master equation analyti-
cally, we truncate the eigenvalue relation, Eq. (1)
in the main text, for the Floquet spectrum around
α = 0, 1 so as to ignore contributions of order

(a) (c)

10

25
20
15

(b)

FIG. S1. (a) Steady state occupation [ρF (k)]00 of the α = 0
Floquet band and steady state coherence [ρF (k)]01 at a strong
drive amplitude ∆τ/ℏ = 10 vs. crystal momentum k, follow-
ing Eqs. (S3) and (S4). The coherences are negligible and the
α = 0 band is fully-occupied. (b) Same as (a) but for a weak
drive amplitude ∆τ/ℏ = 0.007 where the occupatons resem-
ble the equilibrium distribution: the coherences are large and
the α = 0 is empty in a small region q/2 < k < k∗, where
k∗ is the momentum at which the Floquet gap ∆ opens [see
Fig. 1(c) in the main text]. (c) Steady state current J as a
function of ∆/ℏω. The current response is nearly quantized
when ∆ ≫ ℏ/τ, ℏω.

[∆/(ℏ2q2/2m)]2 or higher. We work in the Floquet ba-
sis in which the density matrix is given by ρF (k, t),
where the density operator is expressed as ρ̂(k, t) =∑

αβ [ρ
F (k, t)]αβ f̂

†
kα(t)f̂kβ(t) and f̂†kα(t) creates the Flo-

quet eigenstate |ψkα(r, t)⟩. The steady state density ma-
trix ρF (k) satisfies ρ̇F (k) = 0 and, following Eq. (S1),
leads to the current J = 2e

∫ q

0
dk/2π Tr[JF (k)ρF (k)],

where [JF (k)]αα = ℏ−1dεkα/dk and, for momenta 0 ≤
k ≤ q, one can approximate [JF (k)]01 = [JF (k)]10 ≈
−(4ℏq∆/m)[2∆2 + (ℏω + 2δ)2]−1/2.
To determine the conditions under which the current

is quantized, i.e., ρF (k) ≈ ρopt(k), where [ρopt(k)]00 =
1 − [ρopt(k)]11 = 1 and [ρopt(k)]01 = [ρopt(k)]10 = 0, we
analyze the dependence of ρF (k) on the Floquet gap ∆.
For momenta 0 ≤ k ≤ q,

[ρF (k)]00 ≈ 1

2
+

2 + δℏω/(δ2 +∆2)

2{(δ2 +∆2)[4∆2 + (ℏω − 2δ)2]}1/2
(S3)

where δ = ℏ2kq/2m + ℏ2q2/4m and [ρF (k)]11 = 1 −
[ρF (k)]00. The real component of the steady state co-
herence is given by

Re[ρF (k)]01 ≈ ∆ℏω/{(δ2 +∆2)[4∆2 + (ℏω − 2δ)2]}1/2
2[1 + 4(τ∆/ℏ)2 + τ2(ℏω − 2δ)2/ℏ2]} .

(S4)
The imaginary component of the coherence does not con-
tribute to the current. (See Sec. III for details of the
derivation.) The electronic occupation [ρF (k)]00 and co-
herence Re[ρF (k)]01 are largest for momenta q/2 < k <
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k∗ near the Floquet gap where δ ≈ ℏω/2 and k∗ is the
momentum at which the Floquet gap opens [see Fig.
1(c) in the main text]. The density matrix approaches
the optimal distribution ρF (k) → ρopt(k) in the strong
drive limit ∆/ℏω,∆τ/ℏ → ∞, where [ρF (k)]00 → 1 and
Re[ρF (k)]01 → 0 for all k. In contrast, in the low in-
tensity limit ∆ → 0, [ρF (k)]00 → [1 − sign(ℏω − 2δ)]/2
and [ρF (k)]01 → 0, which recovers the equilibrium Fermi-
Dirac distribution.

We plot the corresponding steady state occupations
[ρF (k)]00 and coherences [ρF (k)]01 in Fig. S1(a)-(b) for
a strong (∆ ≫ ℏ/τ, ℏω) and weak (∆ < ℏ/τ) drive am-
plitude, respectively. Here, we use a large ℏ2q2/2m ≈
250ℏω and 1/(τω) = 10. Fig. S1(c) shows the steady
state current J as a function of drive amplitude ∆ for
various characteristic relaxation rates ℏ/τ ≫ ℏω. Con-
sistent with the analysis above, the current approaches
its quantized value and ρF (k) → ρopt(k) in the regime
∆ ≫ ℏ/τ, ℏω.

II. EFFECTIVE HAMILTONIAN

In this section, we derive the effective Hamiltonian
V (r, t) ≈ ∆cos(qr − ωt) which describes electronic cou-
pling to the coherent phonon drive.

To obtain the effective drive Hamiltonian, we work in
the eigenbasis of the electronic Hamiltonian

He(k) = ℏvFk · σ, (S5)

where k = δkk̂⊥+kk̂∥ [see the full definition in the main
text]. Let U be the matrix that diagonalizesHe(k), where

U−1He(k)U =

(
−ℏvF |k| 0

0 ℏvF |k|

)
. (S6)

In the limit near k = 0, one can show that

U−1He(k)U ≈
(
E−(k) 0

0 E+(k)

)
(S7)

where E±(k) = ℏ2k2/(2m)± ℏvF δk. The electronic cou-
pling to a coherent phonon mode is described by the
Hamiltonian

V (r, t) = ℏvF ⟨Â
(λ0)

ph (r, t)⟩ · σ + ⟨ϕ̂(λ0)
ph (r, t)⟩. (S8)

Note that

[⟨Â(λ0)

ph (r, t)⟩]x =

√
3β

2a
[(k̂y∥)

2 − (k̂x∥ )
2]qu sin(qr − ωt)

(S9)

[⟨Â(λ0)

ph (r, t)⟩]y =

√
3β

2a
(−2k̂x∥ k̂

y
∥)qu sin(qr − ωt) (S10)

and

⟨ϕ̂(λ0)
ph (r, t)⟩ = Dqu sin(qr − ωt)I. (S11)

To transform V (r, t) into the diagonal basis of He(k),
first note that

U−1[ℏvF ⟨Â
(λ0)

ph (r, t)⟩ · σ]U

=

(
−⟨Â(λ0)

ph (r, t)⟩ · k/|k| −i⟨Â(λ0)

ph (r, t)⟩ × k/|k|
i⟨Â(λ0)

ph (r, t)⟩ × k/|k| ⟨Â(λ0)

ph (r, t)⟩ · k/|k|

)
.

(S12)

In a semiconducting nanotube, near the band extrema,
k ≪ δk, so k and k̂⊥ are roughly parallel and

⟨Â(λ0)

ph (r, t)⟩ · k/|k| ≈ k̂y∥ℏvF
√
3β

2a
qu sin(qr − ωt). (S13)

When ℏvFβa−1 ≪ ℏvF δk, the off-diagonal components
of Eq. (S12) are negligible. In this limit, we finally obtain
an effective Hamiltonian for the lowest conduction band
of the CNT,

[U−1H0(k, t)U ]00

≈ E+(k) +

[
k̂y∥ℏvF

√
3β

2a
+D

]
qu sin(qr − ωt).

(S14)

Up to a phase shift in time, the second term corresponds
to the effective Hamiltonian V (r, t) ≈ ∆cos(qr−ωt) used
in the main text [see discussion below Eq. (S2)].

III. DETAILS OF THE LINBLAD MASTER
EQUATION

In this section, we detail the analytical analysis used
to determine the steady state density matrix ρF (k) via
the Linblad master equation.
Let us first derive an approximate Floquet Hamilto-

nian to the driven system. Adapting Eq. (1) in the main
text to the effective Hamiltonian V (r, t) ≈ ∆cos(qr−ωt),
we find that

iℏ∂t|ϕkα⟩ = He(k + nq)|ϕ(n)kα ⟩

+
1

2
∆eiωt|ϕ(n+1)

kα ⟩+ 1

2
∆e−iωt|ϕ(n−1)

kα ⟩.
(S15)

To simplify the analytical treatment, we focus on the
range k ∈ [0, q] and consider only the two closely lying
bands in this range, described by He(k) and He(k − q).
Here, He(k) and He(k − q) are separated at most by en-
ergy ℏ2q2/2m and are separated from all other bands by
at least energy ℏ2q2/2m. Thus, in the limit ℏ2q2/2m ≫
∆, we keep only the |ϕ(0)kα⟩ and |ϕ(1)kα⟩ harmonics in Eq.
(S15), neglecting corrections of order [∆/(ℏ2q2/2m)]2 or
higher. We obtain the approximate Schrödinger equation

iℏ∂t

(
|ϕ(0)kα⟩
|ϕ(1)kα⟩

)
≈ H̃eff(k, t)

(
|ϕ(0)kα⟩
|ϕ(1)kα⟩

)
, (S16)
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where

H̃eff(k, t) ≡
(
k2/2m ∆eiωt

∆e−iωt (k + q)2/2m

)
. (S17)

The components of the single-particle reduced density
matrix ρ(k, t) may be written in terms of the harmonics

as [ρ(k, t)]mn = ⟨ϕ(m)
kα |ρ̂|ϕ(n)kα ⟩ for m,n = 0, 1, where ρ̂ is

the density operator.
Let us begin by describing the instantaneous eigenbasis

of the Hamiltonian H̃eff(k, t) and the equilibrium distri-
bution ρeq(k, t) that enters the Linbladian L{ρ(k, t)} [see
definition above Eq. (S2)]. For simplicity of notation, we
define ϵ = ℏ2k2/2m and δ = ℏ2kq/2m + ℏ2q2/4m. We
diagonalize H̃eff(k, t) via a transformation matrix M(t)
to obtain the instantaneous eigenbasis of H̃eff(k, t)

H(k) ≡M(k, t)†H̃eff(k, t)M(k, t) =

(
E−(k) 0

0 E+(k)

)

(S18)
where the instantaneous eigenenergies are given by
E−(k) = ϵ+δ−

√
δ2 +∆2 and E+(k) = ϵ+δ+

√
δ2 +∆2.

In this specific case, the instantaneous eigenenergies hap-
pen to be time-independent, simplifying the analytic
evaluation of the Linblad master equation. In this in-
stantaneous eigenbasis, we can define the instantaneous
equilibrium distribution

ρeq(k) =

(
f(E−(k)) 0

0 f(E+(k))

)
(S19)

where f(E) = θ(E − µ) and µ = ℏ2q2/(8m) at zero tem-
perature and optimal doping considered in the main text.

To analytically determine the Floquet eigenstates, we
begin with the Kernel H̃eff(k, t) − iℏ∂t and perform
the rotating wave transformation to obtain HRW(k) ≡
R(t)†[H̃eff(k, t)− iℏ∂t]R(t), where

R(t) =

(
e−iωt 0
0 1

)
. (S20)

Diagonalizing HRW(k) via the transformation matrix
T (k), we obtain the Floquet Hamiltonian

HF (k) = T (k)†HRW(k)T (k)

=

(
b−

√
c2 + d2 0

0 b+
√
c2 + d2

)
(S21)

where

b ≡ ϵ+ δ − ℏω
2
, (S22)

c ≡ −
√
δ2 +∆2 − ℏωδ

2
√
δ2 +∆2

, (S23)

and

d ≡ ℏω∆
2
√
δ2 +∆2

. (S24)

Inserting the instantaneous equilibrium distribution
ρeq(k) and setting ρ̇F (k, t) = 0 into the Linblad mas-
ter equation [see Eq. (S2)], we obtain the steady state
occupation

[ρFk ]00 = N2
− (S25)

and off-diagonal coherence

[ρF (k)]01 =
2N+N−[2 + i(4τ

√
c2 + d2)]

4 + 16τ2(c2 + d2)
(S26)

where

N± =
c±

√
c2 + d2√

d2 + (c±
√
c2 + d2)2

. (S27)

Note that [ρF (k)]11 = 1 − [ρF (k)]00 and [ρF (k)]10 =
([ρF (k)]01)

∗. Upon algebraic manupulation, one finds
Eqs. (S3) and (S4).
Lastly, we note that the current operator JF (k) used

in the main text [see definition above Eq. (S3)] is derived
using the transformation matrices defined above.

JF (k) = T (k)†R(t)†M(k, t)†
1

ℏ
∂H̃eff(k, t)

∂k
M(k, t)R(t)T (k).

(S28)

IV. DETAILS OF THE CARBON NANOTUBE
HAMILTONIAN

The carbon nanotube (CNT) structure is described by
the chirality indices (m,n) [9–14]. Along the axis of the
CNT, the lattice is periodic under translations by T =
t1a1+t2a2, where t1 = (2m+n)/dR, t2 = −(2n+m)/dR,
and dR = gcd(2n+m, 2m+n), resulting in enlarged CNT
unit cells that each contain N = 2(n2 + nm + m2)/dR
graphene unit cells. Here, a1 = δ1−δ3 and a2 = δ2−δ3
are the primitive lattice vectors the graphene layer, where
δj = a/

√
3(sin(2πj/3), cos(2πj/3)) and a = 0.246 nm.

Along the circumference of the tube, the electron and
phonon momenta acquire discrete values, while the mo-
menta remain approximately continuous along the tube
axis for a long CNT. The possible momenta can be ex-
pressed as k = sk⊥ + kk̂∥, where s = 0, 1, . . . , N and
k ∈ [−π/|T |, π/|T |], with momentum vectors k⊥ =
(−t2b1 + t1b2) and k∥ = (mb1 − nb2)/N , and unit vec-

tors k̂⊥ = k⊥/|k⊥| and k̂∥ = k∥/|k∥|. We use b1 and b2
to denote the reciprocal lattice vectors of the graphene
layer (ai · bj = 2πδij). The family of possible momenta
for each value of s represents a linear path, or ‘cut,’ along
the Brillouin zone of the monolayer graphene. Now, the
Hamiltonian for the CNT is of a block-diagonal form,
with N blocks each corresponding to the Hamiltonian
Ĥs(k) = Ĥg(sk⊥ + kk̂∥) along a cut s = 0, . . . N , where
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the single-particle tight-binding Hamiltonian for a mono-
layer graphene sheet with nearest-neighbor hopping is
given by

Ĥg =
∑

k

ψ̂
†
k

(
0 h∗(k)

h(k) 0

)
ψ̂k. (S29)

Here, ψ̂k ≡
(
ψ̂k,A ψ̂k,B

)
where ψ̂†

k,x creates a fermion
of crystal momentum k on sublattice x = A,B of the
graphene sheet, h(k) = h

∑
j e

ik·δj , and h = 2.8 eV.

The lowest-energy conduction and highest-energy va-
lence bands are indexed by sm = argmins mink |sk⊥ +

kk̂∥ −K|, where K is the momentum of the Dirac K
point in the monolayer graphene Brillouin zone. The
lowest energy electronic state along the cut sm has mo-
mentum km = argmink|smk⊥ + kk̂∥ − K|. Near the
momentum km, the Hamiltonian can be approximated
by the Dirac Hamiltonian shown in Eq. (1) of the main

text, where δk = |smk⊥ + kmk̂∥ −K|.

V. MICROSCOPIC HAMILTONIAN FOR
ELECTRON-PHONON INTERACTIONS

In this section, we provide the full expression for
the microscopic Hamiltonian Ĥb(t) accounting for elec-
tronic coupling to incoherent bath phonon modes. The
low-energy longitudinal acoustic phonons dominate the
electron-phonon scattering near the Fermi surface of the
lightly-doped CNT. Upon writing the displacement op-
erators û(λ)(r, t) for such phonon modes in terms of bath

acoustic phonon creation operators b̂†p, we derive the ef-
fective Hamiltonian [15]:

Ĥb =

∫
dkdq

(2π)2
Mk,pĉ

†
k+p,+ĉk,+(b̂

†
p + b̂−p) + h.c. (S30)

where Mk,p = D
√

ℏcphp/(
√
2Aρcph)Wk,p with unit cell

area A =
√
3Na2/2, and graphene density ρ.

VI. FLOQUET BOLTZMANN EQUATION

In this section, we present the full expressions for the
electron-phonon and electron-electron collision integrals,
discretized on a 1D momentum grid of N points. The
electron-phonon collision integral is given by

Ibkα[{Fkα}] =
2π

ℏ
1

N

∑

k′∈BZ

∑

α′

∑

s

∑

n

|Gk′α′
kα (n)|2 1

ℏcph
×

× ({−N (εk′α′ − εkα)Fkα(1− Fk′α′)δ(k′ − k + nq + ks)

+ [1 +N (εk′α′ − εkα)](1− Fkα)Fk′α′δ(k′ − k + nq − ks)}θ(εk′α′ − εkα)

+ {−[1 +N (εk′α′ − εkα)]Fkα(1− Fk′α′)δ(k′ − k + nq − ks)

+N (εk′α′ − εkα)(1− Fkα)Fk′α′δ(k′ − k + nq + ks)}θ(εk′α′ − εkα)

(S31)

Gk′α′
kα (n) =

1√
A

Dℏks√
2ρℏ|εk′α′ − εkα|

∑

m

⟨ϕn+m
k′α′ |+, k′⟩Wk,k′−k⟨+, k|ϕmkα⟩ (S32)

where ρ = 1.52 × 10−6 kg/m2 is the 2D density of
the graphene layers, D is the deformation potential, ks
satisfies ℏcph|sk⊥ + ksk̂∥| = εk′α′ − εkα, and N (ε) =

1/(eε/kBT − 1) is the Bose-Einstein distribution for in-

coherent phonons maintained in thermal equilibrium at
temperature T . The electron-electron collision integral is
given by

Ieekα[{Fkα}] =
4π

ℏ
1

N2

∑

k2∈BZ

∑

k3∈BZ

∑

α2,α3,α4

∑

n

|V(k3,α3),(k1+k2−k3,α4)
(k,α),(k2,α2)

(n)|2×

× δ(εkα + εk2α2 − εk3α3 − εk+k2−k3,α4 + nℏΩ)×
× [(1− Fkα)(1− Fk2α2)Fk3α3Fk1+k2−k3,α4 − FkαFk2α2(1− Fk3α3)(1− Fk1+k2−k3,α4)]

(S33)
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V(k3,α3),(k1+k2−k3,α4)
(k,α),(k2,α2)

(n) =
∑

n2,n3,n4

V (k2 − k3)Wk1,k3−k2Wk2,−(k3−k2)⟨ϕn−n2+n3+n4

kα |+, k⟩⟨ϕn2

k2α2
|+, k2⟩×

× ⟨+, k3|ϕn3

k3α3
⟩⟨+, k4|ϕn4

k+k2−k3,α4
⟩.

(S34)

100 500 2000

FIG. S2. The ratio ζ of the maximum interband scattering
rate to the Floquet band energy separation vs. Floquet gap ∆
for various dielectric constants ϵ. Note that ζ ≪ 1, so steady
state coherences are suppressed.

To solve for the steady-state, we use the Newton-Raphson
algorithm to find the roots ∂tFkα = 0 of the FBE. We
set the doping of the system by adding the Lagrange
multiplier term λ(

∑
kα Fkα−NkF /q) with large constant

λ to the FBE.

VII. VALIDITY OF FLOQUET BOLTZMANN
EQUATION AND STEADY STATE SCATTERING

TIMES

The interband scattering rates 1/τphkαα′ and 1/τ elkαα′ are
given by

1

τphkαα′
=

2π

ℏ
1

N

∑

k′∈BZ

∑

s

∑

n

|Gk′α′
kα (n)|2 1

ℏcph
×

×+N (εk′α′ − εkα)(1− Fk′α′)δ(k′ − k + nq + ks) + [1 +N (εk′α′ − εkα)](1− Fk′α′)δ(k′ − k + nq − ks)

(S35)

and

1

τ elkαα′
=

4π

ℏ
1

N2

∑

k2∈BZ

∑

k3∈BZ

∑

α2,α3,α4

α3=α′ or α4=α′

∑

n

∑

G

|V(k3,α3),(k1+k2−k3,α4)
(k,α),(k2,α2)

(n,G)|2×

× δ(εkα + εk2α2
− εk3α3

− εk+k2−k3,α4
+ nℏΩ)Fk2α2

(1− Fk3α3
)(1− Fk1+k2−k3,α4

).

(S36)

To verify that the steady state coherences are suppressed
and that the Floquet Boltzmann equation is valid, we
check that ζ ≪ 1, where ζ ≡ maxk,α,α′ ℏ/(τ totkαα′ |εkα −
εkα′ |), where 1/τ totkαα′ ≡ 1/τphkαα′ + 1/τ elkαα′ [see full defi-
nition in the main text]. Fig. S2 verifies that ζ ≪ 1 as a
function of drive amplitude.
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