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We analyze both the general symmetry-related and more microscopic considerations that govern
the Josephson tunnelling across a finite planar junction between a known s-wave superconductor
and a candidate unconventional superconductor (e.g., dx2−y2 -wave). Due to the finite size of the
probe, the Josephson current possesses an edge contribution, which is shown to be the dominant
contribution under certain conditions. Thus, the dependence of the edge contribution on the ge-
ometry of the junction can serve as a direct probe of the symmetry of the order parameter in the
unconventional superconductor.

I. INTRODUCTION

Famously, phase sensitive measurements [1–4] of
the superconducting order in the cuprate high tem-
perature superconductors resolved ongoing debates
concerning the symmetry of the order parameter, es-
tablishing the key fact that these are d-wave super-
conductors. Most of the material systems currently
being studied for which similar issues arise are ei-
ther highly layered (i.e. quasi-two dimensional), like
the cuprates, or else are explicitly two dimensional
(2D), such as various explicitly two-dimensional lay-
ered structures made from van-der Waals materi-
als, especially graphene. The edge junctions of the
sort used in the original cuprate experiments are
thus often difficult to engineer and sometimes dif-
ficult to interpret given the complex nature of such
edges. Conversely, many quasi-2D materials cleave
relatively easily such that the normal to the surface
(hence-forth the “z” direction) is the least conduct-
ing direction. This geometric consideration is still
clearer in the case of 2D materials.

A. Symmetry considerations

With this in mind, we analyze several meth-
ods (each easily generalizable) by which z-direction
planar Josephson junctions can be constructed to
extract phase sensitive information concerning the
symmetry of the order parameter in a candidate un-
conventional superconductor (SC). (This is some-
what in the spirit of early experiments [5] on the
cuprates using twist-junctions, which only now are
showing the expected behaviors [6, 7].) Indeed, with
somewhat more engineering, the same sort of analy-
sis can be extended to extract information concern-
ing the magnitude of the superconducting gap as a
function of position along the Fermi surface (FS).
We consider a planar Josephson junction with the

geometry shown in Fig. 1a. The top portion of the
junction is a half-plane of what we will assume is a

well-understood simple s-wave superconductor, and
the bottom portion is a full plane of an interesting
superconductor, whose order parameter symmetry
and gap structure we would like to reveal; as an il-
lustrative example we will assume that it is a dx2−y2-
wave SC, but the extension to other symmetries is
straightforward. There are two angles that define
the geometry of the junction, θ which is the rela-
tive twist angle between the principle axes of the
top and bottom SCs, and ϕ which is the angle of
the boundary of the top superconductor relative to
the principle axis of the bottom superconductor (see
Fig. 3a and 3b). We consider a situation in which
the magnitude of the single particle tunnelling be-
tween the two superconductors, t⊥, is weak - i.e. this
is assumed to be a planar version of an SIS junction.
This means that the energy as a function of α, the
difference in the SC phase across the junction, can
be expressed as a series,

J(α) = −J0 − J1 cos(α)− J2 cos(2α) + · · · (1)

where J1 ∼ t2⊥ plus corrections of order t6⊥, while
J2 ∼ t4⊥ + · · · . Moreover, each Jn has a bulk contri-
bution, proportional to the area A of the junction,
an edge contribution proportional to the length of
the edge, L, and smaller terms that depend on fur-
ther details of the shape of the junction. Focusing
on the lowest harmonic, we can express J1 as

J1 = j1b(θ,g)
A

a2
+ j1e(θ, ϕ,g)

L

a
+ · · · (2)

where a is the lattice constant (which will be set
= 1 in the main text), j1b/a

2 is the bulk Josephson
coupling per unit area, j1e/a is the edge contribution
per unit length of edge, and · · · signifies terms that
are independent of the size of the junction. Here we
have included explicit factors of an so that both j1b
and j1e have the same units and depend on a set of
properties g (which will often be left implicit) that
characterize the bulk superconducting state of the
two superconductors; the bulk j1b (and higher orders
j2b, ...) only depends on the twist angle θ since it is
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oblivious of the edge, while the edge contribution j1e
depends on both θ, ϕ.
Whenever the two SCs have different order pa-

rameter symmetries, the θ and ϕ dependence of
J1 is strong such that it vanishes under some cir-
cumstances. For instance, if the s-wave SC is or-
thorhombic and the d-wave SC is tetragonal, then
j1b is generically non-zero [8], but vanishes for any θ
for which the orthrhombic axis aligns with the gap-
nodes of the d-wave SC. Similar symmetry consider-
ations apply to all odd harmonics, J2n+1, while the
expected angle dependence of J2 and other even har-
monics is much weaker and less revealing. We will
primarily explore the symmetry related factors that
control J1. Moreover, to simplify the discussion, we
will take both superconductors to be effectively two-
dimensional, i.e. either they are ultra-thin or they
have a quasi-2D electronic structure, and that they
both have a C4 rotation symmetry with an axis of
rotation perpendicular to the plane.
In this case, since the d-wave order parameter

changes sign and the s-wave is invariant under a C4

rotation, j1b(θ) = 0 for all twist angles θ. However,
C4 symmetry is broken by the edge, which implies a
non-zero j1e with a nontrivial θ and ϕ dependence.
In particular (see Eq. (14) and Appendix (B)),

1) C4 symmetry implies that j1e 7→ −j1e under
θ 7→ θ + π/2 while keeping ϕ fixed.

2) C4 symmetry implies that j1e 7→ −j1e under
ϕ 7→ ϕ+ π/2 while keeping θ fixed.

3) Mirror symmetry across the principle diagonal
(of either the upper or lower layer) implies that
j1e 7→ −j1e under θ + ϕ 7→ π/2 − (θ + ϕ) and
ϕ 7→ π/2− ϕ

Importantly, the symmetry of an s-d junction im-
plies that for any fixed θ, j1e vanishes at a criti-
cal edge-angle ϕc(θ) across which j1e changes sign.
(Equally, this can be expressed as a critical twist
angle, θc(ϕ), for given edge angle ϕ.) For example,
when the edge is oriented along a symmetry axis, i.e.
when ϕ = 0 or π/4 mod π/2, j1e vanishes whenever
θ+ϕ = π/4 mod π/2. Other order parameter sym-
metries would lead to different patterns of critical
angles1.

These considerations are illustrated in Fig. 4
which shows results of microscopic calculations de-
scribed below. Fig. 4b shows the case in which the

1 For example, if the lower SC were g-wave instead of d-wave,
then mirror symmetry across the principle axis (of either
the upper or lower layer) implies that j1e 7→ −j1e under
θ+ϕ 7→ π−(θ+ϕ) and ϕ 7→ π−ϕ. Hence, j1e would vanish
at θ + ϕ = 0, π/4 mod π/2 at the edge angles ϕ = 0, π/4
(i.e. at 4 critical angle pairs θ, ϕ).

FS of the upper SC is relatively small, for which
j1e(θ, ϕ) is approximately a function only of θ + ϕ,
and hence θ+ϕc(θ) ≈ π/42. When the FS of the up-
per layer is larger, the angle dependence of j1e(ϕ, θ)
can be more complicated, and so, correspondingly,
is ϕc(θ), as in the case illustrated in Fig. 4a and 4c.

B. Microscopic considerations

The explicit calculations for model electronic
band-structures, discussed below, reveal a number of
more detailed, microscopic features of the two SCs
that implicitly affect the Josephson coupling. Par-
ticularly important are the magnitude of the two
gaps, the structure of the Fermi surfaces and the de-
pendence of the gap function on position along the
Fermi surface. Understanding these is essential for
making quantitative estimates of the various con-
tributions to J1, important for the practical design
of such experiments. Conversely, these features can
also be exploited to infer more microscopic proper-
ties of the SC state.

Of these, the most critical are those that govern
the maximum magnitudes of j1b and j1e. In cases
in which bulk coupling is symmetry allowed, the de-
pendence of j1b on the SC gap magnitude |∆| is ex-
pressible as

j1b = J1b × t2⊥|∆|
E2

F

×
( |∆|
EF

)δ

(3)

where J1b is a dimensionless quantity of order one,
EF is an appropriate average of the Fermi energies
in the two SCs, and the exponent δ = 0 in the case
in which the FSs of the two SCs intersect at discrete
points in the Brillouin Zone (BZ), and δ = 1 when
they do not intersect. (Two FSs can be considered
non-intersecting if the minimum distance between
them satisfies the inequality δkFa > |∆|/EF .) The
corresponding expressions for the bulk contribution
to J2 are

j2b = J2b × t4⊥
|∆|E2

F

×
( |∆|
EF

)3δ

(4)

In contrast, because (one component of the) momen-
tum is not conserved for tunnelling at the edge, the
magnitude of the edge contribution does not depend
as sensitively on the relative positions of the Fermi

2 Correspondingly, for an s-g junction, j1e would vanish near
two critical angles, one with θ+ ϕc ≈ 0 and the other with
θ + ϕc ≈ π/2.
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surfaces, so generally

j1e = J1e ×
t2⊥|∆|
E2

F

. (5)

Ideally, measurements of the Josephson effect
should permit separate evaluation of J1 and J2 [9]; in
this case, when the bulk contribution to J1 vanishes
by symmetry, the symmetry sensitive angle depen-
dence of j1e can be used as a phase-sensitive probe of
the order parameter of the lower SC. However, even
if this is not possible, there exists a range of circum-
stances in which the edge contribution dominates the
total Josephson energy, provided t⊥ is small enough,
and if the junction area is not too large. Specifically,
so long as j1b vanishes,

J1
J2

=
J1e

J2b

( |∆|
t⊥

)2 ( |∆|
EF

)3δ

× La

A
. (6)

In other words, the edge contribution dominates the
higher order bulk contribution so long as

A

La
≪

( |∆|
t⊥

)2 (
EF

|∆|

)3δ

(7)

Note that this condition is much less stringent if the
the FSs do not intersect (δ = 1) than if they do
(δ = 0).

C. Disorder

Since tunneling matrix elements are exponentially
sensitive to local details we consider random posi-
tion dependent variations in the tunnelling matrix
element, t⊥(r), to be the most important form of
disorder. As discussed in greater detail in Appendix
(C)), we consider the situation in which there is a

mean tunneling matrix, t⊥ ≡ t⊥(r), and a variance,

[t⊥(r)− t⊥][t⊥(r′)− t⊥] that is short-range corre-
lated with mean squared value g2α and range ξα,
where α = b, e depending on whether we are consid-
ering the bulk or edge regions. When computing the
disordered-average first order Josephson coupling3,
it is straightforward to see that that the clean-limit
and disorder contributions add, i.e.,

J̄1 = (j1b + δj1b)
A

a
+ (j1e + δj1e)

L

a
+ · · · (8)

where j1b, j1e are given as before.

3 It is not necessary to assume Gaussian distribution since J̄1
is due to tunneling of a single Cooper pair and thus does
not involve higher order correlations

Most importantly, the symmetry considerations
that control j1,α apply to δj1,α as well since, al-
though any given disorder realization locally breaks
the point-group symmetries, the ensemble is as-
sumed to have the same symmetries as the crystal,
and so therefore do averaged quantities. Even the
scaling of the quantities, i.e. when not forbidden by

symmetry, δj1α ∼
(
g2α|∆|/E2

F

)
(|∆|/EF )

δα , is typi-
cally not greatly affected by disorder so long as the
correlation length is substantial, i.e. kF ξ ≫ 1. The
essential effect of disorder is to give a momentum
boost of order δk ∼ 1/ξ. Thus δα is determined in
the same way as δ where if the distance between the
important portions of the Fermi surfaces are spaced
by δkF > δk, these portions can be treated as non-
intersecting, while otherwise they act as though they
are intersecting.

II. MICROSCOPIC MODEL RESULTS

The geometry of the problem we have in mind,
shown in Fig. 1a, consists of a full-plane 2D layer
superconductor, on top of which, we place a half-
plane superconductor so that there is an edge along
x = 0. We will always compute the Josephson
energy perturbatively in powers of the tunnelling
Hamiltonian that couples the two layers. However,
to make the calculations simpler, we will consider
a simplified model consisting of 2 full-plane super-
conductors, but with a position dependent tunneling
Hamiltonian that is nonzero only in the half-plane
x > 0 (see Fig. 1b). The latter setup means that the
unperturbed Hamiltonian is translationaly invariant
so that momentum k is a good quantum number.

The Hamiltonian thus has the form

H = H0 +HT (9)

where HT is the interlayer tunneling Hamiltonian,
assumed to be spatially local and to have magni-
tude t⊥ for x > 0 and vanish for x < 0. Here
H0 = H+

0 +H−
0 describes the decoupled bilayer su-

perconductors with the top/bottom H±
0 character-

ized by the properties g± = (ε±,∆±) where ε±(k)
are the normal state dispersions and ∆±(k) are the
gap functions. Specifically, in all the numerical cal-
culations we have taken EF = 1 and

ε+(k) = −S1(k)− S2(k)− µ+,

ε−(k) = −S1(k)− µ−, (10)

∆+(k) = ∆s, ∆−(k) = ∆dD(k),

In terms of the lattice harmonics, S1(k) = cos(kx)+
cos(ky), S2(k) = 2 cos(kx) cos(ky), and D(k) =
cos(kx)−cos(ky). The values of µ

± used are listed in
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Figure 1. Junction geometry. (a) shows the physical
geometry where the upper SC terminates at an edge at
x = 0. (b) shows the model geometry used to simplify
microscopic calculations, in which both SCs are infinite,
but tunnelling betweem them is only permitted for x > 0.

each figure where numerical results are presented; in
numerically evaluating the integral expressions for
j1e and j1b we have typically taken suitably small
(compared to the bandwidth) values of ∆s = 0.12
and ∆d = 0.05.
The explicit expressions for the various quanti-

ties are somewhat involved - they are given explic-
itly in Sec. (III). The processes that contribute
to j1b to second order in t⊥ involve an intermedi-
ate excited state in which one quasi-particle of mo-
mentum −k is created in one plane, and another
with momentum k in the other; j1b is thus obtained
by integrating these processes over all k. The en-
ergy of the excited state is E+(k) + E−(k) where

E±(k) =
√

ε±(k)2 + |∆±(k)|2, so the integral tends
to be dominated by points in k space at which this
energy is smallest. For physically reasonable condi-
tions in which |∆| ≪ EF , this means points in k
space that lie on both Fermi surfaces, if such points
exist. The actual integral - including the explicit de-
pendence on the order parameter symmetry - comes
through matrix elements related to the usual coher-
ence factors of BCS theory. The calculation of j2b
proceeds similarly, but with intermediate states that
involve twice the number of quasi-particles, and cor-
respondingly a double integral over k and k′.

The structure of the expression for j1e is similar
to that for j1b, but in this case the edge can act
as a source of momentum non-conservation. Conse-
quently, the intermediate states consist of one quasi-

particle with momentum −k in one SC and one with
momentum k − q in the other, where q is a vector
perpendicular to the interface. The full result for j1e
thus involves both a two dimensional integral over k
and a one-dimensional integral over q. In this case,
the energy of the excited state is E+(k−q)+E−(k),
so the integral is dominated by points at which k
lies on the Fermi surface of one SC and k−q on the
Fermi surface of the other.

To confirm these qualitative results we have nu-
merically evaluated the requisite integrals for a sim-
ple tight-binding model.

A. Ideal alignment: θ = 0 and ϕ = 0

To introduce the problem let us first consider a
junction in which the crystalline axes are aligned,
θ = 0, and the edge is also aligned, ϕ = 0. As
discussed following Eqs. (3) and (4), the bulk con-
tributions j1b, j2b, etc. scale differently depending
on whether the FS of the top and bottom layers in-
tersect (as shown schematically in Fig. 2a) or not
(as in Fig. 2b). In the former case, the integrals
of k are dominated by regions in the neighborhood
of the intersections, where the energy denominators
are of order |∆| (and the coherence factors, as well,
tend to be relatively large). In the latter case, all
energy denominators are of order EF , leading to an
additional power of |∆|/EF in the parametric de-
pendence of these quantities, i.e. the exponent δ is
δ = 0 in the first case and δ = 1 in the latter.
In contrast, in computing j1e one necessarily av-

erages over relative momentum shifts of the Fermi
surfaces, q , as shown in Figs. 2c and 2d. This typi-
cally leads to FS crossings, even when the unshifted
FSs are non-overlapping, and is responsible for the
fact that the parametric dependences of j1e are rel-
atively insensitive to details of the FS structure.

B. General case: θ ̸= 0 and ϕ ̸= 0

The analysis of the bulk contribution is relatively
simple to extend to non-zero θ. In the bulk, even
for θ ̸= 0, the full system (top & bottom) preserves
C4 rotation symmetry (i.e., rotate both layers at the
same time) and thus if the two SC order parameters
transform differently under rotation, j1b(θ) = 0 for
all θ. The scaling of j2b(θ) is the same as in Eq. (4)
regardless of θ. Similarly, for most FS geometries
(including both those shown in Figs. 2a and 2b)
and for generic values of θ and ϕ, the parametric
scaling properties of j1e(θ, ϕ) are as given in Eq. (5).
Numerical simulations shown in Fig. 4a and 4b are
consistent with this claim.
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Figure 2. Fermi surface geometries for θ = ϕ = 0. The
red and green contours represent, respectively the top
and bottom layer FSs, where (a) illustrates a case in
which there are points of intersection and (b) where there
are none. In (c) and (d), the top layer FSs from (a) and
(b) are shifted by momentum q perpendicular to the
edge. Here, µ− = −0.5 for all subplots, while µ+ = −0.3
for (a),(c) and µ+ = −3 for (b),(d).

The angle dependence of j1e(θ, ϕ) can be com-
puted in two morally equivalent methods, which dif-
fer from each other due to the lattice geometry (and
thus BZ) being non-invariant under general rotation.
However, since the calculation will be dominated by
momentum near the FS, this difference will be ne-
glected.

1) In a coordinate system aligned with the princi-
ple axes of the upper SC (as shown in Fig. 3c),
j1e(θ, ϕ) is computed by rotating the bottom
layer FS by twist angle θ and averaging over
momentum boosts q of the upper layer in the
direction perpendicular to the edge (at angle
ϕ with respect to the upper layer).

2) Alternatively, in a coordinate system aligned
with the lower SC (as shown in Fig. 3d), the
j1e(θ, ϕ) is equivalent to first rotating the up-
per layer FS by twist angle −θ and then aver-
aging over momentum boost q perpendicular
to the edge (at angle θ+ϕ with respect to the
lower layer).

𝜙+ 

(a)

𝜙 + 
𝜙− 

𝜃 

(b)

°1 0 1

kx/º

°1

0

1

k y
/º

FS ± = 1

𝜙+ 

𝜃 

(c)

°1 0 1

kx/º

°1

0

1

k y
/º

FS ± = 1

𝜙+ 

𝜃 

(d)

Figure 3. Generic junction geometry: (a). ϕ is the angle
of the edge relative to a given principle axis of the upper
SC. (b). θ is the angle of a principle axis of the lower
SC relative to the same principle axis of of the upper
SC, so the edge is at angle θ+ϕ relative to the principle
axis of the lower SC. (c). In a coordinate system aligned
with the principle axes of the upper SC, the heavy green
curve indicates the upper layer FS, which is shifted by q
perpendicular to the edge (i.e. at angle ϕ with respect to
the upper layer), while the heavy red curve inducates the
bottom layer FS, which is rotated by twist angle θ. The
pale lines show the original FS as illustrated in Fig. 2b.
(d). In a coordinate system aligned with the principle
axes of the lower SC, the heavy green curve indicates
the upper layer FS, which is first rotated by twist angle
−θ, then shifted by q perpendicular to the edge (i.e. at
angle θ + ϕ with respect to the lower layer). The pale
lines show the original FS as illustrated in Fig. 2b.

Since the upper layer is assumed to be a (tetrago-
nal) s-wave, the latter perspective implies that in
the limiting case where the top layer FS is a singu-
lar point, the edge effect j1e(θ, ϕ) only depends on
the edge angle θ + ϕ relative to the lower layer, i.e.,
j1e(θ, ϕ) = j1e(θ + ϕ). Away from the fine-tuned
limit but with the top layer FS sufficiently small, we
see that j1e(θ, ϕ) ≈ j1e(θ + ϕ). Numerical calcula-
tions in Fig. 4b confirm that this approximation is
valid for small but realistically sized FSs. In particu-
lar, Fig. 4d shows that j1e vanishes near θ+ϕ = π/4
mod π/2 (since j1e = 0 at θ = 0, ϕ = π/4 by mirror
symmetry across the edge). However, the approxi-
mation breaks down for large FSs as shown in Fig.
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4a and 4c (Note that the mirror symmetry discussed
in the introduction (3)) is still preserved).

0.00 0.25 0.50
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J 1
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(a)
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−0.70

−0.35

0.00

0.35

0.70

J 1
e

δ = 1

φ

0

π/6

π/4

(b)

0.00 0.25 0.50
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0.50

(θ
+
φ
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π

δ = 0, j1e = 0

(c)

0.00 0.25 0.50

φ/π

0.00

0.25

0.50

(θ
+
φ

)/
π

δ = 1, j1e = 0

(d)

Figure 4. Results computed for the model band struc-
ture. For subplots (a),(c), the normal state FSs are as-
sumed to be as in Fig. 2a at ideal alignment θ = ϕ = 0,
while for subplots (b),(d), the normal state FSs are those
in Fig. 2b at ideal alignment. (a),(b) plots the dimesion-
less magnitude of the edge contribution J1e as a func-
tion of edge angle θ + ϕ (relative to the lower layer) for
distinct edge angles ϕ = 0, π/6, π/4 (relative to upper
layer). (c),(d) plots the critical angles at which the edge
vanishes j1e = 0 with the y axis being (θ + ϕ)/π.

C. Other Considerations

𝜔 

𝑞 
(a)

𝜔 

𝑞 

(b)

Figure 5. Small angle ω intersection of FS.

There are a variety of more detailed features of
the electronic structure that effect the magnitude of
j1b, j2b and j1e:

1) Number of FS intersections: As already
pointed out, there is a parametric difference
between the case of no FS crossings (for which
δ = 1) and any finite number (for which δ = 0).

When computing the edge contribution j1e,
the top and bottom FSs can intersect at gen-
eral momentum shifts q. In computing j1e, if
the unshifted (q = 0) FSs are non-intersecting,
the shifted FSs will typically intersect at 2
points as shown in Fig. 3c or 3d. Conversely,
when the FSs are intersecting δ = 0, by C4

symmetry, the two FSs generally intersect at
8 = 4×2 points (2 in each quadrant) and thus
there exists a factor ×8 enhancement in both
the bulk and edge contributions (in all orders
of perturbation j1b, j1e, j2b, ...).

2) Angle of intersection: The magnitude of the
couplings also depends on the angle ω between
the two intersecting pieces of the FSs. The
“nested” case in which ω = 0, would lead to
a parametrically large (in EF /|∆|) enhance-
ment. However, since this is a fine-tuned oc-
currence, we will consider π ≫ ω > 0, and
look at the scaling as ω → 0+. It is straight-
forward to verify that the bulk coefficients are
all enhanced by a factor of |π/ω|. However, the
edge coefficient j1e may or may not gain an ex-
tra factor depending on the direction of inter-
section. For example, in the schematic sketch
shown in Fig. 5a, j1e is not so enhanced, since
the factor 1/ω associated with the particular
value of k for which the nesting condition is
satisfied, is offset by a factor of ω from the
range of q over which this condition is approx-
imately satisfied. Conversely, if the two FS
were to intersect horizontally at small angles
as sketched in Fig. 5b, then the edge coef-
ficient j1e gains an extra factor 1/ω enhance-
ment (not 1/ω2 since the momentum regime at
which the two FS intersect is bounded above,
i.e., ∆q ≤ 2π).

III. EXPLICIT INTEGRAL EXPRESSIONS

Here we give some details of the calculations, with
particular focus on the calculation of j1e.

A. Expression for j1e

To second order in perturbation theory with re-
spect to t⊥ (see Appendix (A)),

j1e = 2t2⊥

∫ π

−π

δj(qx̂)

q2
dq

2π︸ ︷︷ ︸
j1e

− 2

π2
j1b (11)
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Where x̂ is the unit vector perpendicular to the edge
and

δj(q) =

[ |q|/2
sin(|q|/2)

]2
j(q) + j(−q)

2
− j(0)

j(q) =

∫∫
BZ

f(k,q)
d2k

(2π)2
(12)

f(k,q) =
1

E+(k− q) + E−(k)

∆+(k− q)

E+(k− q)

∆−(k)

E−(k)

Note that j1b = t2⊥j(q = 0) and thus j(q) would de-
termine j1b in a case where the two FSs were shifted
relative to each other by q. We emphasize this rela-
tion by writing4

j(q) = j[τqg
+,g−] (13)

Where τq denotes the translation operator k 7→ k+q
in momentum space and g± = (ε±,∆±) characterize
the upper/lower SCs. The θ and ϕ dependence of
this expression is implicit in the k dependence of g±

- in which k that appears in Eq. (11) is rotated
relative to the geometric x̂, ŷ axes. Also note that
the edge coefficient j1e in Eq. (11) includes the bulk
coefficient j1b. However, in most cases, j1b does not
affect the overall scaling (e.g., s, dx2−y2 waves where
j1b = 0), and thus we will not differentiate the edge
coefficient j1e and the integral term j1e.

B. Scaling

It is known that when the bulk j1b is symmetry
permitted, it scales as Eq. (3). Since the edge contri-
bution j1e averages over j(q) for momentum boosts
q (which determine the bulk j1b in a case where the
two FSs are shifted relative to each other by q), the
scaling of j1e as in Eq. (5) follows from that of the
bulk j1b in Eq. (3). More concretely, assume that
the FSs do not intersect (δ = 1) for the moment as
shown in Fig. 2b. Then due to the extra suppression
factor (δ = 1) in Eq. (3), momentum boosts q ̸= 0
where the relatively shifted FSs intersect will dom-
inate the integral in Eq. (11) as shown in Fig. 6c.
Since there is a finite region of q = qx̂ where the two
FSs intersect at points as shown in Fig. 6a, the edge
contribution scales as Eq. (5). Note that the peak
qpeak ≈ 0.4π in Fig. 6c occurs when the shifted top

4 Recall, that if a symmetry operator S (say, translation or
rotation) acts on a space (e.g., k ∈ BZ), then it induces
a symmetry operation on functions over the space (e.g.,
ε±(k)) via the relation (Sε±)(k) ≡ ε±(S−1k). Note S−1

is invoked so that the dirac-delta function |k⟩ centered at
momentum k is mapped via S|k⟩ = |Sk⟩.

layer FS is nearly “nested” with the bottom layer
FS as shown in Fig. 6b.

Conversely, if the FS intersect as described by Fig.
2a, the argument is similar, except that the peak oc-
curs at qpeak ≈ 0, since two FSs are already inter-
secting without any momentum shift.

−1 0 1

kx/π

−1

0

1

k
y
/π

FS δ = 1

(a)

−1 0 1

kx/π

−1

0

1

k
y
/π

FS δ = 1

(b)

0.00 0.50 1.000.40

q/π shift in kx

0.00

0.25

0.50

δJ
(q

)/
q2

(c)

Figure 6. Fermi Surface Shift. The normal state FSs
are assumed to be non-intersecting as in Fig. 2b. The
green contour in (a) and (b) is the top layer FS shifted by
q perpendicular to the edge, where (a) shows a generic
geometry, corresponding to |q| = 0.6π and (b) a critical
shift |q| ≈ 0.4π. (c) The integrand δJ (q)/q2 appearing
in Eq. (11) is shown as a function of momentum shift q,
where δJ is equal to δj but in units of the scaling as in
Eq. (5).

C. Rotation and Coordinate Systems

In a coordinate system aligned with the edge along
x = 0, we have

j(q) = j[τqRϕg
+,Rθ+ϕg

−] (14)

Where q is perpendicular to the edge and Rϕ de-
notes rotation, i.e., k 7→ keiϕ. The symmetry prop-
erties of j1e claimed in the introduction are then
straightforwardly deduced within this representation
(see Appendix (B)).

Due to the lattice geometry, the integral over BZ
in Eq. (12) is not strictly invariant under arbitrary
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rotation. However, since the integral is dominated
by momentum k near the FS, we will neglect this
difference and thus

j(q) = j[RϕτR−ϕqg
+,Rθ+ϕg

−] (15)

= j[τR−ϕqg
+,Rθg

−] (16)

Where the 1st equality follows from R−ϕτqRϕ =
τR−ϕq. Note that R−ϕq is along the direction per-
pendicular to the edge with respect to the upper
layer and thus corresponds to a coordinate system
aligned with the principle axis of the upper layer (as
shown in Fig. 3c). Similarly,

j(q) = j[R−θ−ϕRϕτR−ϕqg
+,g−] (17)

= j[τR−(θ+ϕ)qR−θg
+,g−] (18)

Where R−(θ+ϕ)q is perpendicular to the edge with
respect to the lower layer and thus corresponds to a
coordinate system aligned with the principle axis of
the lower layer (as shown in Fig. 3d).

IV. FINAL REMARKS AND
EXPERIMENTAL RECIPE

In a realistic setup, the upper layer s-wave probe
is a finite plane with multiple edges at distinct edge
angles rather than a single edge as described by the
half-plane in Fig. 1a. In this case, the edge contribu-
tion j1e is the sum of that for each edge of the finite
probe and thus an ideal experimental setup would
involve a probe geometry forming a long parallelo-
gram so that the edge contribution is mainly due to
the pair of long edges (and thus a single edge angle
ϕ is well-defined). (Another possibly way5 to con-
struct such junctions with control over the geometric
factors ϕ and A/L is to use lasers to damage a large
planar probe along parallel lines (as sketched in Fig.
7), thereby creating artificially oriented edges within
the junction.)

Top 𝑠-wave probe 
 𝑦 𝑥 

Top 𝑠-wave probe 
 

Figure 7. Schematic. The parallel dashed lines resem-
ble the artificially created edges (possibly through laser
damage) in the top layer probe (in comparison to Fig.
1).

5 An idea proposed by Philip Moll in private conversation.

We also note that the ideal s-wave probe should
be one with a single small FS (e.g., SrTiO3 thin films
[10–12]). The reasoning is twofold.

1) J1 will be the dominant contribution in the
Josephson current provided that6 the con-
straint in Eq. (7) are satisfied. Therefore, if
the distance δkF between the two FS is large,
the constraints are much easier to satisfy.

2) A smaller FS would increase the resolution7 of
the probe as we vary the twist θ and edge angle
ϕ described in Fig. 3d and 3c.

There are a large number of circumstances in
which unusual SC states are thought to arise
in (quasi-) 2D systems, including twisted bilayer
graphene [13–16] and its cousins [6, 17–19], for which
our proposed approach might prove useful in extract-
ing many important features of the structure of the
SC state. One possible application is to determine
the order parameter symmetry of Sr2RuO4, a long-
standing enigma spanning over three decades [20].
Indeed, previous proposals have floated the notion
of d+ ig pairing symmetry [21–23] where the g-wave
predominantly occupies the α, β bands of Sr2RuO4

[24]. Since the α, β bands comprises dxz, dyz or-
bitals, the corresponding c-axis tunneling parame-
ter t⊥ is much larger than that of the γ band which
consists of dxy orbitals. Consequently, it is possible
that the c-axis Josephson junction could serve as a
means to scrutinize the dominant pairing symmetry
on the α, β bands.

Another interesting application is to probe the
magnitude of the SC gap along the FS, since the
magnitude of the coupling depends rather sensitively
on details of the FS structure. For instance, con-
sider the case in which the SC of interest (the lower
SC) is trivial (s-wave) in terms of symmetry, but is
thought to have significant angle-dependence of ∆.
Such examples occur in (slightly) orthorombic mate-
rials where s-wave is the only irrep of the group sym-
metry, but since the material is almost tetragonal, it
is conceivable that the SC gap inherits a d+ s wave
symmetry from the tetragonal group symmetry. We
could explore this by choosing the probe (upper) SC
to have two Fermi pockets surrounding points ±Q
(so that the Fermi pockets intersect the FS of the
lower SC); then as a function of θ, the portion of the
FS of the lower SC that principally dominates j1b

6 And as usual, if j1b = δj1b = 0, e.g., due to C4 rotation
of an s-d junction, the edge contributions j1e, δj1e can be
used to probe the system via symmetry considerations.

7 The resolution is maximized in the fine-tuned scenario
where the s-wave probe has a FS consisting of a single point
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would change and the angle-dependence of ∆−(k)
would be thus revealed. Similarly, by varying ϕ, one
can extract similar information from j1e (though in
this case, the Fermi pockets should be away from the
FS of the lower SC so that the bulk j1b contribution
is suppressed as in Eq. (3)).
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Appendix A: Computing j1e

Using the simplified setup shown in Fig. 1b, we take each layer to have linear size L = 2ℓ (with even ℓ for
simplicity) and adopt periodic boundary conditions so that translation symmetry is preserved. The general
formula for the first order Josephson coupling J1 is then given by

J1 =
∑

k′,k∈BZ

|T (k′,k)|2f(k,k− k′) (A1)

where f(k,q) is given in Eq. (12) and T (k′,k) is the interlayer tunneling matrix in momentum space, i.e.,
the tunneling matrix is diagonal in real space r and = t⊥ only on the half-plane x ≥ 0, and thus

T (k′,k)

t⊥
=

1

L2

∑
x≥0

e−i(k′−k)r (A2)

=
1

L
1{k− k′ = qx̂}

ℓ−1∑
x=0

eiqx (A3)

=
1

2
1{k′ = k}+ 1{k− k′ = qx̂, q odd} 2

L

1

1− eiq

where the momentum transfer during tunelling {q odd} is short for q = 2πm/L where m is an odd integer
in {−ℓ, ..., ℓ− 1}. Therefore,

J1 =
t2⊥
4

∑
k∈BZ

f(k,q = 0)︸ ︷︷ ︸
(1)

+ t2⊥
∑

q odd,k∈BZ

1

L2

1

sin2(q/2)
f(k, qx̂)︸ ︷︷ ︸

(2)

. (A4)

Note that

1

L2

∑
k∈BZ

f(k, qx̂) =

∫∫
BZ

f(k, qx̂)︸ ︷︷ ︸
j(qx̂)

+O

(
1

L2

)
. (A5)

Where we have kept the error term since we are interested in not only the leading order term ∼ L2 but also
the next to leading term, ∼ L. Hence, the first term in Eq. (A4) contributes a bulk effect, i.e.,

(1) =
t2⊥
4
j(0)L2 +O(1). (A6)

The second term is given by

(2) = t2⊥
∑
q odd

1

sin2(q/2)

[
j(qx̂) +O

(
1

L2

)]
. (A7)

It turns out that this also contains a ((L2)) bulk contribution in addition to an edge ((L1)) contribution. To
see this, focus on the small q portion of the sum, and observe that

∑
q odd

1

q2
=

L2

2π2

ℓ/2−1∑
m=0

1

(2m+ 1)2︸ ︷︷ ︸
≤π2/8

. (A8)
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Since the summation is bounded by π2/8 in the L → ∞ limit, we see that the 1/q2 divergence is at most
O(L2) and thus we can drop the error term since it is now O(1), i.e.,

(2) = t2⊥
∑
q odd

j(qx̂)

sin2(q/2)
+O(1) (A9)

To treat the first term in Eq. (A9), write

j(q) =

( |q|/2
sin(|q|/2)

)2

j(q) (A10)

δj(q) =
1

2
(j(q) + j(−q))− j(0) (A11)

Where we note that j(0) = j(0). Therefore,∑
q odd

j(qx̂)

sin2(q/2)
= j(0)

∑
q odd

4

q2
+

∑
q odd

4

q2
δj(qx̂) (A12)

Note that the 2nd term is now well-regulated in the thermodynamic limit L → ∞ since δj(qx̂) ∝ q2 for
small q, and thus

1

L

∑
q odd

4

q2
δj(qx̂) = 2

∫ π

−π

δj(qx̂)

q2
dq

2π
+O

(
1

L

)
. (A13)

The first term in Eq. (A12) is O(L2) and thus makes another (equal) contribution to the bulk effect as
expected. To obtain the edge effect, we must consider higher orders of 1/L in the summation

ℓ/2−1∑
m=0

1

(2m+ 1)2
=

 ∞∑
m=0

−
∑

m≥ℓ/2

 1

(2m+ 1)2
(A14)

=
π2

8
−

∑
m≥ℓ/2

1

(2m+ 1)2
(A15)

Note that the 2nd term scales like ∫
s>ℓ

ds

s2
∼ 1

L
(A16)

Therefore, to obtain the edge effect, we write∑
m≥ℓ/2

1

(2m+ 1)2
=

∑
m≥ℓ/2

1

(2m+ 1)(2m− 1)
+O

(
1

L2

)
(A17)

Where the difference is O(1/L2) since it scales like∫
s>ℓ

ds

s3
∼ 1

L2
(A18)

It is then straightforward to verify that∑
m≥ℓ/2

1

(2m+ 1)(2m− 1)
=

1

2

∑
m≥ℓ/2

(
1

2m− 1
− 1

2m+ 1

)
(A19)

=
1

2

1

ℓ− 1
(A20)
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Putting everything together, we find that in the limit L → ∞,∑
q odd

4

q2
=

1

4
L2 − 2

π2
L+O(1) (A21)

Hence,

(2) =
t2⊥
4
j(0)× L2 (A22)

+ t2⊥

[
2

∫ π

−π

δj(qx̂)

q2
dq

2π
− 2

π2
j(0)

]
× L (A23)

+O(1). (A24)

This is of the form as the expressions given in the text,

J1 = j1bA+ j1eL+O(1) (A25)

with A = L2/2 the area of half-plane.

Appendix B: Symmetries

In the introduction, we claimed that

1) C4 symmetry of the lower d wave implies that j1e 7→ −j1e under θ 7→ θ + π/2 while keeping ϕ fixed.

2) C4 symmetry of the s, d wave junction implies that j1e 7→ −j1e under ϕ 7→ ϕ + π/2 while keeping θ
fixed

3) Mirror symmetry across the principle diagonal (of either the upper or lower layer) implies that j1e 7→
−j1e under θ + ϕ 7→ π/2− (θ + ϕ) and ϕ 7→ π/2− ϕ

Here we provide a short proof using the coordinate system with the edge aligned along x = 0. Claims (1)
and (2) follow trivially from the representation in Eq. (14) and thus we will focus on claim (3). Let D denote
the mirror symmetry across the principle diagonal, i.e., k ≡ |k|eiα 7→ |k|ei(π/2−α). Since the upper SC is an
s-wave and the lower is a d wave, we find that

−j[τqx̂Rϕg
+,Rθ+ϕg

−] = j[τqx̂RϕDg+,Rθ+ϕDg−] (B1)

= j[τqx̂DR−ϕg
+,DR−(θ+ϕ)g

−] (B2)

= j[τqŷR−ϕg
+,R−(θ+ϕ)g

−] (B3)

= j[R−π/2τ−qx̂Rπ/2R−ϕg
+,R−(θ+ϕ)g

−] (B4)

= j[τ−qx̂Rπ/2−ϕg
+,Rπ/2−(θ+ϕ)g

−] (B5)

The claim then follows from Eq. (11) and (12).

Appendix C: Disorder

In each order of perturbation theory, what enters are the tunneling matrix elements T (k,k′) for transferring
an electron from a Bloch state with crystal momentum k in the upper layer to k′ in the lower layer - and
naturally T ⋆(k,k′) associated with the time-reversed process. (In more general circumstances, there could
be multiple band indices associated with the single particle states of the decoupled layers, which we ignore
here for simplicity.)
When we consider the problem with disorder, we assume that mesoscopic effects can be neglected, or in

other words we compute the configuration average of the various contributions to the Josephson coupling,

J̄n. For the leading order term, J̄1, this means the results depend on T (k′,k)T (−k′,−k), while higher
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order terms n ≥ 2 need knowledge of higher order moments of T . We will further always assume that

the tunnelling Hamiltonian is time-reversal invariant, in which case T (k′,k)T (−k′,−k) = |T (k′,k)|2. In
particular, for finite L so that k is a discrete variable,

J̄1 =
∑

k′,k∈BZ

|T (k′,k)|2 f(k,k− k′) (C1)

where f(k,q), which depends only on the properties of the decoupled layers, is given in Eq. (12).
For the purposes of explicit calculations, as in the clean limit, we will assume that the tunnelling is defined

by a local matrix element, t(r), so that

T (k,k′) ≡ 1

L2

∑
r

t(r)e−i(k−k′)r. (C2)

To account for disorder in the tunnelling matrix elements, we assume a random distribution with mean t(r)
and variance:

t(r)t(r′) − t(r)× t(r′) = σ(r, r′), (C3)

In computing the first order Josephson coupling, the precise form of the distribution of t(r)’s is unimportant
- only these moments matter.

1) As a reminder, a system without edges only possesses a bulk contribution and thus it is standard to

take the mean t(r) = t⊥ and variance σ(r, r′) = σb(r− r′) so that

|T (k′,k)|2 = |t⊥|2 δk,k′ +
1

L2
Σb(k− k′) (C4)

where the first term denotes the clean-limit contribution proportional to |t⊥|2, and Σb, which is the
Fourier transform of σb, reflects the point-to-point variations in the tunnelling matrix elements, and
so is characterized by a magnitude, Σb(0), and a width in k-space |δk| ∼ 1/ξ.

2) In comparison, when an edge is present (as shown in Fig. 1b), we need to take into account the lack
of (even average) translational symmetry and thus take

t(r) = t⊥Θ(x), σ(r, r′) = σe(r− r′)Θ(X) (C5)

where Θ is the Heaviside function and X = (x+ x′)/2 is the average displacement from the edge8. In
particular, if r and r′ are far from the edge, the disorder correlation reduces to a bulk term σ(r, r′) =
σe(r− r′) (For example, it is reasonable to imagine σ(r, r′) = σb(r− r′)Θ(X).)9.

In either case, the expression for |T (k′,k)|2, and hence for J̄1 is expressible as the sum of a term proportional
to |t⊥|2 and the second term which is proportional to σ (or its Fourier transform Σ) which reflects the presence
of disorder:

J̄1 = (j1b + δj1b)×A+ (j1e + δj1e)× L+O(1) (C6)

Where j1b, j1e are the values from the clean limit and δj1b, δj1e originate from the disorder correlation.

8 There is a subtlety in defining Θ(X) since X 7→ X + L/2
under periodic translation x 7→ x+ L. This subtlety intro-
duces an innate UV cutoff which results in an edge term
contribution from the disorder. We discuss this in more
detail in Appendix (C 2).

9 Although the current form of disorder σ(r, r′) gives both
a bulk δj1b and edge δj1e contribution, it is not techni-
cally correct since only σe provides a correlation length

and disorder strength, while in principle, the characteri-
zations could be distinct for the edge and bulk. A more
accurate form would be σ(r, r′) = σe(r − r′)1{0 ≤ X <
UV cutoff} + σb(r − r′)Θ(X) where the UV cutoff is on
the length scale of the lattice constant a (characterizes the
width of the edge), so that the first term provides the dom-
inant edge contribution δj1e and the second provides the
bulk contribution δj1b.
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1. Review: Bulk with Disorder

When considering the bulk disorder, we have

Σb(q) =
1

L2

∑
r

σb(r)e
−iqr (C7)

and thus

δj1b ×A+O(1) =
1

L2

∑
k′,k∈BZ

Σb(k− k′)f(k,k− k′) (C8)

=
∑
q∈BZ

Σb(q)j(q) +O (1) (C9)

= A×
∫∫

q∈BZ
Σb(q)j(q)

d2q

(2π)2
+O (1) (C10)

δj1b =

∫∫
q∈BZ

Σb(q)j(q)
d2q

(2π)2
(C11)

Where the second equality uses Eq. (A5) and that σb(r) = O(1) (i.e., Σb(q) = O(1)).
If σb(r) has a characteristic correlation length ξb (e.g., σb(r) is of Gaussian form), then its Fourier transform

has correlation length 1/ξb. If 1/ξb is smaller than the distance δkF between the FSs so that even after
momentum boost, the two FS do not intersect for |q| < 1/ξb. Therefore, when so long as the result does not
vanish by symmetry (i.e. under the same constraints that apply in the clean limit), the disorder contribution
scales like

δj1b ∼ g2b|∆|
E2

F

×
( |∆|
EF

)
, (C12)

where g2b ∼ Σb(r) ∼ Σb(q) is the characteristic disorder strength (replaces the tunneling parameter t⊥ in
Eq. (3)). In all other scenarios, the extra suppression factor vanishes so that

δj1b ∼ g2b|∆|
E2

F

×
( |∆|
EF

)δb

(C13)

Where δb = 1 if the FS are non-intersecting (δ = 1, i.e., δkF ≳ |∆|/EF ) and δkF ≳ 1/ξb.

2. Edge with Disorder

When consider an edge, it is natural to model the disorder10 via

σ(r, r′) = σe(r− r′)Θ(X), X =
x+ x′

2
(C14)

Note that the variance σ(r, r′) should be L-periodic with respect to r, r′. However, as currently defined, the
average position X 7→ X + L/2 under translation x 7→ x + L and x′ 7→ x′, and thus we need to define the
variance more carefully. The simplest way is to define [x] as the L-modulo of the x position so that [x] ∈ Z

10 Although the current form of disorder σ(r, r′) gives both
a bulk δj1b and edge δj1e contribution, it is not techni-
cally correct since only σe provides a correlation length
and disorder strength, while in principle, the characteri-
zations could be distinct for the edge and bulk. A more
accurate form would be σ(r, r′) = σe(r − r′)1{0 ≤ X <

UV cutoff} + σb(r − r′)Θ(X) where the UV cutoff is on
the length scale of the lattice constant a (characterizes the
width of the edge), so that the first term provides the dom-
inant edge contribution δj1e and the second provides the
bulk contribution δj1b.
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and within the interval −ℓ ≤ [x] < ℓ (where continuing the notation in Appendix (A) and taking L = 2ℓ),
and replace Θ(X) with

Θ

(
[x] + [x′]

2

)
≡ 1

{
0 ≤

(
[x] + [x′]

2
∈ R

)
< ℓ

}
(C15)

With this modification, one can compute the Fourier transform, i.e.,

Σ(q) =
1

L4

∑
r′,r

σe(r− r′)e−iq(r′−r)Θ

(
[x′] + [x]

2

)
(C16)

Where the summation r, r′ is over {−ℓ, ..., ℓ−1}2, respectively. Since the integrand is L-periodic with respect
to r, r′, we have

Σ(q) =
1

L3

∑
δr≡(δx,δy)∈{−ℓ,...,ℓ−1}2

σe(δr)e
−iqδr

∑
−ℓ≤(x∈Z)<ℓ

Θ

(
[x+ δx] + [x]

2

)
(C17)

=
1

L3

∑
δr

σe(δr)e
−iqδr(ℓ− 1{δx odd}) (C18)

=
1

2
Σe(q)−

1

2L

[
2

L2

∑
δr

σe(δr)1{δx odd}e−iqδr

]
︸ ︷︷ ︸

=Σe(q)+O(1/L2)

(C19)

where {δx odd} is short for summing only over odd integers δx within the interval δx ∈ {−ℓ, ..., ℓ − 1}.
Note the first term will provide the bulk disorder δj1b (compare with Eq. (C7)), while the second term will
contribute to the edge disorder δj1e. More specifically,

δj1b ×A+ δj1e × L+O(1) =
1

L2

∑
k′,k∈BZ

Σ(k− k′)f(k,k− k′) (C20)

=
∑
q∈BZ

Σ(q)j(q) +O (1) (C21)

= A×
∫∫

q∈BZ
Σe(q)j(q)

d2q

(2π)2
+ L× 1

2

∫∫
q∈BZ

Σe(q)j(q)
d2q

(2π)2
+O (1) (C22)

Where we used the fact that the “effective area” of a half-plane is A = L2/2. Hence,

δj1b = 2δj1e =

∫∫
q∈BZ

Σe(q)j(q)
d2q

(2π)2
(C23)

Using a similar argument for the bulk disorder, we find that

δj1b, δj1e ∼
g2e |∆|
E2

F

×
( |∆|
EF

)1{δkF≳1/ξe,|∆|/EF }

(C24)
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