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Constraints on Symmetry Preserving Gapped Phases

from Coupling Constant Anomalies

T. Daniel Brennan
Department of Physics, University of California San Diego,

9500 Gilman Drive, La Jolla CA 92093-0319, USA

In this note, we will characterize constraints on the possible IR phases of a given QFT by anomalies
in the space of coupling constants. We will give conditions under which a coupling constant anomaly
cannot be matched by a continuous family of symmetry preserving gapped phases, in which case
the theory is either gapless, or exhibits spontaneous symmetry breaking or a phase transition.
We additionally demonstrate examples of theories with coupling constant anomalies which can be
matched by a family of symmetry preserving gapped phases without a phase transition and comment
on the interpretation of our results for the spontaneous breaking of “(−1)-form global symmetries.”

INTRODUCTION

In recent years, the concept of symmetry has been
greatly expanded beyond the action of groups on local
operators to include the fusion and linking action of all
topological operators (see [1–7] and references therein).
Likewise our understanding of the possible anomalies al-
lowed in QFTs has also greatly expanded [8–12]. For
example, some anomalies can only be activated in the
presence of certain backgrounds such as on non-spin man-
ifolds or in particular flux backgrounds [13–19]. These
backgrounds are related to symmetries, but are not nec-
essarily activated by topological symmetry operators and
hence do not correspond to symmetries themselves, but
rather correspond to a sort of “symmetry structure.” In
this paper, we will focus on one such class of anoma-
lies that are not activated by topological defects called
anomalies in the space of coupling constants or coupling
constant anomalies (CC anomalies).
Consider a family of d-dimensional quantum field the-

ories Tθ on Xd which is indexed by a continuous set of
exactly marginal couplings θ ∈ S. Let us assume that
this family of theories Tθ has a group-like global symme-
try G which is preserved for all θ ∈ S.
Generically, the set of couplings θ ∈ S forms a contin-

uous, non-compact space. However, there can be addi-
tional isomorphisms Λ between the theories Tθ and Tθ+λ

so that θ ∈ S/Λ. This identification allows us to mean-
ingfully compare the partition functions ZT [θ], ZT [θ+λ].
One possible behavior is that the two partition functions
are only identical up to a phase:

ZT [θ] = ZT [θ + λ]× e
i
∫
X

d

ωd (1)

where ωd is an anomalous phase that is only dependent
on background gauge fields for G. When this phase is
quantized (i.e. exp

{
ik

∫
ωd

}
is only G-gauge invariant

for k ∈ Z), there are no local, background gauge invariant
counter-terms that can trivialize the phase. In analogy
with standard anomalies, this phase is referred to as an
anomaly in the space of coupling constants [20, 21].
Although this “anomaly” does not correspond to a

symmetry (the interface between Tθ, Tθ+λ is generically

not topological), there are still physical consequences
of the anomaly. One feature is that as with standard
anomalies, the CC anomaly can be described by an
(d+ 1)-dimensional SPT phase by anomaly inflow:

A =

∫

Yd+1

dΘ(x) ∪ ωd (2)

where ∂Yd+1 = Xd and Θ(x) is a (d+1)-dimensional S/Λ-
valued function which takes boundary value Θ(x)

∣
∣
x∈Xd

=

θ. This implies that CC anomalies are scale invariant and
must be matched along G-preserving RG flows.
Note that the framework of CC anomalies encom-

passes the anomalous phases that arise in the spurion
analysis of anomalous 0-form global symmetries that are
broken by interactions. As with spurions, if we treat θ
as the vev of some condensed field θ(x), then the CC
anomaly implies that the domain wall where θ(x) shifts
θ 7→ θ + λ will carry a world volume anomaly given by
ωd. See [20–22] for more discussion and applications.

One illustrative example of a family of theories with an
anomaly in the space of coupling constants is 4d SU(N)
Yang-Mills theory. Despite being non-trivially interact-
ing, it admits an exactly marginal coupling:

Sθ = ...+
iθ

8π2

∫

Xd

Tr [F ∧ F ] . (3)

It is well known that the coupling θ is 2π-periodic due to
the fact that the instanton number is quantized:

∫

Xd

Tr [F ∧ F ]

8π2
∈ Z . (4)

However, shifting θ 7→ θ + 2π is non-trivial due to the
Witten effect [23] which implies that the identification
Tθ ∼ Tθ+2π involves a redefinition of the electro-magnetic
charge lattice [24].

Yang-Mills also has a Z
(1)
N 1-form center symmetry. If

we couple the Z
(1)
N to a background gauge field B2 ∈

H2(Xd;ZN ), the instanton number becomes fractional:
∫

Tr [F ∧ F ]

8π2
=

N − 1

2N

∫

P(B2) modZ (5)
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where P(B2) ∈ H4(Xd;Z2N ) is the Pontryagin square of
B2 [24, 25]. Thus, the partition functions obey [26]:

ZT [B2; θ + 2π] = ZT [B2; θ]× e
πi(N−1)

N

∫
P(B2) . (6)

Here the partition functions of Tθ, Tθ+2π are related by
a quantized phase that is only dependent on the back-
ground gauge fields and hence describes a coupling con-

stant anomaly between θ and the Z
(1)
N global symmetry

which can be described by the SPT phase [21]:

A = i
N − 1

2N

∫

dθ ∪ P(B2) (7)

This CC anomaly also implies that if we allow θ to
be space-time dependent, then the domain wall where
θ 7→ θ+2π will carry a world-volume anomaly [21, 27, 28]:

Aw.v. =
πi(N − 1)

N

∫

P(B2) (8)

which indicates that the Z
(1)
N global symmetry is sponta-

neously broken on the domain wall where the theory must
deconfine [27, 28]. This can be physically interpreted by
noting that as θ winds through θ + 2π inside the defect,
it sweeps through θ = π where the theory cannot be triv-

ially gapped due to a mixed Z
(1)
N –time-reversal anomaly

[20, 21, 26, 27]. This is a well known feature that appears
for example in axion-Yang-Mills theory where θ is repre-
sented by a dynamical axion whose domain wall carries
a world volume anomaly from UV chiral modes [29–37].

CONSTRAINTS FROM CC ANOMALIES

In this paper, we will more precisely derive the con-
straints on RG flows that are imposed by CC anomalies.
Consider a family of d-dimensional QFTs Tθ indexed by

θ ∈ S1 on a manifold X
(p)
d = Sp × Sd−p with a discrete

group-like global symmetry

G = G(p−1) ×G(d−p−1) . (9)

For a family of (non-anomalous) G-preserving theories,
there exists a choice of scheme such that

ZT [A+ dλ; θ] = ZT [A; θ] , ∀θ ∈ S1 (10)

where A represents the background gauge fields for G.
Let us take such a family of theories with a CC anomaly
of the form

A = i

∫
dθ

2π
∪ ωd(A) (11)

where ωd ∈ Hd(BG;U(1)) is quantized (exp
{
ik

∫
ωd

}

is only G-gauge invariant for k ∈ Z) that describes the
anomalous phase in the transformation of the partition
function under the periodic shift of θ in (1) [38].
Here we will show that if the anomalous phase can be

activated on X
(p)
d , then the coupling constant anomaly

can only be matched in the IR by:

1. A family of gapless theories (i.e. CFTs)

2. A continuous family of gapped theories (i.e.
TQFTs) with spontaneously broken G-symmetry

3. A discontinuous family of gapped theories – i.e. a
collection of gapped phases with a phase transition

Here we restrict to unitary theories and gapped phases
which are semi-simple and finite [39].
This implies that a family of QFTs with a coupling

constant anomaly cannot flow to a continuous family of
G-preserving gapped phases (without phase transition) in

the IR if the anomalous phase can be activated on X
(p)
d .

Comment on SSB of (–1)-form Symmetries: The
identification Tθ ∼ Tθ+λ is also sometimes referred to as
a “(−1)-form global symmetry.” There has been much
investigation into the consequences of this “symmetry”
and its spontaneous breaking (SSB) [40–43].
One way we can try to understand the SSB of (−1)-

form global symmetries is by comparing our results on
CC anomalies with known results about anomalies of dis-
crete global symmetries. For anomalies involving discrete
symmetries, it is known that the anomaly can be matched
by spontaneously breaking a global symmetry [44]. The
analogous statement we derive here is that a CC anomaly
can similarly be matched by a family of gapped phases
with a phase transition. This suggests that the SSB of
a “(−1)-form symmetry” corresponds to a phase transi-
tion in the associated parameter space. We leave a more
in-depth analysis for future investigation.

Derivation of Constraints

Let us examine if a family of QFTs with a coupling con-
stant anomaly as described above can flow to a continu-
ous family of symmetry preserving gapped phases. Here
we define a continuous family of gapped phases by a fam-
ily of TQFTs which have isomorphic Hilbert spaces with
a smoothly varying inner product. This implies that the
partition function ZTQFT[S

p+1 × Sd−p−1;A; θ] is a con-
tinuous function over the parameter space. A continuous
family of G-preserving gapped phases is then a continu-
ous family of gapped phases for which the symmetry G
is preserved (i.e. not spontaneously or explicitly broken)
over the entire family. In particular, a continuous family
of gapped phases has no phase transition.
As proved in [44], a unitary G-preserving TQFT obeys:

ZTQFT[S
p × Sd−p;A] 6= 0 . (12)

Here for technical reasons, we will also restrict ourselves
to finite TQFTs which have a finite number of opera-
tors/finite dimensional Hilbert spaces on any compact
manifold and implies that the partition function is also
finite on any closed manifold. In particular:

∣
∣
∣ZTQFT[S

p × Sd−p;A]
∣
∣
∣ < ∞ . (13)
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Thus, for a continuous family of unitary, G-preserving,
finite TQFTs we can define the phase

ZTQFT[S
p × Sd−p;A; θ]

|ZTQFT[Sp × Sd−p;A; θ]|
= eiΦ(θ;A) . (14)

The coupling constant anomaly implies that the phase Φ
takes the form:

Φ(θ;A) = f(θ)

∫

ωd(A) + g(θ) (15)

where f(θ), g(θ) are semi-periodic functions

f(θ + 2π) = f(θ) + 1 , g(θ + 2π) = g(θ) + 2πn . (16)

For a continuous family of theories, the continuity of the
partition function additionally implies that f(θ) and g(θ)
are continuous, semi-periodic functions.
However, since we have assumed the theory is G-

preserving, the property (10) together with the fact that
ωd(A) is quantized, requires that f(θ) only take integer
values. Since no continuous function can be both semi-
periodic (16) and take only integer values, there is no
unitary, finite, G-preserving, continuous family of gapped
phases that can match the CC anomaly.
Our assumptions can be violated if 1.) the theory is

gapless, 2.) if G is spontaneously broken, or 3.) the parti-
tion function jumps discontinuously (for example if f(θ)
is a step function) – which would signal a discontinuous
family of theories with a phase transition. Note that the
scenario where G is not uniformly broken over θ ∈ S1

corresponds to the case with a phase transition. This
classifies the IR phases that can occur when the anoma-

lous phase is non-trivial on X
(p)
d and proves our result.

EXAMPLE: 4d SU(N) YANG-MILLS

Let us again demonstrate our results in the example
of 4d SU(N) Yang Mills with a θ angle. This family of

theories has a Z
(1)
N symmetry as well as a time reversal

symmetry T at θ = 0, π.
As discussed above, this theory has the CC anomaly

Acc = i
N − 1

2N

∫

dθ ∪ P(B2) (17)

where B2 is the background gauge field for Z
(1)
N so that

the anomalous phase ωd(B2) = π(N−1)
N

∫
P(B2) can be

activated on X4 = S2 × S̃2 [21]:

ei
∫
X4 ωd(B2) = e

2πi

N , B2 = [S2]∨ + [S̃2]∨ . (18)

Additionally, the T -symmetry at θ = 0, π has a mixed

anomaly with Z
(1)
N at θ = π:

A =
πi(N − 1)

N

∫

w1 ∪ P(B2) . (19)

This family of theories is believed to be matched in

the IR by a discontinuous family of Z
(1)
N -preserving triv-

ially gapped phases with a phase transition at θ = π. At
θ = π, the theory is believed to be a non-trivially gapped
phase where T is spontaneously broken due to results
from large N , N = 1 SYM, and symmetry enforced gap-
lessness [20, 26, 44, 45]. This conjecture is consistent with
our results and all known symmetries and anomalies.

According to our results, the symmetries and anoma-
lies of this theory may also be matched by a continuous
family of gapped phases without a phase transition that

spontaneously breaks the Z
(1)
N center symmetry. Indeed,

such a family of gapped phases is described by the action

Sθ =
iN

2π

∫

(da1 − B2) ∧ b2

+
iN(N − 1)θ

8π2

∫

(da1 − B2) ∧ (da1 − B2)

(20)

where a1, b2 are U(1) gauge fields of degree 1,2 respec-
tively, B2 = 2π

N
B2 is an integral lift of B2, and a1 shifts

so that da1 − B2 is invariant under the choice of lift
of B2 [46]. This theory has a (spontaneously broken)

Z
(1)
N global symmetry (generated by b2-Wilson surfaces),

which is identified with the UV Z
(1)
N global symmetry, and

time reversal symmetry at θ = π. Because of this identi-
fication, the theory reproduces the CC anomaly (17) and

the mixed T -Z
(1)
N anomaly (19) of SU(N) Yang-Mills.

This phase can be reached by coupling SU(N) Yang-Mills
to multiple adjoint scalar fields which condense along or-
thogonal directions in su(N).

This family of gapped phases also describes the IR
limit of a family of scalar QED models with action

S =

∫

|DΦ|2 +
1

2g2
F ∧ ∗F − V (Φ) +

iKθ

8π2

∫

F ∧ F

(21)

whereK = N(N−1), Φ is a complex scalar field of charge
N , and V (Φ) is potential with minimum at |Φ|2 6= 0.

MATCHING CC ANOMALIES IN CONTINUOUS

FAMILIES OF G-PRESERVING TQFTS

We can also demonstrate a family of theories that have
a coupling constant anomaly which can be matched by a
continuous family of G-preserving gapped phases – i.e. a
family of G-preserving TQFTs without phase transition.

Consider the families of 6d and 8d SU(N) Yang-Mills
theories with a θ angle:

S6d =

∫
1

2g2
Tr [F ∧ ∗F ] + iθ6d

∫

ch3(F )

S8d =

∫
1

2g2
Tr [F ∧ ∗F ] + iθ8d

∫

ch4(F )

(22)
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where chn(F ) is the nth Chern character

chn(F ) =
1

n!(2π)n
Tr [F ∧ ... ∧ F ]

︸ ︷︷ ︸

n−times

. (23)

The 6d and 8d theories additionally have a U(1)(1)

and U(1)(1) × U(1)(3) global symmetries that couples to
ch2(F ) and ch3(F ), ch2(F ) respectively. Both of these in-
teracting theories have dimensionful gauge couplings and
flow to a free theory in the IR. Nevertheless, they both
have coupling constant anomalies.
Using the standard decomposition of the Chern char-

acter into integral Chern classes:

ch3 =
1

2
c3 −

1

2
c1c2 +

1

6
c31

ch4 = −
1

6
c4 +

1

12
c22 +

1

6
c3c1 −

1

6
c2c

2
1 +

1

24
c41

(24)

we see for an SU(N) bundle (which has c1 = 0) that the
respective Chern characters obey the quantization

∮

ch3(FSU(N)) ∈
1

2
Z ,

∮

ch4(FSU(N)) ∈
1

12
Z (25)

on a generic manifold [47]. The θ angles are thus periodic:

θ6d ∼ θ6d + 4π , θ8d ∼ θ8d + 24π . (26)

When we turn on a background gauge field for the 1-form
center symmetry, the quantization of the Chern charac-
ters is modified and there is a resulting coupling constant
anomaly. If we couple to a PSU(N) bundle with a fixed
obstruction class B2 ∈ H2(Xd;ZN ) which has an inte-
gral lift [48], then we can compute the fractional part of
the Chern class by embedding our PSU(N) bundle into
a U(N) bundle as in [26]. This computation is straight-
forward and results in

ch3 =
ĉ3
2

−
N − 2

2N
B2ĉ2 +

(N − 1)(N − 2)

6N2
B3

2

ch4 = −
ĉ4
6

+
ĉ22
12

+
(N − 3)

6N
B2ĉ3 −

K

6N2
B2

2 ĉ2

+
(N − 1)K

24N3
B4

2

(27)

where K = N2 − 3N + 3 and the ĉn ∈ H2n(Xd;Z) are
integral classes which are heuristically the parts of the
PSU(N) Chern classes cn that can be lifted to U(N)
Chern classes. Note that ĉ2,3,4 shift under under the
choice of integral lift B2 7→ B2+NΛ2 for Λ2 ∈ H2(Xd;Z)
so that the entire expression for ch3,4 is invariant B2.
Since the classes ĉ2,3,4 are summed over in the path

integral, we will restrict our attention to shifts

θ6d ∼ θ6d + 4πN , θ8d ∼ θ8d + 24πN2 (28)

so that the partition function shifts by a quantized phase
involving only B2, signaling a CC anomaly [49].

If we will rescale the θ-angles

Θ6d = 2Nθ6d , Θ8d = 12N2θ8d , Θ ∼ Θ+ 2π (29)

the coupling constant anomalies are given by

A6d = i
(N − 1)(N − 2)

3N

∫

dΘ6d ∪B3
2

A8d = i
(N − 1)(N2 − 3N + 3)

2N

∫

dΘ8d ∪B4
2

(30)

Notice that these examples evade our classification due

to the fact that for all choices of X
(q)
d = Sq × Sd−q and

B2 ∈ H2(Xd;ZN ) the anomalous phases are trivial.
Any family of theories that carries the CC anomaly

A8d involving a Z
(1)
N symmetry as above can be matched

by a family of Z
(1)
N -preserving gapped phases given by

S =
iN

2π

∫ (

db3 −
N

2π
B2
2

)

∧ a4

+
iθκN

8π2

∫ (

db3 −
N

2π
B2
2

)

∧

(

db3 −
N

2π
B2
2

) (31)

where b3, a4 are U(1) gauge fields of degree 3,4 respec-
tively, κ = (N − 1)(N2 − 3N + 3), and B2 = 2π

N
B2 is an

integral lift of B2 where b3 shifts so that db3 −
1
2πB

2
2 is

invariant under the choice of lift of B2. It is unknown if
there is a deformation of 8d Yang Mills that flows to this
gapped phase.
On the other hand, although our results provide no

constraints on the IR phase of 6d Yang-Mills, it is unclear

how to construct an analogous Z
(1)
N -preserving family of

TQFTs that matches the CC anomaly A6d in (30).
Additionally, as mentioned above, both 6d and 8d

Yang-Mills have additional global symmetries – U(1)(1)

and U(1)(1) × U(1)(3) respectively (which couple to
the Chern characters ch2,3(F ) as appropriate) – as
well as T -symmetry. These symmetries all have mixed

anomalies with Z
(1)
N due to the fractional part of the

Chern characters. For 8d Yang-Mills, the mixed T -Z
(1)
N

anomaly is matched by the family of TQFTs above.
However it is unclear if anomalies involving continuous
symmetries can be matched by a symmetry preserving
gapped phase. If such anomalies were to obstruct a

Z
(1)
N × U(1)(1) × U(1)(3)-preserving gapped phase for 8d

Yang-Mills, this would imply that any deformation that
causes the UV theory to flow to the gapped phase in
(31) (if any such deformation exists) must necessarily
break U(1)(1) × U(1)(3).

The fact that A8d can be matched by a family of Z
(1)
N -

preserving gapped phases and that the CC anomaly of
4d SU(N) Yang-Mills can be matched by a continuous

family of gapped phases with Z
(1)
N SSB demonstrates that

coupling constant anomalies do not always imply the ex-
istence of a phase transition in the IR.
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