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ABSTRACT
As the hunt for an Earth-like exoplanets has intensified in recent years, so has the effort to characterise and model the stellar
signals that can hide or mimic small planetary signals. Stellar variability arises from a number of sources, including granulation,
supergranulation, oscillations and activity, all of which result in quasi-periodic or stochastic behaviour in photometric and/or
radial velocity observations. Traditionally, the characterisation of these signals has mostly been done in the frequency domain.
However, the recent development of scalable Gaussian process regression methods makes direct time-domain modelling of
stochastic processes a feasible and arguably preferable alternative, obviating the need to estimate the power spectral density of
the data before modelling it. In this paper, we compare the two approaches using a series of experiments on simulated data. We
show that frequency domain modelling can lead to inaccurate results, especially when the time sampling is irregular. By contrast,
Gaussian process regression results are often more precise, and systematically more accurate, in both the regular and irregular
time sampling regimes. While this work was motivated by the analysis of radial velocity and photometry observations of main
sequence stars in the context of planet searches, we note that our results may also have applications for the study of other types
of astrophysical variability such as quasi-periodic oscillations in X-ray binaries and active galactic nuclei variability.
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1 INTRODUCTION

Stochastic processes are ubiquitous in astrophysical time-series ob-
servations. Quasi-Periodic Oscillations (QPOs) arise in accreting
systems, from Active Galactic Nuclei (AGN) to compact binaries,
while magnetic activity, convection and oscillations in stellar inte-
riors all give rise to stochastic variability ranging from strongly pe-
riodic to entirely aperiodic. The resulting time-series are in general
too complex to describe using parametric models, but their Power
Spectral Density (PSD) can often be modelled using simple analytic
functions or sums thereof. It has thus become common practice, in
many astrophysical sub-fields, to model time-series observations dis-
playing stochastic behaviour by estimating their PSDs and fitting the
latter in the frequency domain.

The functions used to model the PSD are often generalized forms
of the Lorentzian or Cauchy distribution:

𝑃(𝜈) = 𝛼

1 +
(
𝜈−𝜈0
𝛾

)𝛽 , (1)

where 𝜈0 is the central frequency, 𝛼 is the amplitude, 𝛽 is the slope
and 𝛾 is the width. (For a standard Cauchy or Lorentzian distribution
normalised to unity, 𝛽 = 2 and 𝜋𝛾 = 𝛼−1.) More complex mod-
els can be constructed by co-adding multiple components. The in-
ferred parameters of the individual components are frequently given
a physical interpretation, so it is important to understand how reliable
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these inferences are. Are there degeneracies between the parameters,
particularly when multiple components are included, and when the
number of components is not known a priori? How robust are the
parameter uncertainties derived from the fits?

While it is a very powerful and widespread approach, there are
a number of drawbacks to modelling stochastic processes in the
Fourier domain. The dynamic range of PSDs is generally very large,
spanning many orders of magnitude in both axes, and the number
of independent estimates of the power at different frequencies is a
strong function of the frequency itself, which makes fitting analytic
functions to the PSD notoriously challenging. Furthermore, many
real-world astrophysical time-series have irregular time-sampling,
which precludes using the Fast Fourier Transform (FFT) to esti-
mate the PSD. The Generalised Lomb-Scargle (GLS) periodogram
is a popular method to approximate the PSD of irregularly sampled
time-series data, but the results are highly sensitive to the window
function of the observations Zechmeister & Kürster (2009). When
the sampling is almost regular (for example for regular sampling with
gaps), it is common practice to interpolate over the missing data, but
that carries its own problems.

An alternative approach, which circumvents some of these issues,
is to model the data directly in the time-domain, using a stochastic
process model whose PSD can be written down analytically in terms
of the model’s parameters. Widely-used examples include (continu-
ous or discrete) Auto-Regressive Moving Average (ARMA) models
as well as certain types of Gaussian Process (GP) models (see Aigrain
& Foreman-Mackey (2023) for a recent review of GP regression for
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2 N. K. O’Sullivan and S. Aigrain

Figure 1. Composite model of the PSD of the solar background, from Al
Moulla et al. (2023). The full model (solid purple line) is the sum of quasi-
periodic components corresponding to the envelope of the solar oscillations
(green dashed line), and to the solar rotation period and its first two harmonics
(red dashed line), aliases thereof (black dashed line), plus aperiodic compo-
nents corresponding to granulation (blue dashed line) and super-granulation
(orange dashed line), plus white (photon) noise (cyan dashed line).

astronomical time series). For a long time, the computational cost
of this approach was prohibitive for time series consisting of ≳ 103

observations, but recent developments have overcome this limitation
(Foreman-Mackey et al. 2017; Foreman-Mackey 2018).

In this study, we use simulations to quantify the limitations of
both approaches and to ascertain when one might be preferable over
the other. This work was initially motivated by recent attempts to
quantify the amplitudes and timescales of different contributions to
stellar ‘noise’ in Radial Velocity (RV) planet searches, particularly
the study of Al Moulla et al. (2023, hereafter A23), who used data
from the HARPS and HARPS-North solar telescopes to reconstruct
and model the PSD of solar disk-integrated Radial Velocity (RV)
variability on timescales ranging from minutes to months. Their
final fit to the solar PSD is reproduced in Figure 1, illustrating the
complexity of the overall model, and the significant overlap between
the timescales of the different components. These results are likely to
have a significant impact on both the theoretical modelling of stellar
(super-)granulation and the observing strategy of future Extreme
Precision RV (EPRV) surveys. It is therefore important to understand
how robust the fitted parameters are to the PSD-fitting methodology
and to see if GP regression outperforms the ‘standard’ approach.
We also note that similar types of PSD fitting are commonplace in
other fields, including asteroseismology, QPOs and AGN variability,
where GP modelling is also starting to emerge as a viable alternative.

The remainder of this paper is structured as follows. We start by
reviewing the common practice of fitting generalized Lorentzians
to the PSD of solar variability - the so called ’solar background’
in Section 2. In Section 3, we discuss GP kernels that can be used
to fit the solar background in the time domain. In Section 4, we
describe how we simulate time-series with known PSDs, and fit them
them in the frequency- and in the time-domain. We then evaluate
and compare the precision and accuracy of the two approaches, for
different intrinsic PSDs and time-sampling properties, in Section 5.
We discuss the implications of our findings and outline our future
work in Section 6.

2 MODELLING THE SOLAR BACKGROUND IN THE
FREQUENCY DOMAIN

In this section, we review the practice of characterising stellar vari-
ability on timescales ranging from hours to months by fitting a sum
of modified Lorentzian functions to the PSD of the observations.
This approach was first developed by Harvey (1985), in the context
of helioseismic RV observations, and has since become widespread,
being routinely applied to both solar and stellar RV and photometric
observations (see e.g. Goldreich et al. 1994; Aigrain et al. 2004; Al
Moulla et al. 2023)

2.1 The ‘solar background’

The term ‘solar background’ refers to the broad spectrum of solar
variability in RV or photometry, which acts as a nuisance signal in the
detection and study of 𝑝-mode oscillations (see e.g. Harvey 1985). It
is modelled as the sum of up to five components, in order of decreas-
ing frequency: the broad envelope of 𝑝-mode oscillations, caused
by trapped sound waves in the stellar atmosphere (Kjeldsen & Bed-
ding 1995; Goldreich et al. 1994), granulation, caused by convective
upflows (Rimmele et al. 1995; Lefebvre et al. 2008; Roudier et al.
1991), super-granulation, the origin of which is still under debate
(see Rieutord & Rincon 2010), the rotational modulation of active
regions, caused by stellar spots rotating in and out of our field of
view (Saar & Donahue 1997; Meunier et al. 2010; Haywood et al.
2016), and long term trends caused by the star’s activity cycle (Santos
et al. 2010). Beyond helio- (and astero-)seismology, this background
is also an important nuisance signal that needs to be understood and
mitigated for exoplanet searches, as it can hide and mimic planet
signals in both Doppler and photometric stellar time-series.

As illustrated in Figure 1, the components of the solar background
have timescales ranging from minutes (in the case of 𝑝-modes), to
hours (granulation), to days (super-granulation), to weeks or months
(rotation) and in some cases decades (magnetic activity cycles). Care-
fully designed observing strategies can be used to minimize the im-
pact of the higher-frequency components on RV planet searches, for
example by selecting exposure times that average out the 𝑝-modes
and spacing out consecutive exposures by more than the character-
istic timescale of granulation (Dumusque et al. 2011). However, the
super-granulation component is particularly problematic, as it has
characteristic timescales of 1–2 days (Meunier et al. 2015), which
limits the frequency with which a given target can be monitored
without being affected by correlated noise. Meunier (2021) provides
a more detailed review of the effect of solar and stellar variability on
RV planet searches.

The characterisation of the components of the solar background
has been traditionally done by fitting analytic functions to estimates of
the PSDs of the observations. In the rest of this section, we give a brief
overview of the functional forms used in the literature for modelling
the different components and discuss some of the subtleties of the
fitting process.

2.2 Aperiodic Components

Harvey (1985) introduced the notion of modelling granulation and
super-granulation signals in solar RVs as a random process with
exponentially decaying auto-covariance, with variance 𝜎2 and char-
acteristic decay timescale 𝜏:

𝑘H (𝑡, 𝑡′) = 𝜎2 exp
(
− |𝑡 − 𝑡′ |

𝜏

)
. (2)
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Fitting stochastic processes in light curves 3

The PSD of this process is

𝑃H (𝜈) = 2𝜎2𝜏

1 + (2𝜋𝜈𝜏)2
. (3)

This is often known as a Harvey function (hence the subscript "H").
There is a difference of a factor 2 between the expression given

by Harvey (1985) for the PSD of such a process and Equation (3);
we can check that the latter is correct by integrating it over the full
frequency domain:

𝑉H =

∫ +∞

−∞
𝑃H (𝜈) d𝜈 = 𝜎2, (4)

satisfying Parseval’s theorem. This discrepancy means that some of
the literature estimates of 𝜎 derived from PSD fits of this type may
need to be adjusted by a factor

√
2.

In any case, later studies (e.g., Harvey et al. 1993; Lefebvre et al.
2008; Michel et al. 2009; Karoff et al. 2013; Kallinger et al. 2014)
have shown that the power spectrum of granulation in particular is
significantly steeper, and better approximated by a PSD of the form

𝑃H (𝜈) = 𝐴H
1 + (2𝜋𝜈𝜏)4

. (5)

This is the expression used in more recent work, including A23. The
difference between Equations (3) and (5) is illustrated on Figure 2.
The variance of this process is

𝑉H =

∫ +∞

−∞
𝑃H (𝜈) d𝜈 =

𝐴H

2
√

2𝜏
, (6)

and thus depends on 𝜏 as well as 𝐴H.
Nordlund et al. (1997) provide a physical explanation for the ap-

parently steeper power spectrum of granulation. They argue that the
Harvey (1985) model corresponds to a turbulent cascade, which has
power on all timescales, whereas granulation is a convection phe-
nomenon, for which there is a minimum characteristic spatial (and
thus temporal) scale, and thus a steep decay in the power spectrum.

Note that some studies, for example Harvey et al. (1993), let the
index of the power spectrum be a free parameter, usually denoted as
𝑐:

𝑃H (𝜈) = 𝐴H
1 + (2𝜋𝜈𝜏)𝑐 , (7)

but this tends to result in fitted values in the range 3.5 ≤ 𝑐 ≤ 5.5,
consistent with 𝑐 = 4 within the uncertainties.

For lower-frequency components such as super-granulation (in
RV) or faculae (in photometry, Karoff et al. 2013), even steeper PSD
indices (𝑐 ∼ 6) are sometimes reported, but it is not clear how robust
those estimates are, as the high-frequency tails of these components
overlap strongly with the granulation component.

2.3 Periodic Components

To model (quasi-)periodic components, for example the envelope of
the 𝑝-modes, Harvey et al. (1993) and later Lefebvre et al. (2008)
used a modified Lorentzian function of the form:

𝑃L (𝜈) = 𝐴L

(
𝜈

𝜈0

)𝑏 [
Γ2

(𝜈 − 𝜈0)2 + Γ2

]𝑐
, (8)

where 𝜈0 is the central frequency and 𝐴L is the power at 𝜈 = 𝜈0. To
reduce the number of free parameters, many recent studies that use
this type of periodic model, including A23, fix 𝑏 = 0 and 𝑐 = 1, so
that

𝑃L (𝜈) = 𝐴L
Γ2

(𝜈 − 𝜈0)2 + Γ2 , (9)

in which case Γ is the half-width at half maximum (HWHM). The
variance of this process is:

𝑉L (𝜈) =
∫ ∞

−∞
𝑃L (𝜈) d𝜈 = 𝜋 𝐴L Γ. (10)

Once again, it depends not only on the amplitude but also on the
width (or damping time-scale).

Some other recent studies, for example Kallinger et al. (2014), use
a Gaussian instead of a Lorentzian function to model the envelope of
the 𝑝-modes:

𝑃L (𝜈) = 𝐴L exp
[
−
( 𝜈 − 𝜈0

𝜎

)2
]
, (11)

where in this case 𝜎 is the standard deviation of the Gaussian (not to
be confused with the standard deviation of the process). This is more
in line with the standard asteroseismology practice for measuring
𝜈max, the peak frequency of the stellar 𝑝-modes, which is then used
in scaling relations to determine the stellar mean density (see e.g.
Chaplin & Miglio 2013).

Neither of the above formulations have a particularly clear physical
motivation, however; their use is justified empirically rather than
theoretically.

2.4 PSD estimation and fitting

For regularly sampled observations, PSD estimation is straightfor-
ward using the Fast Fourier Transform (FFT). For irregularly sam-
pled time-series, such as ground-based RV observations, the Lomb-
Scargle (LS) periodogram (Lomb 1976; Scargle 1982) and later
derivatives thereof are the PSD estimation method of choice in the
astronomical community. It is worth noting that care is needed when
selecting the normalisation of the LS periodogram so that it gives
results that are directly comparable to the FFT-estimated PSDs. See
VanderPlas (2018) for a detailed discussion of the LS periodogram
and its interpretation.

The fitting process itself is often challenging, owing to the wide
dynamic range covered by the PSD in both frequency and power
density, the difficulty in assigning relative weights to the individ-
ual PSD samples, and the overlapping nature of the background
components, which leads to significant degeneracies between their
parameters. Here we describe the procedure used by A23, which is
fairly representative of previous studies. They estimate the PSD using
the Generalised Lomb-Scargle (GLS) periodogram (Zechmeister &
Kürster 2009), which is then binned to a regular grid in log frequency
space, to give the low-frequency components adequate weight in the
fit. As previously mentioned, the slope of the individual background
components is fixed to improve convergence and reduce degeneracies
between the components. Any white noise in the original time-series
translates to a constant lower envelope in the PSD, which is in-
corporated as a constant term in the fit. The fitting itself is done
by minimizing the sum of squared residuals using the Levenberg-
Marquart algorithm, which also provides estimates of uncertainties
on the fitted parameters using the curvature of the metric around the
optimum.

The model of A23 (illustrated in Figure 1), includes aperiodic
terms (Equation 5) to represent granulation and super-granulation,
and Lorentzian periodic terms (Equation 9) to represent the envelope
of the 𝑝-modes and signals associated with the rotational modulation
of active regions. For the latter, they include terms at the fundamental
and first two harmonics of the solar rotation period, as well as 1-day
aliases of the fundamental and first harmonics. The need to explicitly

MNRAS 000, 1–14 (2024)



4 N. K. O’Sullivan and S. Aigrain

Figure 2. Comparison between the different types of PSD functions used
in this paper. The orange and green curves respectively show the aperiodic
Lorentzian PSD of Equation (3) and the steeper-sloped version of Equa-
tion (5), while the blue and pink curves respecitvely show the periodic
Lorentzian PSD of Equation (9), and the high-𝑄 SHO term PSD of Equa-
tion (13).

include terms to model the aliases is another drawback of modelling
the data in the frequency domain.

3 MODELING THE SOLAR BACKGROUND IN THE TIME
DOMAIN USING GPS

GP regression is a natural alternative to PSD fitting when modelling
stochastic or quasi-periodic processes in time-series data. Indeed,
stochastic process models provided the original motivation for the
choice of function used to fit the solar background PSD as described
in Sections 2.2 and 2.3. It is thus natural to ask whether GP regression
could be used to model the same signals directly in the time domain,
side-stepping some of the implementation challenges alluded to in
Section 2.4. In particular, the celerite package (Foreman-Mackey
et al. 2017, hereafter F17; Foreman-Mackey 2018) provides an ef-
ficient implementation of GP regression for certain classes of co-
variance functions that are particularly appropriate to model stellar
signals, and scale well to large datasets.

3.1 The celerite SHO term

A generic celerite model is constructed by adding or multiplying
together basic building blocks (known as ‘terms’) with covariance

𝑘cel (𝑡, 𝑡′) = 𝑎 exp(−𝑐 |𝑡 − 𝑡′ |), (12)

where 𝑎 and 𝑐 are complex numbers. These individual terms can
then be combined additively or multiplicatively to construct more
complex models.

In particular, the celerite package provides a family of kernels
that approximate the behaviour of a harmonic oscillator and are
particularly appropriate to model a wide range of stellar signals,
from aperiodic to strongly periodic. This is implemented in the form
of the ‘Simple Harmonic Oscillator‘ (SHO) term, controlled by 3
parameters: an amplitude 𝑆0, a characteristic (undamped) angular

frequency 𝜔0, and a quality factor𝑄. The PSD of the SHO term1 is:

𝑃SHO (𝜈) =
2𝑆0 𝜈

4
0

(𝜈2 − 𝜈2
0)

2 + 𝜈2𝜈2
0/𝑄

2
. (13)

Around 𝜈 ≈ 𝜈0, this PSD approximates a standard Lorentzian or
Cauchy distribution, but it falls more steeply (with index 4) at high
frequencies.

As of version 2 of the celerite package, an alternative parametri-
sation is also available, where the user can specify the period 𝜌,
damping timescale 𝜏 and standard deviation 𝜎 of the process instead
of the angular frequency, amplitude and quality factor:

𝜌 ≡ 2𝜋/𝜔0, 𝜏 ≡ 2𝑄/𝜔0 and 𝜎 ≡
√︁
𝑆0𝜔0𝑄. (14)

This alternative parametrisation matches the variable names in Sec-
tions 2.2 and 2.3, making the relationship between the two classes of
models more readily apparent.

3.2 Aperiodic components

Clearly, it is straight-forward to reproduce the PSD of Equation 3
using a celerite term with real-valued 𝑎 and 𝑏. This is also the
limiting behaviour of the SHO term when 𝑄 = 1/2 and 𝜔0 → 0.

To reproduce the steeper slope at high frequencies used by more
recent studies, however, a natural choice is the SHO term with 𝑄 =

1/
√

2. In this case, the PSD of the SHO term becomes:

𝑃1/
√

2 (𝜈) =
2 𝑆0

1 + (𝜈/𝜈0)4
. (15)

This is exactly equivalent to Equation 5 if 𝜈0 ≡ 1/2𝜋𝜏 and 2 𝑆0 ≡ 𝐴H.

3.3 Periodic terms

The PSD of a generic celerite term with real-valued 𝑎 but complex-
valued 𝑐 is (adapting Equation 11 of F17):

𝑃C (𝜈) =
𝑎

𝑐


1

1 +
(

2𝜋𝜈−𝑑
𝑐

)2 + 1

1 +
(

2𝜋𝜈+𝑑
𝑐

)2

 . (16)

If we set 𝑎 ≡ 2𝜋𝐴LΓ, 𝑐 ≡ 2𝜋Γ and 𝑑 ≡ 2𝜋𝜈0, we obtain

𝑃C (𝜈) = 𝐴L

[
Γ2

(𝜈 − 𝜈0)2 + Γ2
+ Γ2

(𝜈 + 𝜈0)2 + Γ2

]
, (17)

which is the sum of two of the Lorentzian functions in Equation (9),
with characteristic frequencies ±𝜈0. This is a fairly close match to
the periodic components used by A23, but not an exact one, because
of the negative frequency term.

On the other hand, we know that 𝑝-modes are stochastically driven
oscillations. Therefore, it makes sense to model them as such, using
an SHO term with large 𝑄, with PSD given by Equation (13). If
we set 𝑆0 = 𝐴L Γ2/𝜈2

0 and 𝑄 = 𝜈0/2Γ, the resulting process will
have the same variance and coherence time as the one defined by
the Lorentzian PSD of Equation (9). As Figure 2 shows, the PSDs of
these two processes look very similar in the vicinity of the peak at the
characteristic frequency, but diverge away from it, particularly at high
frequencies, where the SHO term gives rise to a steeper power-law
slope, with index 4 rather than 2.

1 Note that Equation (15) was obtained by substituting for 𝜔 = 2𝜋𝜈 in
Equation (20) of F17, then mulitplying it by a factor

√
2𝜋. This is to account

for the fact that F17 defined the Fourier transform to be unitary in angular
frequency units rather than in natural frequency units, resulting in a different
normalisation constant for the forward transform.

MNRAS 000, 1–14 (2024)
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Fitting stochastic processes in light curves 5

3.4 The celerite rotation term

The PSD of solar and stellar variability often displays peaks at the
first harmonic of the rotation period as well as the fundamental, which
need to be modelled explicitly to obtain a good fit. For example, A23
included periodic components at the first two harmonics of the solar
rotation period (see Section 2.4) in their final fit. Foreman-Mackey
et al. (2021) recommends modelling stellar rotation signals using
the sum of two under-damped SHO terms: one at the fundamental
period, and one at its first harmonic. This is implemented in version
2 of the celerite package as the ‘rotation term‘.

The rotation term is controlled by 5 parameters: the standard devi-
ation 𝜎 of the process, the period 𝑃, two parameters controlling the
quality factors of the fundamental and first harmonics (these are spec-
ified in such a way that the fundamental has quality factor 𝑄1 > 1/2
and the harmonic has𝑄2 > 𝑄1), and one parameter corresponding to
the amplitude of the first harmonic term relative to the fundamental.

4 TEST METHODOLOGY

In this section, we describe how we simulate time-series datasets
with known PSDs including either periodic terms, aperiodic terms
or a mixture of the two, and model them both in the frequency
domain using analytic PSD functions, and in the time-domain using
a GP, to compare the two approaches directly. We restrict ourselves
to relatively simple processes with one or two components but also
test the impact of irregular time-sampling.

4.1 Simulating the time-series

We first simulated a set of regularly spaced time stamps lasting 288
days with 100 points per day, corresponding to a 5 minute cadence.
This corresponds to a Nyquest frequency of 452.38 day−1. We then
simulated observations with a known PSD by drawing samples from
a celerite GP. For aperiodic components, we use an SHO term with
𝑄 = 1/

√
2, the PSD of which is given by Equation 15. For periodic

terms, we use an SHO term with large 𝑄, the PSD of which is given
by Equation (13). An example of such a simulated time-series for
an aperiodic component with 𝑄 = 1/

√
2, 𝑆0 = 2 (in arbitrary units)

and 𝜔0 = 5 radians/day (such as might be expected for a super-
granulation signal) is shown in the left-hand panel of Figure 3.

Finally, white noise with a standard deviation of 𝜎w = 0.5 was
added to the simulated time-series to represent measurement uncer-
tainties.

We later investigate the impact of changing the integration time by
binning the simulated time-series, and of the baseline by truncating
them.

To produce time series with irregular time-sampling, such as might
be expected for ground-based RV observations, we used a represen-
tative set of time stamps from the publicly available dataset obtained
by the HARPS-N solar telescope between 2015 and 2018 (Dumusque
et al. 2021). The HARPS-N solar telescope observes the Sun at 5
minute cadence for several hours every day, with occasional inter-
ruptions caused by weather and technical issues.We take a 100 day
subset of the HARPS-N time stamps and then simulated observations
in the same way as described above for the regularly sampled case.
As the HARPS-N data has a roughly 5 minute cadence, we expect the
Nyquist frequency to be similar to the regular time sampling case.
An example of the resulting irregularly sampled time-series is shown
in the right-hand panel of Figure 3.

Note that all the variances, standard deviations and amplitudes dis-
cussed in this section are in arbitrary units, but could represent nor-
malised flux units (such as parts-per-thousand or parts-per-million)
or relative RV units (such as m/s or cm/s).

4.2 Estimating PSDs

For regularly sampled time-series, we used the numpy implemen-
tation of the Fast Fourier Transform (FFT) to estimate the Discrete
Fourier Transform of the observations. The PSD is then given by
the squared modulus of the DFT, divided by the frequency step 1/𝑇
where 𝑇 is the duration of the simulated time array. The left panel of
Figure 4 shows the FFT-estimated PSD for the simulated time-series
shown in the left hand panel of Figure 3.

For irregularly sampled time-series, we used the astropy im-
plementation of the Generalised Lomb Scargle GLS) periodogram
(Zechmeister & Kürster 2009) with the normalisation parameter set
to ‘psd’ to estimate the PSD of the observations on a regular grid of
frequencies between 𝜈 = 0 and 𝜈 = 0.1 cycles/min (corresponding to
the approximate effective Nyquist frequency of the HARPS-N solar
observations), with frequency step 1/𝑇 where 𝑇 was the duration of
the observations. We found it was necessary to divide the output of
the periodogram code by the frequency step and by the number of
data points to obtain a properly normalised PSD. As the right-hand
panel of Figure 4 shows, the PSDs obtained in this manner for ir-
regularly sampled time-series can be strikingly different to the true
model used to generate the observations, especially at high frequen-
cies. Naturally, these differences will translate to differences between
the true and fitted parameters, highlighting the limitations of PSD
fitting for irregularly sampled observations.

Although the Lomb Scargle or GLS periodograms are widely
used to evaluate the PSD of irregularly sampled time-series, they do
not explicitly account for the window function of the data, which
can significantly alter the PDS estimate. A set of finite-duration,
irregularly sampled observations of a continuous function 𝑓 (𝑡) can
be represented as the convolution of 𝑓 (𝑡) and a window function𝑤(𝑡),
which is equal to one during each observation and zero elsewhere. If
the duration of the observations is short compared to the time-scale
of variations in 𝑓 (𝑡), the window function can be approximated by a
sum of delta functions located at the times of the observations, {𝑡𝑛}.
The Fourier transform of the observations is then the convolution of
the Fourier transform of 𝑓 (𝑡), 𝐹 (𝜈), and of the Fourier transform of
the window function,𝑊 (𝜈). We can gain some insight into the impact
of the window function on the estimated PSD by computing the PSD
of the window function, which (for instantaneous observations) is
given by (see e.g. VanderPlas 2018):

𝑃𝑊 (𝜈; {𝑡𝑛}) =
����� 𝑁∑︁
𝑛=1

𝑖 sin 2𝜋𝜈𝑡𝑛 + cos 2𝜋𝜈𝑡𝑛

�����2 . (18)

To illustrate this impact, we show in Figure 5 the PSD of a single
aperiodic term estimated from data with both regular and irregular
time-sampling, together with the PSD of the window function for
both cases. This highlights how the window function dominates the
irregularly sampled PSD, which differs substantially from that of
the true PSD. Note that the peaks in the window function PSD
(corresponding to periodicities in the observation times, e.g. 1 day)
do not appear clearly in the PSD of the observations, because the PSD
of the true signal, which it is convolved with, has a broad spectrum
(if the true signal was strongly harmonic, this would not be the case).
Ideally one would seek to deconvolve the PSDs of the signal and
the window function, but this is not possible in practice because the
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Figure 3. Left: Example of a simulated, noise-free, regularly sampled super-granulation time series created using a celerite SHO term GP with 𝑄 = 1/
√

2,
𝑆0 = 2 and 𝜈0 = 5

2𝜋 cycles/day. Right: noisy, irregularly sampled time-series generated for the same process with time-stamps from the HARPS-N solar
telescope.

Figure 4. PSD estimates and fits for a single, aperiodic component with 𝑆0 = 2 and 𝜈0 = 5/2𝜋, with regular sampling (left) and irregular sampling (right).
The blue line shows the true PSD of the process used to simulate the data, which is the same in both panels. The grey line shows the PSD estimated using the
FFT (left) and GLS (right), respectively, while the black dots show the binned version used in the PSD fit. The green lines show posterior samples from the
PSD-fitting MCMC chain, and the pink lines show the same but from the GP fit. Fitted values can be found in Tables 1 and 2.

window function is zero for most values of 𝑡 (VanderPlas 2018). As a
result, most authors that fit PSD models for irregularly sampled data
usually include a constant term to account for the extra white noise
induced by the window function but do not explicitly account for its
structure beyond that.

This is one reason why we might expect that modelling stochastic
processes in the time domain should be particularly advantageous
over doing so in the frequency domain for irregularly sampled obser-
vations.

4.3 Fitting PSDs

Once the PSD corresponding to a given observation has been esti-
mated, we proceed to fit it, using a PSD model function corresponding
to the true PSD of the GP used to generate the data in the first place
(namely Equation 15 for aperiodic components, and Equation 13 for
periodic components). The parameters of the model for each compo-

nent are ln 𝑆0 and ln𝜔0, plus ln𝑄 for the periodic components only.
Fitting for the logarithm of the parameters improves convergence
and ensures that they always remain positive. Additionally, a con-
stant term, 𝜎w, (also fit in log space) is included in the fit to account
for white noise and any under-sampled signals. The constant added
to the PSD model is set to 𝜎w/2𝑇 , where 𝑇 is the total duration of
the time-series.

Following A23, we bin the PSD into 100 equally spaced bins
in log frequency space before fitting, except when working with
periodic terms, where we found it necessary to increase the number
of bins to 200 in order to properly resolve the PSD peak. We use
only bins containing a minimum of 3 samples (corresponding to
frequencies above 0.28 cycles/day), and discard the PSD estimates
at lower frequencies. We note that binning PSDs before fitting is
normally done in part to ensure that the PSD samples used in the
fit are approximately uncorrelated. This would require at least 10,
rather than 3, samples per bin. However, this would translate to a
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Figure 5. Impact of the window function on the PSD of a for a single, aperiodic component with 𝑆0 = 2 and 𝜈0 = 5/2𝜋, with regular sampling (left) and
irregular sampling (right). The PSD estimate of the window function is shown in green, the estimated PSD of the simulated data is shown in pink, while the true
PSD is shown in blue

Figure 6. MCMC posterior distribution plots for the case of a single, aperiodic component with 𝑆0 = 2 and 𝜈0 = 5/2𝜋, with regular sampling (left) and irregular
sampling (right). These correspond to the time-series shown in Figure 3 and to the PSDs shown in Figure 4. The 1-D posterior distributions for each parameter,
marginalised over all the other parameters, are shown by the histograms in the diagonal panels, in green for the PSD fits and in pink for the GP fits, with the
true parameter values indicated by the blue lines. The 2-D posteriors are shown in the off-diagonal panels using the same colour-coding, with 1-, 2- and 3-𝜎
contours. Fitted values can be found in Tables 1 and 2.

minimum frequency of 𝑔𝑒𝑞1 cycle/day, which is very close to the
typical timescale for super-granulation in Sun-like stars, and would
therefore preclude the extraction of any information about super-
granulation timescales from our simulated time-series. Our decision
to use bins with at least 𝑁min = 3 samples represents a compromise
between maximising the frequency range and minimizing correlation
between bins. All bins we assigned equal weight in the fits. Again, this
follows the procedure described in A23, where no mention is made
of assigning weights or uncertainties to the binned PSD samples.

We perform the fit in log-space, i.e. we minimize the sum of the
squared differences between the logarithm of the binned PSD and

that of the model function, and assign the same weight to all the
binned samples. We also carried out some tests where the fits were
performed in linear space and the samples were weighted according
to the standard deviation in each bin. However, we found that standard
deviation of the PSD samples in each bin systematically underesti-
mates the uncertainty on the binned PSD samples, resulting in poor
fits and unrealistically small uncertainties on the fit parameters.

We use Markov Chain Monte Carlo (MCMC) to sample the joint
posterior probability distribution over the parameters of the fit, using
version 3 of the emcee package (Foreman-Mackey et al. 2013, 2019).
The walkers are initialised in a tight Gaussian ball (with standard
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deviation 0.01 dex) around a local optimum found using the minimize
function in scipy’s optimize module. Log-uniform priors are used
for all the parameters, within the interval [−11; 11] in all cases except
for the white noise standard deviation log𝜎w, which we restrict to the
interval [−2; 2]. The number of walkers is set to 4 times the number
of parameters for each fit, and the MCMC chains are run for 10 000
steps.

We use emcee’s built-in functionality to estimate the auto-
correlation length of the chains, in order to assess convergence
and select an appropriate burn-in and thinning factor. Provided that
the longest auto-correlation length estimate across all parameters
is 𝜏max ≤ 200 steps, i.e. less than a 50th of the chain, we con-
sider the auto-correlation time estimates to be reliable and the chains
well-converged. We then discard the first 3𝜏max samples as part of
the burn-in phase, and thin the remainder of the chains by a factor
𝜏max/4. In the few cases where the chains do not converge in 10 000
steps (predominantly when using the PSD-fitting method for multi-
component models), we arbitrarily set the burn-in time to 1000 steps
and the thinning factor to 30, but note that the results should be
treated with caution.

For illustrative purposes, we evaluated the PSD model for 50 ran-
dom samples from the truncated, thinned MCMC chains, which are
shown in green on the PSD plots in this paper (such as Figure 4).
We also use the corner.py package (Foreman-Mackey 2016) to dis-
play 1- and 2-dimensional posteriors for each fit and compute the
median estimates of each parameter and the associated 1-𝜎 uncer-
tainties. Figure 6 shows the corner plots obtained in this manner for
the time-series shown in Figure 3, for which the PSDs are shown in
Figure 4.

4.4 GP-modelling

We also modelled the simulated time-series directly in the time do-
main, using a GP model of the same form as the one used to generate
them. The fit parameters, priors and details of the optimization and
posterior sampling procedures were identical to those described in
Section 4.3, the only difference being that the figure of merit of the
fit was the GP likelihood, rather than the 𝜒2 of the PSD fit.

The results of the GP fits are shown in pink on the PSD and corner
plots (such as Figures 4 and 6), while the results of the PSD fits are
shown in green on the same figures, and the true model in blue.

5 RESULTS

We are now ready to compare the results obtained for these sim-
ulated time-series with both the PSD-fitting and the GP-modelling
approach, varying the type of model used and the time-sampling.

5.1 Single-component case

We start with the simplest case, namely the single, aperiodic, (super-
)granulation-like component illustrated in Figures 3, 4 and 6. The
fitted parameters for all the tests described in this section are reported
in Tabels 1 and 2.

Even in the regularly-sampled case, the parameter estimates de-
rived via PSD fitting already deviate from the true values at the 2–3𝜎
level. This is not unexpected for the white noise component: the fi-
nite duration of each observation and of the total time-series result in
additional white noise in the PSD coming from the window function.
However, it is concerning to see a significant deviation for the other

parameters, even in this idealised case. The discrepancy between in-
jected and recovered parameters is even starker in the irregular case,
as expected due to the more complex window function. The PSD
fits are also quite sensitive to somewhat arbitrary modelling choices
such as the number of PSD bins used.

We then explored the effect of both increasing the exposure times
(i.e. binning the time-series) and reducing the duration (truncating
the time-series) to test the sensitivity of the results to these factor.
As shown in Figure 7, this degraded the accuracy of the results
further, especially in the irregular case, where all parameters were
overestimated, even when the ‘knee’ of the PSD appears well sampled
by eye. In the regular case, the PSD fits, while generally consistent
with the the true value, have larger uncertainties associated with
them.

By contrast, the GP-modelling results are both more precise and
consistent with the truth in all these cases, though the precision
worsens (as expected) when the time-series is binned, truncated or
irregularly sampled. We repeated this test multiple times with a range
of 𝜔0 and 𝑆0 values and found that the results were substantially the
same.

We then performed the same set of tests for periodic models, with
essentially similar results as shown in Figure 8. The corner plots
associated with this set of tests can be found in Figure 8.

Finally, we considered a case consisting of two periodic terms, with
frequencies differing by a factor 2, as implemented in the celerite
rotation term mentioned in section 3.4. The results are shown in
Figure 9. While both PSD- and GP-fitting were successful in the
regularly sampled case (left panel), the PSD fitting approach entirely
fails to recover the true shape of the PSD in the irregular case. By
contrast, the GP fit still gives tight and accurate constraints on the
underlying PSD and its parameters.

In all cases, the GP-modelling substantially outperformed the PSD-
fitting method. Not only do the GP fits result in smaller uncertainties,
but they are also substantially more accurate, and generally consistent
with the ground truth, unlike the PSD-fitting results. We also note
that, as the time-sampling was degraded, MCMC convergence also
became increasingly slow in the PSD-fitting case.

5.2 Multiple components

We next considered two-component models, to test our ability to
disentangle between the components and recover their parameters
correctly. We ran two such tests: one with one aperiodic and one
periodic component, and one with two aperiodic components. All
cases were run multiple times to ensure the repeatability of results.
The PSDs plots for these tests can be found in the body of the text
in Figure 10, while the corner plots can be found in Appendix A. It
should be noted that in all cases shown below where the MCMC did
not converge is due to highly multi-modol posterior distributions.

5.2.1 Model Comparison

We started by considering a low-frequency, high-amplitude term
combined with a higher-frequency, lower amplitude, high-𝑄 periodic
term. In the context of asteroseismology, the aperiodic term could
represent granulation, and the periodic term the envelope of the 𝑝-
modes. The results of the PSD fit for these tests are shown in Figure
10, and the corresponding corner plots in Appendix A. In both the
regular and the irregular time sampling cases, the GP once more
outperformed the PSD-fitting method. It is worth noting that, in
the regular time sampling case, the PSD-fitting method struggles to
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Figure 7. Recovered versus true parameters for a single aperiodic component with regular time sampling (top row) and irregular sampling (bottom row), as the
binning is increased and the duration of the time-series is truncated. Green symbols show the results of the PSD fits, while pink symbols show those of the GP
fits. The true parameter values are shown by the vertical blue lines.

Figure 8. PSD estimates and fits for a single, periodic component with 𝑄 = 10, 𝑆0 = 0.1 and 𝜈0 = 20/2𝜋, with regular sampling (left) and irregular sampling
(right). The colour coding is the same as Figure 4. Fitted values can be found in Tables 1 and 2.

constrain the quality factor of the oscillations (this is partly due to
the binning of the PSD prior to fitting). Meanwhile, in the irregular
case, the oscillations peak is entirely absent from the PSD estimate
which naturally leads to poor PSD-fitting results (and the MCMC
fails to converge), while the GP fits are much less severely affected:
the uncertainties are increased but the results are still consistent with
the ground truth.

An important question is whether the PSD and GP fitting meth-
ods can correctly identify the number and nature of the components
present in the data. To check whether this is the case we repeated
the fits of our 2-component time-series and PSDs using different
models, including: (i) 1 periodic component and 1 aperiodic compo-
nent (true model), (ii) 1 aperiodic component only, (iii) 2 aperiodic
components, (iv) 2 periodic components. In each case, we compared

the Bayesian Information Criterion (BIC) of the best-fit model. The
results of this model comparison are reported in Table 3. Both the
single aperiodic component model (case ii) and the two aperiodic
component model (case iv) where preferred when using PSD-fitting,
although the single aperiodic component more so, while the true
model (case i) is preferred when using the GP.

We then considered two aperiodic terms with more similar decay
times, representative of super-granulation and granulation. The re-
sults of these tests are shown in Figure 11, with the corner plots found
in Appendix A. Here, the "true" parameters are the same order of
magnitude as the ones reported by Al Moulla et al. (2023) for granu-
lation and super-granulation in the solar case. It can be seen that the
GP fits result in timescales consistent with the ground truth for both
granulation and super-granulation, but the PSD fitting approach does
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Figure 9. PSD estimates for the celerite rotation term model in the regular case (left) and irregular case (right), using the same colour convention as in Figure 6.
The injected parameters are as follows : 𝜎 = 50, 𝑃 = 0.5, 𝑄0 = 20, 𝛿𝑄 = 15, 𝑓 = 0.8. Fitted values can be found in Tables 1 and 2.

Table 1. Injected and fitted parameters for all cases with regular time sampling. Parameters more than 2𝜎 away from the true value are highlighted in gray.

Case Parameters

Aperiodic
Inputted ln 𝑆0 ln 𝜈0 ln 𝜎𝑤

0.69 -0.23 -0.69
Fitted PSD 0.16 ± 0.12 −0.22 ± 0.04 −2.15 ± 0.21
Fitted GP 0.63 ± 0.12 −0.22 ± 0.04 −0.69 ± −0.01

Periodic
Inputted ln 𝑆0 ln 𝜈0 ln𝑄 ln 𝜎𝑤

-2.30 1.16 2.30 -0.69
Fitted PSD −2.34 ± 0.14 1.15 ± 0.02 2.49+0.75

−0.44 −2.65 ± 0.17
Fitted GP −2.27 ± 0.04 1.15 ± 0.00 2.35 ± 0.12 −0.69 ± 0.01

Rotational
Inputted ln 𝜎0 ln 𝑃 ln𝑄0 ln 𝑑𝑄 ln 𝑓 ln 𝜎𝑤

3.91 -0.69 3.00 2.71 -0.22 -0.69
Fitted PSD 4.55+1.97

−0.72 −0.70 ± 0.01 2.96+0.65
−0.48 5.06+4.30

−4.97 −1.48+1.35
−4.18 −2.22 ± 0.25

Fitted GP 3.89 ± 0.07 −0.69 ± 0.00 3.03 ± 0.13 2.22+0.58
−0.85 −0.10+0.08

−0.17 −0.72 ± 0.01

Periodic + Aperiodic
Inputted ln 𝑆1 ln 𝜈1 ln𝑄1 ln 𝑆2 ln 𝜈2 ln 𝜎𝑤

-4.61 1.16 2.30 0 -0.23 -0.69
Fitted PSD −4.47 ± 0.32 1.15 ± 0.12 2.19+0.76

−0.46 0.13+2.73
−0.66 −0.31+0.27

−0.82 −2.69 ± 0.14
Fitted GP −4.59 ± 0.08 1.16 ± 0.01 2.30 ± 0.12 0.01 ± 0.13 −0.26 ± 0.05 −0.69 ± 0.01

Aperiodic + Aperiodic
Inputted ln 𝑆1 ln 𝜈1 ln 𝑆2 ln 𝜈2 ln 𝜎𝑤

4.61 0.87 9.21 -1.14 -0.69
Fitted PSD 4.73 ± 0.53 0.84 ± 0.15 9.31 ± 1.14 −1.31+0.38

−0.33 −2.13+0.52
−0.69

Fitted GP 4.69 ± 0.14 0.84 ± 0.04 9.51 ± 0.23 −1.32 ± 0.09 −0.77 ± 0.01

not, especially for the granulation-like component. This implies that
the timescales reported by A23 should be treated with caution since
they were derived using a PSD-fitting procedure very similar to that
used in the present work. We also used the BIC to test whether a 2-
component model was preferred over a single-component case. The
results are reported in Table 3. The 1-component model is favoured in
the PSD case, however the preference is not statistically significant.

We then proceeded to reduce the frequency separation between
the two components, to check when each method stops being able
to distinguish between them. The results of these tests are shown in
Table 4, where the BIC results for models with either 2 aperiodic
components or 1 aperiodic component are shown. When using a GP,
the true model is preferred, and thus the two components are correctly
identified, though the preference over a single component model is
statistically significant only down to a frequency ratio of 𝜈1

𝜈2
∼ 4 .

By contrast, the PSD fit could only separate the two components for
the largest separation. It should be noted that the preference for a
2 aperiodic model in the irregular GP case with 𝜈1\𝜈2 = 3 is not

statistically significant, and the result may be different depending on
the initial time series sample.

We also used the BIC test for the signal component celerite
rotation term to see if two component models were preferred over
the signal component model in this case. The results are reported in
Table 3. A single aperioidc component is preferred in the PSD case.

5.2.2 Parameter Accuracy

Tables 1 and 2 show the recovered parameters compared to the true
values for all 5 cases studied, for both regular and irregular time sam-
pling. Cells for which a derived parameter was more than 2𝜎 away
from the true value are highlighted in gray. In every case discussed
above, the GP approach outperformed the PSD-fitting approach. The
GP-derived parameters are always close to the true values. However,
in a few cases, the uncertainties appear under-estimated, so that the
2𝜎 credible intervals do not quite overlap with the true value. This
tendency to under-estimate uncertainties is particularly pronounced
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Table 2. Injected and fitted parameters for cases with irregular time sampling. Parameters more than 2𝜎 away from the true value are highlighted in gray.

Case Parameters

Aperiodic
Inputted ln 𝑆0 ln 𝜈0 ln 𝜎𝑤

0.69 -0.23 -0.69
Fitted PSD 2.07 ± 0.18 0.72 ± 0.13 3.51 ± 0.32
Fitted GP 0.59 ± 0.20 −0.21 ± 0.08 −0.73 ± 0.02

Periodic
Inputted ln 𝑆0 ln 𝜈0 ln𝑄 ln 𝜎𝑤

-2.30 1.16 2.30 -0.69
Fitted PSD −0.69 ± 0.13 1.39 ± 0.07 0.61 ± 0.23 3.47 ± 0.25
Fitted GP −2.18 ± 0.11 1.16 ± 0.01 2.01 ± 0.16 −0.68 ± 0.02

Rotational
Inputted ln 𝜎0 ln 𝑃 ln𝑄0 ln 𝑑𝑄 ln 𝑓 ln 𝜎𝑤

3.91 -0.69 3.00 2.71 -0.22 -0.69
Fitted PSD 4.49 ± 0.11 −1.35 ± 0.10 −5.45+1.50

−2.57 −0.47+0.41
−0.62 −1.61+0.76

−0.43 0.18+3.34
−3.41

Fitted GP 4.00 ± 0.07 −0.68 ± 0.01 2.63 ± 0.14 −4.79+4.26
−4.18 −0.66 ± 0.25 −0.78 ± 0.04

Periodic + Aperiodic
Inputted ln 𝑆1 ln 𝜈1 ln𝑄1 ln 𝑆2 ln 𝜈2 ln 𝜎𝑤

-4.61 1.16 2.30 0 -0.23 -0.69
Fitted PSD −4.67+6.92

−4.47 1.50 ± 0.19 −5.17+6.51
−4.28 1.10 ± 0.14 1.22 ± 0.09 2.55 ± 0.25

Fitted GP −4.76 ± 0.24 1.17 ± 0.01 2.38 ± 0.25 0.39 ± 0.26 −0.54 ± 0.16 −0.69 ± 0.02

Aperiodic + Aperiodic
Inputted ln 𝑆1 ln 𝜈1 ln 𝑆2 ln 𝜈2 ln 𝜎𝑤

4.61 0.87 9.21 -1.14 -0.69
Fitted PSD 8.39+0.28

−0.57 1.68+0.06
−0.10 7.65+0.98

−11.59 −0.28+0.94
−8.33 0.69+3.43

−3.85
Fitted GP 4.01 ± 0.29 1.01 ± 0.08 8.76 ± 0.27 −1.11 ± 0.11 −0.80 ± 0.06

Figure 10. PSD and plots for 2-component models with one periodic and one aperiodic component with regular (left) and irregular (right) sampling, using the
same colour convention as in Figure 4. The injected parameters are as follows : 𝑆1 = 0.01, 𝜈1 = 20/2𝜋, 𝑄1 = 10, 𝑆2 = 1, 𝜈2 = 5/2𝜋, 𝜎𝑤 = 0.5. Fitted values
can be found in Tables 1 and 2.

Table 3. ΔBIC results for multiple component cases in the irregular time
sampling regime. Positive values mean the model is preferred over the true
model, negative results mean the opposite. The best fit model is highlighted
in gray.

Case ΔBIC p + ap ΔBIC ap ΔBIC ap + ap ΔBIC rot
PSD p + ap 0 40.01 8.75
GP p + ap 0 -45.21 -56.50

PSD ap + ap 1.96 0
GP ap+ ap -3.14 0
PSD rot -48.44 28.92 -67.91 0
GP rot -184.53 -715.01 -729.66 0

for the white noise parameter and the quality factor of any peri-
odic terms, but is also sometimes observed for the characteristic
frequencies. The performance of the PSD-fitting method degrades
very noticeable when using irregular sampling, whereas the GP-
fitting remains fairly robust, except in the case with two aperiodic

components, where both methods failed to recover the granulation
frequency and amplitude within 2−𝜎, though the GP values are still
of the correct order of magnitude.

6 DISCUSSION AND CONCLUSIONS

Having compared the behaviour of PSD-fitting and GP regression on
simulated datasets with a known ground truth, we now proceed to
discuss the implications of our results, both for RV planet searches
(the original motivation for this work) and more widely, and outline
perspectives for future work.

6.1 GP regression versus PSD fitting

In this work, we have shown that the analytic functions commonly
used to model stochastic variability in the light curves and RV ob-
servations of the Sun and Sun-like stars can be reproduced, either
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Figure 11. PSD and plots for 2-component models with two aperiodic components with regular (left) and irregular (right) sampling, using the same colour
convention as in Figure 4. The injected parameters are as follows : 𝑆1 = 100, 𝜈1 = 15/2𝜋, 𝑆2 = 10, 000, 𝜈2 = 2/2𝜋, 𝜎𝑤 = 0.5. Fitted values can be found in
Tables 1 and 2.

Table 4. BIC values for 2 aperiodic components with regular and irregular
time sampling as the two components are brought closer together. The only
initial parameters that are changed are 𝜈1 and 𝜈2. Positive values mean a 1
aperidoic component model is preferred over the true model, these cases are
highlighted in gray, negative results mean the opposite.

𝜈1\𝜈2 fit ΔBIC ap
7.5 PSD reg -2.39
7.5 GP reg -234.49
7.5 PSD irreg -1.54
7.5 GP irreg -50.79
4.29 PSD reg 8.46
4.29 GP reg -35.29
4.29 PSD irreg 11.28
4.29 GP irreg -22.06

3 PSD reg 14.32
3 GP reg 11.94
3 PSD irreg 2.02
3 GP irreg -2.46
2 PSD reg 16.95
2 GP reg 17.05
2 PSD irreg 8.26
2 GP irreg 13.88

exactly or approximately, using Gaussian process models. We then
showed,q2 using a series of tests on simulated data, that GP regres-
sion in the time domain systematically leads to better results than
estimating and modelling the PSD in the frequency domain.

While the GP method leads to more accurate and precise results
when applied to regularly sampled data, the difference in perfor-
mance becomes even more pronounced in the irregular sampling
case, where the PSD-fitting results deviate dramatically from the
truth, while the GP results are generally consistent with it within
2𝜎. The main reason for this is that GP regression does not rely
on PSD estimates, which by definition assume a specific model for
the signal whose PSD is being estimated. In the case of the GLS
periodogram, this model consists of a single sinusoidal signal, plus
white noise. When the time sampling is close to regular, individ-
ual sines and cosines with frequencies between 1/𝑇 and 1/2𝑁𝑇 are
approximately mutually orthogonal, and the periodogram closely ap-
proximates the true PSD, even if the signal is more complex than a
single sinusoid. However, when the sampling becomes sparser, this

orthogonality breaks down, and the periodogram is dominated by
the window function. This is particularly problematic for stochastic
signals, which have a broad intrinsic PSD, and thus deviate strongly
from the simple model implicitly assumed by the GLS periodogram.
The GP regression approach avoids this problem by obviating the
need for a PSD estimate altogether.

It should be noted that the computational cost of GP regression
is significantly larger than that of the PSD-fitting approach. For ex-
ample, for the regularly sampled, single aperiodic component case
on a 2020 Mac Mini with an Apple M1 chip, the MCMC sampler
completed 580 iterations/second for the PSD-fitting versus 92.5 it-
erations/second for the GP fitting case, a difference of a factor > 6.
Nonetheless, as the evaluation of the GP likelihood scales linearly
with the number of data points for celerite models, and the posterior
sampling is easy to parallelize, the computational cost is an obstacle
that can be overcome, even for fairly large datasets.

Therefore, we recommend that GP regression in the time domain
should be used, wherever possible, in preference to PSD-fitting, to
model stochastic processes in astrophysical time-series datasets. One
limitation of the GP-fitting method as implemented in this work,
which emerged during our tests, is that it has a tendency to under-
estimate the uncertainties on the parameters slightly (by a factor of
order 2). At this stage, the reason for this tendency is unknown, but
we recommend treating these uncertainties with a degree of caution
until this behaviour is better understood.

6.2 Implications for RV planet searches

The advantages of GP regression over PSD-fitting are particularly rel-
evant to ground-based RV observations, which are always irregularly
sampled. Indeed, GP regression is already widely used to model and
mitigate activity signals in RV datasets (see e.g. Haywood et al. 2014;
Rajpaul et al. 2015; Barragán et al. 2022). The results presented in
this paper, and in particular the finding that GPs can robustly identify
multi-component signals in irregularly sampled data, indicate that GP
regression may also have a role to play in the characterisation and
mitigation of other stellar signals such as super-granulation.

Besides the aforementioned GP methods, numerous other ap-
proaches to model activity signals at the spectral or line-profile level
have been developed in recent years (see e.g. Collier Cameron et al.
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2021; Cretignier et al. 2022, 2023; Liang et al. 2023). Using a combi-
nation of these approaches, it is widely expected that future Extreme
Precision RV (EPRV) surveys aiming to detect Earth analogues, such
as the Terra Hunting Experiment (THE, Hall et al. 2018), which will
benefit from unprecedented time-sampling and high signal-to-noise
ratio, will succeed in mitigating activity signals in Sun-like stars from
several m/s down to the sub-m/s level.

The next major challenge is thus super-granulation (Meunier &
Lagrange 2020) for which no effective correction methods have been
developed yet. Indeed, Lakeland et al. (2024) recently analysed the
RV variability of the quiet Sun as observed by HARPS-N (after
accounting for the effects of active regions using SDO data, following
the method developed by Haywood et al. 2016 and Milbourne et al.
2019). During the low-activity part of the Solar cycle, they found that
the quiet photosphere contribution to RV variability is as important
as, if not larger than, that from active regions.

A natural continuation of this work will thus be to use the GP
methodology we have proposed here to revisit recent studies aiming
to quantify the timescales and amplitudes of variability due to (super-
)granulation on the Sun, including A23 and Lakeland et al. (2024), as
well as in other stars (see for example Sulis et al. 2023, who compared
granulation signals in photometry and RV using simultaneous obser-
vations with CHEOPS and VLT/ESPRESSO). While A23 and Sulis
et al. (2023) used PSD-fitting, Lakeland et al. (2024) used structure
functions, a non-parametric approach that, like GP regression, can
be applied directly to irregularly sampled data, but doesn’t explicitly
use a generative model, and it would be valuable to gain a better un-
derstanding of the relationship between structure functions and GP
models. One potentially interesting avenue for future progress may
also be to search for and characterise any non-Gaussianity in stellar
RV signals.

6.3 Asteroseismology and planetary transits

The PSD models discussed in Section 2 first arose in the context of
helioseismology, and are widely used in asteroseismology, whether
using RV observations or photometry. While the "background" in this
context is merely a nuisance signal to the oscillations, it is conceivable
that there may be some advantage to be gained by modelling this
background directly in the time domain using GPs rather than by
evaluating and fitting a PSD. This may be particularly helpful for
later-type main sequence stars, for which the oscillation frequencies
are higher and the amplitudes lower than earlier type or evolved stars
(see e.g. Chaplin & Miglio 2013). As we have shown in this work,
multi-component GP models can be used to detect (quasi-)periodic
signals in the presence of correlated noise, even when no clear peak
is visible in the PSD of the data. Such models, consisting of one or
more aperiodic terms to represent (super-)granulation and a single
high quality-factor term to represent the envelope of the 𝑝-modes,
may help push the detection threshold for 𝑝-modes beyond early-𝐾
spectral types, which is the current limit.

This type of model has already been used to model granulation
signals and oscillations simultaneously in order to characterise plan-
etary transits around red giants (Grunblatt et al. 2017), and may
likely prove important for precise measurements of planetary radii
from transits (Barros et al. 2020), e.g. in the context of the PLATO
space mission (Rauer et al. 2016).

6.3.1 Quasi-Periodic Oscillations and accreting systems

Accreting systems on all scales, from compact binaries to Active
Galactic Nuclei (AGN) display Quasi-Periodic Oscillations (QPOs)

(see e.g. Reig 2011; Ingram & Motta 2019). QPOs are time-variable
quasi-periodic signals observed at X-ray, UV and optical wave-
lengths, and are usually modelled in the frequency domain as a
sum of Lorentzian functions (Belloni et al. 2002; van Straaten et al.
2002). The parameters of these models, including the frequency and
amplitude of any quasi-periodic components as well as the frequency
at which aperiodic components display breaks in their PSDs, are used
to interpret QPOs and understand their origin and diversity. There
is every reason to expect that standard QPO modelling procedures
are subject to the same limitations as outlined in this work for stellar
signals in RV or photometry, and that GP regression could be a more
robust alternative, particularly for shorter or more sparsely sampled
time-series. Indeed, GP regression has begun to be used more fre-
quently in the context of QPOs and AGN variability (see Aigrain &
Foreman-Mackey 2023, and references therein).
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Figure A1. Corner plots for the case of a single, periodic component with 𝑄 = 10 𝑆0 = 0.1 and 𝜈0 = 20/2𝜋, with regular sampling. PSD fits are shown in
Figure 8. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A2. Corner plot for the case of a single, periodic component with 𝑄 = 10 𝑆0 = 0.1 and 𝜈0 = 20/2𝜋, with irregular sampling. PSD fits are shown in
Figure 8. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A3. Corner plots for the celerite rotation term model in the regular time sampling case. The injected parameters are as follows : 𝜎 = 50, 𝑃 = 0.5,
𝑄0 = 20, 𝛿𝑄 = 15, 𝑓 = 0.8. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A4. Corner plots for the celerite rotation term model in the irregular time sampling case. The injected parameters are as follows : 𝜎 = 50, 𝑃 = 0.5,
𝑄0 = 20, 𝛿𝑄 = 15, 𝑓 = 0.8. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A5. Corner plot for 2-component models with one periodic and one aperiodic component with regular time samping. The injected parameters are as
follows : 𝑆1 = 0.01, 𝜈1 = 20/2𝜋, 𝑄1 = 10, 𝑆2 = 1, 𝜈2 = 5/2𝜋, 𝜎𝑛 = 0.5. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A6. Corner plots for 2-component models with one periodic and one aperiodic component with irregular time sampling. The injected parameters are as
follows : 𝑆1 = 0.01, 𝜈1 = 20/2𝜋, 𝑄1 = 10, 𝑆2 = 1, 𝜈2 = 5/2𝜋, 𝜎𝑛 = 0.5. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A7. Corner plots for 2-component models with two aperiodic components with regular time sampling. The injected parameters are as follows : 𝑆1 = 0.01,
𝜈1 = 20/2𝜋, 𝑄1 = 10, 𝑆2 = 1, 𝜈2 = 5/2𝜋, 𝜎𝑛 = 0.5. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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Figure A8. Corner plots for 2-component models with two aperiodic components with irregular time sampling. The injected parameters are as follows :
𝑆1 = 0.01, 𝜈1 = 20/2𝜋, 𝑄1 = 10, 𝑆2 = 1, 𝜈2 = 5/2𝜋, 𝜎𝑛 = 0.5. The GP MCMC posteriors are in pink, which the FFT/GLS posteriors are in green.
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