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Addressing health disparities among different demographic groups is a
key challenge in public health. Despite many efforts, there is still a gap in
understanding how these disparities unfold over time. Our paper focuses on
this overlooked longitudinal aspect, which is crucial in both clinical and pub-
lic health settings. In this paper, we introduce a longitudinal disparity de-
composition method that decomposes disparities into three components: the
explained disparity linked to differences in the exploratory variables’ con-
ditional distribution when the modifier distribution is identical between ma-
jority and minority groups, the explained disparity that emerges specifically
from the unequal distribution of the modifier and its interaction with covari-
ates, and the unexplained disparity. The proposed method offers a dynamic
alternative to the traditional Peters-Belson decomposition approach, tackling
both the potential reduction in disparity if the covariate distributions of mi-
nority groups matched those of the majority group and the evolving nature of
disparity over time. We apply the proposed approach to a fetal growth study
to gain insights into disparities between different race/ethnicity groups in fe-
tal developmental progress throughout the course of pregnancy.

1. Introduction. The assessment of fetal growth is an important part of routine pre-
natal care as an indication of fetal well-being (The American College of Obstetricians and
Gynecologists, 2020, 2021). Fetal growth restriction is associated with an increased risk of
perinatal morbidity including hypoglycemia, hypothermia, and metabolic abnormalities as
well as perinatal mortality (Nafday, 2017). Fetal overgrowth, or macrosomia, is associated
with an increased risk of birth trauma for both the parturient and the infant, and neonatal
morbidity including hypoglycemia and hyperbilirubinemia (Nafday, 2017). The purpose of
screening for fetal growth abnormalities is to implement increased monitoring such as ante-
natal testing to prevent a stillbirth and clinical interventions such as cesarean to prevent birth
trauma in the case of suspected macrosomia. Emerging evidence suggests that incorporating
growth velocity may improve clinical decisions that rely on estimated fetal weight (Sovio
et al., 2015; Grantz et al., 2018). This aspect of fetal monitoring is particularly critical for
the early detection of any growth abnormalities, which could be indicative of more complex
health issues. The determinants of fetal growth are not fully understood but a number of
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physiologic and pathologic factors have been identified including ethnic origin (Hanson, and
Gluckman, 2014; Gardosi and Francis, 2009). Research shows fetal growth patterns can vary
among racial and ethnic groups even in low-risk pregnancies with normal neonatal outcomes
likely due to a complex interaction of genetic and environmental factors (Louis et al., 2015;
Workalemahu et al., 2018; Tekola-Ayele et al., 2021). However, disparities in abnormal fetal
growth also exist. For example, in the U.S., infants of Black women are 1.5 times more likely
to be small-for-gestational age than infants of White women (Centers for Disease Control and
Prevention, 2008). Given the recognition that fetal growth and birth size have lifelong impli-
cations for subsequent health and disease under the Developmental Origins of Health and
Disease (DDHaD) Hypothesis, it is important to understand how these factors affect growth
over time and their variations among different racial and ethnic groups is crucial for address-
ing this public health concern (Barker, 1990; Catalano et al., 2009; Gluckman, Hanson and
Buklijas, 2010).

Disparity decomposition has been suggested as one approach to studying factors that influ-
ence health disparities in outcomes. Numerous efforts have been made to investigate health
disparities, specifically across race/ethnicity and sex (Naimi et al., 2016; Jackson and van der
Weele, 2018; Jackson, 2021; Lee et al., 2023; Park, Lee and Hong, 2023; Hong et al., 2024).
However, traditional studies on disparity decomposition primarily rely on cross-sectional
data, which falls short of addressing our objective of longitudinally examining fetal growth
disparities across different racial and ethnic groups.

Peters (1941) and Belson (1956) were the first to introduce the disparity decomposition
method, which we will refer to as the Peters-Belson (PB) method. Later, Oaxaca (1973) and
Blinder (1973) developed a similar technique, further advancing this area of analysis. The
PB approach involves separately fitting a regression model to data from the majority (advan-
taged) and minority (disadvantaged) groups. Following this, it uses the covariates from one
group to generate a “pseudo-outcome” for the other. Building upon earlier work, they pro-
posed a method to decompose the observed disparity, defined as the difference in the average
outcomes between two groups, into two parts: the “explained” component, associated with
differences in the values of explanatory variables, and the “unexplained” component. This
latter component accounts for disparity arising from factors not captured by the explanatory
variables in the model. Their approach allows for a more detailed decomposition of dispari-
ties, distinguishing between effects due to observable characteristics and those due to other,
unmeasured factors.

Although PB method provides valuable insights into disparity analysis, it has limitations.
The explained disparity in PB assumes that equalizing all covariate averages between mi-
nority and majority groups would pertain to the hypothetical reduction in disparities, which
is unrealistic since interventions, if any, target a couple of specific covariates in practice.
Moreover, projecting the effects of such interventions requires understanding how these tar-
geted covariates interact with others, which the PB method does not handle well. Although
the PB framework has been successfully expanded to accommodate various response types
(Gastwirth and Greenhouse, 1995; Sinclair and Pan, 2009; Fortin, Lemieux and Firpo, 2011;
Graubard, Sowmya Rao and Gastwirth, 2005; Li et al., 2015; Eberly et al., 2013; Machado
and Mata, 2005), to the best of our knowledge, there has been no research focused on exam-
ining disparities longitudinally.

In this paper, we extend the PB method to longitudinal settings, overcoming the constraints
of the traditional PB approach that is tailored for cross-sectional data. We treat the covari-
ates that are potential targets of interventions as modifiers and introduce a new longitudinal
disparity decomposition approach. The new approach captures the longitudinally evolving
complex interactions with the modifiers using varying coefficient models. Our extension en-
ables the exploration of disparity trends over time, thus providing a more comprehensive
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understanding. For instance, analyzing longitudinal patterns of fetal growth disparities can
reveal when the divergence between minority and majority groups begins. This also allows
for the estimation of a hypothetical growth trajectory for the minority group, assuming the
same covariate characteristics as the majority group.

Additionally, we address a certain covariate that holds particular significance for complex
interplay with other covariates. For clarity, these covariates are consistently referred to as
‘modifiers’ throughout the text. This terminology is specifically chosen to aid in interpreting
their potentially intricate interplay, especially as they develop over time. Our proposed ap-
proach provides a more comprehensive analysis of disparities by effectively handling these
‘modifiers’, a capability absent in the conventional PB framework.

The proposed methodological enhancement allows for a deeper and more comprehen-
sive understanding of the dynamics involved in disparity analysis. This is accomplished by
decomposing the disparity into three distinct components: one that aligns with the “unex-
plained” disparity in the traditional PB method, another that accounts for the “explained”
disparity by all covariates except the modifier, when the modifier following the same hy-
pothetical distribution is imposed on both the majority and minority groups and the other
new component that captures the disparity attributed due to the modifier. Further, this new
“explained” disparity considers the direct effect of the modifier and its indirect effect inter-
acted with the covariates. Our method is capable of handling modifiers of both continuous
and discrete types. To strengthen the statistical inference concerning the disparity, we intro-
duce a bootstrap-based approach for generating simultaneous confidence bands, specifically
designed for this time-varying disparity decomposition.

The remainder of this paper is organized as follows: In Section 2, we provide an overview
of the traditional PB method for cross-sectional data and present new methods for decom-
posing disparities in longitudinal settings, featuring two distinct approaches. In Section 3, we
detail the methodology for estimating these disparities and conducting inference. In Section
4, we introduce a tool designed to evaluate the influence of a modifier in scenarios specif-
ically chosen by researchers. In Section 5, we demonstrate the practical application of our
model using an empirical analysis of fetal growth data from the Eunice Kennedy Shriver Na-
tional Institute of Child Health and Human Development (NICHD) Fetal Growth Studies -
Singletons (Grewal et al., 2017). Finally, in Section 6, we conclude with a discussion on the
study’s limitations and outline potential future directions.

2. The Proposed Longitudinal Disparity Decomposition Methods.

2.1. Longitudinal disparity decomposition (LDD). First, we briefly introduce the tradi-
tional PB method for the cross-sectional data. Suppose the outcome of interest for the major-
ity (M ) and the minority (m) group can be modelled as following:

YM = XMβM + ϵM ,

Y m = Xmβm + ϵm ,

where XM and Xm are row vectors of exploratory variables, βM and βm are column vectors
of the respective regression coefficients, and ϵM and ϵm are random variables with respective
means equal to zero. The overall disparity (D) between the majority and minority groups is
defined and decomposed as follows:

D =E(YM )−E(Y m) =E
{
E(YM |XM )

}
−E {E(Y m|Xm)}

= E
{
E(YM |XM )

}
−E

{
E(Y m|XM )

}
+E

{
E(Y m|XM )

}
−E

{
E(YM |Xm)

}
=E(XM )(βM −βm)︸ ︷︷ ︸

unexplained disparity

+
{
E(XM )−E(Xm)

}
βm︸ ︷︷ ︸

explained disparity

,(1)
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where E
{
E(Y m|XM )

}
, equivalently E(XM )βm, represents the expected value of a pseudo

outcome, which would result if the minority group had consisted of members assuming the
same exploratory values as the majority group. The first term is called “unexplained dispar-
ity,” as it represents the coefficient difference that is not accounted for by observed covariates
or unmeasured factors. The second term in (1) is termed “explained disparity,” as it captures
the difference attributable to the observed covariates between groups. More specifically, the
explained disparity quantifies the potential reduction in disparity if the covariates’ distribu-
tions of the minority group were to match those of the majority group.

We note that the decomposition in (1) diverges from the standard PB decomposition by
adding and subtracting E(XM )βm instead of E(Xm)βM . The standard one defines the ex-
plained disparity as

{
E(Xm)−E(XM )

}
βM . This alternative formulation helps answer dif-

ferent kinds of research questions, such as understanding the impact of applying the major-
ity group’s exploratory variable structure (E(XM )) to the minority group. This alternative
formulation would also be the natural choice for investigating the impact of modifiers by
equalizing their distribution in the minority group to that in the majority group.

We now introduce an approach for longitudinal disparity decomposition, designed to as-
sess decomposition at a specific time point, t:

D(t) =E{XM (t)}
{
βM (t)−βm(t)

}︸ ︷︷ ︸
unexplained disparity

+
[
E{XM (t)} −E{Xm(t)}

]
βm(t)︸ ︷︷ ︸

explained disparity

.(2)

This method naively extends the PB method to longitudinal analysis. We refer to the dis-
parity decomposition approach presented in (2) as the longitudinal disparity decomposition
(LDD). The estimation of the overall disparity D(t), along with the estimations of the ex-
plained and unexplained disparities, will be discussed in Section 3.

2.2. Longitudinal disparity decomposition with modifier (mLDD). Although the ap-
proach proposed in Section 2.1, namely LDD, can measure the explained disparity by the
covariates included in the model, it collectively aggregates the influences of all these covari-
ates. This may not be ideal if our interest lies in a specific modifier, say Z , that is amenable to
intervention. In such cases, it becomes important to consider the effect of Z and its interaction
with the remaining covariates, denoted by X. For example, enhancing education, represented
by Z , might directly reduce disparities in health outcomes. Moreover, such educational im-
provements could interact with other variables, like socioeconomic or physiological status,
potentially contributing further to disparity reduction. This section aims to understand the
disparity arising from the direct effect of Z as well as the indirect effects stemming from Z’s
interactions with other covariates, denoted as X.

First, we introduce a time-varying coefficient longitudinal model in which the coefficients
are functions of both the measurement time t and the modifier Z:

Y (t) = β0(t,Z) + β1(t,Z)X1(t) + · · ·+ βp(t,Z)Xp(t) + σ(t,Z)ϵ

=X(t)β(t,Z) + σ(t,Z)ϵ,

where X(t) = (1,X1(t), . . . ,Xp(t)), β(t,Z) = (β0(t,Z), . . . , βp(t,Z))
T and ϵ is an er-

ror term with E(ϵ) = 0 and E(ϵ2) = 1. Here, β0(t,Z) represents the influence of Z
on Y (t) across time t, and β1(t,Z), . . . , βp(t,Z) denote the influences of the covariates
X1(t), . . . ,Xp(t) on Y (t), conditioned on Z . Since the coefficients of X are functions of
Z , the varying coefficient model can be viewed as a regression model with flexible forms
of interaction terms between Z and X. Due to the nonparametric specification of the coeffi-
cients, the modifier, although can be multivariate in theory, may often be a univariate variable.
In this paper, we focus on a univariate modifier, Z .
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Let ZM and Zm represent the modifiers for the majority and minority groups respectively.
We define the longitudinal disparity at time t between the majority (M ) and minority (m)
groups, conditioned on ZM and Zm, as:

D(t) =E{YM (t)} −E{Y m(t)}=E{D(t|ZM ,Zm)},(3)

where

D(t|ZM ,Zm) =E{YM (t)|ZM} −E{Y m(t)|Zm}
=E{XM (t)|ZM}βM (t,ZM )−E{Xm(t)|Zm}βm(t,Zm).

This framework enables us to investigate the impact of the modifier Z . Z not only alters the
mean of X(t) (expressed as E{X(t)|Z}), but also affects how X(t) influences Y (t) through
their coefficients β(t,Z). In order to see this clearly, we further decompose (3) by adding
E[E{XM (t)|ZM}βm(t,ZM )] and
E[E{Xm(t)|ZM}βm(t,ZM )] to and subtracting the same quantities from (3) as follows:

D(t) = D1(t) +D2(t) +D3(t)
:=E[E{XM (t)|ZM}{βM (t,ZM )−βm(t,ZM )}]︸ ︷︷ ︸

unexplained disparity

(4)

+ E([E{XM (t)|ZM} −E{Xm(t)|ZM}]βm(t,ZM ))︸ ︷︷ ︸
explained disparity due to X when ZM imposed

(5)

+ E[E{Xm(t)|ZM}βm(t,ZM )−E{Xm(t)|Zm}βm(t,Zm)]︸ ︷︷ ︸
explained disparity due to the modifier Z

.(6)

The first term, D1(t) in (4), captures disparity arising from differences in the coefficients
and represents the unexplained disparity. Conversely, D2(t) captures the explained disparity,
which stems from differences in the covariates X between the majority and minority groups,
under a hypothetical scenario where the modifiers in both the majority and the minority group
are arbitrarily set to follow the modifier distribution in the majority group. The measure of
D2(t) involves averaging the conditional expectations of X over all possible values of ZM

across the entire distribution of ZM . For example, when the education level distribution from
the majority group is imposed on both groups, D2(t) quantifies the portion of the overall
disparity associated with the differences in XM (t) and Xm(t). Finally, D3(t) measures the
portion of the explained disparity due to the distributional difference between ZM and Zm,
which includes its direct and indirect effect via X. The indirect effect is determined based on
the interaction between Xm(t) and the differing values of ZM and Zm. Thus, the measure
D3(t) is utilized to assess the potential reduction in disparity for the minority group when
the distributions of ZM and Zm are made equivalent. Specifically, the value of D3(t) is zero
if the distributions of ZM and Zm are identical. This unique characteristic of D3(t) serves
as a metric for understanding the impact of equalizing the disparate distributions of the mod-
ifier on the overall disparity. Henceforth this method will be referred to as the longitudinal
disparity decomposition with modifier (mLDD).

Compared to LDD, mLDD further addresses the role of the modifier Z in explaining the
disparity. This approach is particularly valuable in contexts where the overall effect of Z is
of interest, encompassing its entire distribution rather than focusing on specific values.

3. Estimation and inference. In this section, we introduce a method for estimating the
longitudinal disparity decomposition within the framework of mLDD. We omit the specific
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estimation methods for LDD since LDD can be regarded as a special case of mLDD with the
following representation of Y (t):

Y (t) = β0(t) + β1(t)X1(t) + · · ·+ βp(t)Xp(t) + βp+1(t)Z(t) + σ(t)ϵ.(7)

We let Yi(t), Zi, and Xi(t) = {1,Xi1(t), . . . ,Xip(t)} represent the respective variables
for subject i measured at t and tij represents the measurement time within the time pe-
riod T. Then random samples from the majority and minority groups are denoted as
{XM

i (tMij ), Y
M
i (tMij ), t

M
ij ,Z

M
i }, i= 1, . . . , nM , j = 1, . . . , ni, and {Xm

i (tmij ), Y
m
i (tmij ), t

m
ik,Z

m
i },

i= 1, . . . , nm, j = 1, . . . , ni respectively.
Assuming independence between the majority and the minority group variables, by the

definition of the longitudinal disparity in (3), we have

D(t) =

∫ ∫
D(t|zM , zm)fZM (zM )fZm(zm)dzMdzm.(8)

The empirical version of (8) is

1

nMnm

nM∑
i=1

nm∑
i′=1

D(t|zMi , zmi′ )

=
1

nMnm

nM∑
i=1

nm∑
i′=1

E{XM (t)|zMi }{βM (t, zMi )−βm(t, zMi )}

+
1

nMnm

nM∑
i=1

nm∑
i′=1

[E{XM (t)|zMi } −E{Xm(t)|zMi }]βm(t, zMi )

+
1

nMnm

nM∑
i=1

nm∑
i′=1

[
E{Xm(t)|zMi }βm(t, zMi )−E{Xm(t)|zmi′ }βm(t, zmi′ )

]
,

where β(t, z) and E{X(t)|z} for the majority and minority groups should be estimated at
different t’s and z’s.

3.1. Estimation. The estimation method for the varying coefficient β(t, z) differs based
on whether the modifier Z is continuous or discrete. If the modifier Z is a continuous random
variable, we can obtain the estimator of β(t, z), denoted as β̂(t, z), by minimizing

n∑
i=1

ni∑
j=1

{Yi(tij)−Xi(tij)β}2K
(
tij − t

b1

)
K

(
Zi − z

b2

)
,(9)

where K(·) represents a kernel function and b1 and b2 are the bandwidths. Here, we opt for
the local constant estimator to estimate β̂(t, z) over alternative methods such as local poly-
nomial or spline-based approaches. We make this choice because the local constant estimator
offers both simplicity and ease of interpretation. Moreover, given the context of our specific
example in Section 5, we do not anticipate rapid changes in the coefficients over time, making
the local constant estimator a suitable choice.

If the modifier Z is a discrete random variable, (9) can be modified as
n∑

i=1

ni∑
j=1

{Yi(tij)−Xi(tij)β}2K
(
tij − t

b1

)
I(Zi = z),(10)

where I(·) represents the indicator function; specifically, I(Zi = z) selects a subsample of
subjects who share the same level of the discrete random variable Z .
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The following Theorem 3.1 establishes that the local constant estimator β̂(t, z) is a con-
sistent estimator for β(t, z). Additionally, it shows that the asymptotic distribution of β̂(t, z)
is normally distributed.

THEOREM 3.1. (a) Suppose that Z is a continuous random variable and let t and z be
interior points in their respective ranges. Let N =

∑n
i=1 ni. Under assumptions (A1)–(A4) in

Appendix, asNb1b2 →∞,Nb1b2(b81+b
8
2)→ 0 andN−1(1/

√
Nb1b2+b1b2)

∑n
i=1 n

2
i →∞,

we have √
Nb1b2

{
β̂(t, z)− β(t, z)− ρ(t, z)ϕK

2

}
d→N

{
0,
σ2(t, z)ψ2

K

fT,Z(t, z)
Γ−1
X (t)

}
,

where fT,Z(·, ·) are the density functions of tij and Zi, ψK =
∫
K2(v)dv,ϕK =

∫
v2K(v)dv,

ΓX(t) =E{X(t)TX(t)}, and ρ(t, z) = b21{β′′
t (t, z) + 2β′

t(t, z)f
′
t(t, z)/fT,Z(t, z)}+

b22{β′′
z(t, z) + 2β′

z(t, z)f
′
z(t, z)/fT,Z(t, z)}. The derivatives are defined in the Appendix.

(b) Suppose that Z is a discrete random variable and let t be an interior point within its
range. Under assumptions (A1)–(A4) in Appendix and qz = P (Zi = z) > 0, as Nb1 →∞,
Nb91 → 0, and N−1(1/

√
Nb1 + b1)

∑n
i=1 n

2
i →∞ we have√

Nqzb1

[
β̂(t, z)−β(t, z)− b21ϕK

{
β′′
t (t, z)

2
+

β′
t(t, z)f

′
T (t)

fT (t)

}]
d→N

{
0,
σ2(t, z)ψ2

K

fT (t)
Γ−1
X (t)

}
.

The conditionsN−1(1/
√
Nb1b2+b1b2)

∑n
i=1 n

2
i →∞ andN−1(1/

√
Nb1+b1)

∑n
i=1 n

2
i

→ ∞ are hold for both sparse longitudinal data (supi ni ≤ M for a constant M ) and
dense longitudinal data (supi ni →∞) if supi ni{b1b2 + (nb1b2)

−1}→ 0 and supi ni{b1b+
(nb1b)

−1} → 0, respectively. We note that most longitudinal data in practice have sparse or
moderately dense observations. Furthermore, the asymptotic results in Theorem 1 are ob-
tained without imposing any dependence structure on the error process. Instead, we assume
a rather loose bound on β(t, z) in (A3) in the supplementary material.

Next, our objective is to estimate the conditional mean of covariates Xr(t) given Z = z,
denoted asE{Xr(t)|z}. In case where Z is continuous, we employ a local constant estimator,
µ̂Xr

(t, z), for r = 1, . . . , p, to approximate E{Xr(t)|Z = z}. The estimator is defined as
follows:

µ̂Xr
(t, z) = argmin

µXr

n∑
i=1

ni∑
j=1

{Xi(tij)− µXr
}2K

(
tij − t

br1

)
K

(
Zi − z

br2

)
.

Alternatively, when Z is a discrete variable, the estimator µ̂Xr
(t, z) takes the following form:

µ̂Xr
(t, z) = argmin

µXr

n∑
i=1

ni∑
j=1

{Xi(tij)− µXr
}2K

(
tij − t

br1

)
I(Zi = z).

The consistency and asymptotic distribution of µ̂XK
(t, z) can be established in a manner

analogous to Theorem 3.1.

3.2. Implementation. To select appropriate bandwidths b1 and b2 in (9), we utilize the

leave-one subject-out cross-validation method. Specifically, we estimate β̂
(−i)

(tij ,Zi) by
excluding the ith subject and minimizing the following objective function:

n∑
i′=1

ni′∑
j=1

{Yi′(ti′j)−Xi′(ti′j)β}2 I(i′ ̸= i)K

(
ti′j − tij

b1

)
K

(
Zi′ −Zi

b2

)
.(11)
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The optimal bandwidths are determined by minimizing the following:

(b∗1, b
∗
2) = argmin

b1,b2

n∑
i=1

ni∑
j=1

[Yi(tij)−Xi(tij)β̂
(−i)

(tij ,Zi)]
2.

When the modifier is discrete, only b1 is required. In this case, we substitute the term
K{(Zi′ − Zi)/b2} in (11) with I(Zi′ = Zi). Subsequently, the leave-one subject-out cross-
validation method is employed for bandwidth selection. The bandwidths br1 and br2 in the
estimation of E{Xr(t)|z} are also selected in the same fashion as b1 and b2 in estimation of
β(t, z).

Finally, for a given time t ∈ T, we estimate the unexplained disparity as in (4), the ex-
plained disparity due to covariates X when ZM imposed as in (5), the disparity explained by
the modifier as in (6), and the overall disparity as in (3) by summing up them as follows:

D̂(t) = D̂1(t) + D̂2(t) + D̂3(t)

:=
1

nM

nM∑
i=1

Ê{XM (t)|zMi }{β̂M
(t, zMi )− β̂

m
(t, zMi )}

+
1

nM

nM∑
i=1

[Ê{XM (t)|zMi } − Ê{Xm(t)|zMi }]β̂m
(t, zMi )

+
1

nM

nM∑
i=1

Ê{Xm(t)|zMi }β̂m
(t, zMi )− 1

nm

nm∑
i′=1

Ê{Xm(t)|zmi′ }β̂
m
(t, zmi′ ).

Since Ê{X(t)|z} and β̂(t, z) are consistent estimators, it follows that D̂1(t), D̂2(t), D̂3(t),
and consequently D̂(t), are also consistent.

3.3. Inference on the decomposed disparities. To draw statistical inferences regarding
the longitudinal disparity D(t) and its decomposition D1(t), D2(t) and D3(t) in mLDD,
we employ a simultaneous confidence band (SCB). This allows us to assess whether these
quantities deviate significantly from zero over the range t ∈ T. A (1−α)100% SCB for D(t)
is defined as follows:

P

[
sup
t∈T

{
|D̂(t)−D(t)|

ŝ(t)

}
≤Qα

]
= 1− α,

where ŝ(t) represents the standard error of D̂(t). SCBs for D1(t), D2(t) and D3(t) can
be constructed in a similar manner. Specifically, we utilize a bootstrap SCB framework, as
proposed by Kim, Cho and Kim (2021). The details of this approach are elaborated below.

1. Obtain D̂(t) for t ∈ T.
2. Generate B bootstrap samples of size nM of the majority group by sampling subjects in

the majority group with replacement. Generate B bootstrap samples of size nm of the
minority group in the same manner.

3. Obtain D̂(b)(t), for b= 1, . . . ,B and t ∈ T, with each bootstrap sample.
4. At given t ∈ T, obtain ŝ(t) by computing the sample standard deviation of D̂(b)(t) for
b= 1, . . . ,B.

5. For each bootstrap estimate, compute the supremum of absolute standardized deviance
from the estimate D̂(t) with the estimate based on the original dataset:

Q(b) := sup
t∈T

{
|D̂(b)(t)− D̂(t)|

ŝ(t)

}
.(12)
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6. Construct a (1− α)100% SCB for D(t) with

(D̂(t)− ŝ(t)Q̂α, D̂(t) + ŝ(t)Q̂α), all t ∈ T,

where Q̂α is a (1−α)100% percentile of Q(b). The proposed SCB contains (1−α)100%
of bootstrap estimates over t ∈ T.

The R package, vcPB, has been developed to perform longitudinal disparity analysis and
is available at https://sangkyustat.github.io/vcPB/ or on CRAN.

4. Conditional longitudinal disparity decomposition with a modifier (cmLDD).
The LDD and mLDD, discussed in Section 2, examine the marginal disparity D(t) =
E{YM (t)} − E{Y m(t)} by integrating the distribution of covariates including the modi-
fier Z . Especially, the proposed mLDD offers a comprehensive approach for evaluating the
impact of modifiers on disparity. However, practical scenarios often demand a more nuanced
exploration of disparities, especially when examining differences between majority and mi-
nority groups at specific levels of a modifier. For example, when analyzing health outcome
disparities between well-educated individuals in the majority group and under-educated in-
dividuals in the minority group or vice versa, the mLDD method may prove inadequate.
To tackle these challenges, we present a new approach called the conditional longitudinal
disparity decomposition with a modifier (cmLDD).

The cmLDD approach allows for a more targeted analysis of disparity, particularly in cases
where a key modifier, such as education, significantly contributes to the observed disparities.
To implement this approach, we consider the following model:

D(t|zM , zm) =E{YM (t)|zM} −E{Y m(t)|zm}
=E{XM (t)|zM}βM (t, zM )−E{Xm(t)|zm}βm(t, zm),(13)

where zM and zm are specific values of the modifier of interest.
We further decompose (13) similarly to the method described previously in (4) - (6) :

D(t|zM , zm) = D1(t|zM ) +D2(t|zM ) +D3(t|zM , zm)(14)

:=E{XM (t)|zM}{βM (t, zM )−βm(t, zM )}︸ ︷︷ ︸
unexplained disparity

+ [E{XM (t)|zM} −E{Xm(t)|zM}]βm(t, zM )︸ ︷︷ ︸
explained disparity due to X when zM imposed to both ZM and Zm

+ E{Xm(t)|zM}βm(t, zM )−E{Xm(t)|zm}βm(t, zm)︸ ︷︷ ︸
explained disparity due to the difference between zM and zm

.(15)

In contrast to mLDD, which examines disparity by considering Z in contexts focused on
the distributional effect of Z rather than specific values, the cmLDD method is specifically
designed to address longitudinal disparities based on distinct values of modifiers for the ma-
jority and minority groups. More specifically, cmLDD evaluates disparity by analyzing the
differences in conditional expectations of the outcome for certain values of Z (such as high
or low education levels) across majority and minority groups.

This tailored approach becomes particularly crucial in understanding potential shifts in
disparity under different scenarios involving zM and zm. These scenarios may encompass
comparisons between the majority with a low education level and the minority with a high
level, or vice versa. The cmLDD methodology provides a nuanced perspective on disparity,
focusing on specific values of the modifier and offering valuable insights into how these
variations impact the observed disparities between majority and minority groups over time.

Due to the law of total expectation D(t) = E{D(t|ZM ,Zm)}, the decomposition in
cmLDD in (14) can be estimated concurrently with the estimation of their counterparts in
mLDD. The statistical inference in Section 3.3 is also easily applicable to cmLDD.

https://sangkyustat.github.io/vcPB/
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5. Applications to fetal growth decomposition.

5.1. NICHD Fetal Growth Studies - Singletons. We utilize data from the NICHD Fe-
tal Growth Studies, a prospective cohort study of singleton births aiming to establish stan-
dard fetal growth benchmarks by gestational age in the U.S. population (Louis et al., 2015;
Grewal et al., 2017). Participants are low-risk pregnant women from four racial and ethnic
groups recruited at 12 U.S. clinical centers from 2009 to 2013. According to the U.S. Na-
tality Data (Osterman et al., 2023), the distribution of racial and ethnic groups is as follows:
Non-Hispanic White (NHW) at 52%, Non-Hispanic Black (NHB) at 14%, Hispanic (HIS) at
24%, and Asian or Pacific Islander (API) at 6%. To align with these statistics, we set NHW
as the majority group (M ), and NHB, HIS, and API as the minority groups (m).

Eligibility criteria for the study encompass maternal age ranging from 18 to 40 years,
non-obese, a pre-pregnancy BMI between 19.0 and 29.9, and a viable singleton pregnancy
confirmed between 8 weeks 0 days and 13 weeks 6 days. The gestational age has to be con-
sistent with the last menstrual period, as verified by a screening sonogram within a specific
range. The study excludes women with previous pregnancy complications, chronic illnesses,
medically assisted pregnancies, smoking, drug use, excessive alcohol consumption, preterm
delivery, gestational diabetes, and neonatal problems like birth defects and mortality.

After an initial sonogram between 10 to 13 weeks of gestation, participants are randomly
assigned to one of four follow-up schedules. These schedules include five more sonograms
at gestational weeks 16-22, 24-29, 30-33, 34-37, and 38-41. We assess fetal growth using
the Hadlock formula (Hadlock et al., 1985), which incorporates head circumference (HC),
abdominal circumference (AC), and femur length (FL) measurements.

Alongside the fetal measurements, the study gathers demographic and medical history
from the mothers. These include employment status, age, number of previous births (parity),
marital status, insurance status, income, and level of education.

The original dataset consisted of 15,882 fetal growth measurements from 2,802 women.
After excluding records related to high-risk pregnancies and missing data, the refined dataset
included 7,543 fetal growth measurements from 1,464 pregnant women.

In our analysis, we considered the following maternal characteristics as covariates, adapted
from Gardosi and Francis (2009): age (in years), height (in cm), weight (in kg) measured at
enrollment, past parity status (coded as ‘1’ for multiparas, or having had a previous birth,
and ‘0’ for nulliparas, or no previous births), employment or student status (‘1’ for full-
time employed or student, and ‘0’ for others), marital status (‘1’ for married or living with a
partner, and ‘0’ for unmarried), insurance type (‘1’ for private or managed care, and ‘0’ for
Medicaid or other types), and income level (categorized as ‘0’ for household incomes below
$30,000, ‘1’ for incomes between $30,000 and $75,000, and ‘2’ for incomes above $75,000).
All considered covariates are time-independent variables.

We evaluated two modifiers: the mother’s education level, categorized as ‘0’ for individ-
uals without a bachelor’s degree, and ‘1’ for those with a bachelor’s degree or higher, and
the mother’s pre-pregnancy Body Mass Index (BMI in kg/m2). Each modifier was examined
independently. The summary statistics for each racial/ethnic group are presented in Table 1.

5.2. Disparity decomposition with mother’s education as a modifier. In this section, we
apply the proposed mLDD method to decompose the potential disparity in fetal growth tra-
jectories with the mother’s education level, low-educated (‘0’) vs. high-educated (‘1’), as a
modifier. For comparative purposes, we also conduct an analysis using the LDD method.

In Figure 1, the first two plots demonstrate the overall disparity and the last two plots show
the unexplained disparity as obtained from the LDD and mLDD. Theoretically, the overall
disparity obtained via the sum of the unexplained disparity and the explained disparity in (2)
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TABLE 1
Final sample characteristics of the Fetal Growth - Singletons Study

% & Mean (SD)

Variables
Non-Hispanic

White
n= 460 (31%)

Non-Hispanic
Black

n= 359 (25%)

Hispanic

n= 394 (27%)

Non-Hispanic
Asian/Pacific Islander

n= 251 (17%)

Pre-pregnancy BMI (kg/m2) 23.1 (2.8) 23.9 (3.2) 24.4 (3.1) 22.2 (2.5)
Height (cm) 165.6 (6.7) 164.8 (6.6) 160.2 (6.2) 160.3 (6.1)
Weight (kg) 65.7 (9.6) 67.3 (11.4) 64.4 (9.8) 57.0 (8.1)
Age (years) 30.3 (4.2) 25.8 (5.4) 27.3 (5.4) 30.8 (4.2)
Parity

More than 0 47.0% 53.2% 61.4% 47.8%
None 53.0% 46.8% 38.6% 52.2%

Employment
Yes 83.3% 75.5% 65.2% 71.7%
No 16.7% 24.5% 34.8% 28.3%

Marital Status
Married or living with partner 95.0% 51.0% 74.9% 92.0%
Not married 5.0% 49.0% 25.1% 8.0%

Insurance
Private or Managed Care 95.4% 51.8% 43.9% 84.1%
Other 4.6% 48.2% 56.1% 15.9%

Income
Above $75,000 77.1% 23.7% 21.1% 57.8%
$30,000 to $75,000 19.2% 28.2% 40.7% 25.5%
Below $30,000 3.7% 48.2% 38.3% 16.7%

Education
Bachelor’s degree or higher 77.0% 25.9% 19.8% 70.9%
Without bachelor’s degree 23.0% 74.1% 80.2% 29.1%

and the sum of D1(t), D2(t), D3(t) in (3) should be the same. Although it is challenging
to directly assess how accurately the proposed mLDD approach can estimate D1(t), D2(t),
and D3(t) due to its complex form, we can utilize the result that disparity decomposition
obtained from the LDD and mLDD yield the almost identical overall disparity to support the
efficacy of the proposed mLDD. Furthermore, the overall disparity reveals that fetuses from
NHW mothers exhibit faster growth after week 20 compared to those from mothers of other
racial groups.

Additionally, we explore the impact of maternal education level on fetal growth disparity,
analyzing it from two distinct viewpoints through the LDD and mLDD approaches. To fa-
cilitate a clear comparison between LDD and mLDD, we further decompose the explained
disparity of LDD in (2) into two components, analogous to the approach used in mLDD:[

E{XM} −E{Xm}
]
βm(t)︸ ︷︷ ︸

explained disparity due to X

+{E(ZM )−E(Zm)}βmp+1(t)︸ ︷︷ ︸
explained disparity due to Z

.

In Figure 2, the explained disparities from LDD and mLDD are presented. In Figure 2(a),
the first two plots present the disparity associated with covariates except the mother’s educa-
tion, but there is a distinction: the LDD plot considers the mother’s education as a covariate,
similar to the other covariates , while the mLDD plot treats the mother’s education as a mod-
ifier. Figure 2(a) reveals that the explained disparity due to covariates, except the mother’s
education, remains near zero over time in the mLDD model. However, although it is not
statistically significant, in the LDD model there is a slight amount of explained disparity ob-
served in the later weeks. The last two plots of Figure 2(a) specifically highlight the role of
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(a) NHW vs. NHB

(b) NHW vs. HIS

(c) NHW vs. API

FIG 1. Fetal growth disparity decomposition using LDD and mLDD, considering the mother’s education as a
modifier. In panels (a), (b), and (c), NHW is set as the majority group. In each panel, the first two plots represent
the overall disparity, denoted by D(t), and the subsequent two plots depict the unexplained disparity due to the
covariates, denoted by D1(t). Solid lines represent the estimated disparities and the dashed lines represent the
95% confidence bands.

the mother’s education (Z) as a covariate in LDD and as a modifier in mLDD. It seems that
the mother’s education amplifies the disparity between NHW and NHB over time through
its interaction with other covariates. Similar observations were made in Figure 2(b) for HIS
group. However, this pattern is not evident for the API group, possibly due to the similar
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distribution of mothers’ education between NHW and API, as indicated in Table 1. Specif-
ically, the proposed mLDD method indicates the explained disparity due to the difference
in the distribution of mothers’ education level between NHW and NHB mothers becomes
barely significant after week 35. Our findings uncover the role of the mother’s education as
a modifier, which is not discernible through LDD. This is attributed to the potential impact
of the mother’s education on the development of disparities over time and its possible role in
the interplay of covariates during the period.

5.3. Conditional disparity decomposition with mother’s education as a modifier. We em-
ploy the cmLDD method to examine how the mother’s education affects longitudinal dispari-
ties in fetal growth, assigning a low education level to the minority group (zm = 0) and a high
level to the majority group (zM = 1). Additionally, we reverse the education levels between
the groups, analyzing the situation where the majority has a lower education level (zM = 0)
and the minority has a higher education level (zm = 1). When the education levels are equal
across both groups (i.e., zM = zm), no disparity is observed due to the modifier, resulting
in a disparity measure of zero. This approach allows us to assess the potential decrease in
disparity under these circumstances. Unlike mLDD, cmLDD provides the ability to examine
disparities at specific modifier levels, offering insights not possible with mLDD.

Figures 3-4 displays the estimated D(t|zM , zm),D1(t|zM ),D2(t|zM ) and D3(t|zM , zm)
from cmLDD, representing the overall disparity, unexplained disparity, explained disparity
due to covariates at specific modifier levels, and explained disparity due to the modifier levels,
respectively.

A key observation from Figure 3 is the more pronounced influence of the mother’s educa-
tion in the cmLDD analysis compared to mLDD, highlighting the difference in their analyti-
cal frameworks. The cmLDD model’s D3(t|zM = 1, zm = 0) indicates the potential decrease
in disparity that could be achieved if the education level of mothers in the minority group,
currently lower, were elevated to match that of the majority group. In contrast to the patterns
observed in Figure 2, D3(t|zM = 1, zm = 0) in Figure 3 (a) suggests a significant opportu-
nity for reducing disparity among NHB mothers with lower education levels. Additionally,
there is a noticeable potential for reduction in disparity for the API group, as indicated by
D3(t|zM = 1, zm = 0) in Figure 3 (c). Although this increase is not statistically significant,
it is a distinction not visible in Figure 2.

On the other hand, Figure 4 presents the cmLDD results where the majority group (NHW)
has lower education (zM = 0) and the minority group has a high education (zm = 1). In
Figure 4, we observe smaller overall fetal growth disparities, denoted as D(t|zM = 0, zm =
1), between NHW and NHB, NHW and HIS, and NHW and API, compared to the disparities
observed as D(t|zM = 1, zm = 0) in Figure 3. Notably, in Figure 4, the explained disparity
due to the modifier D3(t|zM = 0, zm = 1) trends negative over time, in contrast to Figure 3,
where D3(t|zM = 1, zm = 0) trends positive. This illustrates the significant role of mothers’
education in fetal growth disparities.

5.4. Decomposition of disparity with mother’s BMI as a modifier. We illustrate the appli-
cation of the cmLDD, where the modifier is a continuous variable, using the mother’s BMI as
an example. To investigate the influence of mothers’ BMI on the disparity in fetal growth be-
tween majority and minority groups, we set the value of z as follows: For the majority group
(NHW), we set zM = 22.7, which is the sample median BMI among NHW mothers. For the
minority groups, we selected zm to represent the 10th, 50th, and 90th BMI quantiles. This
choice is driven by our sample consisting of non-obese women, for whom the BMI range
is relatively narrow, and the differences between the first and third quartiles are slight. The
cmLDD decomposition in (14) is D(t|zM , zm) =D1(t|zM ) +D2(t|zM ) +D3(t|zM , zm),
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(a) NHW vs. NHB

(b) NHW vs. HIS

(c) NHW vs. API

FIG 2. Fetal growth disparity decomposition using LDD and mLDD, considering the mother’s education as a
modifier. In panels (a), (b), and (c), NHW is set as the majority group. In each panel, the first two plots represent
explained disparity due to the covariates except for the modifier, denoted by D2(t), and the subsequent two plots
depict the explained disparity due to the modifier, denoted by D3(t). The solid lines represent the estimated
disparities and the dashed lines represent the 95% confidence bands.

where zm is a BMI quantile of interest for minority group. Given that D1(t|zM ) and
D2(t|zM ) do not depend on zm, we only present the overall disparity, D(t|zM , zm), and
the disparity explained by the modifier value, D3(t|zM , zm).
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(a) NHW vs. NHB; (zM = 1, zm = 0)

(b) NHW vs. HIS; (zM = 1, zm = 0)

(c) NHW vs. API; (zM = 1, zm = 0)

FIG 3. Fetal growth disparity decomposition with the cmLDD method, using mother’s education level as the
modifier where zM = 1 and zm = 0. In panels (a), (b), and (c), NHW is set as the majority group. The solid lines
represent the estimated disparities, and the dashed lines represent the 95% confidence bands.

Figure 5 illustrates the fetal growth disparity between the majority group (NHW) and
minority groups, using specific maternal BMI values as benchmarks. We used zM = 22.7 for
NHW, representing the median pre-pregnancy BMI. For NHB, we set zm = 19.8, zm = 23.9,
and zm = 28.6 to reflect the 10th, 50th, and 90th percentiles, respectively. Similarly, for HIS,
the values are zm = 20.5, zm = 24.1 and zm = 28.0; and for API, zm = 19.3, zm = 21.5, and
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(a) NHW vs. NHB; (zM = 0, zm = 1)

(b) NHW vs. HIS; (zM = 0, zm = 1)

(c) NHW vs. API; (zM = 0, zm = 1)

FIG 4. Fetal growth disparity decomposition with the cmLDD method, using mother’s education level as the
modifier where zM = 0 and zm = 1. In panels (a), (b), and (c), NHW is set as the majority group. The solid lines
represent the estimated disparities, and the dashed lines represent the 95% confidence bands.

zm = 25.7, corresponding to the same percentiles. In each of the sub-figures (a), (b), and (c)
of Figure 5, the top figures illustrate the overall disparity at time t, denoted as D(t|zM , zm),
and the bottom figures depict the disparity attributable to the modifiers zM and zm at time t,
specifically D3(t|zM , zm).
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The findings presented in Figure 5(A) reveal notable overall disparities in fetal growth
emerging after week 30 between fetuses of NHW mothers at the median BMI and those
of NHB mothers at various BMI quantiles. Moreover, disparities attributable to BMI differ-
ences, particularly those between NHW mothers with median BMI and NHB mothers at the
10th BMI percentile, seem to amplify the overall disparity. Conversely, NHB mothers at the
90th BMI percentile show a trend toward reducing the overall fetal growth disparity in later
gestational weeks, though these findings are not statistically significant. This observation
could be attributed to our dataset being comprised exclusively of non-obese women.

Figure 5(B) indicates that the overall fetal growth disparities between NHW and HIS
groups are less pronounced compared to disparities observed with other racial groups. How-
ever, similar patterns of disparity related to the mother’s BMI are noted between NHW and
HIS, consistent with those observed between NHW and NHB, as we varied zm across the
10th, 50th, and 90th percentiles.

In Figure 5(C), it is evident that the overall fetal growth disparities between NHW mothers
at median BMI and the API group across different BMI quantiles significantly diminish as the
BMI quantiles of the API group increase. This indicates that the BMI of API mothers has a
notable impact on fetal growth, potentially affecting the disparity either directly or indirectly
through interactions with other covariates.

6. Discussion. In this paper, we introduce a new method for decomposing longitudinal
disparity. This approach employs a dynamic model with time-varying coefficients, enabling
precise tracking of disparity progression over time. Longitudinal datasets that can track how
disparities evolve over time are becoming more prevalent. For instance, our method is appli-
cable in areas like the analysis of longitudinal disparities in prostate-specific antigen (PSA)
levels within prostate cancer research or in cancer antigen-125 (CA-125) levels in ovarian
cancer studies across different racial/ethnic groups.

We acknowledge that our results may not support causal interpretations, as the method
does not incorporate a formal causal framework. Incorporating such a framework necessi-
tates a detailed understanding of the causal relationships between specific variables and other
covariates not only cross-sectionally but also over time to address potential confounding fac-
tors explicitly. This knowledge, however, is often not readily available and is supplanted by
assumptions. Whereas the desired causality follows only if such assumptions are collectively
valid as a whole, their empirical examination is often not feasible and bias arising from the
violation of the assumptions is a serious concern. On the other hand, sensitivity analyses may
also rely on the speculative causal relationship as they tend to question one part of the causal
relationship while relying on the rest. The proposed method sidesteps the highly speculative
nature of formal causal inference.

Since we utilized simultaneous confidence bands (SCBs) for inference, this approach led to
relatively large confidence bands. For a more practical and focused analysis, we may employ
piecewise confidence intervals on specific gestational periods of interest to practitioners.

Although our proposed methods were initially designed for longitudinal data analysis, they
are also applicable to cross-sectional data, as described by Y = β0(Z) + β1(Z)X1 + · · ·+
βp(Z)Xp + σ(Z)ϵ. In this context, both marginal and conditional disparity decomposition
techniques can be adapted, whether or not the modifier Z is considered.

Although our proposed longitudinal disparity decomposition method is demonstrated us-
ing fetal growth data from singletons, this dataset may not fully reflect disparities between
majority and minority groups. The NICHD fetal growth dataset is centered around non-obese
women, indicating that careful consideration is needed when interpreting our results. Further-
more, fetal growth unfolds over a relatively short timeframe. The impact of modifiers like the
mother’s education and BMI on fetal growth disparities may be modest, as suggested in our
analysis (Lambert et al., 2020).
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Despite the outlined limitations, our proposed model for longitudinal disparity decom-
position successfully highlighted the significant impact of mother’s education and BMI as
modifiers on fetal growth disparities - a dimension often elusive with alternative method-
ologies (Gardosi and Francis, 2009; Lambert et al., 2020). This underlines the value of our
approach in elucidating the complex trajectories of longitudinal disparities, reinforcing its
importance in advancing our understanding of these issues.
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Supplement A
Supplement A outlines the assumptions and the definitions pertinent to Theorem 3.1.



DECOMPOSITION OF THE LONGITUDINAL DISPARITIES 19

(A) NHW vs. NHB

(a) (zM=22.7, zm=19.8) (b) (zM=22.7, zm= 23.9) (c) (zM=22.7, zm=28.6)

(B) NHW vs. HIS

(d) (zM=22.7, zm=20.5) (e) (zM=22.7, zm= 24.1) (f) (zM=22.7, zm= 28.0)

(C) NHW vs. API

(g) (zM=22.7, zm=19.3) (h) (zM=22.7, zm= 21.5) (i) (zM=22.7, zm=25.7)

FIG 5. Fetal growth disparity decomposition with BMI as modifier through cmLDD, where the majority group is
NHW. The analysis considers modifier levels at the NHW mother’s median BMI (zM = 22.7) and the minority
groups’s mothers’ BMI at the 10th, 50th, and 90th percentiles. The solid lines represent the estimated disparities
and the dashed lines represent the 95% confidence bands.
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