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QUANTITATIVE METRIC DENSITY AND CONNECTIVITY FOR SETS OF POSITIVE

MEASURE

GUY C. DAVID AND BRANDON OLIVA

Abstract. We show that in doubling, geodesic metric measure spaces, (including, for example, Euclidean space)
sets of positive measure have a certain large-scale metric density property. As an application, we prove that a

set of positive measure in the unit cube of Rd can be decomposed into a controlled number of subsets that are
“well-connected” within the original set, along with a “garbage set” of arbitrarily small measure. Our results
are quantitative, i.e., they provide bounds independent of the particular set under consideration.

1. Introduction

1.1. Background: qualitative vs. quantitative results in analysis. Many important theorems in analysis
are “qualitative” or “infinitesimal”. They assert that a certain desirable small-scale limiting behavior occurs,
but do not provide any guarantee of a fixed scale at which such a behavior occurs up to a given error.

A basic example is Rademacher’s theorem: a Lipschitz function from R
d to R is differentiable almost every-

where. While this is a wonderful result, neither the theorem nor its typical proofs (see, e.g., [11, 6]) guarantee
anything about how far one might have to zoom in at a generic point to find a scale where this Lipschitz function
looks like an affine function with at most, say, 1% error.

With completely different arguments, however, such a guarantee can be made. Let us say that a function f
is “ǫ-close to affine” on a ball B of radius r if there is an affine function A such that sup |f − A| ≤ ǫr on B.
A result of Dorronsoro [4] implies the following quantitative statement. For each d ∈ N and ǫ > 0, there is an
r0 > 0 such that every 1-Lipschitz f : [0, 1]d → R has a ball of radius at least r0 on which it is ǫ-close to being
affine. (See also expositions by Semmes [5, B.29] and Young [13, Theorem 2.4].) In fact, more is true: in some
sense “most” balls in [0, 1]d have the property that f is ǫ-close to affine on them. Note that the parameter r0 is
a guarantee that can be made independent of the particular 1-Lipschitz function f .

There is by now a whole literature in quantitative analysis that is too large to survey here, including both
new phenomena and quantitative analogs of classical results. In addition to the paper of Dorronsoro referenced
above, some of the foundational texts are by Jones [9] and David–Semmes [3].

1.2. The Lebesgue density theorem. Another “qualitative” result in analysis, in the sense described above,
is the Lebesgue density theorem. Using λ to denote Lebesgue measure in R

n, a version of the theorem is as
follows:

Theorem 1.1 (Lebesgue Density Theorem). Let E ⊆ R
d be measurable. Then at almost every point x ∈ E,

lim
r→0

λ(B(x, r) ∩E)

λ(B(x, r))
= 1.

In other words, at infinitesimally small scales, E “fills up” nearly all the measure of a ball. We note that
the same statement holds in arbitrary complete, doubling metric measure spaces; see below for the definitions
of these terms and [6] for the result in this generality.
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2 GUY C. DAVID AND BRANDON OLIVA

As a näıve quantitative analog of the Lebesgue density theorem, paralleling the quantitative Rademacher
theorem mentioned above, one might hope for the following:

For each d ∈ N and α, ǫ > 0, there is an r0 > 0 such that if E ⊆ [0, 1]d has λ(E) ≥ α,

then there is a ball B of radius r ≥ r0 such that
λ(B ∩ E)

λ(B)
≥ 1− ǫ.

(1.1)

This statement turns out to be false, however, as we demonstrate with a straightforward counterexample in
Section 3.

1.3. Quantitative metric density. To give a correct quantitative statement inspired by the Lebesgue density
theorem, we view density in a metric rather than measure-theoretic sense.

Definition 1.2. We define the sparsity of a set E in a closed ball B of radius r by

sparse(E,B) =
sup{dist(x,E ∩B) : x ∈ B}

r
.

If E ∩B = ∅, we regard the sparsity sparse(E,B) as undefined.

Thus, if sparse(E,B) = 0, then E ∩B = B, although of course it may be that the measure of E ∩ B is 0. If
sparse(E,B) is small, we consider E to be “very dense” in B.

In order to formulate the idea that a set has small sparsity at “most” locations and scales, we also require
the notion of a “multi-resolution family” of balls in a metric space.

Definition 1.3. Let (X, d) be a metric space. Let {Nk : k = 0, 1, 2, . . .} be a family of 2−k-nets in X satisfying
N0 ⊆ N1 ⊆ N2 ⊆ . . . . (See Definition 2.4.)

Given a constant A ≥ 1, a multiresolution family is the collection

B = {B(x,A · 2−k) : x ∈ Nk, 0 ≤ k < ∞}
Note that if A ≥ 1, then the collection of all balls in B of fixed radius A · 2−k forms a cover of X .
With these definitions, we can state a “Quantitative Metric Density Theorem”. The terminology employed

in the statement (e.g., “doubling”, “geodesic”) will be defined in Section 2.

Theorem 1.4. Let (X, d, µ) be a complete, geodesic, metric measure space equipped with a multiresolution family
B. Assume that µ is a C-doubling measure, diamX = 1, and µ(X) = 1.

Given ǫ > 0, there is a K (depending only on ǫ, C, and A) such that, for any set E ⊆ X, if we set

B(E, ǫ) = {B ∈ B : B ∩ E 6= ∅, sparse(E,B) ≥ ǫ}.
then

(1.2)
∑

B∈B(E,ǫ)

µ(B) ≤ K.

Theorem 1.4 says that a set of positive measure must look very dense in “most” balls that intersect it, in a
way which is independent of the particular set under consideration.

For those unfamiliar with the sort of sum over balls of all scales in (1.2) (sometimes called a “Carleson
packing” condition), we include the following small piece of intuition: Suppose we did not include the condition
that sparse(E,B) ≥ ǫ in the sum in (1.2). In other words, supposed we simply summed µ(B) over all balls
B ∈ B intersecting E. In that case, the above sum would diverge (if µ(E) > 0) because

∑

B∈B,B∩E 6=∅

µ(B) =

∞
∑

k=0

∑

B∈B
B∩E 6=∅

rad(B)=A2−k

µ(B) ≥
∞
∑

k=0

µ(E) = ∞.
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Therefore, Theorem 1.4 says vaguely that E has sparsity < ǫ in “most” balls in B that intersect it.
To relate this back to the discussion above, we note that Theorem 1.4 will easily imply the following:

Corollary 1.5. Let (X, d, µ) be a complete, geodesic metric measure space with µ a C-doubling measure. Suppose
that diamX = 1 and µ(X) = 1.

Given α,ǫ > 0, there is an r0 > 0 (depending only on α, ǫ, C) such that if a Borel set E ⊂ X has µ(E) ≥ α,
then there is a ball B of radius r ∈ [r0, 1] such that

(1.3) E ∩B 6= ∅ and sparse(E,B) < ǫ.

In other words, we guarantee a large scale (with size independent of E) in which E is very dense.

Remark 1.6. The main ideas behind Theorem 1.4 and Corollary 1.5 are not really new, although we believe
our presentation of the result has new features. The key intermediate step in the proof (Proposition 4.4) can
essentially be found in [3, Section IV.1.2] and [12, Lemma 1.4], although stated with more restrictive assumptions.

Thus, our main purpose in stating and proving Theorem 1.4 is the application to the original Theorem 1.9
below. As a secondary concern, we take the opportunity to provide a general proof of the result in the setting
of abstract metric measure spaces.

Remark 1.7. The assumptions that diamX = 1 and µ(X) = 1 in Theorem 1.4 and Corollary 1.5 are not really
restrictive, since one can always normalize to these parameters. See Remark 4.8 for an example.

1.4. Quantitative connectivity. Our main new result is about sets of positive measure in the unit cube of
R

d. We show that such a set can be decomposed, up to a “garbage set” of small measure, into pieces that are
“well-connected” within the larger set, in a way we now make precise.

Given η > 0, an η-chain in a metric space is a finite list of points (x0, . . . , xm) such that d(xi, xi+1) < η for
each i ∈ {0, . . . ,m− 1}. We say that the chain is “from x to y” if x = x0 and y = xm. The length of the η-chain

is the sum
∑m−1

i=0 d(xi, xi+1).

Definition 1.8. Let E ⊂ [0, 1]d, and let F ⊂ E. We say that F is δ-well-connected in E if for every x, y ∈ F ,
there is a δ|x− y|-chain from x to y in E with length at most (1 + δ)|x− y|.

Thus, if F is well-connected in E, then any pair of points in F can be joined by a discrete path in E whose
steps are small (compared to the distance between the endpoints) and whose length is almost as small as possible.

We show that all sets of positive measure have “large” pieces that are well-connected within the original set,
in a quantitative way.

Theorem 1.9. Given d ∈ N, α > 0, and δ > 0, there is an M ∈ N (depending only on d, α, δ) with the following
property: If E ⊂ [0, 1]d, then there are sets F1, F2, ..., FM , Z ⊂ E such that:

(1) E = F1 ∪ F2 ∪ ... ∪ FM ∪ Z.
(2) λ(Z) < α.
(3) For each i ∈ {1, 2, ...,M}, Fi is δ-well-connected in E.

The “quantitative” aspect here is the fact that the number M of well-connected subsets depends only on the
given parameters, and not on the original set E.

Remark 1.10. The set E is not assumed to be measurable in Theorem 1.9. However, the set Z can always be
taken to be the intersection of E with a measurable subset of Rd of measure < α. Thus, if E is not measurable,
then conclusion (2) of the theorem can be interpreted in the sense of Lebesgue outer measure.

The main steps in the proof of Theorem 1.9 are as follows: We apply Theorem 1.4 (suitably reinterpreted for
dyadic cubes rather than balls) to show that in “most” dyadic cubes that touch E, the sparsity of E is small.
(In fact, it is important to use expansions of dyadic cubes, but we elide this for now.) This will imply that most
points of E, outside of a small garbage set Z, lie in a controlled number of “bad” dyadic cubes in which E is
not very dense.
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The next step is a “coding” argument, originally due to Jones [8], to separate E \Z into a controlled number
of sets Fi with the following property: If two points x, y ∈ E are in the same Fi, then there is a cube containing
them of size ≈ |x− y| in which E is very dense. This coding argument is Lemma 5.5; we take this opportunity
to give a different proof than the ones presented in [8] and [2].

Finally, we complete the proof by showing that each set Fi is well-connected in E.

Remark 1.11. Theorem 1.9 bears some resemblance to the “Checkerboard Theorem” [10, Theorem 1.3] of
Jones–Katz–Vargas, but it seems that neither result implies the other. The result of [10] shows that a set B
of positive measure in the unit cube admits a (quantitatively) large subset A that is “checkerboard connected”
within the original set. This means that any pair of points in A can be joined by a finite sequence of jumps
parallel to the coordinate axes whose endpoints lie in B, and whose total length is controlled.

In Theorem 1.9, the jumps are not necessarily parallel to the coordinate axes (otherwise the length bound
in Definition 1.8 would be impossible). However, the jumps in Theorem 1.9 are always small compared to the
diameter of the path, whereas in [10, Theorem 1.3] this is not required.

The proofs are also different; for instance, [10] makes essential use of maximal function bounds, and we do
not.

Remark 1.12. It seems likely that a version of Theorem 1.9 is true in the generality of doubling, geodesic
metric spaces. One main ingredient, Theorem 1.4, is already stated and proven in this setting.

The main change needed to push the argument for Theorem 1.9 to this setting would be a version of dyadic
cubes in abstract metric spaces. Such a construction exists [1, 7], but in the interest of keeping the present paper
relatively streamlined we do not attempt to give the most general possible result here.

1.5. Outline of the paper. Basic definitions and notations are explained in Section 2. Section 3 contains a
counterexample to the quantitative measure-theoretic density statement (1.1). Section 4 contains the proofs of
Theorem 1.4 and Corollary 1.5, and Section 5 contains the proof of Theorem 1.9.

2. Preliminaries

The section contains some additional definitions, notation, and basic facts used in the paper.

Definition 2.1. A metric measure space is a triple consisting of a space X , metric d, and (outer) measure µ,
denoted (X, d, µ), with an associated σ-algebra of measurable sets.

We use B(x, r) to denote the closed ball of radius r centered at x, i.e., {y ∈ X : d(x, y) ≤ r}.
Definition 2.2. Let (X, d) be a metric measure space and C > 0. A non-zero Borel regular measure µ on X is
called doubling (or C-doubling to emphasize the constant) if it assigns finite measure to every ball and for each
ball B(x, r) ⊂ X we have

µ(B(x, 2r)) ≤ C · µ(B(x, r)).

Of course, Lebesgue measure λ on R
n is an example of a doubling measure.

Definition 2.3. Let (X, d) be a metric space. A metric space is said to be a doubling metric space if there is
an N ∈ N such that for every ball B(x, 2r) ⊂ X , there are N balls B(xk, r) such that

B(x, 2r) ⊆
N
⋃

k=1

B(xk, r).

In other words, a metric space is a doubling metric space if every ball can be covered by a controlled amount
of balls of half its original radius. If (X, d, µ) is a metric measure space with µ a doubling measure, then (X, d)
is a doubling metric space; see [6, p. 82].

Definition 2.4. Let (X, d) be a metric space. Given s > 0, an s-net is a set N ⊂ X that satisfies the following:

(1) If x, y ∈ N and x 6= y, then d(x, y) ≥ s.
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(2) If z ∈ X , then there is an x ∈ N such that d(x, z) < s.

We say that a set is s-separated if only the first condition above is satisfied.

Definition 2.5. Let (X, dX), (Y, dY ) be two metric spaces, and let f : X → Y be a function. We call f an
isometric embedding if for every x1, x2 ∈ X

dY (f(x1), f(x2)) = dX(x1, x2).

Definition 2.6. Let (X, d) be a metric space. We say X is geodesic if for every x, y ∈ X , there is an isometric
embedding f : [0, d(x, y)] → X such that f(0) = x and f(d(x, y)) = y. We call this f a geodesic.

Our basic examples of doubling, geodesic spaces are Rd and [0, 1]d with the Euclidean metric. In these settings,
we will also need the standard dyadic cube decomposition:

Definition 2.7. Let a1, a2, ...ad be integers between 0 and 2−k − 1, k ∈ N ∪ {0}. We define a dyadic cube in
[0, 1]d by

Q = [a1 · 2−k, (a1 + 1) · 2−k)× [a2 · 2−k, (a2 + 1) · 2−k)× ...× [ad · 2−k, (ad + 1) · 2−k).

One can triple the dyadic cube by

3Q = [(a1 − 1) · 2−k, (a1 + 2) · 2−k)× [(a2 − 1) · 2−k, (a2 + 2) · 2−k)× ...× [(ad − 1) · 2−k, (ad + 2) · 2−k).

By analogy, we can define 5Q, 7Q, etc.
If d = 1, we refer to “dyadic intervals” rather than dyadic cubes.

The side length of a cube Q is written side(Q). We denote the set of dyadic cubes in [0, 1]d of side length 2−k

by ∆k, with d understood from context, and we set ∆ =
⋃∞

k=0 ∆k.

A child of a dyadic cube Q is a dyadic cube R ⊂ Q with side(R) = 1
2 side(Q).

If Q is a dyadic cube in R
d, then 3Q is the union of 3d disjoint dyadic cubes of the same side length as Q.

We refer to these as the cells of 3Q.
A basic fact about dyadic cubes is that, if Q,R ∈ ∆, then either Q ∩R = ∅, Q ⊂ R, or R ⊂ Q.

3. Counterexample to näıve quantitative Lebesgue density

Here, we show by a simple 1-dimensional construction that the quantitative measure-theoretic density state-
ment (1.1) cannot hold.

Let d = 1, α = 1
2 , and ǫ = 1

10 . Let r0 ∈ (0, 1) and k ∈ N be the smallest integer such that 2−k ≤ r0.

Let Ek ⊆ [0, 1] be defined as:

Ek =

(

0,
1

2k+2

)

∪
(

2

2k+2
,

3

2k+2

)

∪ ... ∪
(

2k+2 − 2

2k+2
,
2k+2 − 1

2k+2

)

.

In other words, Ek is the union of 2k+1 intervals each of measure 2−(k+2), each interval separated by a length of
2−(k+2), and the union is contained in [0, 1]. (See Figure 1 below.) Of course, λ(Ek) =

1
2 = α for all k.

Note that we have,

λ(Ek) = 2k+1 · 2−(k+2) =
1

2
.

Let I be a dyadic interval in [0, 1] such that 2−(k+1) ≤ λ(I) ≤ 1. Then, observe that

(3.1) λ(Ek ∩ I) =
1

2
λ(I).
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0 1

(0, 1
2 )

E0

E1

Figure 1. The sets Ek for k = 0, 1.

Take any x ∈ [0, 1] and r ∈ [r0, 1]. We will show that

λ(Ek ∩ [x− r, x+ r])

λ([x − r, x+ r])
=

λ(Ek ∩B(x, r))

λ(B(x, r))
< 1− ǫ = 0.9,

thus disproving (1.1).

Claim 3.1. There is a dyadic interval I ⊆ [x− r, x+ r] ∩ [0, 1] such that r
2 ≤ λ(I) ≤ 2r

Proof. Let j ∈ N be the first integer where 2−j ≤ r. Let I be a dyadic interval in [0, 1] of length 2−j containing
x. Note that I ⊂ [x− r, x+ r], so clearly λ(I) ≤ 2r.

If 2−j < r
2 , then we have

2−(j−1) = 2−j+1 < r.

This contradicts our choice of j. Therefore,
r

2
≤ λ(I) = 2−j < r ≤ 2r.

�

So since r
2 ≤ λ(I) ≤ 2r, observe that

2−(k+1) ≤ r0
2

≤ r

2
≤ λ(I) ≤ 2r.

Therefore by (3.1) above,

λ(Ek ∩ I) =
1

2
λ(I).

So,

λ(Ek ∩ [x− r, x+ r]) ≤ 2r − 1

2
λ(I) ≤ 2r − r

4
=

7

4
r.
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Hence,

λ(Ek ∩ [x− r, x+ r])

λ([x − r, x+ r])
≤ 7

4
r · 1

2r
=

7

8
< 1− 1

10
=

9

10
.

Thus, statement (1.1) fails in general.

4. Quantitative metric density

Our goal in this section is to prove Theorems 1.4 and Corollary 1.5.
The following proposition guarantees the existence of nested families of nets, and therefore of multiresolution

families, in any metric space. It is well-known, and we omit the standard proof using Zorn’s lemma.

Proposition 4.1. Let (X, d) be a metric space. Then there is a sequence of 2−k-nets Nk in X such that
N0 ⊆ N1 ⊆ N2 ⊆ . . .

We also need the following basic consequence of the doubling condition.

Lemma 4.2. Let (X, d) be a doubling metric space, and let N be its doubling constant. Let B be a multiresolution
family with constant A > 0. Then there is a constant M > 0, depending only on N and A, such that for every
x ∈ X and k ∈ {0, 1, 2...}, at most M balls from B of radius A2−k can contain x.

Proof. Fix x ∈ X and let k ∈ {0, 1, 2, ...}. Let {B1, B2, B3, ...} be the balls of radius A · 2−k in B containing x,
where Bi = B(xi, A · 2−k) for i ∈ {1, 2, ...} and some k ∈ {1, 2, ...}. Thus, the points xi are 2−k-separated and
all contained in B(x,A2−k).

Iterating the doubling property of (X, d) tells us that, given p ∈ N, the ball B(x,A2−k) can be covered by at
most Np balls of radius 1

2p ·A · 2−k.

Therefore, B(x,A2−k) can be covered by at most M balls of radius smaller than 1
2 · 2−k for some M > 0

depending only on N and A. Each such ball contains at most one element of the set {x1, x2, ...}, so there at
most M distinct elements in this set. �

In order to prove Theorem 1.4, we first introduce an intermediate definition.

Definition 4.3. Let (X, d, µ) be a metric measure space with µ Borel regular. Let E ⊂ X be a nonempty set.
Given a ball B of radius r, we define

(4.1) dE(B) =
1

µ(B)

∫

B

dist(x,E)

r
dµ(x).

This is simply the average distance of a point in B to the set E, normalized by the radius of B. A simple
calculation shows that if B ∩ E 6= ∅, then 0 ≤ dE(B) ≤ 2.

We are now ready to state and prove the following proposition that will help us to prove Theorem 1.4. As
noted in the introduction, the main idea of this proof can already be found in [3, Section IV.1.2] and [12, Lemma
1.4].

Proposition 4.4. Let (X, d, µ) be a doubling metric measure space equipped with a multiresolution family B of
constant A > 0. Assume µ(X) = 1 and diamX = 1.

Let E ⊂ X. Then

(4.2)
∑

B∈B
B∩E 6=∅

dE(B) · µ(B) ≤ CX ,

where CX is a constant depending only on A and the doubling constant of X (and not on E).
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Proof. Note that we have

∑

B∈B
B∩E 6=∅

dE(B) · µ(B) =
∑

B∈B
B∩E 6=∅

∫

B

dist(x,E)

r
dµ(x) =

∫

X













∑

B∈B
B∩E 6=∅
x∈B

dist(x,E)

r













dµ(x),

where the r in the summand denotes the radius of the ball B ∈ B being summed over.
We will now bound the integrand. Note that if x ∈ Ē, then dist(x,E) = 0. So fix x ∈ X with x /∈ Ē, and

consider

(4.3)
∑

B∈B
B∩E 6=∅
x∈B

dist(x,E)

r
.

Let N be the biggest integer such that A · 2−N ≥ 1
2 · dist(x,E). For balls of radius r = A · 2−N , we have

dist(x,E)

r
≤ 2 ·A · 2−N

r
=

2 ·A · 2−N

A · 2−N
= 2.

Note that there are no balls in the summation in (4.3) with radius A · 2−(N+1), A · 2−(N+2), ... because such a
ball would have radius r ≤ A · 2−(N+1) < 1

2dist(x,E), and such a ball could not touch both E and x. Recall

that, since N is the biggest integer such that A · 2−N ≥ 1
2 · dist(x.E), we have

dist(x,E) ≤ A · 2−(N−1).

If j ∈ {0, 1, 2, ..., N} and B is a ball in the sum (4.3) of radius A · 2−(N−j), then the summand

dist(x,E)

r
≤ A · 2−(N−1)

r
=

A · 2−(N−1)

A · 2−(N−j)
=

1

2j−1
.

For each fixed radius A · 2−k (k ∈ {0, 1, , . . . , N}), Lemma 4.2 tells us that there are at most M balls contaning
x with radius equal to A · 2−k, where M depends on N and A. Therefore we have,

∑

B∈B
B∩E 6=∅
x∈B

dist(x,E)

r
≤ M · (2 + 1 +

1

2
+

1

4
+ ...) ≤ M · (

∞
∑

i=−1

1

2i
) = M · (2 + 2) = 4M.

Let CX = 4M . We now have

∫

X













∑

B∈B
B∩E 6=∅
x∈B

dist(x,E)

r













dµ(x) ≤
∫

X

CXdµ(x) = CX · µ(X) = CX .

Therefore
∑

B∈B
B∩E 6=∅

dE(B) · µ(B) ≤ CX .

�

The following lemma connects sparse(E,B) to dE(B). There is a minor technical issue that we must overcome,
which is that sparse(E,B) considers only points in E∩B, while dE(B) considers points of E that may lie outside
of B. The geodesic assumption allows us to link the two quantities despite this.
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Lemma 4.5. Let (X, d, µ) be a complete, geodesic metric measure space, and µ a C-doubling measure. Let
E ⊂ X and B be a ball in X.

Given ǫ > 0, there is a δ > 0, depending only on ǫ and C, such that if dE(B) < δ, then

sparse(E,B) < ǫ.

Proof. We will prove this by contrapositive. Without loss of generality, let 0 < ǫ < 1 be given. Suppose we
have a metric measure space (X, d, µ) satisfying the assumptions on the lemma, a subset E ⊂ X , and a ball
B = B(p, r) such that sparse(E,B) ≥ ǫ. We will bound dE(B) from below by a constant depending only on ǫ
and C.

The assumption on sparsity translates to

sup{dist(x,E ∩B) : x ∈ B} ≥ ǫr.

Thus, there is a point x ∈ B such that dist(x,E ∩B) > ǫ 3r4 . The ball B
(

x, 3ǫ
4 r

)

therefore contains no points of
E ∩B.

Claim 4.6. There is a point y ∈ B
(

x, ǫ
4r
)

such that

B
(

y,
ǫ

4
r
)

⊆ B ∩B

(

x,
3ǫ

4

)

Proof. If d(p, x) < ǫ
4 , set y = x. The conclusion then follows immediately from the triangle inequality, recalling

our assumption that ǫ < 1.
If d(p, x) ≥ ǫ

4 , we do the following. Let γ : [0, d(p, x)] → X be a geodesic from x to p such that γ(0) = x,
γ(d(p, x)) = p. Set y = γ( ǫ4r). Then

d(y, x) =
ǫ

4
r

and

d(y, p) = d(p, x)− ǫ

4
r.

It then follows easily from the triangle inequality that

B
(

y,
ǫ

4
r
)

⊆ B ∩B

(

x,
3ǫ

4

)

�

Claim 4.7. dist(z, E) ≥ ǫ
8r for every z ∈ B(y, ǫ

8r).

Proof. By the triangle inequality and the previous claim, if z ∈ B
(

y, ǫ
8r
)

, then we have

B
(

z,
ǫ

8
r
)

⊆ B
(

y,
ǫ

4
r
)

⊆ B ∩B

(

x,
3ǫ

4
r

)

.

The final set in this inclusion contains no points of E, so B
(

z, ǫ
8r
)

contains no points of E, and this proves the
claim. �

We now have

dE(B) =
1

µ(B)

∫

B

dist(z, E)

r
dµ(z) ≥ 1

µ(B)

∫

B(y, ǫ8 r)

dist(z, E)

r
dµ(z)

≥ 1

µ(B)

∫

B(y, ǫ8 r)

ǫr

8r
dµ(z) ≥ ǫ

8
· µ(B(y, ǫ

8r))

µ(B)
.

If N is the smallest integer such that 2N · ǫ
8 ≥ 2, then B ⊂ B(y, 2N · ǫ

8r). Because µ is C-doubling,

CN · µ(B(y,
ǫ

8
r)) ≥ µ(B(y, 2N · ǫ

8
r)) ≥ µ(B).



10 GUY C. DAVID AND BRANDON OLIVA

So we have
µ(B(y, ǫ

8r))

µ(B)
≥ 1

CN

Let δ = ǫ
8 · 1

CN , which depends only on ǫ and C. Then

dE(B) ≥ ǫ

8
· µ(B(y, ǫ

8r))

µ(B)
≥ ǫ

8
· 1

CN
= δ.

�

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Given ǫ > 0, choose δ > 0 as in Lemma 4.5. This yields that
∑

B∈B(E,ǫ)

µ(B) ≤
∑

B∈B
dE(B)≥δ
B∩E 6=∅

µ(B)

By Proposition 4.4, we have
∑

B∈B
dE(B)≥δ

B∩E 6=∅

µ(B) ≤
∑

B∈B

B∩E 6=∅

1

δ
dE(B) · µ(B) ≤ 1

δ
· CX .

�

Remark 4.8. Suppose that (Y, dY , µ) is a metric measure space with µ a C-doubling measure, µ(Y ) = 1, but
diamY = D > 1. Let B be a multiresolution family in Y consisting of balls of radii D ·A · 2−k for k ≥ 0, and let
E ⊂ Y be measurable. Consider the metric measure space (X, dX , µ) = (Y, 1

D
d, µ). In the space X , the balls of

B have radii A ·2−k for k ≥ 0. Note in addition that the sparsity of a set in a ball is unaffected by this rescaling,
and therefore the notation B(E, ǫ) is unambiguous.

Thus given ǫ > 0, there is a K(ǫ, C,A) > 0 such that if E ⊂ Y then
∑

B∈B(E,ǫ)

µ(B) ≤ K(ǫ, C,A).

Thus, a version of Theorem 1.4 with Ã = DA holds for metric measure spaces with diameter D greater than 1.

We now prove Corollary 1.5.

Proof of Corollary 1.5: Fix A = 1 in the definition of our multiresolution family. By Theorem 1.4, if E ⊂ X
then

∑

B∈B(E,ǫ)

µ(B) ≤ K

where K depends only on ǫ and on the doubling measure constant C. Let N be the first integer such that some
ball B in B of radius A · 2−N touches E and is not in B(E, ǫ), that is, sparse(E,B) < ǫ. This implies that all
balls with radii A · 20, A · 2−1,...,A · 2−(N−1) that touch E are contained in B(E, ǫ). Therefore, the above sum is
bounded below by the sum of all the measures of these balls. For each n ∈ {0, 1, ..., N − 1}, the measure of the
union of all such balls at a given scale is greater than or equal to the measure of E. Therefore

µ(E) ·N ≤
∑

B∈B(E,ǫ)

µ(B) ≤ K.

Note µ(E) ≥ α, so we have

N · α ≤ N · µ(E) ≤ K
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and so

N ≤ K

α
.

Thus, there is a ball B with radius A · 2−N ≥ A · 2−K
α that intersects E and has sparse(E,B) < ǫ. So we can

take r = A · 2−N and r0 = A · 2−K
α . �

At this point, it may be instructive to return to the example set(s) Ek in Section 3, which showed that
statement (1.1) failed, i.e., that one cannot expect a large ball where a measurable set is measure-theoretically
dense.

Corollary 1.5, however, applies perfectly well to these sets. For small values of k, Ek contains large full dyadic
intervals, and thus of course has large scales in which it is metrically dense (i.e., has small sparsity). For large
values of k, Ek is metrically very dense in the whole interval [0, 1], and so again has a large scale where it has
small sparsity.

5. Quantitative connectivity

In this section, we prove Theorem 1.9. This concerns subsets of [0, 1]d, rather than general metric spaces.
If E ⊆ [0, 1]d and Q is a dyadic cube such that 7Q ∩E 6= ∅, we set

sparse(E, 7Q) =
1

side(7Q)
sup{dist(x, 7Q ∩E) : x ∈ 7Q}.

We first slightly adjust Theorem 1.4 to apply to dyadic cubes.

Corollary 5.1. Given ǫ > 0, there is a K̃ > 0, depending only on ǫ and d, such that if E ⊂ [0, 1]d, then
∑

Q∈∆
sparse(E,7Q)≥ǫ

3Q∩E 6=∅

λ(Q) ≤ K̃.

Proof. Fix a multi-resolution family of balls B in [0, 1]d with scaling factor A = 7
√
d.

For each Q ∈ ∆k, we may choose a ball BQ ∈ B of radius A2−k = 7
√
d2−k = diam(7Q) such that 7Q ⊆ BQ.

Now fix a set E ⊂ [0, 1]d.

Claim 5.2. If E ∩ 7Q 6= ∅, then sparse(E, 7Q) ≤ A(d+1)
7 sparse(E,BQ).

Proof. Let x ∈ 7Q and s = sparse(E,BQ). Let k be such that Q ∈ ∆k, which forces the radius r of BQ to be
A2−k.

To prove the claim, it will suffice to find a point y ∈ E ∩ 7Q with |x− y| ≤ (d+ 1)sr, which we now do.
If dist(x, ∂(7Q)) > sr, then this is easy: there is a y ∈ E ∩B such that d(x, y) ≤ sr, and the assumption on

the distance to the boundary forces y ∈ E ∩ 7Q.
Otherwise, dist(x, ∂(7Q)) ≤ sr. In that case, we first perturb x along d separate line segments parallel to

the coordinate axes, each of length at most sr, until we reach a point x′ ∈ 7Q with dist(x′, 7Q) > sr. By the
previous case, there is a y ∈ 7Q ∩E such that |x′ − y| ≤ sr. It follows that

|x− y| ≤ sr + dsr = (d+ 1)sr.

Thus,

sparse(E, 7Q) ≤ (d+ 1)sr

side(7Q)
=

(d+ 1)rsparse(E,B)

7 · 2−k
=

(d+ 1)A · 2−ksparse(E,B)

7 · 2−k

=
A(d+ 1)

7
sparse(E,B).

�
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Now, each BQ contains the corresponding cube 7Q. In addition, each ball B ∈ B can act as BQ for at most
D different cubes Q, for some D depending on d, by a simple volume argument.

Therefore, using the previous claim,
∑

Q∈∆
sparse(E,7Q)≥ǫ

3Q∩E 6=∅

λ(Q) ≤
∑

Q∈∆
sparse(E,7Q)≥ǫ

3Q∩E 6=∅

λ(BQ)

≤ D















∑

B∈B
sparse(E,B)≥ 7ǫ

A(d+1)

B∩E 6=∅

λ(B)















By Theorem 1.4 (and Remark 4.8), this sum is controlled by a constant depending only on ǫ and d, which
completes the proof. �

The next result uses Corollary 5.1 to show, roughly speaking, that most points of E are not contained in too
many cubes of large sparsity.

Proposition 5.3. Let ǫ > 0 be given, and suppose E ⊂ [0, 1]d.
For N ∈ N, let ZN be the collection of points that are contained in at least N distinct cubes 7Q such that

Q ∈ ∆, 3Q ∩E 6= ∅, and sparse(E, 7Q) ≥ ǫ.

Then λ(ZN ) ≤ 7d K̃
N
, where K̃ is the constant from Corollary 5.1.

Proof. For N ∈ N we have

ZN = {x ∈ [0, 1]d : x is in at least N distinct dyadic cubes 7Q such that 3Q ∩E 6= ∅ and sparse(E, 7Q) ≥ ǫ}.
The set ZN is a union of countably many cubes, and therefore Lebesgue measurable. By Corollary 5.1,

K̃ ≥
∑

Q∈∆
3Q∩E 6=∅

sparse(E,7Q)≥ǫ

λ(Q)

= 7−d
∑

Q∈∆
3Q∩E 6=∅

sparse(E,7Q)≥ǫ

λ(7Q)

= 7−d

∫

[0,1]d



















∑

Q∈∆
x∈7Q

3Q∩E 6=∅
sparse(E,7Q)≥ǫ

1



















dx

≥ 7−d

∫

ZN



















∑

Q∈∆
x∈7Q

3Q∩E 6=∅
sparse(E,7Q)≥ǫ

1



















dx
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≥ 7−d

∫

ZN

Ndλ

= 7−dNλ(ZN ).

The conclusion then follows. �

As preparation for the “coding” argument below, we need the following simple fact about dyadic cubes.

Lemma 5.4. Let Q,R ∈ ∆ such that side(R) ≥ side(Q) and 3Q ∩ 3R 6= ∅. Then 3Q ⊂ 7R.

Proof. Let x ∈ 3Q ∩ 3R 6= ∅. There is a cell R′ ⊂ 3R containing x. Then 3Q ⊂ 5R′ ⊂ 7R. �

The following lemma provides useful decompositions of sets for which each point is contained in only a
controlled number of cubes from a given family. To our knowledge, the idea appears first (in a different context)
in [8, Lemma 2.2] and is also explained in [2, Lemma 8.4].

We take the opportunity here to present the lemma in a fairly general form and also give a proof that is
somewhat different than those cited above, and which we find a bit more transparent.

Lemma 5.5. Let G ⊂ [0, 1]d, and B ⊂ ∆. Assume that 3Q ∩ G 6= ∅ for every Q ∈ B, and that each x ∈ G is
contained in at most N different cubes 7Q for Q ∈ B.

There is a constant M > 0, depending only on d and N , and sets F1, F2, ..., FM with the following properties:

(i) G = F1 ∪ F2 ∪ ... ∪ FM

(ii) If x, y ∈ Fi are distinct and Q is a dyadic cube of minimal side length such that x, y ∈ 3Q, then Q /∈ B.

Proof. The proof is split into multiple claims for reading purposes.

Claim 5.6. There are disjoint collections A1, ...,AN ⊂ B such that the following are true:

(i) B = A1 ∪ A2 ∪ ... ∪ AN .
(ii) If Q,R ∈ Ai are distinct for some i ∈ {1, 2, ..., N}, then 3Q ∩ 3R = ∅.
Proof. Order B = {Q1, Q2, ..., } by decreasing size, i.e., so that side(Qi) ≥ side(Qj) if i ≤ j. We will construct
the collections A1, ...,AN inductively. Put Q1 ∈ A1.

Assume now that Q1, ..., Qk have been put in various collections among the A1, ...,AN , that the collections
are (so far) disjoint from each other, and that if Q,R ∈ Ai then 3Q ∩ 3R = ∅. We wish to place Qk+1 in some
Ai with the property that 3Qk+1 ∩ 3R = ∅ for all R currently in Ai.

Suppose there is no i ∈ {1, 2, ..., N} such that 3Qk+1 ∩ 3R = ∅ for every R ∈ Ai ∩ {Q1, . . . , Qk}. Then
3Qk+1 intersects distinct cubes 3R1, 3R2, ..., 3RN , where Ri ∈ Ai and side(Ri) ≥ side(Qk+1). By Lemma 5.4,
3Qk+1 ⊂ 7Ri for every i ∈ {1, 2, ..., N}. Then there is an x ∈ 3Qk+1 ∩ G such that x ∈ 7Qk+1, 7R1, ..., 7RN .
This contradicts the assumption that x can be contained in at most N different cubes 7Q for Q ∈ B.

Therefore, we may place cube Qk+1 in one of the collections Ai and maintain the desired properties. It follows
by induction that the sets may be constructed as desired. �

Now let α = {0, 1, ..., 3d}. We introduce a correspondence between the elements of α\{0} and the 3d different
cells of a (hence any) tripled dyadic cube 3Q. The precise choice of correspondence does not matter at all; to
be concrete, we can order the cells by the “dictionary” order of their centers, so that cell 1 is the cell closest to
the origin, cell 2 is its neighbor in the x1 direction, etc.

We will consider “words w of length N from the alphabet α,” i.e., w ∈ αN . For such a w, wi ∈ α denotes its
ith letter.

For each x ∈ G we define ω(x) ∈ αN in the following way. Consider i ∈ {0, . . . , 3d}. The point x can be in at
most one cube 3Q for Q ∈ Ai. Let us call this cube Qx,i, if it exists. We set the ith letter of w(x) to be

ω(x)i =

{

0 if x /∈ ⋃

Q∈Ai
3Q

k ∈ α \ {0} if x is in the kth cell of 3Qx,i.
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Thus, for each x, there are at most M = (3d+1)N possibilities for the word ω(x). Enumerate these possibilities
in any order by αN = {ω1, ..., ωM}. Let Fj = {x ∈ G : ω(x) = ωj} for j ∈ {1, 2, ...,M}. It is immediate that
G = ∪M

j=1Fj , so it remains to verify the second conclusion of the lemma.

Claim 5.7. Suppose x, y ∈ Fj and x 6= y. Let Q be a dyadic cube of minimal side length such that x, y ∈ 3Q.
Then Q /∈ B.

Proof. Suppose Q ∈ B. Then Q ∈ Ai for some i ∈ {1, 2, ..., N}. Since x, y ∈ Fj , ω(x) = ω(y) = ωj . So
ω(x)i = ω(y)i. It follows from the definition of ω(x)i and ω(y)i that x and y both lie in the same cell Q′ of 3Q.

Let R be a child of Q′ that contains x. Then x, y ∈ Q′ ⊂ 3R. Since R is half the size of Q, this contradicts
the fact that Q is a minimal dyadic cube such that x, y ∈ 3Q. Therefore Q /∈ B. �

Both conclusions of the lemma have now been verified. �

We will also need the following basic fact.

Lemma 5.8. Let Q ∈ ∆ be a minimal dyadic cube such that x, y ∈ 3Q. Then side(Q) ≤ 2|x− y|.
Proof. Let Q′ be a cell of 3Q such that x ∈ Q′. Let R ⊂ Q′ be a child of Q′ such that x ∈ R. Because Q is a
minimal cube such that x, y ∈ 3Q, it must be that y /∈ 3R. So

1

2
side(Q) = side(R) ≤ |x− y|.

This implies that side(Q) ≤ 2|x− y|. �

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let α, δ > 0. Without loss of generality we may assume δ < 1
2 . Let P ∈ N be chosen

large enough so that 1
P

≤ 3
4δ and P > 1+ 1

δ
. Let ǫ = δ

28P and set B0 = {Q ∈ ∆ : 3Q∩E 6= ∅, sparse(E, 7Q) ≥ ǫ}.
For N ∈ N to be chosen momentarily, define Z by

Z = {x ∈ E : x is in at least N > 0 different cubes 7Q for Q ∈ B0}.
Then Z = ZN ∩ E, where ZN is the (measurable) set defined in Proposition 5.3. Using that proposition, we

have that

λ(Z) ≤ 7d
K̃

N
(with the understanding that this denotes Lebesgue outer measure if E is not measurable).

For N large enough, depending only on ǫ and d, we have λ(Z) < α. Let G = E \ Z, and B = {Q ∈ B0 :
3Q ∩ G 6= ∅}. Let x ∈ G. Then x /∈ Z, so x is in at most N different cubes of B0 and hence in at most N
different cubes of B. By Lemma 5.5, we can write G = F1 ∪ F2 ∪ · · · ∪ FM with the property that if x, y ∈ Fi

then a minimal dyadic cube Q with x, y ∈ 3Q satisfies Q /∈ B. Here M = (3d + 1)N .
At this point, we have written

E = G ∪ Z = F1 ∪ · · · ∪ FM ∪ Z,

where λ(Z) < α. To complete the proof, it remains to check that each set Fj is δ-well-connected in E.
Suppose x, y ∈ Fj are distinct for some j ∈ {1, 2, ...,M}. Let Q be a minimal dyadic cube such that x, y ∈ 3Q.

Then Q /∈ B. Since x, y ∈ G ∩ 3Q, we have G ∩ 3Q 6= ∅, from whch it follows that Q /∈ B0. This implies that
sparse(E, 7Q) < ǫ. Note also that side(Q) ≤ 2|x− y| by the previous lemma.

Let γ : [0, |x− y|] → 3Q parametrize the line segment from x to y. Let xi = γ( i
P
|x− y|) for i ∈ {0, 1, 2, ...P}.

Note that x0 = x and xP = y. For each i ∈ {1, 2, ..., P − 1}, the fact that sparse(E, 7Q) < ǫ allows us to choose
zi ∈ E such that |zi−xi| < ǫ ·side(7Q). We also set z0 = x and zP = y, which are in Fj ⊆ G ⊆ E by assumption.
Thus, we have a discrete path {z0 = x, z1, z2, ..., zP−1, zP = y} ⊂ E. Figure 2 illustrates the construction of this
path.
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3Q

x

y

Figure 2. An illustration of the chain {zi}, highlighted in yellow, built by choosing points of
E near the line segment from x to y.

We now verify that this path has the desired properties to make Fj δ-well-connected. First, we check, using
our choices of ǫ and P , that each “step size” is small.

|zi+1 − zi| ≤ |zi+1 − xi+1|+ |xi+1 − xi|+ |xi − zi|

< 2ǫside(7Q) +
1

P
|x− y|

≤ 28ǫ|x− y|+ 1

P
|x− y|(5.1)

≤
(

δ + 1

P

)

|x− y|

≤ δ|x− y|.
Next, we check that the total length of this path is small. Reusing inequality (5.1) from the previous calculation

and our definitions of ǫ and P , we obtain that

P−1
∑

i=0

|zi+1 − zi| ≤
P−1
∑

i=0

(

28ǫ+
1

P

)

|x− y|

= P

(

28ǫ+
1

P

)

|x− y|

≤ (δ + 1)|x− y|
Thus, each Fj is δ-well-connected in E, and this completes the argument. �
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