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Abstract – The problem of vectorial mesons embedded in an electromagnetic field via Duffin-
Kemmer-Petiau (DKP) formalism is reinvestigated. Considering the electromagnetic interaction
as a minimal coupling, an incorrect value (g = 1) is identified for the gyromagnetic factor (g-
factor). Furthermore, it is shown that is cumbersome to find analytical solutions due to the
presence of the so-called anomalous term for the spin-1 sector of the DKP theory. Suspecting
that the anomalous term results from an incomplete version of the DKP equation to describe the
electromagnetic interaction, we consider the addition of a non-minimal coupling. This leads to
the correct g-factor (g = 2), and as a consequence, the anomalous term becomes proportional to
an external four current. As an application, the DKP equation with a static uniform magnetic
field is considered, yielding the corresponding Landau levels.

INTRODUCTION. – The gyromagnetic ratio (g-
factor) of elementary charged particles coupled to an elec-
tromagnetic field is universally acknowledged to be 2 for
any spin, countering Belinfante’s conjecture which pro-
posed g = 1/s for particles with spin s [1]. Initially con-
firmed by Weinberg [2], the value g = 2 was subsequently
supported by Ferrara et al. [3] twenty-two years later, both
employing non-minimal electromagnetic couplings. For in-
stance, for spin-1/2 charged particles, Dirac theory with
minimal electromagnetic coupling predicts g = 2, which
is agreement to the experimental values, except for a very
small correction. Such correction, related to anomalous
magnetic moment of the electron, is explained by the Pauli
term (non-minimal electromagnetic coupling).

Nonetheless, the Proca theory with minimal coupling,
as it pertains to spin-1 charged particles, predicts a value
of g = 1. Corben and Schwinger [4] raised concerns regard-
ing this matter, which were addressed through modifica-
tions to the Proca Lagrangian, incorporating non-minimal
coupling to obtain g = 2. Various formalisms, including
Sakata-Taketani [5], Shay-Good [6], and electroweak part
of the Lagrangian Standard Model [7] converge to a con-
sensus of g = 2 for spin-1 particles. From this, we can
infer that a consistent theory for spin-1 charged particles
must furnish g = 2.

On the other hand, the Duffin-Kemmer-Petiau (DKP)

theory [8–11] has emerged as an alternative formalism to
the established Klein-Gordon (KG) and Proca theories,
offering a description of spin-0 and spin-1 particles with a
richness of couplings inexpressible in competing theories
[12, 13]. The equivalence between these formalisms holds
in the cases of free states and minimally coupled vector
interactions [14–17], ensured by a proper interpretation of
the DKP spinor components (physical components). Re-
garding this matter, there are some subtle details that
should be mentioned.

Nowakowski [15] has shown that the solutions of the
second order DKP equation are not always solutions of
the first order DKP equation and the second order equa-
tion is just one member off a class of second order equa-
tions that can be obtained from DKP equation. This is
closely related to the presence of an anomalous term in
the DKP theory. Nowakowski has suggested a way of this
problem may be circumvented. This way is based on the
introduction of a higher (third) order wave equation of the
DKP formalism. The lack of a back-transformation, which
would allow us to obtain solutions of the first order DKP
equation from solutions of the second order equation as it
is in the Dirac theory does not give a possibility within
the framework of the DKP theory to construct the path
integral representation for the Green’s function of a spin-
1 particle in a background gauge field in a spirit of the
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approaches developed for a spin1/2 particle. This prob-
lem is discussed in detail in [18,19] and ways to construct
the path integral representation are proposed. Consider-
ing the DKP equation interacting minimally with an elec-
tromagnetic field [16], an additional term appears, called
the anomalous term, because it has no equivalent in the
spin-1/2 Dirac theory. In Ref. [16] was concluded that
“when we select the physical components of DKP field ψ
the anomalous term is eliminated, so it has no physical
meaning”. Nevertheless, this statement is valid only for
the spin-0 sector of the theory, assuming the same for the
spin-1 sector would be a mistake given that the anomalous
term persists even after selecting the physical components
of the DKP spinor (second term in equation (21) in Ref.
[20]).
This misinterpretation of the conclusions in the semi-

nal work [16] was used for some authors to eliminate the
anomalous term directly [20,21] or indirectly (eliminating
physical components) [22–33] which would lead to a loss
of information of the physical system. Two questions re-
main: How can we deal with the anomalous term? Does
the term anomalous have a physical meaning? These are
questions that have not been rigorously addressed, and we
aim to answer them in this work.
Here, we verify that employing minimal coupling for

electromagnetic interactions for spin-1 sector of DKP the-
ory yields a predicted value of g = 1. However, as men-
tioned previously, a consistent theory for spin-1 charged
particles is expected to predict a value of g = 2. There-
fore, it is reasonable to speculate that the presence of
the anomalous term could be a result of an incorrect g-
factor, i.e., a consequence of an incomplete version of the
DKP equation to describe the interaction of spin-1 par-
ticles with the electromagnetic field. From Dirac theory,
which associates the anomalous magnetic coupling with a
second-order antisymmetric tensor interaction, we utilize
this framework as a guide to describe non-minimal elec-
tromagnetic coupling within the DKP theory [13]. We
show that this modified DKP equation predicts a correct
g = 2, resulting in the anomalous term becoming pro-
portional to an external four-current. As an application
example, we reexamine the DKP equation (spin-1 sector)
with a static uniform magnetic field and we performed the
correct solution for this problem, which are in full agree-
ment with those obtained via alternative formalisms [5–7].
Our work demonstrates that the modified DKP equation
is a consistent theory for describing spin-1 charged parti-
cles, and establishes the equivalence with the generalized
Proca equation [4] and the Standard Model [7]. This long-
standing issue has now been resolved. Our findings create
new opportunities by offering the modified DKP equation
as an alternative model to the Standard Model. This of-
fers the inherent advantage of describing a wide variety
of interactions beyond the scope of the Standard Model.
Consequently, we believe that the modified DKP equation
holds significance in the quest for a more comprehensive
understanding of spin-1 particles and their interactions.

The Duffin-Kemmer-Petiau equation. – The
first-order Duffin-Kemmer-Petiau (DKP) equation for a
free boson of rest mass M is given by [11] (~ = c = 1)

(βµ∂µ −M)ψ = 0, (1)

where the matrices βµ satisfy the following algebra

βµβνβη + βηβνβµ = gµνβη + gηνβµ, (2)

and gµν is the Minkowski metric with the signature
(+,−,−,−). The algebra provides a set of 126 indepen-
dent matrices, which are part of three irreducible represen-
tations: (i) a trivial representation (no physical meaning),
(ii) a five-dimensional representation (spin-0 sector), and
(iii) a ten-dimensional representation (spin-1 sector). To
facilitate the identification of the physical components as-
sociated with the spin of each sector of the DKP theory,
Umezawa [14] proposed a set of projection operators that
select the components of the spinor ψ with well-defined
Lorentz transformation properties: scalar, vector, and
second-order tensors. Using these projection operators,
the second-order Klein-Gordon (KG) and Proca equations
are obtained when one selects the spin-0 and spin-1 sectors
of the DKP theory; thus, the equivalence between theories
is guaranteed in the free case [14–17]. Hereafter, we focus
on the spin-1 sector of the DKP theory.
To select the physical components of the DKP spinor

for the spin-1 sector, we use the operators [14]

Rµ ≡ (β1)2(β2)2(β3)2(βµβ0 − gµ0), (3)

and
Rµν = Rµβν . (4)

The operators (3) and (4) satisfy the following properties

Rµν = −Rνµ , (5)

Rµνβα = gναRµ − gµαRν , (6)

RµSνα = gµνRα − gµαRν , (7)

RµνSαρ = gµρRνα − gµαRνρ + gναRµρ − gνρRµα, (8)

where
Sµν = [βµ, βν ]. (9)

The DKP equation with minimal coupling. Consider-
ing the minimal vector interaction, the DKP equation can
be rewritten as

(iβµDµ −M)ψ = 0 , (10)

where Dµ = ∂µ + iqAµ denotes the covariant derivative.
Thus, by applying the Rν and Rµν operators to the DKP
equation (10), the following equations are obtained

Rνψ =
i

M
Dµ (R

νµψ) , (11)

Rνµψ =
i

M
Uµν , (12)
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where Uµν = Dµ (Rνψ)−Dν (Rµψ). By substituting (12)
into (11), we obtain

(DµD
µ+M2)(Rνψ)+

iq

2
RνSασFασψ−Dν(DµR

µψ) = 0.

(13)
with

DµR
µψ =

iq

2M2
FµνU

µν , (14)

where Fµν is the electromagnetic tensor. Equation (14)
is called subsidiary equation, which relates the physical
components of the spin-1 sector of the DKP theory. Thus,
both the equation of motion (13) and subsidiary equation
(14) are necessary to accurately describe the behavior of
massive spin-1 particles interacting with an electromag-
netic field via minimal coupling. It is noteworthy to men-
tion that, upon performing algebraic manipulations, equa-
tion (13) is reduced to the Proca equation minimally cou-
pled to the electromagnetic field [16,20]. The last term in
(13) is called the anomalous term. Note that the anoma-
lous term depends directly on the subsidiary equation, and
this fact can indicate on the appearance of possible prob-
lems. As stated in Ref. [13], it is known that the minimal
coupling has its own pathology in the DKP theory and we
are forced to think that it is a consequence of the pres-
ence of the anomalous term. From (13), one can see that
even when selecting the physical components the anoma-
lous term persists. In other words, the anomalous term
contains physical information about the system and to
eliminate it without any justification would lead to a loss
of information. This misinterpretation of the conclusions
in Ref. [16] was used in Ref. [20], where the authors stud-
ied the DKP equation with a uniform magnetic field for
the spin-1 sector. Following the results of [20], in Ref. [21]
the authors studied the Aharonov-Bohm (AB) problem for
vector bosons. On the other hand, a plausible possibility
to eliminate the term anomalous in (13) could be to re-
quire some restrictions on the form of the electromagnetic
field.
In the next section we will study the case of an external

electromagnetic field and will explain in more detail the
effects of the anomalous term on the dynamics of a spin-1
particle.

The external electromagnetic field. – Consider-
ing an external electromagnetic field and the represen-
tation of the electromagnetic tensor as F 0i = −E i and
F ij = −ǫijkBk, the subsidiary equation (14) takes the
following form

(E − qA0)Φ− (P− qA) ·Ψ =
iq

M2

{

E ·
[

(E − qA0)Ψ

− (P− qA)Φ
]

−B · [(P− qA)×Ψ]
}

, (15)

where the physical components of the spin-1 sector have
been written following the notation

Φ = R0ψ, (16)

ΨT = (R1ψ ,R2ψ ,R3ψ). (17)

From (15), one can see that it is possible to express com-
ponent Φ in terms of the other three components Ψ. This
means that only three physical components are linearly
independent and are related to the three degrees of free-
dom for a massive spin-1 particle. Therefore, we focus our
attention only on the linearly independent components of
Ψ.
Taking into account the same considerations and follow-

ing some algebraic manipulation, equation (13) is trans-
formed into

[

(P− qA)2 +M2 − (E − qA0)
2
]

Ψ− q(S ·B)Ψ

+ iqEΦ +
iq

M2
(P− qA)

{

E · [(E − qA0)Ψ− (P− qA)Φ]

−B · [(P− qA)×Ψ]
}

= 0, (18)

where the components of the spin operator S =
(S1, S2, S3) are the 3× 3 spin-1 matrices

S1 =





0 0 0
0 0 −i
0 i 0



 , S2 =





0 0 i
0 0 0
−i 0 0



 ,

S3 =





0 −i 0
i 0 0
0 0 0



 . (19)

The second term in (18) can be recognized as a Pauli-
like term, essential for attributing physical meaning to
the spin-dependent term. On the other hand, the anoma-
lous term (last term) introduces the mixing of the phys-
ical components, significantly complicating the diagonal-
ization of the equation system. Faced with this problem,
some authors erroneously disregarded the anomalous term
without justification [20, 21] or eliminated physical com-
ponents to avoid its inclusion in the equation of motion
[22–33]. To further explore the physical meaning of the
anomalous term in this context, in the following subsec-
tion, we analyze the non-relativistic limit and g-factor of
the DKP theory.

The non-relativistic limit and gyromagnetic factor.
Firstly, let us study the non-relativistic limit on the sub-
sidiary equation. In this case, it is convenient to rewrite
(15) as

(E − qA0)Φ− (P− qA) ·Ψ =
iqE

M2
E ·Ψ−

iq2A0

M2
E ·Ψ

−
iq

M2
B · (P×Ψ) +

iq2

M2
B · (A×Ψ). (20)

In the non-relativistic limit (potential energy functions
are smaller than M and E ∼ M), equation (20) becomes
Φ ≈ 1

M (P− qA) ·Ψ, where the terms O
(

1

M2

)

have been
neglected. Thus, one can prove that at the low-speed
regime (|v| ≪ 1), one obtains Φ ∼ 0. This last result
reveals that the effects of component Φ are not perceived
in the non-relativistic limit.
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Let us now focus on equation (18), which in the non-
relativistic limit transforms into

ENRΨ =

[

1

2M
(P− qA)2 + qA0 −

q

2M
B · S

]

Ψ , (21)

where ENR = E −M is the non-relativistic energy. From
(21), one can see that the anomalous term naturally dis-
appears in the non-relativistic limit and that Ψ obeys a
Schrödinger-Pauli-like equation, except for the last term
related to the g-factor, which in this case has g = 1. This
result is consistent with the well-known Belinfante conjec-
ture [1], which proposes a g-factor of g = 1/s for particles
with arbitrary spin s. However, as mentioned earlier, for
spin-1 particles, there is currently a consensus favoring a
g-factor equal to g = 2, which has been verified in di-
verse contexts [34–37]. Thus, one could think that the
anomalous term could be a consequence of an incomplete
version of the DKP equation to describe the interaction of
spin-1 particles with the electromagnetic field (resulting
in g = 1). To complete the theory with g = 2, it would
be necessary to add an anomalous magnetic interaction
(non-minimal electromagnetic coupling). In the next sec-
tion, we will address this issue.

Correction of the g-factor (g = 2). – From Dirac
theory, it is known that the anomalous magnetic coupling
is associated to a second-order antisymmetric tensor inter-
action. This interaction in the DKP theory is proposed in
[13] as a linear combination of the only two second-order
antisymmetric tensors and it is given by

R =
iq

M

(

Sµν −
1

4
{βηβη, S

µν}

)

Fµν . (22)

Due to the presence of derivatives of the vector potential
in (22), this interaction is considered non-minimal. It is
worth noting that the anomalous magnetic interaction R
defined by (22) does not violate causality, as demonstrated
in [13].
Considering minimal and non-minimal electromagnetic

couplings, the modified DKP equation becomes
[

iβµDµ −M +
iq

M

(

Sµν −
1

4
{βηβη, S

µν}

)

Fµν

]

ψ = 0 .

(23)
Following the same procedure as in the case with minimal
coupling, we obtain (for more details, see Appendix A)

Rνψ =
i

M
Dµ (R

νµψ)−
iq

2M2
RνSµσFµσψ, (24)

Rνµψ =
i

M
Uµν . (25)

Combining (24) and (25), we get

(DµD
µ+M2)(Rνψ)+ iqRνSµσFµσψ−Dν (DµR

µψ) = 0 ,
(26)

with

DµR
µψ = −

iq

M2
Jµ(Rµψ) . (27)

where Jµ = ∂νF
νµ is the external four-current, which

creates the external field Fµν . The equation obtained in
(27) is the subsidiary equation for the electromagnetic case
(considering a minimal and non-minimal coupling). The
equations (26) and (27) describe completely a spin-1 parti-
cle in an electromagnetic field. It is worthwhile to mention
that equation (26) is in full agreement with the framework
of a generalization of the Proca theory obtained by Cor-
ben and Schwinger (equation (19) in [4]) and also with
[7], which was obtained from the electroweak part of the
Lagrangian of the Standard Model. The coefficient 1 in
front of the second term in (26) corroborates that the g-
factor takes the value g = 2 and as a consequence of this
the anomalous term becomes proportional to an external
four-current. Therefore, if one considers for example re-
gions outside those occupied by the external charges or a
static uniform magnetic (electric) field, then the anoma-
lous term will disappear. In the next section, we reexam-
ined the case of an external electromagnetic field.

The external electromagnetic field reviewed. –
In this case, the subsidiary equation (27) reads

(E−qA0)Φ−(P−qA)·Ψ =
q

M2
[(∇ · E)Φ− (∇×B) ·Ψ] ,

(28)
and equation (26) becomes
[

(P− qA)2 +M2 − (E − qA0)
2
]

Ψ− 2q(S ·B)Ψ

+
q

M2
(P− qA) [(∇ · E)Φ− (∇×B) ·Ψ] = 0 . (29)

The equation (29) describes a spin-1 particle embedded
in an external electromagnetic field via minimal and non-
minimal couplings. Note that the second term in (29) is
a Pauli-like term with g = 2. Therefore, one can conclude
that the interaction R given by (22) really adjusts to the
correct g-factor in the DKP theory. Furthermore, as a
consequence of g = 2, the anomalous term is proportional
to an external four-current Jµ. In this case, we have J0 =
∇·E and J = ∇×B. Even after correcting the g-factor, the
anomalous term makes it difficult to solve equation (29);
however, considering the case of a static uniform magnetic
(electric) field, the anomalous term vanishes.

The static uniform magnetic field. Considering rect-
angular coordinates and choosing A0 = 0 and A =
(0, Bx, 0), which furnishes a static uniform magnetic field
in the z-direction, J0 = ∇ · E = 0 and J = ∇ × B = 0,
the equation (29) reduces to

[

(P− qA)2 +M2 − E2 − 2qS3B
]

Ψ = 0 . (30)

Applying a similarity transformation in (30) and using

Riψ = eikyy+ikzzRiϕ, (31)

equation (30) becomes
[

−
1

2M

d2

dx2
+
q2B2

2M

(

x−
ky
qB

)2
]

χs = ε χs, (32)
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where

ε =
E2 −M2 + 2qBs− k2z

2M
(33)

Here χs is eigenstate of the diagonalized spin operator
S̄3 and satisfy S̄3χs = sχs, with s = ±1, 0 (for more
details, see Appendix B). Note that equation (32) takes
on the form of the Schrödinger equation for the harmonic
oscillator, with its eigenvalues corresponding to the well-
known Landau levels [38, 39]

E = ±
[

M2 + k2z + qB (2n− 2s+ 1)
]1/2

. (34)

In the above expression, the presence of factor 2qBs in the
energy spectrum arises from the assignment of g = 2. The
expression (34) is in good agreement with those of [5], [6],
and [7], which were obtained using the Sakata-Taketani
and Shay-Good formalisms, and from the electroweak part
of the Lagrangian of the Standard Model, respectively.

Conclusions. – We have reinvestigated the problem
of interaction between vector mesons and an electromag-
netic field within the framework of the Duffin-Kemmer-
Petiau (DKP) formalism. Initially, considering the min-
imal electromagnetic coupling, we have identified an er-
roneous g-factor of g = 1. Moreover, the presence of
the anomalous term has significantly complicated the res-
olution of the DKP equation, with minimal electromag-
netic interaction. To address the g-factor discrepancy, we
have introduced a non-minimal electromagnetic interac-
tion. This additional term in DKP theory has been formu-
lated as a linear combination of two second-order antisym-
metric tensors. Consequently, considering the complete
DKP equation with both minimal and non-minimal elec-
tromagnetic interactions has yielded the correct g-factor
of g = 2. As a result, the anomalous term has been rede-
fined proportionally to the external four-current induced
by the external field Fµν . Our findings remain robust, irre-
spective of the specific representation chosen for the DKP
matrices. Additionally, we have established an equiva-
lence between the modified DKP equation, the generalized
Proca equation [4], and the Standard Model [7]. This un-
derscores the consistency of the modified DKP equation
in describing spin-1 charged particles within a theoretical
framework.

Finally, we employed the modified DKP equation to
reinvestigate the behavior of vector mesons in a static
uniform magnetic field. We have mapped the modified
DKP equation to a Schrödinger-like equation for the non-
relativistic harmonic oscillator, obtaining an energy spec-
trum consistent with the established Landau levels. Our
results are in full agreement with those obtained via other
formalisms [5–7]. In this sense, we would like to emphasize
that our findings support the DKP theory as a alternative
theory to the Standard Model for the description of a mas-
sive spin-1 field coupled to an electromagnetic field, with
the bonus of having a wide variety of interactions that can-
not be expressed in the framework of the Standard Model.

Appendix A: Details for equations (24), (25) and
(27). – By applying the Rν and Rνµ operators to the
DKP equation (23), we obtain

(iRνµDµ −MRν)ψ

+
iq

M

(

RνSασ −
1

4
Rν{βηβη, S

ασ}

)

Fασψ = 0,
(A.1)

(iRνµβµDµ −MRνµ)ψ

+
iq

M

(

RνµSασ −
1

4
Rνµ{βηβη, S

ασ}

)

Fασψ = 0,
(A.2)

respectively. Using the operators properties, one can show
that

Rν{βηβη, S
ασ} = 6RνSασ. (A.3)

Rνµ{βηβη, S
ασ} = 4RνµSασ. (A.4)

Substituting these last results, the equations (A.1) and
(A.2) becomes

(

iRνµDµ −MRν −
iq

2M
RνSασFασ

)

ψ = 0 , (A.5)

[i (DµRν −DνRµ)−MRνµ]ψ = 0 , (A.6)

which can be expressed as in equations (24) and (25).

On the other hand, using the operator properties one
can obtain the following relation

RνSασFασψ = 2F νσRαψ . (A.7)

Using this last result, the equation (24) can be rewritten
as

Rνψ =
1

M2
DµU

νµ −
iq

M2
F νσRσψ . (A.8)

By applying Dν to (A.8), we get

DνR
νψ =

1

M2
DνDµU

νµ −
iq

M2
Dν (F

νσRσψ) . (A.9)

Using
DνDµU

νµ = iqFµνDµRνψ , (A.10)

Dν (F
νσRσψ) = ∂νF

νσ (Rσψ) + F νσDνRσψ , (A.11)

the equation (A.9) becomes

DνR
νψ = −

iq

M2
∂νF

νσ (Rσψ) , (A.12)

which is the equation (27).

Appendix B: Diagonalization. – Multiplying from
the left by the inverse matrix D−1 and using

Riψ = eikyy+ikzzRiϕ, (35)

the equation (30) becomes

[

−
d2

dx2
+ q2B2

(

x−
ky
qB

)2

+M2 − E2 + k2z − 2qBS̄3

]

χ = 0,

(B.1)
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where

S̄3 = D−1S3D =





1 0 0
0 −1 0
0 0 0



 , (B.2)

with

D =





1 1 0
i −i 0
0 0 1



 , D−1 =





1/2 −i/2 0
1/2 i/2 0
0 0 1



 . (B.3)

Here, the new spinor χ can be defined as

χ =









χ+1

χ−1

χ0









=









R1ϕ−iR2ϕ
2

R1ϕ+iR2ϕ
2

R3φ









, (B.4)

and each component is an eigenstate of S̄3 satisfying
S̄3χs = sχs, with s = ±1, 0. In this way, we can rewrite
the equation (B.1) in a compact form as in (32).

∗ ∗ ∗

This work was supported in part by means of funds
provided by CNPq, Brazil, Grants No. 09126/2019-3 and
311925/2020-0, FAPEMA and CAPES - Finance code 001.
Angel E. Obispo acknowledges the financial support from
the Universidad Tecnológica del Perú (UTP).
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