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Based on a mean-field theory of a non-rotating turbulent convection (Phys. Rev. E 66, 066305,
2002), we perform mean-field simulations (MFS) of sheared convection which takes into account an
effect of modification of the turbulent heat flux by the non-uniform large-scale motions. This effect is
caused by production of additional essentially anisotropic velocity fluctuations generated by tangling
of the mean-velocity gradients by small-scale turbulent motions due to the influence of the inertial
forces during the lifetime of turbulent eddies. These anisotropic velocity fluctuations contributes to
the turbulent heat flux. As the result of this effect, there is an excitation of large-scale convective-
shear instability, which causes the formation of large-scale semi-organized structures in the form of
rolls. The life-times and spatial scales of these structures are much larger compared to the turbulent
scales. By means of MFS performed for stress-free and no-slip vertical boundary conditions, we
determine the spatial and temporal characteristics of these structures. Our study demonstrates
that the modification of the turbulent heat flux by non-uniform flows leads to a strong reduction
of the critical effective Rayleigh number (based on the eddy viscosity and turbulent temperature
diffusivity) required for the formation of the large-scale rolls. During the nonlinear stage of the
convective-shear instability, there is a transition from the two-layer vertical structure with two roles
in the vertical direction before the system reaches steady-state to the one-layer vertical structure
with one role after the system reaches steady-state. This effect is observed for all effective Rayleigh
numbers. We find that inside the convective rolls, the spatial distribution of the mean potential
temperature includes regions with a positive vertical gradient of the potential temperature caused
by the mean heat flux of the convective rolls. This study might be useful for understanding of the
origin of large-scale rolls observed in atmospheric convective boundary layers as well as in numerical

simulations and laboratory experiments.

I. INTRODUCTION

Temperature stratified turbulence and turbulent con-
vection exist in many geophysical and astrophysical flows
as well as in industrial flows [see, e.g., Refs. [1H7]. In spite
of turbulent transport has been studied more than 100
years, some key questions remain unclear due to extreme
values of the governing parameters in geophysical and
astrophysical flows [see, e.g., Refs. E]

Large-scale coherent structures in a developed convec-
tive turbulence have been seen in various laboratory ex-
periments in the Rayleigh-Bénard setup [see, e.g., Refs.
@], in the atmospheric convective turbulence [see,
e.g., Refs. @—@], in direct numerical simulations [see,
e.g., Refs. @@] and large-eddy simulations [see, e.g.,
Refs. @] Characteristic timescales and spatial scales
of the coherent structures in a small-scale turbulent con-
vection are much larger than the characteristic turbulent
scales.

A mean-field theory of the coherent structures formed
in convective turbulence has suggested that a redistri-
bution of the turbulent heat flux by nonuniform large-
scale motions is crucial in the formation of the large-
scale coherent structures in a convective turbulence (see
Refs. [50-52]). This effect causes an excitation of a
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convective-wind instability in the shear-free turbulent
convection resulting in the formation of large-scale mo-
tions in the form of cells. This phenomenon has been
recently investigated by the mean-field numerical simu-
lations (see Ref. [53]), which demonstrate that:

e The redistribution of the turbulent heat flux by the
nonuniform large-scale motions results in a strong
reduction of the critical effective Rayleigh number
(based on the eddy viscosity and turbulent temper-
ature diffusivity) required for the formation of the
large-scale convective cells.

e The convective-wind instability is excited when the
scale separation ratio between the height of the con-
vective layer and the integral turbulence scale is
large.

e The level of the mean kinetic energy at saturation
increases with increase of the scale separation ratio,
and it is very weekly dependent on the effective
Rayleigh number.

e Inside the large-scale convective cells, there are lo-
cal regions with the positive vertical gradient of the
potential temperature which implies that these re-
gions are stably stratified.

In the sheared convective turbulence, the large-scale
convective-shear instability results in an excitation of
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convective-shear waves, and the dominant coherent struc-
tures in the sheared convection are rolls (see Refs. @7
@]) The goal of the present study is to perform mean-
field numerical simulations in a sheared convection taking
into account the effect of modification of the turbulent
heat flux by non-uniform large-scale motions.

This paper is organized as follows. In Section II we
discuss physics related to a modification of the turbu-
lent heat flux due to anisotropic velocity fluctuations
in turbulence with non-uniform large-scale flows in a
sheared convective turbulence. In Section III we for-
mulate the non-dimensional equations, the governing
non-dimensional parameters and study the large-scale
convective-shear instability. In Section IV we describe
the set-up for the mean-field simulations and discuss the
numerical results. Finally, conclusions are drawn in Sec-
tion V.

II. SHEARED TURBULENT CONVECTION
AND TURBULENT HEAT FLUX

We consider sheared turbulent convection with very
high Rayleigh numbers, and large Reynolds and Peclet
numbers. To study formation and evolution of the semi-
organized structures in a small-scale convective turbu-
lence, we use a mean field approach. In the framework
of this approach, the velocity U, pressure P and poten-
tial temperature © are decomposed into the mean fields
and fluctuations, where U = U +u, P = P + p and
© = O + 6. Since we use Reynolds averaging, fluctua-
tions have zero mean values, where U = (U) is the mean
velocity, P = (P) is the mean pressure and © = (©) is
the mean potential temperature, and u, p and 0 are fluc-
tuations of velocity, pressure and potential temperature,
respectively. Averaging the Navier-Stokes equation and
equation for the potential temperature over an ensem-
ble, we arrive at the mean-field equations written in the
Boussinesq approximation with divU = 0:

(3+U.v)m Ts- V)T, + (U - V)Ts

where Us = (S z,0,0) is the shear velocity directed along
the z axis, © is the mean potential temperature defined
as © = T (Py/P)'"/7. Here B = |g|/To is the buoy-
ancy parameter, g = —g e is the acceleration caused by
the gravity, e is the unit vector in the vertical direction
(along the z axis), v = ¢p/cy is the specific heats ratio,

T is the mean physical temperature with the reference
value Ty as the temperature in the equilibrium (i.e., the

basic reference state), P is the mean pressure with the
reference value Py and py is the mean fluid density in the
equilibrium. For large Reynolds and Peclet numbers, we
neglect in Eqs. [I)—(2) small terms due to the kinematic
viscosity and molecular diffusivity of the potential tem-
perature in comparison with those due to the turbulent
viscosity and turbulent diffusivity. In Eqgs. (I)—(@), the
mean fields corresponds to deviations from the equilib-
rium: Uy = Us, V Py =7p,g and j, = const.

The effects of small-scale convective turbulence on the
mean fields are described by the Reynolds stress (u; u;)
and turbulent flux of potential temperature F = (uf).
In the classical concept of down-gradient turbulent trans-
port, the basic second-order moments (e.g., the Reynolds
stress and the turbulent flux of potential temperature)
are assumed to be proportional to the local mean gra-
dients, whereas the proportionality coefficients, namely
turbulent viscosity v, and turbulent temperature dif-
fusivity k,, are determined by local turbulent param-
eters. For instance, the Reynolds stress is (u;u;) =
—2v,.(V;U; + V;U;), while the turbulent heat flux is
given by F = —,, VO ).

In turbulent convection with semi-organized structures
(e.g., large-scale circulations and large-scale convective
rolls), the mean velocity and temperature fields inside
the semi-organized structures are strongly nonuniform.
These nonuniform large-scale motions produce strongly
anisotropic velocity fluctuations which contribute to the
turbulent heat flux. As has been shown in Refs. [50,
@], the turbulent heat flux F which takes into account
anisotropic velocity fluctuations, reads

F - F o [F; AT, L (WF?)
1 —
~3 (WX, )

where FCW = —7y (F} - V)Us(2) is the counter-wind
turbulent heat flux and F* = —x, VO is the classical
turbulent heat flux, 7y is the correlation time of turbu-
lent velocity at the integral scale of turbulent motions,
W = VxU is the mean vorticity, U = U, + U, is the
mean velocity with the horizontal U, and vertical U,
components. The additional terms in the turbulent heat
flux result in the excitation of large-scale instability and
formation of the large-scale convective rolls [50-52].

The physics related to the additional terms in the
turbulent heat flux is discussed below. The term
—1o FydivU, in Eq. @) for the turbulent heat flux
causes the redistribution of the vertical background tur-
bulent heat flux F} by the perturbations of the con-
vergent (or divergent) horizontal mean velocity U (see
Fig. M) during the life-time of turbulent eddies. As the
result, this additional contribution enhances the verti-
cal turbulent flux of potential temperature due to the
converging horizontal motions, which increases the buoy-
ancy, thus creating the upward flow. The latter increases
the horizontal convergent flow.
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FIG. 1. The illustration of the physics caused by the new tur-
bulent heat flux Fyew = —70 F5 div U, produced by the per-
turbations of the convergent (or divergent) horizontal mean
flows U | (shown by the green arrows in panels a and c¢). The
new turbulent flux Fjcw increases the upward turbulent heat
flux, enhances buoyancy and increases the local mean poten-
tial temperature, thus creating the upward flow. Likewise, the
new turbulent flux Fhew decreases the vertical turbulent flux
of potential temperature by the divergent horizontal motions,
which reduces the buoyancy and decreases the local mean po-
tential temperature, thus creating the downward flow. These
effects create the large-scale circulation.

On the other hand, the term oc (79/2) (W X F}) in
Eq. @) produces the horizontal turbulent heat flux by the
"rotation” of the vertical background turbulent heat flux
F; caused by the perturbations of the horizontal mean
vorticity W . This decreases local potential temper-
atures in rising motions, which decreases the buoyancy
accelerations, and weakens vertical velocity and vorticity.

The last term o< (79/2) (W.xFSW) in Eq. @) for
the turbulent heat flux produces the horizontal heat
flux through the "rotation” of the horizontal background
counter-wind turbulent heat flux FCW by the vertical
component of the mean vorticity. The counter-wind tur-
bulent flux of potential temperature FSW arises due to
the following reasons. In a horizontally homogeneous
and sheared convective turbulence, the mean shear ve-

locity Ui(z) increases with the height, while the mean
potential temperature ©(z) decreases with the height.
Uprising fluid particles produce both, positive fluctua-
tions of potential temperature, § > 0 because 90/0t x

—(u-V)O(z), and negative fluctuations of horizontal ve-

locity, u; < 0 because Juy /0t x —(u - V)Ui(z) This
creates a negative horizontal turbulent flux of potential
temperature, u, 0 < 0. On the other hand, sinking fluid
particles create both, negative fluctuations of potential
temperature, § < 0, and positive fluctuations of hori-
zontal velocity, u, > 0, resulting in negative horizontal
turbulent flux of potential temperature, u, # < 0. There-
fore, the net horizontal turbulent flux of potential tem-
perature is negative, FSV = (u,0) < 0, in spite of a
zero horizontal mean temperature gradient. Therefore,
the counter-wind turbulent flux of potential temperature
modifies the turbulent potential temperature flux caused
by the non-uniform mean velocity field. The counter-
wind turbulent flux is associated with non-gradient tur-

FIG. 2. The mechanism of formation of large-scale convec-
tive rolls stretched along the shear velocity Us(z). Horizontal
counter-wind turbulent heat flux F$YW is turned by perturba-
tions of vertical vorticity W ., i.e., this effect creates alternat-
ing pairs of convergence or divergence cross-wind turbulent
heat fluxes, F}* = (10/2) W.xFS"W, which are clock-wise
or opposite rotations of air columns. This effect causes con-
verging turbulent heat fluxes with warm patch between the
pair (a) and (b) of columns in the Figure, and diverging tur-
bulent heat fluxes with cool patch between the pair (b) and
(c) in the Figure. The warm patch causes an updraft and cool
patch produces a downdraft, whereas the mean shear velocity
Us(z) stretches the flow pattern and completes creation of
the large-scale convective rolls.

bulence transport of heat.

The last term o< (19/2) W_xFSW in Eq. (@), causes
generation of the cross-wind horizontal turbulent heat
flux by turning the counter-wind horizontal turbulent
flux FSW by perturbations of vertical component of the
mean vorticity W, (see Fig. B). This produces alternat-
ing pairs of convergence or divergence cross-wind turbu-
lent heat fluxes, FI°V = (70/2) W.xFSW, resulting al-
ternative warmer or cooler patches which, in turn, cause
alternative upward warm and downward cool motions.
This is precisely the mechanism of large-scale instabil-
ity responsible for formation of the large-scale convective
rolls stretched along the mean shear and generation of
convective-shear waves propagating perpendicular to the
convective rolls in the sheared convection .

III. GOVERNING EQUATIONS AND
CONVECTIVE-SHEAR INSTABILITY

Using the expression (@) for the turbulent heat flux
F with the additional terms caused by the non-uniform
mean flows, calculating div F', and assuming that_the
non-dimensional total vertical heat flux ®. = F} + U, ©
is constant, we rewrite Eqs. (I)-(2) in a non-dimensional
form as

ou - S - .

E+(U-V)U+(US-V)U+(U~V)US

z—E—l—RaTée—i—Aﬁ, (4)
Po
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FIG. 3. The growth rate ~inst of the instability (upper
panel) and the frequency of the excited convective-shear
waves w (bottom panel) versus the parameter « for the ef-
fective Rayleigh number Ra, = 0.5 and different the non-
dimensional shear number Sh = 0.03 (dashed); 0.1 (dashed-
dotted); 0.3 (solid).

+5h (V.0 - vyﬁz)] v, (0.0) } (5)

where the mnon-dimensional mean velocity U with
divU = 0, the _mean potential temperature S and the
mean pressure P are shown with tilde, the flux F ¥ is the
nondimensional vertical turbulent background heat flux,
the unit vector e is directed along vertical z axis, the
non-dimensional shear velocity is Us = (Sh Z,0,0), and
Z is is the non-dimensional vertical coordinate.
Equations @)—(@l) are written in non-dimensional form,
where length is measured in the units of the vertical size
of the convective layer L, time is measured in the units of
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FIG. 4. The growth rate ~inst of the instability (upper
panel) and the frequency of the excited convective-shear
waves w (bottom panel) versus the parameter « for the ef-
fective Rayleigh number Ra, = 10 and different the non-
dimensional shear number Sh = 0.03 (dashed); 0.1 (dashed-
dotted); 0.3 (solid).

the turbulent viscosity time, L?/v,., velocity is measured
in the units of v,. /L, potential temperature is measured
in the units of L, N2 Pr,./3 and pressure is measured in
the units of pg (v,./L.)?. Here v, = ugfo/3 is the turbu-
lent (eddy) viscosity, ug is the r.m.s. turbulent velocity,
{y is the turbulent integral scale and N2 = |V, Teq|.
We use the following dimensionless parameters ap-
peared in Eqs. {@)—-@):
e the effective Rayleigh number:
4 A72
Ra, — L2 (6)

Vp Kp

e the turbulent Prandtl number:

e the scale separation parameter:
2
_ b
312

e the non-dimensional total vertical heat flux:

3 ue \®
b, =——- =), 9
€2 Ra, (uo) 9)
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FIG. 5. Time evolution of the maximum velocity Usnax (t) for
e =103, & = 0.5 and shear number Sh = 1, and at different
values of the effective Rayleigh number Ra,, = 0.5; 100; 500
and 1000 for the stress-free boundary conditions.

e the non-dimensional shear number:

Sh— 270,

€

where S = VZUi is the linear velocity shear, i.e., S is
constant, u. = (gF.0y)"/? is the convective velocity, F.,
is the vertical turbulent flux of potential temperature,
K, is the turbulent (eddy) diffusivity and 7o = ¢p/ug. In
Eqs @)-(@) we have neglected small terms O(e?).

For analytical study of the large-scale instability,
we consider for simplicity the two-dimensional problem
when the mean fields are independent of the coordinate
z. The non-dimensional shear velocity, Us = (Sh 2,0, 0),
is directed along the z axis, so that the vorticity Wg =
V x Ug is Wg = (0,Sh,0). We will start our analy-
sis with the linear problem for small perturbations ap-
plying the linearised Eqs. [@)—@), to find the growth
rate of the large-scale convective-shear instability. To
this end, we calculate [V x (V x U)], using the lin-
earised Eq. @) to exclude the pressure term and we
seek for solution of the obtained equations in the fol-
lowing form: U (t,z) = Ugexp[yt — i(Kyy + K, z)| and

O(t,z) = Ogexp[yt — i(Kyy + K,z)]. This yields the

ﬁmm RaT:0.5
a0l :
20+
0 L
0 25 5 1
40,
o /MN\
O I I
0 2 4 t
ol ‘
ol /’V\"\,‘
O I
0 2 4t
wl :
20+
O I I
0 25 5 t

FIG. 6. Time evolution of the maximum velocity Urnax (t) for
e =103, & = 0.5 and shear number Sh = 1, and at different
values of the effective Rayleigh number Ra,, = 0.5; 100; 500
and 1000 for the no-slip boundary conditions.

following system of algebraic equations:

- K? -
(v+ K?) U. + Ra, (K;—1> 0=0, (11)
o Sh?K2\ | -
1 2K? — K* Y p
+26RaT < i +7+K2>] v
—(v+K*) ©=0, (12)

where 0 = 3 (uc/ug)?, K = (K2 + K2)'/2, and we con-
sider, for simplicity, the case when the turbulent Prandtl
number Pr, = 1. Equations (1) and (I2)) yield the
equation for ¥ = (v + K?2)/vo as

2 2 4
3 _ 7= o Sh” a
-y —-———=0 13
T e ran) 13)
where
9 1/2
“ Ra, + — (1-a?)| , (14)

Yo = _(1+a2)1/2 %€

a = K,/K. and K, = n. This implies that K, = am
and K = (K2 + K2)'/2 = 7 (1 + a?)"/2. When

2
Ra, < — (a®—1), (15)
2e
o is a complex function.
Generally, the solution of the cubic equation ([I3]) de-
scribes two complex conjugate roots and one real nega-
tive root which determine a damping mode. In the case
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FIG. 7. Time evolution of the maximum velocity Usnax (t) for
the effective Rayleigh number Ra, = 0.5, a = 0.5 and shear
number Sh = 1, and at different values of the parameter ¢ =
1073;5 x 1073: 1072, for the stress-free boundary conditions.

of the complex conjugate roots, the instability can re-
sult in an excitation of convective-shear waves with the
frequency w = Im{7o 7} and the growth rate of the in-
stability yinst = Re{70 7%} — m2(1 + o?), where Re{Z} is
the real part of the complex number and Im{Z} is the
imagine part of the complex number.

Numerical solution of Eq. (I3]) yields the growth rate
~Yinst Of the instability and the frequency w of the excited
convective-shear waves versus the parameter a for the
effective Rayleigh numbers Ra, = 0.5 (see upper panel
in Fig.B) and Ra, = 10? (see upper panel in Fig. H), and
for different values of the non-dimensional shear number
Sh. It shows that the convective-shear waves are excited
for a > 1 at small effective Rayleigh numbers and for
a > 1.3 at large effective Rayleigh numbers. The growth
rate of the instability and the frequency of the excited
convective-shear waves are very weakly dependent on the
effective Rayleigh numbers. Increase of shear, results in
increase of the growth rate 7i,s¢ of the instability and the
frequency of the excited convective-shear waves w. The
asymptotic solution of Eq. (I3)) in the case of yinst > Yo

reads
S 72 o Sh? a4
Yinst = 263 (1 ¥ 042)

1/3
— (14 a?), (16)

which corresponds to a non-oscillatory growing solution
with w = 0.

This instability causes formation of large-scale fluid
motions in the form of rolls stretched along the imposed
mean wind. This mechanism can also cause the gener-
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FIG. 8. Time evolution of the maximum velocity Umax(t)
for the effective Rayleigh number Ra, = 0.5, a = 0.5 and
shear number Sh = 1, and at different values of the parameter
e=1073;5x1072;1072, for the no-slip boundary conditions.

ation of the convective-shear waves with the frequency
shown in bottom panels of Figs. BHAl The convective-
shear waves propagate perpendicular to convective rolls.
The predicted motions in convective rolls are charac-
terised by nonzero helicity, in agreement with numerical
simulations (see Ref. [2§]). Note that similar waves prop-
agating in the direction normal to cloud streets (convec-
tive rolls) have been detected in atmospheric convective
boundary layers (see Ref. [31]). This large-scale instabil-
ity are fed by the energy of the convective turbulence.

IV. RESULTS OF MEAN-FIELD NUMERICAL
SIMULATIONS

In this section, we discuss results of mean-field numer-
ical simulations for three-dimensional problem. We solve
numerically Eqs. {@)—() for the periodic boundary con-
ditions in the horizontal zy plane. The boundary con-
ditions for the potential temperature in the vertical di-
rection are O(t,z = 0) = O(t,z = 1) = 0. We use the
stress-free and no-slip boundary conditions for the veloc-
ity field in the vertical direction (along the z axis). The
stress-free boundary conditions imply,

U.(t,z=0)=U.(t,z=1) =0, (17)
V. Us(t,z=0)=V,Uy(t,z=1) =0, (18)

V.Uy(t,z=0)=V,Uy(t,z=1) =0, (19)
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FIG. 9. Time evolution of the maximum velocity Usnax (t) for
the effective Rayleigh number Ra,, = 1000, o = 0.5 and shear
number Sh = 1, and at different values of the parameter ¢ =
1073;5 x 1073: 1072, for the stress-free boundary conditions.

while the no-slip boundary conditions are given by
Ult,z=0)=U(t,z=1) =0. (20)

We use the ANSYS FLUENT code (version 19.2) in
the 3D box L, =5 and L, = L, = 1, which is based on
the final volume method. The simulations are performed
with the spatial resolution, 500 x 100 x 100 points in x, y
and z directions, respectively. In the mean-field numeri-
cal simulations, we use the following values of the basic
dimensionless parameters: the turbulent Prandtl num-
ber Pr, = 1, the ratio u./uo = 1, the effective Rayleigh
number changies from Ra, = 0.5 to Ra, = 1800 and
the scale separation parameter e varies from € = 1072 to
¢ = 1072. The non-dimensional shear number Sh varies
from Sh = 0.01 to Sh = 1.

For illustration, in Figs.[Bland G we plot the time evolu-
tion of the maximum velocity Upax(t) for different values
of the effective Rayleigh numbers Ra,. changing from 0.5
to 10% at a fixed value of the parameter € in the sheared
large-scale convection (for Sh = 1), while in Figs. [1-
10 we show the time evolution of the maximum velocity
Umax(t) for different values of the scale separation pa-
rameter € (from 1073 to 1072) between the vertical size
L. of the computational domain and the integral turbu-
lence scale ¢y (see Figs.[[H8 for Ra, = 0.5 and Figs. OHI0
for Ra, = 10?).

As can be seen in Figs. BHIO at the initial stage of
the evolution, the maximum velocity Upax(t) increases
in time exponentially due to the excitation of the large-
scale convective-shear instability. During the nonlinear
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FIG. 10. Time evolution of the maximum velocity Umax(t)
for the effective Rayleigh number Ra, = 1000, o« = 0.5 and
shear number Sh = 1, and at different values of the parameter
e=1073;5x1072;1072, for the no-slip boundary conditions.

stage of the instability, we observe that ﬁmax(t) reaches
the maximum value which is weakly dependent on the
effective Rayleigh number Ra,, for the stress-free and no-
slip boundary conditions (see Figs. BHA). On the other
hand, the maximum value of the function Upax at the
stationary stage strongly depends on the scale separa-
tion parameter € and on the boundary conditions (see
Figs. [[HR). In particular, increasing the scale separation
between the vertical size L, of the computational domain
and the integral turbulence scale ¢y (i.e., decreasing the
parameter €), we observe that the maximum value of the
function ﬁmax increases. For the no-slip vertical bound-
ary conditions, the large-scale instability is excited and
convective structures are formed when e < 3 x 1073 at
Ra, = 0.5, ¢ <4 x 1072 at Ra, =500 and € < 7 x 1073
at Ra, = 10%. In addition, the time evolution in the
nonlinear stage of the instability for the stress-free and
no-slip boundary conditions are different.

Some features in the time evolution of the maximum
velocity Umax(t) have been also observed in the recent
mean-field simulations of the shear-free convection (see
Ref. [53]), where Upax(t) is independent of Ra,. for the
same boundary conditions, but it strongly depends on
the scale separation parameter e. However, in a sheared
large-scale convection, we do not observe clear nonlin-
ear oscillations of Upax which have been seen after the
steady-state stage (when the function Uy,ax is nearly con-
stant in time) in the large-scale shear-free convection (see

Ref. [53]).

To observe spatial structure of the basic characteris-



FIG. 11. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic refer-
ence state (middle panel); the patterns of the vertical gradient
of the mean potential temperature (V.0 — 1) Ra, (bottom
panel) at time instant ¢ = 0.34 of the turbulent viscosity
time Lﬁ/l/T, effective Rayleigh number Ra, = 0.5, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the stress-free vertical
boundary conditions. All quantities are normalized by their
maximum values.

tics of the sheared large-scale convection, in Figs. I
we plot the counter lines of the velocity field (upper
panels); the patterns of the potential temperature de-
viations © Ra, from the equilibrium potential tempera-
ture in the basic reference state (middle panels) and the
patterns of the vertical gradient of the mean potential
temperature (V,0 — 1)Ra,. (bottom panels) at several
time instants: before the system reaches steady-state (see
Figs.Mland[I2)) and after the system reaches steady-state
(see Fig. [3BHIA).

We remind that the potential temperature is measured
in the units of L, N*Pr,. /8 = Ra,v2/(BL3). This is the
reason why we show in Figs. (see middle panels)
the pattern of the normalized deviations of the potential
temperature © Ra, from the equilibrium potential tem-
perature in the basic reference state. Note also that the
total gradient of the potential temperature is the sum of
the equilibrium constant gradient of the potential tem-
perature V. T, (negative for a convection) and the gra-
dient of the potential temperature V.O. Therefore, we
show in Figs. (see bottom panels) the pattern of
the normalized total vertical gradient of the mean poten-
tial temperature, (V,© — 1) Ra,. which characterises the
large-scale convection.

At the linear stage of the system evolution, the pat-
terns for the stress-free and no-slip boundary conditions
are the same (see Fig. [[G). During the evolution, there
is a transition from the large-scale circulations at the
yz plane seen in the linear stage of the instability (see
Fig. M6) to the the large-scale circulations at the zz

FIG. 12. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic ref-
erence state (middle panel); the patterns of the vertical gra-
dient of the mean potential temperature (V.0 —1) Ra,. (bot-
tom panel) at time instant ¢ = 0.7 of the turbulent viscosity
time L2 /vy, effective Rayleigh number Ra, = 0.5, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their
maximum values.

plane observed during nonlinear stage of the instability
(see Figs. MIHIZ). In addition, there is a transition from
the two-layer vertical structure of the mean velocity field
with two convective roles in the z direction and six roles
in the 2 direction (as can be seen in Fig. [[Tlfor the stress-
free boundary conditions) to the one-layer vertical struc-
ture with one role in the z direction and two roles in the
2 direction (see Fig. [I3).

On the other hand, comparing Figs. [[2] and [[4] (which
corresponds to the no-slip boundary conditions), we ob-
serve that during nonlinear stage of the instability there
is a transition from the large-scale circulations with the
two-layer vertical structure with two convective roles in
the z direction and six roles in the z direction (see
Fig.[[2) to the one-layer structure with four inclined roles
(see Fig. [[]). The formation of the inclined roles for the
no-slip boundary conditions are already observed starting
with ¢ = 0.9 of the turbulent viscosity time L?/v,. at the
effective Rayleigh number Ra, = 0.5. The inclined roles
for the no-slip boundary conditions are also observed at
the effective Rayleigh number Ra, = 10% (see Fig. .

As has been observed in the shear-free convectiorf%],
the large-scale convective structures are also formed in
a sheared convection even at low values of the effective
Rayleigh numbers Ra,, = 0.5 due to the additional terms
x € in Eq. (@) for the evolution of the potential tem-
perature (which are caused by the modification of the



FIG. 13. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic ref-
erence state (middle panel); the patterns of the vertical gra-
dient of the mean potential temperature (V.0 —1) Ra,. (bot-
tom panel) at time instant t = 1 of the turbulent viscosity
time Lﬁ/l/T, effective Rayleigh number Ra, = 0.5, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the stress-free vertical
boundary conditions. All quantities are normalized by their
maximum values.

turbulent heat flux by non-uniform fluid flows). More-
over, in Figs. (bottom panels), one can see the
regions with the positive gradient of the potential tem-
perature (V.0 — 1)Ra,, which are typical for stably
stratified turbulence. Such effects have been previously
observed in experiments m, @], direct numerical simu-
lations m, [E, @, @] of turbulent convection and shear-
free mean-field numerical simulations @] The formation
of the regions with the positive gradient of the potential
temperature inside the large-scale circulation can be un-
derstood as follows. The total vertical heat flux F!°t
includes three contributions [53]:

e the mean vertical heat flux U, © of the large-scale

circulation,

e the vertical turbulent heat flux F¥ = —x,V.0,
and

e the mnew turbulent heat flux FV =
—T0 F; div UJ_.

Therefore, the vertical gradient V,© of the mean poten-
tial temperature is given by

U, — Ftet

V.0 = N
R (1 —ToleUJ_)

(21)

Inside the large-scale circulation where U, © > F'°t, the
vertical gradient V.0 is positive. On the other hand,
when U, © < F! the vertical gradient VO is negative.
Here we take into account that 7o [divU | | < 1.

FIG. 14. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic ref-
erence state (middle panel); the patterns of the vertical gra-
dient of the mean potential temperature (V.0 — 1) Ra,. (bot-
tom panel) at time instant ¢ = 4 of the turbulent viscosity
time L2 /vy, effective Rayleigh number Ra, = 0.5, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their
maximum values.

In the present study, we also observe the formation
the large-scale rolls even below the threshold of the lam-
inar convection (see Figs. [[THI4 for effective Rayleigh
number Ra, = 0.5 which can be compared with Fig.
for Ra, = 1000). This is because turbulence with non-
uniform large-scale flows contributes to the turbulent
heat flux. The reasons for this effect are related to pro-
duction of additional essentially anisotropic velocity fluc-
tuations generated by tangling of the mean-velocity gra-
dients by small-scale turbulent motions due to the in-
fluence of the inertial forces during the lifetime of tur-
bulent eddies. These anisotropic velocity fluctuations
contributes to the turbulent heat flux. As the result of
this effect, there is an excitation of large-scale convective-
shear instability, which results in the formation of large-
scale semi-organized structures in the form of rolls and
generation of convective-shear waves propagating per-
pendicular to the convective rolls. The life-times and
spatial scales of these structures are much larger com-
pared to the largest turbulent time scales. As the result,
the evolutionary equation () for the potential tempera-
ture © contains the new terms proportional to the spatial
derivatives of the mean velocity field U (see the terms
X €).



FIG. 15. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic refer-
ence state (middle panel); the patterns of the vertical gradient
of the mean potential temperature (V.© — 1) Ra, (bottom
panel) at time instant ¢ = 5.32 of the turbulent viscosity time
L2/v,., effective Rayleigh number Ra, = 1000, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their
maximum values.

V. CONCLUSIONS

Mean-field simulations based on a developed mean-
field theory [50, 51] of a non-rotating sheared turbulent
convection are performed. This mean-field theory de-
scribes an effect of modification of the turbulent heat
flux by the non-uniform large-scale motions caused by
production of essentially anisotropic velocity fluctuations
generated by tangling of the mean-velocity gradients by
small-scale turbulent motions. The effect causes an exci-
tation of large-scale convective-shear instability and the
formation of large-scale convective rolls. During the non-
linear stage of the convective-shear instability, there is a
transition from the two-layer vertical structure with two
roles in the vertical direction before the system reaches
steady-state to the one-layer vertical structure with one
role after the system reaches steady-state. This effect is
observed for all effective Rayleigh numbers.

The performed mean-field simulations show that the
modification of the turbulent heat flux by the non-
uniform large-scale motions results in a strong decrease
of the critical effective Rayleigh number required for the
formation of the large-scale rolls. These mean-field simu-
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FIG. 16. The counter lines of the velocity field (upper panel);
the patterns of the potential temperature deviations éRaT
from the equilibrium potential temperature in the basic refer-
ence state (middle panel); the patterns of the vertical gradient
of the mean potential temperature (V.0 — 1) Ra, (bottom
panel) at time instant ¢ = 0.04 of the turbulent viscosity
time L2 /v, effective Rayleigh number Ra, = 0.5, ¢ = 1073,
a = 0.5 and shear number Sh = 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their
maximum values.

lations have demonstrated that the spatial distribution of
the mean potential temperature has regions with a posi-
tive vertical gradient of the potential temperature inside
the convective roll due to the mean heat flux of the con-
vective rolls. This study might be useful for understand-
ing the origin of large-scale rolls observed in atmospheric
convective boundary layers as well as in numerical simu-
lations and laboratory experiments.
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