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Abstract. Mean field games (MFGs) model equilibria in games with a continuum of weakly interacting
players as limiting systems of symmetric n-player games. We consider the finite-state, infinite-horizon
problem with ergodic cost. Assuming Markovian strategies, we first prove that any solution to the MFG
system gives rise to a (C/

√
n)-Nash equilibrium in the n-player game. We follow this result by proving the

same is true for the strategy profile derived from the master equation. We conclude the main theoretical
portion of the paper by establishing a large deviation principle for empirical measures associated with the
asymptotic Nash equilibria. Then, we contrast the asymptotic Nash equilibria using an example. We solve
the MFG system directly and numerically solve the ergodic master equation by adapting the deep Galerkin
method of Sirignano and Spiliopoulos [33]. We use these results to derive the strategies of the asymptotic
Nash equilibria and compare them. Finally, we derive an explicit form for the rate functions in dimension
two.
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1. Introduction

1.1. Focus of the paper. We consider a finite-state, ergodic mean field game (MFG) to model a large
interacting system of symmetric agents using Markovian strategies. In such games, a representative player
moves according to her jump process on a finite state-space [d] := {1, . . . , d} while subject to an ergodic
cost that depends on a flow of measures. The representative player chooses a control to minimize her cost,
and the control she chooses prescribes her transition rate between states, and hence the distributional
law of her state-dynamics as well. Her distributional law, in turn, is another flow of measures over the
states [d]. When the representative player’s law matches the original measure flow she responded to, we
refer to the control and the flow as a mean field equilibrium (MFE). The representative player’s ergodic
cost is given by:

J0(α, µ) := lim sup
T→∞

1

T
E
[ ∫ T

0
{f(Xα

t , α(t,Xα
t )) + F (Xα

t , µ(t))} dt
]
, (1.1)

where (Xα
t )t≥0 is the position of the representative player using her chosen control α, f+F is the running

cost, and (µ(t))t≥0 is a flow of distributions over [d]. In these terms, we have an MFE when: (1) the
distributional law of the player under control α, L(Xα

t ), equals µ(t) and (2) α minimizes J0(·, µ).
In a typical n-player game, by contrast, players react to the dynamics of others, and when no player has

a cost incentive to change their strategy, we say the profile of all strategies constitutes a Nash equilibrium.
In a symmetric Nash equilibrium, a given player’s strategy will mirror that of any other player, rendering
players indistinguishable from a population perspective. While explicitly solving for Nash equilibria in
finite-player games can be computationally intractable, the relationship between MFGs and n-player
games provides one avenue to approximate Nash equilibria for large, finite-player games. Specifically,
when the number of players n is large, we expect that the dynamics of the representative player in the
MFG are close to the dynamics of any indistinguishable player from the n-player game. Denote the set
of all players [n] := {1, . . . , n}. The cost to player i ∈ [n] is:

Jn,i
0 (x,α) := lim sup

T→∞

1

T
E
[ ∫ T

0

{
f(Xα,i

t , αi(t,Xα
t )) + F (Xα,i

t , µα,i
t )

}
dt
]
, (1.2)
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2 A. COHEN AND E. ZELL

where now α := (α1, . . . , αn) is the collection of strategies for all players, (Xα
t := (Xα,1

t , . . . , Xα,n
t ))t≥0

are the players’ positions, (µα,i
t ))t≥0 is the empirical distribution of all players Xα without the i-th player,

and x is the initial state of the players, Xα
0 = x ∈ [d]n. With respect to a Nash equilibrium, note that

the i-th player minimizing Jn,i
0 can only select her own strategy αi.

One way to characterize the MFG and n-player relationship then, and a focus of this paper, is whether
the controls from the MFE result in an approximate Nash equilibrium when applied in the finite-player
game. That is, when all n players are using the same strategies derived by the MFE, a single player who
switches strategies receives, at most, a marginal benefit that vanishes as the number of players increases.
Since the potential benefit of switching strategies decreases as the number of players increases, we refer
to such strategy profiles as asymptotic Nash equilibria.

Typically, an ergodic MFE is characterized by a MFG system that is, in general, a coupled system of
differential equations. One equation is Kolmogorov’s equation that, evolving forward in time, describes
the distribution of the representative player under the MFE’s control. The second differential equation
is a Bellman equation that includes the value of the MFG (optimal cost) and a potential function, that
characterizes the state-wise deviations from the value. The time-dependent ergodic MFG system is written:

− d

dt
ǔ(t, x) + ϱ̌ = H(x,∆xǔ(t, ·)) + F (x, µ̌(t)),

d

dt
µ̌(t, x) =

∑
y∈[d]

µ̌(t, y)γ∗x(y,∆yǔ(t, ·)),

µ̌(0) = η, t ∈ R+ := (0,∞), x ∈ [d],

(1.3)

where P([d]) is the set of probability distributions over [d], H is the Hamiltonian, ∆x is the finite difference
operator ∆xb := (by − bx)y∈[d], and γ∗x(y,∆yǔ(t, ·)) is the minimizer of the Hamiltonian, representing the
rate to move from state x to state y. The running cost component f is part of the Hamiltonian H. A
solution to (1.3) is a triple (ϱ̌, ǔ, µ̌) where ϱ̌ ∈ R is the value, the potential function is ǔ : R+ × [d] → R,
and the equilibrium measure flow is µ̌ : R+ → P([d]). Any solution to the MFG system is linked to an
MFE : when the representative player uses the rates [γ∗y(x,∆xǔ(t, ·))]x,y∈[d] from the MFG system, then:
(1) the controls and µ̌ constitute an MFE, (2) the player pays the cost ϱ̌, and (3) the representative
player’s law equals µ̌.

Our ergodic systems consider a long-time average cost and so admit a stationary system whose optimal
control, measure flow, and potential function are all independent of time. The stationary ergodic MFG
system, is:

ϱ̄ = H(x,∆xū) + F (x, µ̄),

0 =
∑
y∈[d]

µ̄yγ
∗
y(x,∆xū), x ∈ [d], (1.4)

where any solution is a triple (ϱ̄, ū, µ̄) ∈ R × Rd × P([d]). When the initial data from (1.3), η = µ̄, we
note that (1.4) is a special case of (1.3).

The MFG system is usefully characterized by a single PDE, the master equation. On one hand, the
MFG system fixes the initial distribution of the players beforehand and then solves the system to find the
MFE evolving from that distribution. More advantageously, the master equation solves for every initial
distribution simultaneously. The master equation is particularly useful to study the convergence problem
of (exact) Nash equilibria to the MFE. In this paper, we take the reversed direction, aiming to construct
asymptotic Nash equilibria in the large population game from the MFE. For (x, η) ∈ [d] × P([d]), the
finite-state ergodic master equation was studied in [12] and is given by:

ϱ = H(x,∆xU0(·, η)) + F (x, η) +
∑

y,z∈[d]

ηyD
η
yzU0(x, η)γ

∗
z (y,∆yU0(·, η)). (1.5)

A solution to (1.5) is a pair (ϱ, U0) where ϱ ∈ R is the value of the MFG and U0 : [d] × P([d]) → R is
again referred to as the master equation’s potential function.
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Analogously to finite-horizon models, there are two natural ways to construct asymptotic Nash equi-
libria for the ergodic game: from the MFG system and from the master equation. By using controls from
the MFG system, we mean players compute their optimal strategy through the potential function ǔ and
the minimizer of the Hamiltonian, γ∗, and we expect the

MFG system-derived strategy (γ∗y(X
n,i
t ,∆

Xn,i
t

ǔ(t))t≥0 i ∈ [n], (1.6)

would be approximately optimal in the n-player game. Note that the potential function ǔ is coupled with
the MFE flow µ̌ through the MFG system (1.3) and using the MFG system-derived strategy results in a
player’s law equal to the MFE flow. When instead considering the stationary ergodic MFG system (1.4),
the corresponding strategy is γ∗y(x,∆xū).

We also consider the

master equation-derived strategy (γ∗y(X
n,i
t ,∆

Xn,i
t

U0(·, µn,i
t )))t≥0 i ∈ [n]. (1.7)

Here, µn,i
t denotes the current empirical distribution of the other players when all players are employing

this profile. A property of the master equation assures us that replacing the empirical distribution in the
above by the MFE flow just recovers the MFG system-derived strategy (namely, γ∗y(x,∆xU0(·, µ̌(t))) =
γ∗y(x,∆xǔ(t))) and so does not offer anything new. These two methods differ since, in the former, players
respond to the deterministic flow of measures and their own states, hence can be thought of as controls
while the latter lets players respond to the empirical distribution of the other players. In either case,
players plug in a potential function different from the n-player game’s potential function, which is harder
to calculate.

At first blush, using the MFG system offers an advantage because (1.3) and (1.4) might have solutions
even when (1.5) might not. Moreover, the MFG system-derived strategy is simpler because players only
observe a theoretical MFE flow and their own state rather than the realized empirical distribution.
However, through a numerical example provided in Section 7, we demonstrate the advantages of using
the master equation-derived strategies; specifically, they result in a stationary distribution that is more
concentrated around the stationary MFE, the law of the empirical distribution has fewer deviations to
extreme values, and the realized cost in the n-player game is lower, as opposed to the MFG system-derived
strategies.

1.2. Relevant work. The study of MFGs dates back to the pioneering work by Lasry and Lions [27],
and Huang, Caines and Malhamé, e.g., [20, 19]. Ergodic MFGs on continuous state-spaces consider
diffusions instead of jump processes and trace back to the origins of MFGs by Lasry and Lions [26].
Later, Cardaliaguet and Porretta [6] developed the theory of ergodic MFGs as limits of both finite-
horizon MFGs and of infinite-horizon, discounted MFGs, again on the torus, and treated the ergodic
master equation. The first reference to the finite-state, ergodic MFG comes from Gomes et. al. [17].
Later, Cohen and Zell [12] studied the finite-state ergodic MFG without the contractive assumptions of
[17], and further proved the well-posedness of the finite-state, ergodic master equation. Other finite-state,
ergodic MFG frameworks consider the discrete-time case [16] and with finite action space by Neumann
[32].

In addition to investigating asymptotic Nash equilibria, we can directly compare the optimal cost
functions of the MFG and the n-player game (under exact Nash equilibria). For open-loop controls,
Lacker [22] and Fischer [14] established convergence of both asymptotic and exact Nash equilibria in the
n-player finite-horizon game to the MFE in the corresponding MFG. The convergence in the continuous
state-space, finite-horizon, with Markovian controls was established in the seminal work of Cardaliaguet,
Delarue, Lasry, and Lions [5] using the master equation, and subsequently in the finite state-space by
Cecchin and Pelino [9] and Bayraktar and Cohen [2]. Recently, Lacker [24, 25] showed that the convergence
holds in the continuous state-space, finite horizon with general closed-loop controls (with and without
common noise). The ergodic model in continuous state-space was studied by Arapostathis et al. [1],
establishing the convergence of exact Nash equilibria to the MFE for open-loop controls. In sharp contrast
to the finite-horizon work with closed-loop controls [24] and to the infinite-horizon with open-loop controls
[1], Cardaliaguet and Rainer [7] provided an example of multiple mean field limits in ergodic differential
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games with closed-loop controls, while the corresponding MFG has a unique MFE. The convergence
problem in the ergodic Markovian setting is still an open question.

We emphasize that we study the question of asymptotic Nash equilibria and not convergence of the
optimal value functions, as discussed in the preceding paragraph. In the following section, we precisely
outline this work’s novel contributions.

1.3. Contributions. Section 3 provides the complete presentation of our results, and we describe them
heuristically here. We introduce the MFG system and master equation-derived strategy profiles (1.6)
and (1.7), and prove that they constitute asymptotic Markovian Nash equilibria in Theorem 3.1 and
Theorem 3.2, respectively. Commensurate results for the stationary ergodic MFG system (1.4) follow
from Theorem 3.1 and are provided in Corollary 3.1. In each asymptotic Nash equilibria result, we
also assert that the associated empirical measures converge to the MFE flow as the number of players
grows and refer to this as propagation of chaos. Theorem 3.3 presents corresponding large deviation
results for the empirical measures. We begin by describing two lemmas that assist the proofs of both
Theorem 3.1 and Theorem 3.2, describe the differences between the proofs of each, and afterward speak
to Theorem 3.3.

Since we assume all transition rates are bounded away from zero, and since the state-space [d] is finite
and fully-connected, any jump process on [d] or [d]n must be exponentially ergodic. Lemma 3.1 uses this
fact to prove that, when such a jump process is plugged into a function under a long-time average, the
process’ initial distribution is irrelevant. In particular, Lemma 3.1 removes the ergodic cost’s dependence
on its initial condition. The other intermediary, Lemma 4.2, estimates the difference between an empirical
distribution of players under an arbitrary Markovian strategy profile and the measure flow µ̌ from (1.3).
The bound we prove depends on three things: the difference in the initial conditions, along with an
exponential decay in time; the number of players, n; and, the difference between the arbitrary profile
strategies and the MFG system-derived strategies (1.6).

Section 4 applies these lemmas to prove Theorem 3.1. To prove Theorem 3.1 in the most generality
we can, we do not require that the mean-field cost F is Lasry–Lions monotone nor that the Hamiltonian
H is concave. We use that F is Lipschitz and Lemma 3.1 to compare the costs (1.1) and (1.2), and use
that the strategy is optimal in the MFG to obtain approximate optimality in the n-player game. At one
point, Lemma 4.1, a concentration inequality for Bernoulli variables helps to estimate the error. The
propagation of chaos, in turn, follows from Lemma 4.2, simplified by the fact that the strategies selected
for the n-player game are exactly the controls from the MFG.

Theorem 3.2 establishes that the master equation-derived strategies have propagation of chaos and
constitute an asymptotic Nash equilibrium too. While in Theorem 3.1 players respond to a theoretical
MFE flow and so do not respond to their own system, in Theorem 3.2, players respond to their own
empirical distribution. The main difficulty is the feedback problem arising from the Markovian strategies:

• a player deviates by selecting a different strategy than the others;
• this gives the deviating player her individual dynamics;
• the deviating player’s position is plugged into the strategies of the other players;
• the other players’ positions are plugged into the strategy of the deviating player.

One might already see the issue. If we compare empirical measures with and without a deviating player,
the feedback problem ensures that any naive argument relying only on Lipschitz estimation becomes
stuck in a loop. For the finite-horizon case, Gronwall’s inequality can escape such loops [23], but it
is not applicable for the infinite-horizon. In fact, as mentioned in the introduction, [7] showed that,
for non-Markovian strategies, there may even be multiple limits to the exact Nash equilibria, while the
corresponding MFG has only one MFE.

We address the feedback problem by combining Lemma 4.2 with Lemma 5.2. Now, recall that in
Lemma 4.2, one of the terms in the upper bound for the difference between an empirical distribution of
players under an arbitrary Markovian strategy profile and the measure flow µ̌, is an integral over the
difference between the arbitrary profile strategies and the MFG system-derived strategies (1.6). In the
case of the MFG system-derived strategies, this integral term in the upper bound vanishes. This term does
not vanish for the master equation-derived strategy profile. In the MFG setting, a typical way to deal with



ASYMPTOTIC NASH EQUILIBRIA OF FINITE-STATE ERGODIC MARKOVIAN MEAN FIELD GAMES 5

an integral term like that one is to use the duality of the MFG system. That is, integrating a potential
function against its measure flow as a test function results in estimates that overcome the feedback
problem. However, the MFG system is an ODE system, while what we need to estimates concerning a
random, empirical measure. So for Lemma 5.2, we try to proceed like a standard duality argument, but
encounter random terms that we will need to estimate or that vanish under expectation as martingales.
Consequently, we accumulate n-dependent error that we drag through the proof. The part of the proof of
Theorem 3.2 that concerns Lemma 5.2 uses expectations taken under a stationary distribution. Hence,
we deal with stationary Markovian strategies to start. Toward the end of the proof, we upgrade our
analysis so it handles any Markovian strategy by Lemma 5.1. Lemma 5.1 relies on an auxiliary ergodic
system that we construct through (another) auxiliary discounted system and by sending the discount
factor to zero. We then prove the optimal strategy for a deviating player is stationary Markovian and
use this fact to finish the proof of Theorem 3.2.

Lastly, Theorem 3.3 obtains large deviations results: (1) for the different empirical measures’ laws
at a fixed time, (2) for the laws of the measure’s paths, and (3) for the invariant distributions. Like
Theorem 3.2, the proof of the large deviation principle requires that F is monotone and H concave, but
this time much of the heavy lifting is done by [4]. We only need to verify assumptions concerning ODE
stability for the Kolmogorov equation from (1.3) and the details are presented in Section 6.

In the final part of the paper, Sections 7 and 8, we study a numerical example to elucidate differences
between MFG system-derived and master equation-derived asymptotic Nash equilibria. We contrast the
strategies, the stationary distributions of the empirical distributions, the large deviation rate functions,
and the players’ realized costs. As we discuss, the master equation-derived strategies result in a lower
realized cost to the players than those of the MFG.

Computing the master equation-derived strategies requires computing U0 and, since the master equa-
tion is a fully nonlinear PDE, it is not clear how to analytically do this, even for a concrete example. To
approximate the solution to the master equation, we adapt the deep Galerkin method (DGM) of [33] to
the ergodic master equation in Algorithm 1. The DGM samples the state-space of the PDE, and using
the PDE as part of the loss function of a neural network, trains the network to approximate the solution
to the PDE. For the last leg of the numerics, we return to the large deviation principles established in
Theorem 3.3. In the case the dimension d = 2, we recognize a way to interpret the empirical measures as
a birth-death process and introduce a function that we can use to prove an explicit formula for the good
rate functions holds; we present this special case in an ancillary result, Theorem 8.1.

1.4. Outline of the paper. In Section 2 we introduce the n-player ergodic game and the assumptions
we consider. After, Section 3 presents the main theorems of the paper. Section 4 gives the proof for
Theorem 3.1 through its several lemmas and Section 5 does the same for Theorem 3.2. Briefly, Section 6
gives the proofs for the large deviation result Theorem 3.3. In Section 7, we begin to numerically
investigate the different aspects of the asymptotic Nash equilibria, where one profile is derived from
the MFG system and one from the master equation. Finally, Section 8 concludes the paper with the
numerics pertaining to large deviations. We conclude the current section by introducing some commonly
used notation.

1.5. Notation and basic definitions. We denote the ray [0,∞) by R+, the set of positive integers by

N, and the set of positive integers larger than one by N>1. Let 1⃗ ∈ Rd be the vector of all ones, so k1⃗
will be an additive constant vector appearing in the context of uniqueness of potential functions. We also
denote the sets [n] := {1, 2, . . . , n} and [d] := {1, 2, . . . , d}, where n denotes a number of players and d the
number of states. Let 1A be the indicator function corresponding to the event A; that is, the function
that is 1 on A and 0 on its complement. The parameters i, j, and k (resp., x, y, and z) represent a player
(reps., state) and belong to [n] (resp., [d]). For any random variable Y with distributional law L(Y ), we
may write Y ∼ L(Y ). Fix two positive real numbers 0 < al < au < +∞. For any d ∈ N>1 and m ∈ N>1,
we set:

P([d]) :=
{
η ∈ Rd

+ :
∑
x∈[d]

ηx = 1
}
, a (d− 1)-dimensional simplex,



6 A. COHEN AND E. ZELL

Pm([d]) :=
{
η ∈ P([d]) : mη ∈ (N ∪ {0})d

}
, valid configurations of m players,

Ad
−x :=

{
a ∈ Rd : ∀y ̸= x, ay ∈ [al, au], ax = −

∑
y,y ̸=x

ay

}
, allowable rates leaving state x,

Ad
[d] :=

⋃
x∈[d]

Ad
−x, all allowable rates.

Moreover, let Q be the set of d × d rate matrices; that is, α ∈ Q if for every distinct x, y ∈ [d], αxy ≥ 0
and

∑
z∈[d] αxz = 0. When necessary, we denote the Lipschitz constant of a given function h by CL,h

and a bound by Ch. For any x ∈ [d] and p ∈ Rd, set ∆xp := (py − px)y∈[d]. For a function K mapping

Rd ∋ p 7→ K(p) ∈ R, we denote its gradient by Kp or DpK and Hessian matrix by Kpp. We also use
derivatives on the simplex as follows. When K : P([d]) → R is a measurable function, we say that K is
differentiable if there exists a function Dη

yzK : P([d]) → Rd×d such that

Dη
yzK(η) = lim

h→0+
h−1(K(η + h(ez − ey))−K(η))

for all z ∈ [d], where ey is the y-th standard basis vector in Rd. Denote the vector Dη
yK := (Dη

yzK)z∈[d]
and the matrix DηK := (Dη

yzK)y,z∈[d]. The set of continuous functions with at least one continuous

derivative, which are defined on R+ and with values in some Banach space X, is denoted C1(R+, X).
Lastly, for K : [d]× P([d]) → R we say K is Lasry–Lions monotone if for all η, η̂ ∈ P([d]),∑

x∈[d]

(K(x, η)−K(x, η̂))(ηx − η̂x) ≥ 0.

2. The model

In Section 2.1, we describe the n-player, finite-state ergodic game model. The assumptions about the
models are listed in Section 2.2. Next in Section 2.3, we introduce the corresponding ergodic MFG via its
dynamics. Then, we recall some results about the ergodic MFG systems (1.3) and (1.4) as well as their
connection to the master equation (1.5).

2.1. The n-player model. Throughout the paper, we consider a filtered probability space (Ω,F , {Ft}t∈R+ ,P),
satisfying the usual conditions, supporting Poisson random measures and jump processes as we detail
below.

We consider a finite-state, continuous-time, symmetric n-player game with weak interactions. We
begin by describing the n-player game’s dynamics. The state-space is the finite set [d], where d is an
integer larger than one. Players choose their rates of transition from their own state to the other states
and each player aims to minimize a personal cost. Both the transition rates and the cost depend on the
players’ current states.

Denote the players’ positions via the vector x := (x1, . . . , xn) ∈ [d]n. Players move at rates from
the compact set A = [al, au] ⊂ R+. A measurable function α : R+ × [d]n → Rd satisfying αy(t,x) ∈ A
for any y ̸= xi, and αxi(t,x) = −

∑
y∈[d],y ̸=xi

αy(t,x) is called a Markovian strategy for player i ∈ [n].

Whenever α is independent of the time component we refer to it as a stationary Markovian strategy. For
y ̸= xi, the magnitude αi

y(t,x) represents the transition rate of player i from its own state xi to state

y, when the rest of the players are in states x−i := (xj : j ∈ [n] \ {i}). Denote by An,i (resp., An,i
S )

the set of all Markovian strategies (resp. stationary Markovian strategies) for each one of the players.

Then α := (αi : i ∈ [n]) ∈ A(n) :=
∏n

i=1An,i (resp., α = (αi : i ∈ [n]) ∈ A(n)
S :=

∏n
i=1A

n,i
S ) is called a

Markovian strategy profile (or respectively, stationary Markovian strategy profile).
For the following description of player dynamics, fix a number n ∈ N>1, an initial state for the players

x ∈ [d]n, and a Markovian strategy profile α ∈ A(n). Often, we will refer to the n-players’ initial state
as a configuration of the players. Given the fixed Markovian strategy profile α, the process standing
for the dynamics of the n-players on [d]n is denoted by the bold vector (Xt)t≥0. On occasions when we
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want to emphasize the dependence of X on the Markovian strategy profile α, we denote it by (Xα
t )t≥0.

Rigorously, the dynamics of player i are given by the jump process:

Xα,i
t = Xα,i

0 +

∫ t

0

∫
Ad

∑
y∈[d]

(y −Xα,i
s− )1{ξy∈(0,αi

y(s
−,Xα

s−
))}Ni(ds, dξ),

where {Ni}i∈[n] are i.i.d. Poisson random measures with common intensity measure ν given by:

ν(E) :=
∑
y∈[d]

Leb(E ∩ Ad
y), (2.1)

where Ad
y := {u ∈ Ad | ux = 0 for all x ̸= y} and Leb is the Lebesgue measure on R.

Recall that each player attempts to minimize the cost (1.2) that is a function of the initial configuration
x ∈ [d]n and the Markovian strategy profile α. We have that f : [d] × Ad

[d] → R is measurable, F :

[d]× P([d]) → R is measurable, and

µα,i
t :=

1

n− 1

∑
j∈[n],j ̸=i

δ
Xα,j

t
.

As a technicality, we also assume that f(x, α(t,x)) should be independent of the x-th coordinate of α(t,x).
This technical assumption is justified since the x-th coordinate of the function α(t,x) for a player in a
state x does not represent a rate, but rather the negative sum of the player’s other rates. In that sense,
f already accounts for the “payment” for the player’s rates. With this game setup, we have a notion of
ε-Nash equilibrium:

Definition 2.1. The Markovian strategy profile α ∈ A(n) is called an ε-Nash equilibrium profile for the
n-player ergodic game if for any i ∈ [n] and any βi ∈ An,i, one has

Jn,i
0 (x,α) ≤ Jn,i

0 (x, [α−i;βi]) + ε,

where

[α−i;βi] := (α1, . . . , αi−1, βi, αi+1, . . . , αn).

For all n ∈ N>1, let α(n) ∈ A(n) be a εn-Nash Markovian equilibrium. We say that (α(n))n∈N>1 is an
asymptotic Nash equilibrium whenever εn → 0 as n → ∞.

Remark 2.1. While we define an ε-Nash equilibrium in terms of Markovian strategies and not stationary
Markovian strategies, an ε-Nash equilibrium can be a stationary Markovian strategy profile. This means
that the deviation of one player, even to a time-dependent strategy, will not benefit that player by more
than ε.

Definition 2.2. A Markovian strategy profile α := (αi)i∈[n] is called symmetric if for all players i, j ∈ [n],

whenever xi = xj , for all t ∈ R+, and x ∈ [d]n:

αi(t,x) = αj(t,x).

For a stationary Markovian strategy profile to be called symmetric, the definition is the same, except
there is no time component of αi, αj .

2.2. Assumptions. We require a few assumptions that we split into two sets. The first set of assump-
tions is labeled with an A. We refer to this set of assumptions as the reduced assumptions. The reduced
assumptions are sufficient to establish the main result concerning asymptotic Nash equilibria, Theo-
rem 3.1. For Theorem 3.2 and Theorem 3.3, we require additional regularity of the functions comprising
the problem data. These assumptions are denoted with a B. The set of all assumptions (both A and B
indexed) are referred to as full assumptions.

(A1) For 0 < al < au < ∞, the action space is A := [al, au].
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Consider the Hamiltonian H : [d]×Rd → R and the optimal selector function γ∗ : [d]×Rd → Ad
[d], given

by:

H(x, p) := min
a∈Ad

−x

{
f(x, a) + a · p

}
, γ∗(x, p) := argmin

a∈Ad
−x

{
f(x, a) + a · p

}
.

(A2) We assume that the Hamiltonian H admits a unique optimal rate selector given by the measurable
function γ∗. Moreover, γ∗ is Lipschitz in its p argument.

The latter assumptions hold, for instance, when the running cost component f is strictly convex in the
control/strategy α. In fact, the optimal rate selector γ∗ is globally Lipschitz when f is uniformly convex.

(A3) Given any state x ∈ [d], the mean field cost F (x, ·) ∈ C1(P([d])) is Lipschitz continuous.

Consequently, F (x, ·) is bounded since it is defined on a compact set. Lastly, we assume:

(B1) Additionally, the mean field cost F is Lasry–Lions monotone and DηF (x, ·) is Lipschitz.
(B2) The Hamiltonian H is twice continuously differentiable with respect to its p-argument. Moreover,

on any compact set [−K,K] we will assume that DpH and D2
ppH are Lipschitz in p and that

there exists C2,H > 0 such that:

D2
ppH(x, p) ≤ −C2,H .

Because any argument ofH in the paper will be uniformly bounded, it is enough to assume these regularity
properties of H only on compact sets. At any point when H is differentiable, we have by [17, Proposition
1] that:

γ∗(x, p) = DpH(x, p). (2.2)

Remark 2.2. The full assumptions are considered standard in MFG literature—for instance, [12, 2, 9]
all consider finite-state MFGs with a concave (or if they maximize a profit instead of minimizing a
cost, convex) Hamiltonian and a separable cost f + F , with Lasry–Lions monotone assumptions on F .
These assumptions are typical for studying the well-posedness of the MFG and master equation over
continuous state-spaces as well [5, 6, 3]. However, some papers consider alternate assumptions to deal
with Hamiltonians of a different form. A few examples of alternate schemes include: [15] considers a
displacement monotonicity condition allowing for analysis of non-separable Hamiltonians, [30] considers
non-smooth Hamiltonians under technical assumptions, and [31] considers an anti-monotonicity condition.
Each approach is able to handle data that the other approaches cannot. By considering the reduced
assumptions when appropriate, we prove Theorem 3.1 in the greatest generality so that it might be
widely applicable.

2.3. The ergodic MFG, the MFG systems, and the master equation. The finite-state stationary
ergodic MFG system (1.4) was first studied in [17] under additional contractivity assumptions. Later,
[12] studied the same MFG system without any contractivity assumptions and we recall the major points
here.

In an ergodic MFG, the representative player chooses a measurable control function α : R+×[d] → Ad
[d]

while playing against a measure flow µ : R+ → P([d]) in order to minimize the long-run average cost
(1.1).

The representative player’s position evolves according to a controlled jump process, given by:

Xα
t = Xα

0 +

∫ t

0

∫
Ad

∑
y∈[d]

(y −Xα
s−)1{ξy∈(0,αy(s−,Xα

s−
))}N (ds, dξ),

where Xα
0 has the distributional law µ(0) and N is a Poisson random measure with intensity measure ν

as in (2.1). For the next definition, recall the ergodic cost function in the MFG, J0, provided in (1.1).

Definition 2.3 (Ergodic MFE). Let α ∈ A and µ : R+ → P([d]). Let Xα be the dynamics of the
representative player using α. We say that (α, µ) is an ergodic MFE if the following hold:

• For all t ∈ R+, L(Xα
t ) = µ(t),
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• and the control α satisfies:
J0(α, µ) = inf

β∈A
J0(β, µ).

Typically in ergodic problems, there is an optimal cost or value that is independent of the initial
state. Moreover, the long-time averaging in the cost often yields a stationary Markovian optimal control
and hence a stationary measure that describes a limiting law for the representative player. We saw
this stationarity in the system (1.4) from before while the general system was given in (1.3). For any
solution (ϱ̄, ū, µ̄) to (1.4), and there could be more than one solution, note that the potential function ū
is modifiable up to addition of a constant vector—this comes from the fact that ū only appears in (1.4)
as the finite difference vector ∆xū.

The result of [12, Proposition 2.1] proved that the stationary ergodic MFG system (1.4) is well-
posed and that any solution to it naturally characterizes a mean field equilibrium, while any mean field
equilbrium naturally characterizes a solution. The first main point is recalled here:

Proposition 2.1. With reduced assumptions, (1.4) admits a solution, and, with full assumptions, the
solution to (1.4) is unique. We emphasize that for a unique solution (ϱ̄, ū, µ̄) to (1.4), the potential

function ū is only unique up to an additive constant vector k1⃗, k ∈ R. Moreover, under the reduced
assumptions, ((γy(x,∆xū))x,y∈[d], µ̄) is an ergodic MFE and so for all t > 0:

X (γy(x,∆xū))x,y∈[d]

t ∼ µ̄, with ϱ̄ = J0((γy(x,∆xū))x,y∈[d], µ̄)

when X (γy(x,∆xū))x,y∈[d]

0 ∼ µ̄.

The proof of existence under reduced assumptions is not explicitly provided in [12], but a look at
the proofs for existence allows us to recognize that only the reduced assumptions are used there. For
the time-dependent system, [18] studied an example that fits under the reduced assumptions, where a
solution to (1.3) exists only when η is in a neighborhood of µ̄. Moreover, (1.3) and the master equation
(1.5) are only known to have a solution (for all initial data) under the full assumptions; in that case,
the solutions to (1.3), (1.4), and (1.5) are also unique. The main points of [12, Theorem 2.1] and the
relationship between (1.3) and (1.5) are recalled below.

Proposition 2.2. Under the full assumptions, (ϱ, U0) has a unique solution, where U0 is unique up

to an additive constant vector k1⃗, k ∈ R. Similarly, the solution (ϱ̌, ǔ, µ̌) to (1.3) is unique. The
potential function U0 is Lipschitz and Lasry–Lions monotone with a Lipschitz derivative DηU0 as well.
The relationship between the MFG system and master equation is given by:

U0(x, µ̌(t)) = ǔx(t), and ϱ = ϱ̌.

Moreover, for any initial condition µ̌(0) = η ∈ P([d]), ((γy(x,∆xǔ(·)))x,y∈[d], µ̌) is an ergodic MFE and
there exist C, c > 0 independent of η such that for all t > 0,

X (γ∗
y (x,∆xǔ(t)))x,y∈[d]

t ∼ µ̌(t), with ϱ̌ = J0((γy(x,∆xǔ(t)))x,y∈[d], µ̌), and |µ̌(t)− µ̄| ≤ Ce−ct,

when X (γ∗
y (x,∆xǔ(t)))x,y∈[d]

0 ∼ µ̌(0).

We now make some final remarks on the time-dependent ergodic MFG system (1.3).

Remark 2.3. Under the full assumptions, there is a way to construct the solution for (1.3) for any initial
condition η ∈ P([d]). Let (ϱ, U0) satisfy (1.5), and define µ0 : R+ → P([d]) as the solution to:

d

dt
µ0(t, x) =

∑
y∈[x]

µ0(t, y)γ
∗
x(y,∆yU0(·, µ0(t))), µ0(0) = η ∈ P([d]), (2.3)

where we abuse notation and denote the x-th coordinate of µ0(t) by µ0(t, x), hence referring to µ as a
mapping from R+ × [d] → [0, 1]. Note that under the full assumptions, ϱ̌ = ϱ̄ = ϱ. Note that (2.3) is
a forward Kolmogorov equation associated with a Markov jump process X 0, where X 0 jumps with rates
[γ∗y(x,∆xU0(·, µ0(t)))]x,y∈[d]. Next, set u0(t, x) := U0(x, µ0(t)). By a short computation, we can verify
that (ϱ, u0, µ0) satisfies (1.3). Of course, for η = µ̄, the solution would be the stationary one (ϱ̄, ū, µ̄) to
(1.4).
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Remark 2.4. At the same time, we note that any stationary solution (ϱ̄, ū, µ̄) solving (1.4) solves (1.3)
with µ̌(0) = µ̄. Therefore Proposition 2.1 implies that, even under the reduced assumptions, there is a
solution to (1.3) for at least one initial condition.

Remark 2.5. All the potential functions, ǔ, ū, and U0, are only unique up to addition of a constant
vector, k1⃗, k ∈ R. For (1.3) this means that ǔ can be unbounded as t changes. To avoid this we will say
that (ϱ̌, ǔ, µ̌) is a solution to (1.3) only when ǔ is bounded. For both examples given in Remark 2.3 and
Remark 2.4, ǔ is bounded because U0 is bounded.

3. Asymptotic Results

In this section we provide the results for the three kinds of asymptotic Nash equilibria derived from:
the time-dependent MFG (1.3), the stationary MFG system (1.4), and the master equation (1.5). The
following subsection introduces the large deviation results for the empirical distributions of each of these
asymptotic equilibria, formulated generally.

3.1. Asymptotic Markovian Nash-equilibria. Before presenting the asymptotic Markovian Nash
equilibria, we introduce a lemma that eliminates the dependence on the initialization for long-time aver-

aging under expectation, particularly for Jn,i
0 . For the rest of the paper, we write Eπ[g(Xt)] to denote

the conditional expectation E[g(Xt) | X0 ∼ π], for g a measurable function. For example, g(Xt) might
be the empirical distribution of Xt.

Lemma 3.1. Fix n ∈ N>1. Let (βi)i∈[n] = β ∈ A(n), and let g : [d]n → R be measurable and bounded.

If (Xβ
t )t≥0 is the jump process of players using the profile β, then for all π0, π1 ∈ P([d]n):

lim sup
T→∞

1

T
Eπ0

∫ T

0
g(Xβ

t )dt = lim sup
T→∞

1

T
Eπ1

∫ T

0
g(Xβ

t )dt.

The proof of this lemma is standard and follows typical ergodicity techniques. For the sake of
completeness, its proof is provided in the Appendix.

Remark 3.1. By Lemma 3.1, we obtain that the n-player ergodic cost Jn,i
0 is independent of the initial

configuration of players. So for a Markovian strategy profile β ∈ A(n) and configuration x ∈ [d]n, we may

write Jn,i
0 (x,β) as Jn,i

0 (β) without confusion. When β is symmetric, the costs for all the players are the
same and we may further simplify the notation and write the latter as Jn

0 (β).

For any Markovian strategy profile β := (βi)i∈[n] ∈ A(n), denote by (Xβ
t )t≥0 the jump process of all

players using β and (Xβ,i
t )t≥0 the position of the i-th player. Denote (µβ

t )t≥0 as the empirical measure of

(Xβ
t )t≥0 and, after removing the i-th player as (µβ,i

t )t≥0. The empirical distribution µβ has the dynamics:

µβ
t = µβ

0 +

∫ t

0

∑
x,y∈[d]

ey − ex
n

dKβ
xy(s), (3.1)

where:

Kβ
xy(t) =

∫ t

0

∫
Ad×d

1{[
0,

∑
i∈[n] 1{Xβ,i

s−
=x}

βi
xy(s

−,Xβ

s−
)

)}Kβ
xy(ds, dr), (3.2)

and Kβ
xy is a Poisson random measure with jump intensity given by:

ν̃(A) :=
∑

x,y∈[d]

Leb(A ∩ Axy), Axy := {u ∈ Ad×d | uwz = 0 ∀(w, z) ̸= (x, y)}.

We note that the compensator for this random measure is:∫ t

0

∑
i∈[n]

1{Xβ,i
s =x}β

i
xy(s,X

β
s )ds.
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Now with the requisite background, we introduce the main theoretical results of the paper. The first,
Theorem 3.1, asserts that any solution to the time-dependent ergodic MFG system gives an approximate
Nash equilibrium when applied in the n-player game; moreover, for the empirical measure associated with
this profile, we have the propagation of chaos.

Theorem 3.1. Assume the reduced assumptions hold. Let η ∈ P([d]) and assume (1.3) has a solution
(ϱ̌, ǔ, µ̌) with initial condition µ̌(0) = η, as with the examples given in Remarks 2.3 and 2.4. Then there
exists C > 0, independent of n and η, such that the Markovian strategy profile:

Γ̌ :=
(
γ̌
)
i∈[n], γ̌(t) := [γ∗y(x,∆xǔ(t))]x,y∈[d],

is a Markovian (C/
√
n)-Nash equilibrium. Moreover, the cost for each player in the game, Jn

0 (Γ̌), satisfies

|Jn
0 (Γ̌)− ϱ̌| ≤ C√

n
. (3.3)

Also, there exists c > 0 such that for any π ∈ P([d]n) and any n ∈ N>1,

Eπ|µΓ̌
t − µ̌(t)| ≤ Ce−ctEπ|µΓ̌

0 − µ̌(0)|+ C√
n
. (3.4)

Suppose (X Γ̌,i
0 )i∈[n] are exchangeable, though not necessarily independent, with X Γ̌,i

0 ∼ µ̌(0) = η for all
i ∈ [n]. For π = π̌, the joint distribution induced by this initialization, we have from (3.4) that:

sup
t∈R+

Eπ̌|µΓ̌
t − µ̌(t)| ≤ C√

n
. (3.5)

Remark 3.2. The assumption that µ̌(0) is not on the boundary of P([d]) is so that we can assume there
exists some constant q > 0 for which µ̌x(t) > q for all x ∈ [d] and for t ∈ R+. When µ̌(0) is on the
boundary, we can replace the final display with:

sup
t≥1

Eπ̌|µΓ̌
t − µ̌(t)| ≤ C√

n
,

though the choice of 1 is arbitrary—any positive constant would do. This is because we must allow
a moment for the measure to enter the interior of the simplex. Since the transition rates between any
states are bounded away from zero, the deterministic process µ̌ will always move away from the boundary.
Throughout the remainder of the paper, this technical point will remain implicit in any statement of a
supremum over all t ∈ R+, except for Lemma 4.1, where we note a few details.

Remark 3.3. For the Markovian strategy profile Γ̌, each player plays according to her own state and a
deterministic flow of measures. We emphasize that we allow the deviating player to use a strategy based
on the current time as well as the knowledge of the current states of all the players. As we will show,
this extra information does not help the deviating player that much, since they can only improve their
cost by at most C/

√
n.

Remark 3.4. Recent work by Höfer and Soner [18] studies an example of non-unique solutions to (1.3)
when d = 2 under a specified anti-monotone mean field running cost F , and quadratic running cost f .
They show that, for certain choices of constants in the rates A and by scaling F , there are infinitely-
many distinct MFE. Fortunately, Theorem 3.1 applies to these examples as well. Since we only require the
reduced assumptions, we can accommodate these examples and prove that the infinitely-many equilibria
studied in [18] constitute (C/

√
n)-Nash equilibria as well.

With Theorem 3.1 in hand, which provides an asymptotic Markovian Nash equilibrium based on the
time-dependent ergodic MFG system (1.3), we recall that the stationary ergodic MFG system (1.4) is a
special case of (1.3) with the initial state η = µ̄. Consequently, strategies derived from the stationary

system also yield an asymptotic Markovian Nash equilibrium. Namely, let µΓ̄
t be the empirical distribution

of n players using the time-stationary Markovian strategy profile:

Γ̄ := (γ̄)i∈[n] where γ̄ := [γ∗y(x,∆xū)]x,y∈[d]. (3.6)

So, when Γ̌ = Γ̄, we can apply Theorem 3.1 to get the following corollary.
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Corollary 3.1. Assume the reduced assumptions hold. Then, the stationary ergodic MFG system (1.4)
has a solution (ϱ̄, ū, µ̄). Additionally, there exists C > 0, independent of n, such that the Markovian
strategy profile Γ̄ is a Markovian (C/

√
n)-Nash equilibrium. Moreover, the cost for each player in the

game, Jn
0 (Γ̄), satisfies

|Jn
0 (Γ̄)− ϱ̄| ≤ C√

n
. (3.7)

Also, for any π ∈ P([d]n),

Eπ|µΓ̄
t − µ̄| ≤ Ce−ctEπ|µΓ̄

0 − µ̄|+ C√
n
. (3.8)

Suppose (X Γ̄,i
0 )i∈[n] are exchangeable, though not necessarily independent, with X Γ̄,i

0 ∼ µ̄ for all i ∈ [n].
For π = π̄, the joint distribution induced by this initialization, we have from (3.8) that:

sup
t∈R+

Eπ̄|µΓ̄
t − µ̄| ≤ C√

n
.

The next result shows that the time-dependent Markovian strategy using the master equation’s po-
tential function U0 is also a (C/

√
n)-Nash equilibrium. For brevity’s sake, we will write the Markovian

strategy profile as:

Γ0 := (γ0)i∈[n], γ0(t) := [γ∗y(x,∆xU0(·, µΓ0,−x
t ))]x,y∈[d]. (3.9)

where (µΓ0,−x
t )t≥0 is the empirical measure (µΓ0

t )t≥0, but with one fewer player in state x.
Note that in (3.9), we substitute the empirical distribution into the solution of the master equation,

whereas in (3.6), the strategy is based solely on the stationary MFG solution. This difference implies
that the following theorem cannot be treated as a corollary and requires a distinct proof.

Theorem 3.2. Assume the full assumptions are in force. There exists C > 0, independent of n, such
that the strategy profile Γ0 is a Markovian (C/

√
n)-Nash equilibrium. Moreover, the cost for each player

in the game, Jn
0 (Γ0), satisfies

|Jn
0 (Γ0)− ϱ| ≤ C√

n
.

With π0, the stationary distribution of XΓ0 , and for all π ∈ P([d]n):

lim sup
T→∞

Eπ|µΓ0
T − µ̄| = Eπ0 |µ

Γ0
0 − µ̄| ≤ C√

n
. (3.10)

As with Γ̌ and Γ̄, we allow a player deviating from Γ0 to use full information about their system, but
that this information will not benefit them by more than C/

√
n.

3.2. Large deviations results. We start with a remark about µ̄ and how it is an equilibrium for Kol-
mogorov’s equation. Specifically, the large deviation results we provide require a globally asymptotically
stable equilibrium and we flesh out precisely what we mean by this. Then, we introduce the laws featured
in the large deviations result and the good rate functions for each law. For all large deviation results, we
assume the full assumptions are in force.

Proposition 3.1. Let (ϱ̄, ū, µ̄) be the unique stationary solution to (1.4). Then, µ̄ is the unique globally
asymptotically stable equilibrium for (2.3).

Remark 3.5. As a reminder, µ̄ is an equilibrium to (2.3) means that µ̄ satisfies:

0 =
∑
y∈[d]

µ̄yγ
∗
x(y,∆yU0(·, µ̄)),

that is, the derivative term in (2.3) is 0. Recalling that U0(·, µ̄) = ū from Proposition 2.2, we see that
this amounts to µ̄ solving the measure equation from the stationary ergodic MFG system (1.4). Finally,
to be globally asymptotically stable means that for all initial conditions η ∈ P([d]), the solution µ0 to
(2.3) tends to µ0(t) → µ̄ as t → ∞. For more about this definition, see [34, Section 3].
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The main theorem deals with large deviations of the empirical measures. We will state the theorem

in terms of κn ∈ {µΓ0 , µΓ̄} and the corresponding rates aκ ∈ {γ0, γ̄} from (3.9) and (3.6). We provide
three large deviation results, for:

L n
T := P ◦ (κnT )−1, for L n

[0,T ] := P ◦ ((κnt )t∈[0,T ])
−1,

and for L n
∞, the unique invariant measure for the process κn For each law, there are good rate functions

that we take an aside to define. So, define:

τ(a) := ea − a− 1,

and its Legendre transform:

τ∗(a) :=


(a+ 1) log(a+ 1)− a, a > −1,

1, a = −1,

+∞, a < −1.

Denote the set of all absolutely continuous functions R+ → P([d]) as Cabs and for a few forthcoming
matrices, we will denote the transpose of a matrix B by B∗. Define the subset:

Cη
abs :=

{
µ ∈ Cabs | µ(0) = η, µ̇(t) = L(t)∗µ(t), for some L : R+ → Q is measurable

}
.

Define also a function S[0,T ](· | η) : C
η
abs → R as:

S[0,T ](µ | η) :=
∫ T

0
ξ(t, y)aκx,y(µ(t))τ

∗
( Lx,y(t)

aκx,y(ξ(t))
− 1

)
dt.

For ξ ∈ P([d]), set Aξ := [aκx,y(ξ)]x,y∈[d]; so aκx,y(ξ) = γ∗y(x,∆xU0(·, ξ)) for κn = µΓ0 , and aκx,y(ξ) = γ̄xy =

γ∗y(x,∆xū) for κn = µΓ̄. So for κn = µΓ̄, aκ(ξ) is independent of ξ. As proved in [4, Theorem 3.2],
S[0,T ](µ | η) can be written in an equivalent form as:

S[0,T ](µ | η) =
∫ T

0
|||µ̇(t)−A∗

µ(t)µ(t)|||µ(t)dt, (3.11)

where we adopt the notation from [4] for the function |||R|||ξ meaning:

|||R|||ξ := sup
ϕ:[d]→R

[ ∑
x∈[d]

Rxϕx −
∑

x,y∈[d]

τ(ϕy − ϕx)ξxa
κ
x,y(ξ)

]
.

We note that ||| · |||ξ is not a norm. Through S[0,T ](· | η) we can define ST (· | η) : P([d]) → R as:

ST (ξ | η) := inf
{
S[0,T ](µ | η) | µ ∈ Cη

abs, µ(T ) = ξ
}
. (3.12)

Finally, we can define:

s(η) := inf
µ

∫ ∞

0

∑
x,y∈[d]

µ(t, y)aκx,y(µ(t))τ
∗
( L̂x,y(t)

aκx,y(µ(t))
− 1

)
dt, (3.13)

and the infimum is taken over all µ : R+ → P([d]) such that µ(0) = η, limt→∞ µ(t) = µ̄, and µ satisfies
the reversed Kolmogorov equation:

µ̇(t) = −L̂(t)µ(t), t ≥ 0,

for some measurable L̂ : R+ → Q. For a reference on large deviations for particle systems with jumps,
see [29].

Theorem 3.3 (Large Deviations). For all T > 0, the laws L n
[0,T ], L n

T , and L n
∞ satisfy large deviation

principles with speed n and good rate functions given by S[0,T ] (3.11), ST (3.12), and s (3.13), respectively.
Explicitly, let E be any Borel subset of P([d]), denote its interior and closure by int(E) and cls(E),
respectively, and we have:

− inf
η∈int(E)

ST (η | µ̄) ≤ lim inf
n→∞

n−1 log(L n
T (E)) ≤ lim sup

n→∞
n−1 log(L n

T (E)) ≤ − inf
η∈cls(E)

ST (η | µ̄),
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and
− inf

η∈int(E)
s(η) ≤ lim inf

n→∞
n−1 log(L n

∞(E)) ≤ lim sup
n→∞

n−1 log(L n
∞(E)) ≤ − inf

η∈cls(E)
s(η).

Now let G be a Borel set in the Skorohod topology of the space Cµ̄
abs. We also have:

− inf
η∈int(G)

S[0,T ](η | µ̄) ≤ lim inf
n→∞

n−1 log(L n
[0,T ](G))

≤ lim sup
n→∞

n−1 log(L n
[0,T ](G)) ≤ − inf

η∈cls(G)
S[0,T ](η | µ̄).

4. Proofs for Theorem 3.1

In this section, we give the proof for Theorem 3.1 concerning the asymptotic Nash equilibria derived
from the time-dependent ergodic MFG (1.3). The first lemma we require is Lemma 4.1, which gives a
concentration inequality for players using a symmetric Markovian strategy profile when they are initialized
the same way. The second, Lemma 4.2, compares an empirical measure under an arbitrary Markovian
strategy profile to µ̌. The bound we derive will depend on the time t, the initial conditions of each system,
the number of players n, and the difference between the strategies. The two prior lemmas combine to
obtain the propagation of chaos estimate (3.4) that allows us to compare mean field costs F at one point
in the proof of the theorem.

Throughout this section, we require the reduced assumptions only. In the forthcoming proofs, C and
c will be positive constants that may change value from one line to the next. Whenever C and c appear
in the proofs, they depend only on the problem data and we emphasize that they are always independent
of n, t, and any initialization of the players. The concentration inequality lemma is:

Lemma 4.1. Let β be a symmetric Markovian strategy profile with β := (βi)i∈[n], βi ∈ An,i, and

let Xβ be the jump process of all players using β. Suppose further that (Xβ,i
0 )i∈[n] are exchangeable

though not necessarily independent. So, all processes are initialized the same way; that is, for all i ∈ [n],

L(Xβ,i
0 ) = L(Xβ,1

0 ). Let πβ ∈ P([d]n) be the joint distribution induced by this initialization. Then, for

all i ∈ [n] and for all t ∈ R+, L(Xβ,i
t ) = L(Xβ,1

t ). Assume L(Xβ,1
0 ) is not on the boundary of P([d]).

Then there exists q > 0 depending only on A such that for all t ∈ R+, and all i ∈ [n],

L(Xβ,i
t )x > q > 0 and 1− L(Xβ,i

t )x > q > 0 for all x ∈ [d].

Moreover, there exists C > 0, independent of n, so that:

sup
t∈R+

Pπβ

(∣∣∣ 1
n

∑
j∈[n]

δ
Xβ,j

t
(x)− L(Xβ,1

t )x

∣∣∣ ≥ y
)
≤ 2e−ny2/4q, (4.1)

sup
t∈R+

Eπβ |µβ
t − L(Xβ,i

t )| ≤ C√
n
. (4.2)

When L(Xβ,1
0 ) is on the boundary of P([d]), there exists such q for t ≥ 1 and so we must modify the

suprema in (4.1) and (4.2) to be over all t ≥ 1.

Also let (ϱ̌, ǔ, µ̌) be a solution to the time-dependent ergodic MFG system (1.3). As formulated in
the statement of the theorem, recall that γ̌xy(t) := γ∗y(x,∆xǔ(t)) and set γ̌x := (γ̌xy)y∈[d], γ̌ := (γ̌x)x∈[d],

and Γ̌ := (γ̌)ni=1. Note that since (1.3) is the time-dependent system, the control γ̌ depends implicitly on
time through the potential function ǔ. The following lemma is helpful for the proof of Theorem 3.1 and
for the proof of Theorem 3.2.

Lemma 4.2. Fix η ∈ P([d]) and let (ϱ̌, ǔ, µ̌) solve (1.3) with µ̌(0) = η. There exist C, c positive constants

such that for any n ∈ N>1 and any β ∈ A(n), any initialization π ∈ P([d]n) with Xβ
0 ∼ π, and any t ∈ R+,

Eπ|µβ
t − µ̌(t)| ≤ Ce−ctEπ|µβ

0 − µ̌(0)|+ C√
n

+ Eπ

∫ t

0
e−c(t−s)

∑
x∈[d]

µβ
s,x

∣∣∣ 1
n

∑
i∈[n]

[
βi
x(s,X

β
s )− γ̌x(t)

]
1{Xβ,i

s =x}

∣∣∣ds. (4.3)
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Suppose (Xβ,i
0 )i∈[n] are exchangeable, though not necessarily independent, withXβ,i

0 ∼ µ̌(0) for all i ∈ [n].
For π = π̌, the joint distribution induced by this initialization, we have from (4.3) that

Eπ̌|µβ
t − µ̌(t)| ≤ C√

n
+ Eπ̌

∫ t

0
e−c(t−s)

∑
x∈[d]

µβ
s,x

∣∣∣ 1
n

∑
i∈[n]

[
βi
x(s,X

β
s )− γ̌x(t)

]
1{Xβ,i

s =x}

∣∣∣ds. (4.4)

The proofs of all lemmas are provided in the subsequent part of this section, following the conclusion
of the proof of Theorem 3.1.

4.1. Proof of Theorem 3.1. We split the proof into two parts. In the first part, we prove the propa-
gation of chaos results (3.4) and (3.5). We will then use these results in the second part to prove that Γ̌
is a (C/

√
n)-Nash equilibrium and (3.3).

4.1.1. Propagation of chaos. To prove (3.4) and (3.5), we start by proving a related result to (3.4). We
will show there exist C, c positive constants such that for any n ∈ N>1, any β ∈ An,i, and any initialization

π ∈ P([d]n) with X
[Γ̌−i;β]
0 ∼ π, and any t ∈ R+,

Eπ|µ[Γ̌−i;β]
t − µ̌(t)| ≤ Ce−ctEπ|µ[Γ̌−i;β]

0 − µ̌(0)|+ C√
n
.

First note that µ[Γ̌−i;β],i = µΓ̌,i since the i-th player is removed from both processes and since the strategy

γ̌ is independent of the players’ process X [Γ̌−i;β]. Moreover, since

µΓ̌ = n−1
(
(n− 1)µΓ̌,i + δXΓ̌,i

)
,

the measures µΓ̌ and µΓ̌,i differ by a term of order O(n−1). So, it suffices to show the main estimate for

µΓ̌. Applying Lemma 4.2 for β = Γ̌, we note that βi = γ̌ for every i ∈ [n] and the integral term is zero,
yielding:

Eπ|µΓ̌
t − µ̌(t)| ≤ Ce−ctEπ|µΓ̌

0 − µ̌(0)|+ C√
n
.

We recognize the prior display as (3.4). To get (3.5), when π = π̌, we note that the term in expectation
on the right-hand side is no more than C/

√
n by Lemma 4.1.

4.1.2. Approximate Markovian Nash Equilibrium. We can now use the propagation of chaos results to

obtain the remaining points of Theorem 3.1. We abuse notation slightly by writing Xβ,i for X [Γ̌−i;β],i,
keeping in mind that the dynamics of player i are implicitly dependent on the other players’ dynamics,
through player i’s strategy β, and the rest of the players’ strategy profile.

By Lemma 3.1 we can consider Jn,i
0 with any initial distribution for the agents. In the following

display, we make use of this fact to study the value when a single player, player i, deviates from the
strategy γ̌. Player i will use β ∈ An,i instead. Let π̌ ∈ P([d]n) be the joint distribution induced by
initializing every player according to µ̌(0) ∈ P([d]). Then, adding and subtracting a term:

Jn,i
0 ([Γ̌−i;β]) = lim sup

T→∞

1

T
Eπ̌

∫ T

0
[f(Xβ,i

t , β(t,X
[Γ̌−i;β]
t )) + F (Xβ,i

t , µ
[Γ̌−i;β],i
t )]dt

= lim sup
T→∞

( 1

T
Eπ̌

∫ T

0
[f(Xβ,i

t , β(t,X
[Γ̌−i;β]
t )) + F (Xβ,i

t , µ̌(t))]dt

+
1

T
Eπ̌

∫ T

0
[F (Xβ,i

t , µ
[Γ̌−i;β],i
t )− F (Xβ,i

t , µ̌(t))]dt
)
.

(4.5)

We will consider each term on the right-hand side of (4.5) separately. For the first term, we note

two things: (1) that we initialized Xβ,i
0 ∼ µ̌(0) and (2) that µ̌ is an MFE by Proposition 2.2. Then by

Definition 2.3 and the definition of J0, the strategy β that minimizes this function must be γ̌. Hence,

inf
β∈A

lim sup
T→∞

1

T
Eπ̌

∫ T

0
[f(Xβ,i

t , β(t,X
[Γ̌−i;β]
t )) + F (Xβ,i

t , µ̌(t))]dt = J0(γ̌, µ̌). (4.6)
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We will keep this fact aside for the moment and return to (4.5) in order to deal with the second term
on the right-hand side. We note once more that each of the players has an initial state with law µ̌(0).
Bringing the absolute value inside the integral, using that F is Lipschitz, using Fubini’s theorem to

exchange to the expectation and integral, and by µ[Γ̌−i;β],i = µΓ̌,i with (3.5), we can bound the second
term on the right-hand side of (4.5):∣∣∣ 1

T
Eπ̌

∫ T

0
[F (Xβ,i

t , µ
[Γ̌−i;β],i
t )− F (Xβ,i

t , µ̌(t))]dt
∣∣∣ ≤ C√

n
. (4.7)

So using (4.5) and (4.7), followed by (4.6),

Jn
0 (Γ̌)−Jn,i

0 ([Γ̌−i;β])

= J0(γ̌, µ̌)− lim sup
T→∞

1

T
Eπ̌n

∫ T

0
[f(Xβ,i

t , β(t,X
[Γ̌−i;β]
t )) + F (Xβ,i

t , µ̌(t))]dt+O(n−1/2)

≤ O(n−1/2).

(4.8)

Since β was arbitrary, Γ̌ is a (C/
√
n)-Nash equilibrium. It only remains to show (3.3) and by (4.5), (4.6),

(4.7), it suffices to show that J0(γ̌, µ̌) = ϱ̌. This follows immediately from follows from Proposition 2.2. □

4.2. Proof of Lemma 4.1. Denote κ(t) := L(Xβ,1
t ). By assumption, all players are initialized indepen-

dently according to κ(0). Since β is symmetric, we claim the players are exchangeable with the same law

κ(t) for all t ∈ R+. That is, for all j ∈ [n] and all t ∈ R+, we claim L(Xβ,j
t ) = κ(t).

Now, since the rates A are bounded away from zero and since L(Xβ,i
t ) = κ(t), we must have that

there exists q > 0 such that for all x ∈ [d] and all t > 1, L(Xβ,i
t )x > q > 0, even when κ(0) is on the

boundary. The choice of time 1 for this threshold is not crucial to the proof, any positive constant would
do. By symmetry of the players, for any t ∈ R+, (δXβ,i

t
)i∈[n] are exchangeable with the same marginal law

κ(t). Fix x ∈ [d]. Then (δ
Xβ,i

t
(x))i∈[n] are exchangeable Bernoulli random variables, each with probability

κx(t) to be 1. By [13, Corollary 2.2] , we get (4.1) immediately. Using (4.1), and by definition of the
expectation,

Eπβ |µβ
t,x − κx(t)| =

∫ ∞

0
Pπβ

(∣∣∣ 1
n

∑
i∈[n]

δ
Xβ,i

t
(x)− κx(t)

∣∣∣ ≥ y
)
dy ≤

∫ ∞

0
2e−ny2/4qdy = 2

√
πq

n
,

which establishes (4.2). □

4.3. Proof of Lemma 4.2. Recall the definition of Γ̌ from Theorem 3.1. Define the transition matrix
Q(t) and its inverse by:

Q(t) := exp
(∫ t

0
Γ̌(s)ds

)
and Q−1(t) := exp

(
−
∫ t

0
Γ̌(s)ds

)
.

Also define:

Γβ(s) :=
( 1

n

∑
i∈[n]

βi
xy(s,X

β
s )1{Xβ,i

s =x}

)
x,y∈[d]

.

Note that for any time s and any realization of Xβ
s , we have Γ

β
s ∈ Q. From the dynamics of µβ and since

µ̌ solves Kolmogorov’s equation from (1.3), we get that:

(µβ
s − µ̌(s))TQ−1(s)

∣∣∣t
0

=

∫ t

0
(µβ(s)TΓβ(s)− µ̌(s)T Γ̌(s))Q−1(s)ds+

∫ t

0
(µβ

s − µ̌(s))T [−Γ̌(s)Q−1(s)]ds

+
1

n

∑
x,y∈[d]

∫ t

0
(ey − ex)Q

−1(s−)
(
dKβ

xy(s)−
∑
i∈[n]

βi
xy(s,X

β
s )1{Xβ,i

s =x}ds
)
,
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whereKβ is given in (3.2). Multiplying both sides by Q(t) and cancelling the terms with µ̌(s)T Γ̌(s)Q−1(s)
from the first two integrals, we get,

(µβ
t − µ̌(t))− (µβ

0 − µ̌(0))Q(t)

=

∫ t

0
(µβ

s )
T (Γβ(s)− Γ̌(s))Q−1(s)Q(t)ds+

1

n

∑
x,y∈[d]

∫ t

0
(ey − ex)Q

−1(s−)Q(t)dMβ
xy(s), (4.9)

where Mβ
xy is a martingale given by,

Mβ
xy(t) :=

(
Kβ

xy(t)−
∫ t

0

∑
i∈[n]

βi
xy(s,X

β
s )1{Xβ,i

s =x}ds
)
.

Let R(s, t) := (ey − ex)Q
−1(s)Q(t). For the following display, we use: the Burkholder–Davis–Gundy

inequality; that the quadratic variation of a compensated Poisson process is the original process, so

⟨Mβ
xy(s)⟩ = Kβ

xy(s); Jensen’s inequality for the concave function
√
·; adding and subtracting the compen-

sator for Kβ
xy(s) and using that the martingale term has expectation zero; the boundedness of the rates

βi; and finally R(s, t)R(s, t)T = |R(s, t)|2 with [12, Lemma 3.3]:

E
∣∣∣ ∫ t

0
R(s−, t)dMβ

xy(s)
∣∣∣ ≤ CE

[( ∫ t

0
R(s−, t)R(s−, t)T ⟨dMβ

xy(s)⟩
)1/2]

= CE
[( ∫ t

0
R(s−, t)R(s−, t)TdKβ

xy(s)
)1/2]

≤ C
[
E
(∫ t

0
R(s−, t)R(s−, t)TdKβ

xy(s)
)]1/2

= C
[
E
(∫ t

0
R(s, t)R(s, t)T

∑
i∈[n]

βi
xy(s,X

β
s )1{Xβ,i

s =x}ds
)]1/2

≤ Cn1/2
[ ∫ t

0
R(s, t)R(s, t)Tds

]1/2
≤ Cn1/2.

(4.10)

Also, let µ̃(t) := (µβ
0 )

TQ(t) and note that while Q(t) is deterministic, µ̃(t) is random since µβ
0 is

random. Note that µ̌(t) = (µ̌(0))TQ(t) too. So by [12, Lemma 3.3],

|µ̃(t)− µ̌(t)| ≤ Ce−ct|µβ
0 − µ̌(0)|.

Taking the expectation,

Eπ|(µβ
0 − µ̌(0))Q(t)| ≤ Ce−ctEπ|µβ

0 − µ̌(0)|. (4.11)

We now return to (4.9) and, first taking the expectation, use the martingale bound (4.10) along with
(4.11) to get that:

Eπ|µβ
t − µ̌(t)| ≤ Ce−ctEπ|µβ

0 − µ̌(0)|+ C√
n
+ Eπ

∣∣∣ ∫ t

0
(µβ

s )
T (Γβ(s)− Γ̌(s))Q−1(s)Q(t)ds

∣∣∣.
So applying triangle inequality, again using [12, Lemma 3.3], and expanding the matrix notation as a
sum finishes the proof of (4.3). For (4.4), we note that when π = π̌, the first term on the right-hand side
is no more than C/

√
n by Lemma 4.1. □

5. Proofs for Theorem 3.2

In addition to Lemma 4.2 from the prior section, we need two lemmas to approach the proof of
Theorem 3.2. The first, Lemma 5.1, introduces a mock ergodic system with a solution (ϱi,W i

0) meant
to mimic the optimal value and associated potential for the deviating i-th player, optimizing against the
other players, who are each using γ0. Through this detour we prove that the deviating player’s optimal
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strategy is actually stationary. This is helpful to reduce the problem of proving Γ0 is a Markovian

(C/
√
n)-Nash equilibrium from studying all strategies An,i for player i to just stationary strategies An,i

S .
The second lemma, Lemma 5.2, is modeled after duality estimates originally used for the MFG system.

Its estimate is crucial to avoiding a consequence of the deleterious feedback effect: to compare strategies,
we must compare processes that we plug into them; and to compare processes, we must compare their
strategies. The proof of the lemma relies on the full assumptions as well; namely, we will need that F is
Lasry–Lions monotone and that H is concave.

In the forthcoming proofs, C and c will be positive constants that may change value from one line
to the next. Whenever C and c appear in the proofs, they depend only on the problem data and we
emphasize that they are always independent of n, t and any initialization of the players. Recall that for
Theorem 3.2, the full assumptions hold, and will be in force throughout this section. Consequently, the
entirety of Proposition 2.1 and Proposition 2.2 hold. We will let (ϱ, ǔ, µ̌) be the unique solution to (1.3)
and let (ϱ, ū, µ̄) be the unique solution to (1.4).

For any x ∈ [d]n we define the empirical distribution with and without the i-th player as:

µn
x :=

1

n

∑
j∈[n]

exj , µn,i
x :=

1

n

∑
j∈[n],j ̸=i

exj .

Lemma 5.1. Based on γ0 from (3.9) define γj0(x) := γ∗(xj ,∆xjU0(·, µn,j
x )). There exist ϱi ∈ R, W i

0 :
[d]× Pn−1([d]) → R such that (ϱi,W i

0) satisfies:

ϱi = H(xi,∆xiW i
0(·, µn,i

x )) + F (xi, µn,i
x ) +

∑
j ̸=i

γj0(x) ·∆xjU0(·, µn,j
x ). (5.1)

Moreover, for γWy (x) := γ∗y(x
i,∆xiW i

0(·, µ
n,i
x )), γW := (γWy )y∈[d], we have that:

ϱi = Jn,i
0 ([Γ−i

0 ; γW ]) = inf
β∈An,i

Jn,i
0 ([Γ−i

0 ;β]). (5.2)

Interpreting (5.2) in words, a stationary Markovian strategy is optimal for a player deviating from Γ0.

Lemma 5.2. There exists C > 0, independent of n, such that for all β ∈ An,i and all π ∈ P([d]n):

lim sup
T→∞

1

T
Eπ

∫ T

0

∑
x∈[d]

(µ
[Γ−i

0 ;β]
t,x + µ̌x(t))|∆xU0(·, µ

[Γ−i
0 ;β]

t )−∆xǔ(t)|2dt ≤
C

n
.

5.1. Proof of Theorem 3.2. As with Theorem 3.1, we split the proof into two halves. The first
part proves the propagation of chaos given in (3.10). For the propagation of chaos, we start by using
Lemma 4.2 to pass off the problem of comparing processes to comparing their strategies. The strategies
are Lipschitz, so it suffices to compare their different potential functions. Then we use the duality-style
lemma, Lemma 5.2, to show that the integral term left over from the application of Lemma 4.2, and
that is comprised of these potential functions, is small. Along the way, we will need to use that the
stationary distribution πβ forces the processes inside the expectation to be independent of time; this
helps us periodically move the processes outside of pesky, time-dependent integrals.

In order to use the propagation of chaos to prove the profile is an asymptotic Nash equilibrium, we
must start by restricting the proof to stationary strategies. Otherwise, we would not necessarily have
a stationary distribution and the prior part would not apply. After we apply propagation of chaos and
obtain the result for stationary strategies, we can use Lemma 5.1 to upgrade the result so that it holds
for any Markovian strategy.

5.1.1. Propagation of chaos. In this part we will prove:

Eπβ |µ[Γ−i
0 ;βS ]

0 − µ̄| ≤ C√
n
, (5.3)

for βS ∈ An,i
S , an arbitrary stationary Markovian strategy and πβ ∈ P([d]n), the unique stationary

distribution for the jump process X [Γ−i
0 ;βS ]. Note that (5.3) is more general than (3.10). The full
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strength of (5.3) is necessary for the latter part of the proof, where we prove Γ0 is an asymptotic Nash
equilibrium, and so deal with a deviating player.

Recall that Γ0 is comprised of γ0 defined in (3.9) and recall γ̄ from (3.6). We now apply Lemma 4.2
with β = [Γ−i

0 ;βS ] and π = πβ, use the fact that the rates are bounded to aggregate another term into

C/
√
n, and then use that (n−1

n )(µ
[Γ−i

0 ;βS ],i
s,x ) ≤ 1 to get:

Eπβ |µ[Γ−i
0 ;βS ]

t − µ̄| ≤ Ce−ctEπβ |µ[Γ−i
0 ;βS ]

0 − µ̄|+ C√
n

+ Eπβ

∫ t

0
ecs−ct

∑
x∈[d]

µ
[Γ−i

0 ;βS ]
s,x

∣∣(n−1
n (µ

[Γ−i
0 ;βS ],i

s,x )[γ0,yx(s)− γ̄yx]

+ 1
n1{

X
[Γ−i

0 ;βS ],i
s =x

}[βS
yx(X

[Γ−i
0 ;βS ]

s )− γ̄yx]
)
y∈[d]

∣∣ds
≤ Ce−ctEπβ |µ[Γ−i

0 ;βS ]
0 − µ̄|+ C√

n

+ Eπβ

∫ t

0
ecs−ct

∑
x∈[d]

µ
[Γ−i

0 ;βS ]
s,x

∣∣(n−1
n

)
(µ

[Γ−i
0 ;βS ],i

s,x )[γ0,yx(s)− γ̄yx]
∣∣ds

≤ Ce−ctEπβ |µ[Γ−i
0 ;βS ]

0 − µ̄|+ C√
n

+ Eπβ

∫ t

0
ecs−ct

∑
x∈[d]

µ
[Γ−i

0 ;βS ]
s,x |γ0,yx(s)− γ̄yx|ds.

Now, leveraging the fact that πβ represents the stationary distribution, along with the definitions of γ0
and γ̄ in terms of γ∗, and considering the Lipschitz continuity of γ∗, we can derive:

Eπβ |µ[Γ−i
0 ;βS ]

t − µ̄| ≤ Ce−ctEπβ |µ[Γ−i
0 ;βS ]

0 − µ̄|+ C√
n

+ CEπβ

[ ∑
x∈[d]

µ
[Γ−i

0 ;βS ]
0,x

∣∣∆x(U0(·, µ
[Γ−i

0 ;βS ]
0 )− ū)

∣∣]. (5.4)

We can also use that πβ is the stationary distribution, then Lemma 3.1 and then Lemma 5.2 to get:

Eπβ

[ ∑
x∈[d]

(µ
[Γ−i

0 ;βS ]
0,x + µ̄x)

∣∣∆x(U0(·, µ
[Γ−i

0 ;βS ]
0 )− ū)

∣∣2]
= lim sup

T→∞

1

T
Eπβ

∫ T

0

[ ∑
x∈[d]

(µ
[Γ−i

0 ;βS ]
t,x + µ̄x)

∣∣∆x(U0(·, µ
[Γ−i

0 ;βS ]
t )− ū)

∣∣2dt
≤ C

n
.

(5.5)

We can use Jensen’s inequality for
√
· and that for any η ∈ P([d]), η2x ≤ ηx for all x ∈ [d] in (5.4) and

then (5.5) to get:

Eπβ |µ[Γ−i
0 ;βS ]

t − µ̄| ≤ Ce−ctEπβ |µ[Γ−i
0 ;βS ]

0 − µ̄|+ C√
n

+ C
(
Eπβ

[ ∑
x∈[d]

µ
[Γ−i

0 ;βS ]
0,x

∣∣∆x(U0(·, µ
[Γ−i

0 ;βS ]
0 )− ū)

∣∣2])1/2

≤ Ce−ctEπβ |µ[Γ−i
0 ;βS ]

0 − µ̄|+ C√
n
.
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We applied the stationary distribution on the left-hand side above as well, so it is independent of t.
Passing the limit as t → ∞ then yields (5.3). When β = γ0 then, we get (3.10) where the limiting result

follows by ergodicity of the Markov process µΓ0
t .

5.1.2. Approximate Markovian Nash Equilibrium. Now we prove the main part of the theorem. By a

small abuse of notation, we will write X [Γ−i
0 ;βS ],i as XβS ,i, keeping in mind that the position of the i-th

player will depend on Γ0 implicitly since βS depends on the positions of the other players. Again we
rely on Lemma 3.1 for the freedom to choose the initialization of the players. We will see that it is

particularly convenient to use πβ, the stationary distribution. By the definition of Jn,i
0 , using that πβ is

the stationary distribution, adding and subtracting a term, and once more using that πβ is the stationary
distribution:

Jn,i
0 ([Γ−i

0 ;βS ])

= lim sup
T→∞

1

T
Eπβ

∫ T

0
[f(XβS ,i

t , βS(X
[Γ−i

0 ;βS ]
t )) + F (XβS ,i

t , µ
[Γ−i

0 ;βS ],i
t )]dt

= Eπβ

[
f(XβS ,i

0 , βS(X
[Γ−i

0 ;βS ]
0 )) + F (XβS ,i

0 , µ
[Γ−i

0 ;βS ],i
0 )

]
= Eπβ

[
f(XβS ,i

0 , βS(X
[Γ−i

0 ;βS ]
0 )) + F (XβS ,i

0 , µ̄) + F (XβS ,i
0 , µ

[Γ−i
0 ;βS ],i

0 )− F (XβS ,i
0 , µ̄)

]
= lim sup

T→∞

1

T
Eπβ

∫ T

0
[f(XβS ,i

t , βS(X
[Γ−i

0 ;βS ]
t )) + F (XβS ,i

t , µ̄)]dt

+ Eπβ

[
F (XβS ,i

0 , µ
[Γ−i

0 ;βS ],i
0 )− F (XβS ,i

0 , µ̄)
]
.

(5.6)

For the second term in (5.6), we can use the Lipschitz continuity of F , followed by (5.3) to get:∣∣∣Eπβ

[
F (XβS ,i

0 , µ
[Γ−i

0 ;βS ],i
0 )− F (XβS ,i

0 , µ̄)
]∣∣∣ ≤ CL,FEπβ |µ[Γ−i

0 ;βS ],i
0 − µ̄|

≤ C√
n
.

By the same arguments as in the proof of Theorem 3.1 then, specifically for (4.6) and (4.8), we have
that:

Jn,i
0 (Γ0)− Jn,i

0 ([Γ−i
0 ;βS ]) ≤ O(n−1/2).

So far in the proof, we had to assume βS was stationary in order to invoke the stationary distribution.
Using Lemma 5.1 we can now upgrade this result to hold for all β ∈ An,i non-stationary. Recalling γW

from Lemma 5.1, and using the prior display with βS = γW :

Jn,i
0 (Γ0)− inf

β∈An,i
Jn,i
0 ([Γ−i

0 ;β]) = Jn,i
0 (Γ0)− Jn,i

0 ([Γ−i
0 ; γW ]) ≤ O(n−1/2).

□

5.2. Proof of Lemma 5.1. The proof proceeds in two main steps. For the first, we establish a unique
solution to an auxiliary discounted system. Then, by a vanishing discount argument, we obtain a solution
to the auxiliary ergodic system (5.1). Finally, by a verification argument—that is, plugging in a carefully
chosen process to the mock potential function from (5.1) and using Itô’s lemma—we get (5.2).

5.2.1. Existence for a discounted system. We start by obtaining a solution to an auxiliary discounted
system in order to ultimately construct a solution to the ergodic system (5.1). We proceed by defining a
map S for which any fixed point will solve the discounted system. We prove that for any discount r, S
is a contraction and therefore there exists a unique solution W i

r to the auxiliary discounted system.
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Let r > 0 be the discount factor. We will first prove that there exists W i
r : [d] × Pn−1([d]) →

[0, Cf+F /r] solving:

rW i
r(x

i, µn,i
x ) = H(xi,∆xiW i

r(·, µn,i
x )) + F (xi, µn,i

x ) +
∑
j ̸=i

γj0(x) ·∆xjU0(·, µn,j
x ). (5.7)

Define:

V := {w : [d]n → [0, Cf+F /r] | ∃ϕw : [d]× Pn−1([d]) → [0, Cf+F /r] s.t. w(x) = ϕw(xi, µn,i
x )}.

Define a map S : V → V by:
S(w)(x) := inf

a∈Ad
xi

R(w, a)(x)

where:

R(w, a)(x) :=
1

r +
∑

y ̸=xi ay

[ ∑
y,y ̸=xi

ayϕ
w(y, µn,i

x ) + F (xi, µn,i
x ) + f(xi, a)

+
∑
j ̸=i

γj0(x) ·∆xjU0(·, µn,j
x )

]
.

Now,

|(S(w)− S(w̃))(x)| ≤ sup
a∈Ad

xi

|(R(w, a)−R(w̃, a))(x)|

≤ sup
a∈Ad

xi

{ 1

r +
∑

y ̸=xi ay

[ ∑
y,y ̸=xi

ay|ϕw(y, µn,i
x )− ϕw̃(y, µn,i

x )|
]}

≤ sup
a∈Ad

xi

{ ∑
y ̸=xi ay

r +
∑

y ̸=xi ay
[∥w − w̃∥sup]

}
≤ r̃∥w − w̃∥sup,

(5.8)

where
∥w∥sup := max

x∈[d]n
|w(x)|

and

r̃ := sup
xi∈[d]

sup
a∈Ad

xi

{ ∑
y ̸=xi ay

r +
∑

y ̸=xi ay

}
∈ (0, 1).

Taking the supremum of the left-hand side of (5.8) over all x, we obtain that S is a contraction. By Banach

fixed point theorem there exists a unique fixed point of S, which we call wi
r, with wi

r(x) = W i
r(x

i, µn,i
x )

for some W i
r : [d] × Pn−1([d]) → [0, Cf+F /r] since wi

r ∈ V. Unfurling the definition of S and using that
wi
r is its fixed point, we find that W i

r satisfies (5.7).

5.2.2. Verification and vanishing discount. Now we can make use of the discounted system (5.7) from
the prior step in order to approach (5.1). We first confirm that wi

r(x) equals a discounted cost under the
strategy profile Υr. This gives an alternate form for wi

r that we will use to show wi
r(·)−wi

r(x̂) is bounded
in maximum norm, for some x̂ ∈ [d]n, by a stopping time argument. With a uniform bound, we pass to
a subsequence of discounts decreasing to zero and show that the discounted system (5.7) converges to
(5.1). We then use another verification argument to get (5.2).

For brevity, define Υr := [Γ−i
0 ; γWr ]. To get ϱi and W i

0, we proceed by a vanishing discount argument.
To do this, we first verify that W i

r is the discounted cost:

Jn,i
r (x, Υr) := Ex

∫ ∞

0
e−rt

(
f(XΥr,i

t , γWr(XΥr
t )) + F (XΥr,i

t , µΥr,i
t )

)
dt.

By applying Itô’s lemma to e−rtwi
r(X

Υr
t ) and taking the expectations, we get that

Ex

[
e−rtwi

r(X
Υr
t )− wi

r(X
Υr
0 )

]
(5.9)
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= Ex

[ ∫ t

0
e−rs

(
− rwi

r(X
Υr
s ) +

∑
j ̸=i

γj0(X
Υr
s ) ·∆

XΥr,j
s

U0(·, µΥr,j
s )

+ γWr(XΥr
s ) ·∆

XΥr,i
s

W i
r(·, µΥr,i

s )
)
ds
]
.

We use (5.7) in (5.9) and rearranging the terms, it follows that

wi
r(x) = Ex

[
e−rtwi

r(X
Υr
t )

]
+ Ex

[ ∫ t

0
e−rs

(
f(XΥr,i

s , γWr(XΥr
s )) + F (XΥr,i

s , µΥr,i
s )

)
ds
]
.

Note that wi
r is bounded. Hence, passing to the limit implies:

wi
r(x) = lim

t→∞

{
Ex

[
e−rtwi

r(X
Υr
t )

]
+ Ex

[ ∫ t

0
e−rs

(
f(XΥr,i

s , γWr(XΥr
s )) + F (XΥr,i

s , µΥr,i
s )

)
ds
]}

(5.10)

= Ex

[ ∫ ∞

0
e−rs

(
f(XΥr,i

s , γWr(XΥr
s )) + F (XΥr,i

s , µΥr,i
s )

)
ds
]

= Jn,i
r (x, Υr).

Recall that players choose their rates from the set [al, au] where 0 < al < au < ∞. Since there
are finitely many configurations, every configuration is positive recurrent so there exists N ∈ (0,∞),
independent of r, such that for any arbitrary x, x̂ ∈ [d]n, one has Ex[τ̂ ] ≤ N where τ̂ := inf{t ≥ 0 | Xt =
x̂}.

Fix an arbitrary x̂ ∈ [d]n. By definition and some arithmetic:

Jn,i
r (x, Υr) = Ex

[ ∫ τ̂

0
e−rt

(
f(XΥr,i

t , γWr(XΥr
t )) + F (XΥr,i

t , µΥr,i
t )

)
dt+ Jn,i

r (Xτ̂ , Υr)

− (1− e−rτ̂ )Jn,i
r (Xτ̂ , Υr)

]
.

By definition of τ̂ , we know that E[Jn,i
r (Xτ̂ , Υr)] = Jn,i

r (x̂, Υr) and so by the previous computation and
the introduction of absolute value, we see that:

|Jn,i
r (x, Υr)− Jn,i

r (x̂, Υr)| ≤ Ex

[∫ τ̂

0
e−rt

∣∣∣f(XΥr,i
t , γWr(XΥr

t )) + F (XΥr,i
t , µΥr,i

t )
∣∣∣ dt]

+ Ex[(1− e−rτ̂ )|Jn,i
r (Xτ̂ , Υr)|].

To deal with the first term after the inequality we note that since f and F are bounded:

Ex

[∫ τ̂

0
e−rt

∣∣∣f(XΥr,i
t , γWr(XΥr

t )) + F (XΥr,i
t , µΥr,i

t )
∣∣∣ dt] ≤ Ex[τ̂ ]Cf+F ≤ NCf+F .

For the second term, we use a max bound followed by the inequality (1− e−rz)/r ≤ z for all r ≥ 0 to see
that:

Ex[(1− e−rτ̂ )|Jn,i
r (Xτ̂ , Υr)|] ≤ Ex[r

−1(1− e−rτ̂ )] max
y∈[d]n

r|Jn,i
r (y, Υr)|

≤ Ex[τ̂ ] max
y∈[d]n

r|Jn,i
r (y, Υr)|

≤ NCf+F ,

where recall that the solution wi
r to (5.7) was bounded above by Cf+F /r for all configurations y ∈ [d]n

and so Jn,i
r (y, Υr) = wi

r(y) ≤ Cf+F r
−1 implies that rJn,i

r (y, Υr) ≤ Cf+F . This gives the last inequality
above. Combining these results:

|wi
r(x)− wi

r(x̂)| ≤ 2NCf+F .

Since the bound is uniform with respect to r, we see that for any sequence (rm)m≥0 → 0:

max
x∈[d]n

|wi
rm(x)− wi

rm(x̂)| ≤ 2NCf+F .
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We note that maxx∈[d]n | · | as above is a norm on the space of functions [d]n → [0, Cf+F /r] and that the

difference wi
rm(x)− wi

rm(x̂) is bounded uniformly in this norm. Therefore there exists a subsequence of

(rm)m, which by abuse of notation we also refer to as (rm)m, such that wi
rm(·) − wi

rm(x̂) converges as

rm → 0. Denote this limit by wi
0(·) and since wi

rm ∈ V there exists W i
0 such that wi

0(x) = W i
0(x

i, µn,i
x ).

So, for all x ∈ [d]n, W i
rm(x

i, µn,i
x )−W i

rm(x̂
i, µn,i

x̂ ) → W i
0(x

i, µn,i
x ) as m → ∞ too.

We can now apply this vanishing discount to (5.7) to obtain a solution for (5.1). We note that:

lim
m→∞

∆xiW i
rm(·, µ

n,i
x ) = lim

m→∞

(
W i

rm(y, µ
n,i
x )−W i

rm(x
i, µn,i

x )
)
y∈[d]

= lim
m→∞

(
W i

rm(y, µ
n,i
x )−W i

rm(x̂
i, µn,i

x̂ ) +W i
rm(x̂

i, µn,i
x̂ )−W i

rm(x
i, µn,i

x )
)
y∈[d]

=
(
W i

0(y, µ
n,i
x )−W i

0(x
i, µn,i

x )
)
y∈[d]

= ∆xiW i
0(·, µn,i

x ).

Again by passing to a subsequence, we can denote ϱi to be the limit of the real-valued and bounded

sequence {rmW i
rm(x̂

i, µn,i
x̂ )}m∈N. Once more, recall that |W i

rm(x
i, µn,i

x ) − W i
rm(x̂

i, µn,i
x̂ )| is bounded for

any configuration x ∈ [d]n. Now we can apply the continuity of H to obtain that:

ϱi = lim
m→∞

[rmW i
rm(x̂

i, µn,i
x̂ ) + rm(W i

rm(x
i, µn,i

x )−W i
rm(x̂

i, µn,i
x̂ ))]

= lim
m→∞

rmW i
rm(x

i, µn,i
x )

= lim
m→∞

[
H(xi,∆xiW i

rm(·, µ
n,i
x )) + F (xi, µn,i

x ) +
∑
j ̸=i

γj0(x) ·∆xjU0(·, µn,j
x )

]
= H(xi,∆xiW i

0(·, µn,i
x )) + F (xi, µn,i

x ) +
∑
j ̸=i

γj0(x) ·∆xjU0(·, µn,j
x ).

Hence, we established (5.1).
As the final step of this proof, we now turn to prove (5.2). Let Υ := [Γ−i

0 ;β], β ∈ An,i. By another
verification-style argument like for (5.10), we can show that:

Ex(w
i
0(X

Υ
0 )) ≤ Ex

(
wi
0(X

Υ
T )

)
+ Ex

(∫ T

0

[
f(XΥ,i

s , β(s,XΥ,i
s )) + F (XΥ,i

s , µΥ,i
s )

]
ds

)
− Tϱi,

with equality above when β = γW since γW is the minimizer in (5.1). Dividing by T and passing the
lim sup as T → ∞, we get:

ϱi ≤ Ex

(∫ T

0

[
f(XΥ,i

s , β(s,XΥ,i
s )) + F (XΥ,i

s , µΥ,i
s )

]
ds

)
= Jn,i

0 (Υ ).

Since we have equality when β = γW and inequality otherwise, we conclude (5.2). □

5.3. Proof of Lemma 5.2. The proof is modeled after duality estimates for the MFG, see [12, Lemma 3.6],
for example. In that case, the functions in play are solutions to ODEs and there is no randomness. Here,
however, we must consider random processes and consequently, the proof is much more involved. Specif-
ically, we will have to deal with three main issues: (1) martingale terms arising from the jump dynamics
of the empirical measure, and (2) a deviating player with a potentially different strategy, causing error
terms to aggregate, and (3) that because the process we consider is a jump process on Pn([d]), it may be
modified slightly each time it appears, thus accumulating more error. The ultimate goal is to drag the
accumulating errors through the proof and into the estimate at the end.

Fix arbitrary β ∈ An,i and π ∈ P([d]n). For brevity, denote the strategy profile Υ := [Γ−i
0 ;β]. Define

dLΥ
yz(t) as the martingale increment:

dLΥ
yz(t) = dKΥ

yz(t)−
[
(n− 1)µΥ,i

t,yγ
∗
z (y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyz(t,X

Υ
t )

]
dt,

where recall that Kβ is defined generally in (3.1). We now go through several displays to compute
dU0(x, µ

Υ
t ). Recall that µ

Υ,−x is the empirical distribution of the players, minus one player in position x.
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By Itô’s chain rule,

dU0(x, µ
Υ
t ) =

∑
y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dKΥ

yz(t)

[adding and subtracting a rate term to get a martingale]

=
∑

y,z∈[d]

{[
U0(x, µ

Υ
t +

ez−ey
n )− U0(x, µ

Υ
t )
]

×
[
(n− 1)µΥ,i

t,yγ
∗
z (y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyz(t,X

Υ
t )

]
dt
}

+
∑

y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dLΥ

yz(t)

[adding and subtracting a DηU0 term]

=
∑

y,z∈[d]

Dη
yzU0(x, µ

Υ
t )
[
µΥ,i
t,yγ

∗
z (y,∆yU0(·, µΥ,−y

t )) + 1
n1{XΥ,i

s =y}βyz(t,X
Υ
t )

]
dt

+
∑

y,z∈[d]

[
(n− 1)((U0(x, µ

Υ
t +

ez−ey
n )− U0(x, µ

Υ
t ))−Dη

yzU0(x, µ
Υ
t )
]

×
[
µΥ,i
t,yγ

∗
z (y,∆yU0(·, µΥ,−y

t )) + 1
n1{XΥ,i

s =y}βyz(t,X
Υ
t )

]
dt

+
∑

y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dLΥ

yz(t)

[using Lipschitz continuity of DηU0 and the boundedness of the rates,

we can aggregate terms of order O(n−1)]

=
∑

y,z∈[d]

Dη
yzU0(x, µ

Υ
t )µ

Υ,i
t,yγ

∗
z (y,∆yU0(·, µΥ,−y

t ))dt

+
∑

y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dLΥ

yz(t)

+O(n−1)

[From the Lipschitz continuity of γ∗ and U0 as well as the facts that

|µΥ,i
t,y − µΥ

t,y| ≤ C/n, |µΥ,−y
t − µΥ

t | ≤ C/n,

we can aggregate more terms into O(n−1)]

=
∑

y,z∈[d]

Dη
yzU0(x, µ

Υ
t )µ

Υ
t,yγ

∗
z (y,∆yU0(·, µΥ

t ))dt

+
∑

y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dLΥ

yz(t)

+O(n−1).

And finally by (1.5):

dU0(x, µ
Υ
t ) = (ϱ−H(x,∆xU0(·, µΥ

t ))− F (x, µΥ
t ))dt

+
∑

y,z∈[d]

[
U0(x, µ

Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−)

]
dLΥ

yz(t)

+O(n−1),

(5.11)

Set the processes:

vx(t) := U0(x, µ
Υ
t )− ǔx(t) and mx(t) := µΥ

t,x − µ̌x(t), (t, x) ∈ R+ × [d].
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Now, an application of Itô’s product rule implies that:

m(T ) · v(T )−m(0) · v(0) =
∫ T

0

∑
x∈[d]

d[mx(t)vx(t)]

=

∫ T

0

∑
x∈[d]

(mx(t)dvx(t) + vx(t)dmx(t) + dmx(t)dvx(t)) .

We will treat the three terms in the integrand of the previous display separately. Taking expectations on
both sides, using (1.3), (3.1), (3.2), and that LΥ

yz is a martingale, we get (with more detailed explanations
to follow),

Eπ[m(T ) · v(T )−m(0) · v(0)] =
3∑

i=1

Ψi(T ) +O(n−1), (5.12)

where the O(n−1) term comes from (5.11), where:

Ψ1(T ) := Eπ

∫ T

0

∑
x∈[d]

mx(t)
(
ϱ−H(x,∆xU0(·, µΥ

t ))− F (x, µΥ
t )− ϱ̌+H(x,∆xǔ(t)) + F (x, µ̌(t))

)
dt,

Ψ2(T ) := Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y,z∈[d]

(ez−ey)x
n

[
(n− 1)µΥ,i

t,yγ
∗
z (y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyz(t,X

Υ
t )

]
−

∑
y∈[d]

µ̌y(t)γ̌yx(t)
]
dt,

Ψ3(T ) := Eπ

∫ T

0

∑
x∈[d]

∑
y,z∈[d]

(U0(x, µ
Υ
t− +

ez−ey
n )− U0(x, µ

Υ
t−))

(ez−ey)x
n dKΥ

yz(t)

= Eπ

∫ T

0

∑
x∈[d]

∑
y,z∈[d]

{
(U0(x, µ

Υ
t +

ez−ey
n )− U0(x, µ

Υ
t ))

(ez−ey)x
n

×
[
(n− 1)µΥ,i

t,yγ
∗
z (y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyz(t,X

Υ
t )

]}
dt.

We note that we also used (1.3) to substitute in for d
dt ǔ(t) and

d
dt µ̌(t) in Ψ1 and Ψ2, respectively. Moreover,

to derive the first expression for Ψ3 we used the facts that the quadratic variation of a compensated
random Poisson measure is the non-compensated measure and that dKΥ

xy(t)dK
Υ
wz(t) = 1 if and only if

(x, y) = (w, z) and otherwise dKΥ
xy(t)dK

Υ
wz(t) = 0. We can use the Lipschitz continuity of U0 and the

boundedness of γ∗ and β to get that:

|Ψ3(T )| ≤ CTn−1. (5.13)

We can use
∑

xmx(t) = 0 in the integrand of Ψ1(T ) and then the monotonicity of F to get:

Ψ1(T ) = Eπ

∫ T

0

∑
x∈[d]

mx(t)
(
H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ

t )) + F (x, µ̌(t))− F (x, µΥ
t )
)
dt

≤ Eπ

∫ T

0

∑
x∈[d]

mx(t)
(
H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ

t ))
)
dt.

(5.14)

For Ψ2(T ), we will deal with the term on the first line for the moment, and return to the full expression
after. We can use the definition of (ez−ey)x first to separate into two sums, the fact that

∑
y∈[d] γ

∗
y(x, ·) =

0, recombine the sums into one, the Lipschitz continuity of γ∗ and U0 as well as the fact that ((n−1)µΥ,i
t,y+
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δ
XΥ,i

t
(y))/n = µΥ

t,y to aggregate more terms of order O(n−1), and get that it equals:

Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y,y ̸=x

1

n

[
(n− 1)µΥ,i

t,yγ
∗
x(y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyx(t,X

Υ
t )

]]
dt

+ Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
z,z ̸=x

−1

n

[
(n− 1)µΥ,i

t,xγ
∗
z (x,∆xU0(·, µΥ,−x

t )) + 1{XΥ,i
t =x}βxz(t,X

Υ
t )

]]
dt

= Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y,y ̸=x

1

n

[
(n− 1)µΥ,i

t,yγ
∗
x(y,∆yU0(·, µΥ,−y

t )) + 1{XΥ,i
t =y}βyx(t,X

Υ
t )

]]
dt

+ Eπ

∫ T

0

∑
x∈[d]

vx(t)
[
(n−1)µΥ,i

t,x

n

[
γ∗x(x,∆xU0(·, µΥ,−x

t )) + 1
n−11{XΥ,i

t =x}βxx(t,X
Υ
t )

]]
dt

= Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y∈[d]

n−1
n

[
µΥ,i
t,yγ

∗
x(y,∆yU0(·, µΥ,−y

t )) +O(n−1)
]]
dt

= Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y∈[d]

[
µΥ
t,yγ

∗
x(y,∆yU0(·, µΥ

t )) +O(n−1)
]]
dt

Therefore, returning to the definition of Ψ2, we have:

Ψ2(T ) = Eπ

∫ T

0

∑
x∈[d]

vx(t)
[ ∑
y∈[d]

[
µΥ
t,yγ

∗
x(y,∆yU0(·, µΥ

t ))− µ̌y(t)γ̌yx(t) +O(n−1)
]]
dt. (5.15)

Using (5.14), (5.15), (5.13) in (5.12):

Eπ[m(T ) · v(T )−m(0) · v(0)] ≤ Êπ

∫ T

0

{ ∑
x∈[d]

[H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ
t ))]mx(t)

+ vx(t)
[ ∑
y∈[d]

µΥ
t,yγ

∗
x(y,∆yU0(·, µΥ

t ))− µ̌y(t)γ̌yx(t)
]}

dt

+ TO(n−1).

(5.16)

Next, utilizing the identity: ∑
x∈[d]

γ̌yx(t) =
∑
x∈[d]

γ∗x(y,∆yU0(·, µΥ
t )) = 0,

we get that:∑
x∈[d]

[ {
H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ

t ))
}
mx(t)

+ vx(t)
∑
y∈[d]

{µΥ
t,yγ

∗
x(y,∆yU0(·, µΥ

t ))− µ̌y(t)γ̌yx(t)}
]

=
∑
x∈[d]

[ {
H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ

t )) + ∆xv(t) · γ∗(x,∆xU0(·, µΥ
t )))

}
µΥ
t,x

]
+

∑
x∈[d]

[ {
H(x,∆xU0(·, µΥ

t ))−H(x,∆xǔ(t))−∆xv(t) · γ∗(x,∆xǔ(t)))
}
µ̌x(t)

]
.

(5.17)

Using (2.2) and assumption (B2), we obtain the inequalities:

H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ
t )) + ∆xv(t) · γ∗(x,∆xU0(·, µΥ

t ))) ≤ −C2,H |∆xv(t)|2,
H(x,∆xU0(·, µΥ

t ))−H(x,∆xǔ(t))−∆xv(t) · γ∗(x,∆xǔ(t))) ≤ −C2,H |∆xv(t)|2.
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The last two bounds applied to the expansion in (5.17) imply:∑
x∈[d]

[ {
H(x,∆xǔ(t))−H(x,∆xU0(·, µΥ

t ))
}
mx(t)

+ vx(t)
∑
y∈[d]

{µΥ
t,yγ

∗
x(y,∆yU0(·, µΥ

t ))− µ̌y(t)γ̌yx(t)}
]

≤ −C2,H

∑
x∈[d]

(µΥ
t,x + µ̌x(t))|∆xv(t)|2.

(5.18)

Plugging in (5.18) into (5.16), moving the negated terms to the left-hand side,

C2,HEπ

∫ T

0

∑
x∈[d]

(µΥ
t,x + µ̌x(t))|∆xv(t)|2dt ≤ TO(n−1) + Eπ[m(0) · v(0)−m(T ) · v(T )].

Dividing the prior display by T , taking lim supT→∞, and using the boundedness of m and v finishes the
proof. □

6. Proofs of Proposition 3.1 and Theorem 3.3

We finish the main theoretical portion of the paper by proving the results pertaining to the large
deviations of the empirical measures.

6.1. Proof of Proposition 3.1. Consider a globally asymptotically stable equilibrium for (2.3), call it
◦
µ. Define

◦
u := (U0(x,

◦
µ))x∈[d] and note that since

◦
µ is globally asymptotically stable, we have by taking

a limit of (1.3) as t → ∞ that:

ϱ̄ = H(x,∆x
◦
u) + F (x,

◦
µ).

Hence, (ϱ̄,
◦
u,

◦
µ) solves (1.4). Yet by Proposition 2.1, (1.4) has a unique solution, where recall that ū is

unique up to an additive constant vector k1⃗, and therefore for all x ∈ [d], ∆x
◦
u = ∆xū with

◦
µ = µ̄ in the

first place.
By definition, ∆xu0(t, ·) = ∆xU0(·, µ0(t)). And since U0 is Lipschitz by Proposition 2.2, there exists

C > 0, independent of t, such that:

|∆xU0(·, µ0(t))| ≤ C(|∆xū|+ |µ0(t)− µ̄|),

which means |∆xu0(t, ·)| is bounded. Therefore, we may re-use the proof from [16, Theorem 3] to obtain
that µ0(t) → µ̄ as t → ∞.1 Recalling that the initial condition η was arbitrary, we have that µ̄ is a
globally asymptotically stable equilibrium. □

6.2. Proof of Theorem 3.3. The proof is an application of theorems from [4], so we verify the assump-
tions of the theorems. Namely, the possible transitions on [d] form a complete, finite graph and a fortiori
such a graph is irreducible. In either case for κn, the rate mapping is Lipschitz because γ∗ is Lipschitz
by assumption, and U0 is Lipschitz, by Proposition 2.2. Moreover, the rates are assumed to be bounded
below by al > 0. Proposition 3.1 verifies the final requirement for each of the following theorems. So, [4,
Theorem 2.1] proves the large deviation result for L n

∞; [4, Theorem 3.2] for L n
[0,T ]; and [4, Theorem 3.3]

for L n
T . As a small comment, the set of paths over which the infimum in the good rate function s(·) is

taken is nonempty due to [4, Lemma 4.2].
□

1It is worth mentioning that this theorem relies on the additional contraction assumptions of that work. However, their
proof only uses the contractive assumptions to bound their potential functions u0(t) in a sub-additive (non-norm) function
∥ · ∥♯. Here, ∥u0(t)∥♯ measures the maximum difference between potentials of any two states from [d] at time t ∈ R+ and so
is equivalent to |∆u0(t)| in our case. Namely, for any measurable function b : R+ → Rd, the quantity ∥b(t)∥♯ is bounded for
all t ∈ R+ if and only if |∆b(t)| is bounded for all t ∈ R+.
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7. Numerics Comparing (C/
√
n)-Nash Equilibria

By Corollary 3.1 and Theorem 3.2, we saw that there are, under the full assumptions, at least two
distinct types of (C/

√
n)-Nash equilibria: one driven by the master equation’s solution, Γ0, and one

driven by the solution to the stationary ergodic MFG, Γ̄. One might ask whether, qualitatively speaking,
players adhering to the approximate Nash equilibria profiles Γ̄ or Γ0 experience different costs, or player
behaviors. In Section 7.1, we solve a class of quadratic examples for the stationary ergodic MFG system
(1.4). This allows us to explicitly state the strategies for the stationary Markovian strategy profile Γ̄ in
our numerics. To approximate the strategies making up Γ0 however, no such explicit formula is available
due to the dependence on U0. To tackle this, the following Section 7.2 adapts the deep Galerkin method
to approximate the solution to (1.5). We then begin our comparison of the strategies forming Γ̄ and Γ0,
compare their respective stationary distributions for each empirical measure, and contrast the realized
costs under each regime.

7.1. Explicit solutions to the stationary ergodic MFG. The example of quadratic costs is ubiqui-
tous in MFG literature and will serve as our benchmark problem for the numerics that follow this section.
Here, we will explicitly solve the example problem in the finite-state ergodic case. This particular ex-
ample was studied for the finite-horizon, finite-state case in [9, Example 1], [2, Example 3.1], and [11,
Example 7.1].

Fix a parameter δ ≥ 0 that will serve as a bias to avoid state 1 ∈ [d] and fix a scaling for the rate
costs b > 0. We will consider an example with the parameters:

A = [1, 3], d = 2, f(x, a) = δ1{x=1} + b
∑
y ̸=x

(axy − 2)2.

Pausing to consider the form of f , we note that we have introduced two parameters δ and b whose
interplay will determine the equilibrium state of the game. The larger δ is, the more players will be
incentivized to move quickly away from state 1 to avoid the additional cost of remaining in that state.
Meanwhile, increasing b means that players who want to move faster or slower than the “free” rate of 2,
to avoid state 1 for instance, will pay a higher cost. With this formulation, we can explicitly compute
the Hamiltonian H and its minimizer γ∗ as:

H(x, p) =
∑
y ̸=x

(
2py −

p2y
4b

)
, γ∗y(x, p) = 2− py

2b
.

And moreover,

H(x,∆xū) =
∑
y ̸=x

(
2(ūy − ūx)−

(ūy − ūx)
2

4b

)
, γ∗y(x,∆xū) = 2 +

ūx − ūy
2b

.

To accommodate the full assumptions, we will consider a typical Lasry–Lions monotone mean field cost:

F (x, η) = ηx.

With these assumptions, (1.4) reads:

ϱ̄ = 2(ū2 − ū1)−
1

4b
(ū2 − ū1)

2 + µ̄1 + δ,

ϱ̄ = 2(ū1 − ū2)−
1

4b
(ū2 − ū1)

2 + µ̄2,

µ̄1(−ϕ1) + µ̄2ϕ2 = 0,

µ̄1ϕ1 + µ̄2(−ϕ2) = 0,

(7.1)

where:

ϕ1 := 2 +
ū1 − ū2

2b
, ϕ2 := 2 +

ū2 − ū1
2b

. (7.2)
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We solve this system of equations explicitly. Using the fact that µ̄1 = 1− µ̄2 in the measure equations of
(7.1), we can show that:

−ϕ1 + µ̄2(ϕ1 + ϕ2) = 0 =⇒ µ̄2 = ϕ1/4,

where the implication follows from (7.2). For notational simplicity, define:

A := ū2 − ū1.

We can write the value equations from (7.1) as:

ϱ = 2A− 1

4b
A2 + µ̄1 + δ

ϱ = −2A− 1

4b
A2 + µ̄2.

Subtracting the equations in the prior display,

0 = 4A+ µ̄1 − µ̄2 + δ.

Since µ̄2 = ϕ1/4 and µ̄1 = 1− µ̄2,

4A+
A

4b
+ δ = 0,

and so rearranging gives:

A = δ
4b

16b+ 1
.

And since we can write µ̄1 and µ̄2 in terms of A, we plug in the prior display to get:

µ̄1 =
1

2

(
1− δ

16b+ 1

)
, µ̄2 =

1

2

(
1 +

δ

16b+ 1

)
.

With this, we can return to the second value equation of (7.1) to get an expression for ϱ in terms of δ
and b,

ϱ =
1

2
+ δ

128b2 + 24b− 4bδ + 1

(16b+ 1)2
.

Suppose b = 4, and δ = 0 for instance. Then the solution reads:

ϱ̄ = 1/2, ū2 − ū1 = 0, µ̄ = (1/2, 1/2).

When we take δ > 0 we will no longer have symmetry in the stationary measure and in the potential
function. For example, take δ = 1 and b = 4 to get:

ϱ̄ = 8483/8450 ≈ 1.003, ū2 − ū1 = 16/65, µ̄ = (32/65, 33/65).

For the remainder of the paper, we will study the case when b = 4 and δ = 0.

7.2. Approximate solutions to the ergodic master equation. In this section, we use the DGM to
solve the ergodic master equation and in order to numerically compare the strategies. The main difference
we find is that the master equation-derived strategy is sensitive to the players’ empirical distribution in
the simplex and that this effect is most pronounced at the boundary. In a sense, this means that the
master equation-derived strategy has a better short-term response than the stationary strategy. For the
master equation’s corresponding empirical n-player measure then, we would expect a faster transition
away from the boundary of the simplex compared to the measure of players using the stationary strategy.

We solve the master equation corresponding to this data for U0 using the DGM. While the solution of
the master equation is a pair (ϱ, U0), we note that since ϱ = ϱ̄ by Proposition 2.2, we have already found
that ϱ = 1/2 in Section 7.1. In Algorithm 1, we present an algorithm for approximating the potential
function U0 of the ergodic master equation, given the game’s value ϱ.

Algorithm 1 is, in a sense, an extension of the DGMmethod for the stationary ergodic MFG, presented
in [8, Section 4] for the MFG on the torus. Setting aside the different state-spaces, we note that [8]
approximates the stationary ergodic MFG system while Algorithm 1 approximates the ergodic master
equation. Moreover, our Algorithm 1 proceeds with ϱ as a known value which we solved for a priori. We
showed in Section 7.1 an explicit expression for ϱ in the case of quadratic (and potentially asymmetric)
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costs. In general, to compute ϱ, one would first solve (1.4) by using [8] and then using the value for ϱ
determined, solve for U0 using Algorithm 1.

As in the DGM, Algorithm 1 uses a family of parameterized functions U(·, ·; θ) : [d] × P([d]) → R
to approximate U0, where θ is a vector of the parameters in the neural network U . For any run of
the algorithm, we fix the architecture of U beforehand; here we use a fully-connected, feed-forward
architecture like in [11], while [33] used an LSTM architecture. Regardless of the architecture choice, we
need to consider a class of neural networks that is rich enough to be able to approximate U0. In our
case, we used a smoothed ReLU activation at each layer, ELU. We train the parameter θ using stochastic
gradient descent so that U(·, ·; θ) fits (1.5) as well as possible.

Algorithm 1 Ergodic DGM

1: Input: An initial parameter vector θ.
2: Output: A trained vector θ̂ such that (ϱ,U(·, ·; θ̂)) approximately solves (1.5).
3: Compute:

θ̂ ∈ argmin
θ∈Rδ̄

L(θ)

where for a finite set of samples S := {S | S = (x, η)}, we define L to be the mean squared error:

L(θ) :=
1

|S|
∑

(x,η)∈S

{∣∣∣H(x,∆xU(·, η; θ)) + ηx +
∑

y,z∈[d]

ηyD
η
yzU(x, η; θ)γ∗z (y,∆yU(·, η; θ))− ϱ

∣∣∣2
+
∣∣∣ ∑
y∈[d]

U(y, η; θ)
∣∣∣2}.

Remark 7.1. The first term in the loss function of Algorithm 1 is the master equation evaluated at
uniformly sampled points of [d] × P([d]). The second term, however, centralizes the potential function
around 0. As noted in Proposition 2.2, U0 is only unique up to an additive constant. Therefore, adding
the centralization term encourages the algorithm to reach the same solution on different runs.

Remark 7.2. Unfortunately, the master equation is a different kind of PDE than those studied in [33],
and so the theoretical guarantees of the algorithm’s correctness do not apply. While we do not offer
a proof of correctness, applying the DGM to the finite-horizon master equation was pioneered in [28,
Algorithm 7] and proofs of algorithmic correctness for that case were offered in [11].

In Figure 1, we present the difference in strategies, where the strategy γ∗y(x,∆xU0(·, η)) is approx-

imated by plugging in the result of the ergodic DGM Algorithm 1; namely, γ∗y(x,∆xU(·, η; θ̂)). In the

case we study numerically in Section 7.1, for any D ∈ Rd, γ∗y(x,∆xD) is a linear transformation of the
vector ∆xD. We note that Γ0 has a greater effect near the boundary of the simplex; this has the effect
of moving a representative player faster toward the center.

We perform the same analysis for the case d = 3 and observe the differences in the strategies in Figure
2. The vertical axis represents the proportion of players in state 1 and the horizontal the proportion in
state 2. The proportion of players in state 3 is 1 in the lower, left corner of the plots. Like in Figure 1,
we note that Γ0 results in a greater rate of transition when more players are in one’s own state.

In Figure 3, we note that the difference in rates leads to a greater concentration of the stationary
distribution L n

∞ around the center of the simplex P([2]) for Γ0 than for Γ̄. We computed the stationary
distribution according to the formula for a birth-death process. Specifically, [21, Part III, Chapter 14]
lists the formula for the stationary distribution of a birth-death process with specified birth and death
rates for every state; we then consider “births” as when the empirical distribution increases its proportion
in state 1 and “deaths” when it increases its proportion in state 2.

Given the stationary distributions for µΓ0 and µΓ̄, we can compute the exact cost to a single player
in each ε-Nash equilibria. We write:

ϱn,U0 := Jn(Γ0), ϱn,ū := Jn(Γ̄).
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Figure 1. We can compare Γ0 and Γ̄ by observing the difference in rates
γ∗y(x,∆xU0(·, η))− γ∗y(x,∆xū) in the case d = 2.

Figure 2. We can compare Γ0 and Γ̄ by observing the difference in rates
γ∗y(x,∆xU0(·, η))− γ∗y(x,∆xū) in the case d = 3.

In Figure 4, we represent ϱn,U0 and ϱn,ū as n increases. We see that ϱn,U0 is slightly smaller and so there
is a marginal advantage to playing the profile Γ0 associated with the master equation.

8. Large Deviations Numerics

In what follows, we provide an explicit formula for the good rate function of L n
∞ when d = 2. We

do this by introducing natural choices for functions r, r̄ that satisfy an asymptotic property sufficient for
proving Theorem 8.1.
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Figure 3. Due to the elevated rate for players of Γ0 near the boundary of P([2]), we see
a greater concentration of mass toward the center of the simplex, relative to Γ̄.

Figure 4. The left graph shows the convergence of each realized cost to ϱ the optimal
cost in the mean field limit. The right graph highlights the fact that ϱn,U0 < ϱn,ū.
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Figure 5. The difference in realized value ϱn,ū − ϱn,U0 .

As noted briefly in Section 7, when d = 2 we can interpret the empirical measures under Γ̄ and Γ0 as
birth-death processes where movement into state 1 is interpreted as a birth and movement into state 2 is
interpreted as a death. For Γ̄ then, we can write the birth and death rates as the functions:

b̄(n)(k/n) = γ∗1(2,∆2ū)n(1− k/n),

d̄(n)(k/n) = γ∗2(1,∆1ū)n(k/n).
(8.1)

Similarly, for Γ0:

b(n)(k/n) = γ∗1(2,∆2U0(·, (k/(n− 1), 1− k/(n− 1))))n(1− k/n),

d(n)(k/n) = γ∗2(1,∆1U0(·, (k/(n− 1), 1− k/(n− 1))))n(k/n).
(8.2)

We now propose two functions r̄, r0 : [0, 1] → R that, for the case d = 2 only, will allow us to define
a simpler form for the rate function than in Theorem 3.3. Set:

r̄(λ) :=
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

) λ

1− λ
,

r0(λ) :=
(
γ∗
2 (1,∆1U0(·,(λ,1−λ)))

γ∗
1 (2,∆2U0(·,(λ,1−λ)))

) λ

1− λ
.

(8.3)

Lemma 8.1. The functions log(r̄), log(r0) ∈ L1([0, 1]); that is, the log of each function is absolutely
integrable. Moreover,

lim
n→∞

1

n

n−1∑
k=1

(
log

( d̄(n)((k + 1)/n)

b̄(n)(k/n))

)
− log(r̄(k/n))

)
= 0, (8.4)

and r0 satisfies the same limit with d(n) and b(n).

Proof. Recall that the rates are bounded in a compact set away from zero. Therefore, using that log(ab) =
log(a) + log(b), for any r ∈ {r̄, r0},∫ 1

0
| log r(λ)|dλ ≤ C +

∫ 1

0

∣∣∣ log ( λ
1−λ

)∣∣∣dλ = C + log(4) < ∞.

We check (8.4) for r = r̄. We now combine the log’s in (8.4), use (8.1), and use that the product is
telescoping to get:

lim
n→∞

1

n

n−1∑
k=1

log
( k + 1

n− k
· n− k

k

)
= lim

n→∞

1

n
log

( n∏
k=1

(k + 1)/k
)
= lim

n→∞

log(n+ 1)

n
= 0. (8.5)

The proof for r0 is similar to that of r̄, though we use at one point that U0 is Lipschitz. □
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Theorem 8.1 (Large Deviations, Special Case d = 2). Recall from Theorem 3.3 that L n
∞ ∈ P(Pn([d]))

is the stationary distribution of the empirical distribution κn ∈ {µΓ̄, µΓ0} and let the r ∈ {r̄, r0} be the
corresponding function from Lemma 8.1. When d = 2, L n

∞ satisfies a large deviation principle with a
simplified good rate function s given by:

s(η) = s̃(η)− s̃min,

where:

s̃(η) :=

∫ η1

0
log(m(λ))dλ,

s̃min := min
η∈P([2])

s̃(η).
(8.6)

And in the case of κn = µΓ̄, we have explicit formulas for s̃ and s̃min:

s̃(η) = η1 log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
+ log(η2) + η1 log(η1/η2),

s̃min = log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
− log

(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

+ 1
)
.

(8.7)

Proof. The purpose of Lemma 8.1 is to satisfy the assumptions from [10, (3.3a), (3.3b)]. As a consequence,
[10, Theorem 3.1] asserts that s is the good rate function as claimed. It remains to show that, in the case
of r̄, we have an explicit form of s.

That is, we can integrate, using that log(ab) = log(a)+ log(b), integration by parts, and the fact that
η1 = 1− η2,

s̃(η) =

∫ η1

0
log

(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

λ
1−λ

)
dλ

= η1 log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
+

∫ η1

0
log

(
λ

1−λ

)
dλ

= η1 log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
+ log(1− λ) + λ log

(
λ

1−λ

)∣∣∣η1
0

= η1 log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
+ log(η2) + η1 log(η1/η2).

Taking the derivative,

∂

∂η1
s̃(η) = log

(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

η1
1−η1

)
.

Therefore, we can find that s̃ has a critical point at:

η = (η1, η2), where η1 =
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

+ 1
)−1

, η2 = 1− η1.

By the first derivative test, this point is the minimum of s̃. Plugging this point into s̃ and by some
arithmetic,

s̃min = log
(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

)
− log

(
γ∗
2 (1,∆1ū)

γ∗
1 (2,∆2ū)

+ 1
)
.

□

In the numerical case we visited in the prior section, this means that the good rate function for the
Γ̄-system is given by:

s(η) = log(η2) + η1 log(η1/η2) + log(2).

Unfortunately, the good rate function associated with the Γ0-system is not explicitly solvable since the
integral contains U0. Nonetheless, since we approximately solved for U0 using Algorithm 1, we can use
Monte Carlo integration to approximate s̃ in that case and thus obtain the good rate function. In Figure
6, we compare the good rate functions for Γ̄ and Γ0.
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Figure 6. On the left-hand side, we compare the good rate functions associated with the

invariant measures for µΓ0 and µΓ̄. Theorem 8.1 gives the rate function associated with µΓ̄

while Algorithm 1 and Monte Carlo integration obtain the rate function for µΓ0 . On the
right, we highlight the difference between the rate functions. We note that the graph on
the right-hand side implies that playing the profile Γ̄ is associated with larger deviations
as compared with Γ0, and that the distinction is most pronounced toward the boundary
of P([2]).

Appendix A. Proof of Lemma 3.1

Note that (Xβ
t )t≥0 is a Markov process. Denote its distributional law at time t by (L(Xβ

t )x =

P(Xβ
t = x))x∈[d]n . Then, it satisfies the Kolmogorov equation:

d

dt
L(Xβ

t )x =
∑

y∈[d]n
L(Xβ

t )yQ
β
yx(t,X

β
t ), (t,x) ∈ R+ × [d]n,

where Qβ
yx(t,X

β
t ) is the rate matrix:

Qβ
yx(t,X

β
t ) :=


0, y ̸= x+ ey − ex, for any y ̸= x,∑

i∈[n] β
i
xy(t,X

β
t )1{Xβ,i

t =x}, y = x+ ey − ex, for some y ̸= x,∑
i∈[n] β

i
xx(t,X

β
t )1{Xβ,i

t =x}, y = x.

Depending on the initial conditions π0 or π1, we know by [12, Lemma 3.3] that:

|L(Xβ
t | Xβ

0 ∼ π0)− L(Xβ
t | Xβ

0 ∼ π1)| ≤ Kne
−knt|π0 − π1|, (A.1)
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where Kn, kn are positive constants depending only on A and n. Hence,

lim sup
T→∞

1

T
Eπ0

∫ T

0
g(Xβ

t )dt = lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)L(Xβ
t | Xβ

0 ∼ π0)xdt

= lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)
[
L(Xβ

t | Xβ
0 ∼ π0)x − L(Xβ

t | Xβ
0 ∼ π1)x

]
dt

+ lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)L(Xβ
t | Xβ

0 ∼ π1)xdt

= lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)
[
L(Xβ

t | Xβ
0 ∼ π0)x − L(Xβ

t | Xβ
0 ∼ π1)x

]
dt

+ lim sup
T→∞

1

T
Eπ1

∫ T

0
g(Xβ

t )dt.

(A.2)

But then by triangle inequality, the boundedness of g, and finally (A.1),∣∣∣ lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)
[
L(Xβ

t | Xβ
0 ∼ π0)x − L(Xβ

t | Xβ
0 ∼ π1)x

]
dt
∣∣∣

≤ lim sup
T→∞

1

T

∫ T

0

∑
x∈[d]n

g(x)
∣∣L(Xβ

t | Xβ
0 ∼ π0)x − L(Xβ

t | Xβ
0 ∼ π1)x

∣∣dt
≤ Cg lim sup

T→∞

1

T

∫ T

0

∑
x∈[d]n

∣∣L(Xβ
t | Xβ

0 ∼ π0)x − L(Xβ
t | Xβ

0 ∼ π1)x
∣∣dt

≤ Cg lim sup
T→∞

1

T

∫ T

0
Kne

−knt|π0 − π1|dt

= 0.

(A.3)

Using this fact in (A.2) concludes the proof. □
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[18] F. Höfer and M. Soner. Synchronization games. arxiv preprint, 2024.
[19] M. Huang, P. E. Caines, and R. P. Malhamé. The Nash certainty equivalence principle and Mckean-Vlasov systems:

An invariance principle and entry adaptation. In Decision and Control, 2007 46th IEEE Conference on, pages 121–126.
IEEE, 2007.
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