
ar
X

iv
:2

40
4.

11
70

9v
1 

 [
cs

.C
C

] 
 1

7 
A

pr
 2

02
4

Satisfiability of commutative vs. non-commutative CSPs*

Andrei A. Bulatov

SFU

abulatov@sfu.ca

Stanislav Živný

University of Oxford

standa.zivny@cs.ox.ac.uk

Abstract

The Mermin-Peres magic square is a celebrated example of a system of Boolean linear equations

that is not (classically) satisfiable but is satisfiable via linear operators on a Hilbert space of dimension

four. A natural question is then, for what kind of problems such a phenomenon occurs? Atserias,

Kolaitis, and Severini answered this question for all Boolean Constraint Satisfaction Problems (CSPs):

For 2-SAT, HORN-SAT, and DUAL HORN-SAT, classical satisfiability and operator satisfiability is the

same and thus there is no gap; for all other Boolean CSPs, the two notions differ as there is a gap, i.e.,

there are unsatisfiable instances that are satisfied via operators on a finite-dimensional Hilbert space. We

generalize their result to CSPs on arbitrary finite domains: CSPs of so-called bounded-width have no

satisfiability gap, whereas all other CSPs have a satisfiability gap.

1 Introduction

Symmetry leads to efficient computation. This phenomenon has manifested itself in several research areas

that have one aspect in common, namely a model of computation with local constraints that restrict the

solution space of the problem of interest. An elegant way to describe such problems is in the framework

of Constraint Satisfaction Problems (CSPs). CSPs have driven some of the most influential developments

in theoretical computer science, from NP-completeness to the PCP theorem to semidefinite programming

algorithms to the Unique Games Conjecture. The mathematical structure of tractable decision CSPs [15, 57],

infinite-domain CSPs [7, 8], optimization CSPs [53], as well as approximable CSPs [50, 10], is now known

to be linked to certain forms of higher-order symmetries of the solution spaces. A recently emerging research

direction links CSPs with foundational topics in physics and quantum computation [18, 17, 2, 47, 41].

Constraint Satisfaction Problems CSPs capture some of the most fundamental computational problems,

including graph and hypergraph colorings, linear equations, and variants and generalizations of satisfiability.

Informally, one is given a set of variables and a set of constraints, each depending only on constantly many

variables. Given a CSP instance, the goal is to find an assignment of values to all the variables so that all

constraints are satisfied. For example, if the domain is {r, g, b} and the constraints are of the form R(x, y),
where R = {(r, g), (g, r), (g, b), (b, g), (r, b), (b, r)} is the binary disequality relation on {r, g, b}, we obtain

the classic graph 3-COLORABILITY problem. If the domain is {r, g, b, o} and the constraints are of the form

R(x, y), where R = {(r, g), (g, r), (g, b), (b, g), (b, o), (o, b), (o, r), (r, o)}, we obtain a variant of the graph

4-COLORABILITY problem in which adjacent vertices must be assigned different colors and, additionally,

red and blue vertices must not be adjacent and green and orange vertices must not be adjacent.

*This work was supported by UKRI EP/X024431/1 and NSERC Discovery grant. For the purpose of Open Access, the authors

have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. All data

is provided in full in the results section of this paper.

1

http://arxiv.org/abs/2404.11709v1


Back in 1978, Schaefer famously classified all Boolean CSPs as solvable in polynomial time or NP-

hard [51].1 The tractable cases are the standard textbook problems, namely 2-SAT, HORN-SAT, DUAL

HORN-SAT, and system of linear equations on a two-element set.2 Hell and Nešetřil studied a special

case of CSPs known as graph homomorphisms [28]. These are CSPs in which all constraints involve the

same binary symmetric relation, i.e., a graph. The above-mentioned 3-COLORABILITY problem is the

homomorphism problem to K3, the undirected clique on three vertices, say {r, g, b}. The above-mentioned

variant of 4-COLORABILITY is the homomorphism problem to C4, the undirected cycle on four vertices, say

{r, g, b, o}. Generalizing greatly the classic result of Karp that k-COLORABILITY is solvable in polynomial

time for k ≤ 2 and NP-hard for k ≥ 3 and other concrete problems such as the (tractable) variant of 4-

COLORABILITY above, Hell and Nešetřil obtained in 1990 a complete classification of such CSPs [27].

Motivated by these two results and the quest to identify the largest subclass of NP that could exhibit a

dichotomy and thus avoid NP-intermediate cases, Feder and Vardi famously conjectured that all CSPs on

finite domains admit a dichotomy; i.e., are either solvable in polynomial time or are NP-hard [23].

Following the so-called algebraic approach to CSPs, pioneered by Jeavons, Cohen an Gyssens [30]

and Bulatov, Jeavons, and Krokhin [12], the conjecture was resolved in the affirmative in 2017 by Bula-

tov [15] and, independently, by Zhuk [56, 57]. The algebraic approach allows for a very clean and precise

characterization of what makes certain CSPs computationally tractable — this is captured by the notion of

polymorphisms, which can be thought of as multivariate symmetries of solutions spaces of CSPs. Along the

way to the resolution of the Feder-Vardi dichotomy conjecture, the algebraic approach has been successfully

used to establish other results about CSPs, e.g., characterizing the power of local consistency algorithms for

CSPs [11, 3], characterizing robustly solvable CSPs [25, 20, 4], classifying the complexity of exact optimiza-

tion CSPs [53, 37], the tremendous progress on classifying the complexity of CSPs on infinite domains [7],

and very recently using SDPs for robustly solving certain promise CSPs [9].

Operator Constraint Satisfaction Problems Consider the following instance of a Boolean CSP, consist-

ing in nine variables x1, . . . , x9 over the Boolean domain {−1,+1} and the following six constraints:

x1x2x3 = +1, x1x4x7 = +1,

x4x5x6 = +1, x2x5x8 = +1,

x7x8x9 = +1, x3x6x9 = −1.

(1)

Graphically, this system of equations can be represented by a square, where each equation on the left

of (1) comes from a row, and each equation on the right of (1) comes from a column.

x1 x2 x3

x4 x5 x6

x7 x8 x9

+1
+1
+1

+1 +1 −1

The system of equations (1) has no solution in the Boolean domain {−1,+1}: By multiplying the left-hand

sides of all equations we get +1 because every variable occurs twice in the system and x2i = +1 for every

1 ≤ i ≤ 9. However, by multiplying the right-hand sides of all equations, we get −1. Note that this

argument used implicitly the assumption that the variables commute pairwise even if they do not appear in

1We call a CSP Boolean if the domain of all variables is of size two. Some papers call such CSPs binary. We use the term binary

for a relation of arity two and for CSPs whose constraints involve binary relations.
2There are also two trivial, uninteresting cases called 0-valid and 1-valid.

2



the same equation, which is true over {−1,+1}. Thus, this argument does not hold if one assumes that only

variables occurring in the same equation commute pairwise. In fact, Mermin famously established that the

system (1) has a solution consisting of linear operators on a Hilbert space of dimension four [44, 45] and

the construction is now know as the Mermin-Peres magic square [48]. This construction proves the Bell-

Kochen-Specker theorem on the impossibility to explain quantum mechanics via hidden variables [6, 34].

Any Boolean CSP instance, just like the one above, can be associated with a certain non-local game

with two players, say Alice and Bob, who are unable to communicate while the game is in progress. Alice is

given a constraint at random and must return a satisfying assignment to the variables in the constraint. Bob

is given a variable from the constraint and must return an assignment to the variable. The two players win if

they assign the same value to the chosen variable. With shared randomness, Alice and Bob can play the game

perfectly if and only the instance is satisfiable [18]. The Mermin-Peres construction [44, 48] was the first

example of an instance where the players can play perfectly by sharing an entangled quantum state although

the instance is not satisfiable. We note that [44, 48] were looking at quantum contextuality scenarios rather

than non-local games and it was Aravind who reformulated the construction in the above-described game

setting [1], cf. also [16]. The game was introduced for any Boolean CSP by Cleve and Mittal [18] and

further studied by Cleve, Liu, and Slofstra [17].

Every Boolean relation can be identified with its characteristic function, which has a unique represen-

tation as a multilinear polynomial via the Fourier transform. The multilinear polynomial representation of

Boolean relations (and thus also Boolean CSPs) makes it possible to consider relaxations of satisfiability in

which the variables take values in a suitable space, rather than in {−1,+1}. Such relaxations of satisfiability

have been considered in the foundations of physics long ago, playing an important role in our understanding

of the differences between classical and quantum theories. In detail, given a Boolean CSP instance, a clas-

sical assignment assigns to every variable a value from {−1,+1}. An operator assignment assigns to every

variable a linear operator A on a finite-dimensional Hilbert space (which means, up to a choice of basis, a

matrix with complex entries) so that A2 = I and each A is self-adjoint, i.e., A = A∗ and thus in particular

A is normal, meaning that AA∗ = A∗A.3 Furthermore, it is required that operators assigned to variables

from the scope of some constraint pairwise commute.

Ji showed that for Boolean CSPs corresponding to 2-SAT there is no difference between (classical) sat-

isfiability and satisfiability via operators [31]. Later, Atserias, Kolaitis, and Severini established a complete

classification for all Boolean CSPs parameterized by the set of allowed constraint relations. In particular,

they showed that only CSPs whose relations come from 2-SAT, HORN-SAT, or DUAL HORN-SAT have

“no satisfiability gap” in the sense that (classic) satisfiability is equivalent to operator satisfiability; for all

other Boolean CSPs, there is a satisfiability gap in the sense that there are instances that are not (classically)

satisfiable but are satisfiable via operators just as in the Mermin-Peres magic square. The “no-gap” part

of the result is established by the substitution method [18]. The “gap” part of the result is established by

showing that reductions between CSPs based on primitive positive formulas, which preserve complexity and

were used to establish Schaefer’s classification of Boolean CSPs, preserve satisfiability gaps.

Contributions As our main contribution, we generalize the result of Atserias et al. [2] from Boolean

CSPs to CSPs on arbitrary finite domains. As has been done in, e.g, [24, 19], we represent a finite domain

of size d by the d-th roots of unity, and require that each operator A in an operator assignment should be

normal (i.e. AA∗ = A∗A) and should satisfy Ad = I . The representation of non-Boolean CSPs relies on

multi-dimensional Fourier transform. Our main result proves that CSPs of bounded width (on arbitrary finite

domains) do not have a satisfiability gap, meaning that classical satisfiability is equivalent to satisfiability via

operators (Theorem 9); and all other CSPs do have a satisfiability gap, meaning that classical satisfiability

is not equivalent to satisfiability via operators (Theorem 19).

3A∗ denotes the conjugate transpose; all concepts are fully defined and details provided in Section 2.

3



Theorem (Main result, informal statement). Let Γ be an arbitrary finite set of relations on a finite domain. If

CSP(Γ) has bounded width then classical and operator satisfiability are the same for CSP(Γ). Otherwise,

classical and operator satisfiability are not the same for CSP(Γ).

The proof relies on several ingredients. Firstly, we observe that results establishing that primitive positive

definability preserve satisfiability gaps [2] can be lifted from Boolean to arbitrary finite domains. Secondly,

for CSPs of bounded width we show that there is no difference between classical and operator satisfiabil-

ity by simulating the inference by the so-called Singleton Linear Arc Consistency (SLAC) algorithm in

polynomial equations. We note that while there are several (seemingly stronger) algorithms for CSPs of

bounded width, our proof relies crucially on the special structure of SLAC and the breakthrough result of

Kozik that SLAC solves all CSPs of bounded width [38]. Thirdly, to prove that CSPs of unbounded width

have satisfiability gaps we use the algebraic approach to CSPs, namely, we show that not only primitive

positive definitions but also other reductions, namely going to the core, adding constants, and restrictions to

subalgebras and factors, preserve satisfiability gaps. Finally, for all odd d we give an explicit construction

of a CSP instance with a satisfiability gap, which is a generalization of the Mermin-Peres square.

We note that that there is a significant hurdle to go from Boolean CSPs to CSPs over arbitrary finite do-

mains. While any non-Boolean CSP can be Booleanized via indicator variables and extra constraints, such

constructions do not immediately imply classifications of non-Boolean CSPs as the “encoding constraints”

are intended to be used in only a particular way. Indeed, while the complexity of Boolean CSPs was estab-

lished by Schaefer in 1978 [51] and the complexity of CSPs on three-element domains was established by

Bulatov in 2002 [13, 14], the dichotomy for all finite domains was only established in 2017 [15, 56, 57].

Similarly for other variants of CSPs and different notions of tractability, results on Boolean domains, in-

cluding the work of Atserias et al. [2], rely crucially on the explicit knowledge of the structure of relations

on Boolean domains (established by Post [49]), which is not known for non-Boolean CSPs. Indeed, on the

tractability side, the structure of relations in tractable Boolean CSPs is simple and very well understood; on

the intractability side, reductions based only on primitive positive definitions suffice for a complete classifi-

cation of Boolean CSPs. Neither of these two facts is true for non-Boolean CSPs.

We find it fascinating that bounded width is the borderline for satisfiability gaps for CSPs, thus linking

a notion coming from a natural combinatorial algorithm for CSPs with a foundational topic in quantum

computation. This is yet another result confirming how fundamental the notion of bounded width is, cap-

turing not only the power of the local consistency algorithm [40, 43, 11, 3] as conjectured in [23] with links

to Datalog, pebble games, and logic [23, 36], but also robust solvability of CSPs [4], exact solvability of

valued CSPs by LP [54] and SDP [55] relaxations, and now also satisfiability via operators.

Related work The present article is concerned with distinguishing classical satisfiability from satisfiability

over finite-dimensional operators. Atserias et al. [2] also considered satisfiability over infinite-dimensional

bounded operators and obtained a complete classification of Boolean CSPs, relying on a breakthrough re-

sult of Slofstra, who established that there is system of linear equations that is not satisfiable via finite-

dimensional operators but is satisfiable via infinite-dimensional bounded operators [52]. We believe that our

methods can be used for the infinite-dimensional case as well but leave it for future work. Very recently,

Paddock and Slofstra [47] streamlined the results of Atserias et al. [2]. Moreover, [47] gives an overview

of other notions of satisfiability and their relationship, including the celebrated MIP∗=RE result of Ji et

al. [32, 33]. We note that the notion of quantum homomorphism from the work of Mančinska and Rober-

son [42] is different from ours as it requires that the operators A should be idempotent, i.e., A2 = A. Recent

work of Culf, Mousavi, and Spirig studies approximability of operator CSPs [19].

4



2 Preliminaries

We denote by [r] the set {1, 2, . . . , r}.

CSPs An instance of the constraint satisfaction problem (CSP) is a triple P = (V,D, C), where V is a set

of variables, D is a set of domain values, and C is a set of constraints. Every constraint in C is a pair 〈s, R〉,
where s ∈ V r is the constraint scope and R ⊆ Dr is the constraint relation of arity r = ar(R). Given a CSP

instance P, the task is to determine whether there is an assignment s : V → D that assigns to every variable

from V a value from D in such a way that all the constraints are satisfied; i.e., (s(v1), . . . , s(vr)) ∈ R for

every constraint 〈(v1, . . . , vr), R〉 ∈ C. An assignment satisfying all the constraints is also called a solution.

Let D be a fixed finite set. A finite set Γ of relations over D is called a constraint language over D.

We denote by CSP(Γ) the class of CSP instances in which all constraint relations belong to Γ. A mapping

̺ : D → D is an endomorphism or unary polymorphism of Γ if, for any R ∈ Γ (say, r-ary) and any

(a1, . . . , ar) ∈ R, the tuple (̺(a1), . . . , ̺(ar)) belongs to R.

Bounded width Intuitively, CSPs of bounded width are those CSPs for which unsatisfiable instances can

be refuted via local propagation. An obvious obstruction to bounded width, in addition to NP-hard CSPs,

is CSPs encoding systems of linear equations [23]. A celebrated result of Barto and Kozik established

that CSPs of bounded width are precisely those CSPs that cannot simulate, in a precise sense, linear equa-

tions [3]. While bounded width has several characterizations [40, 43, 11, 3, 39],4 we will rely on the result of

Kozik [38] that established that every CSP of bounded width can be solved through constraint propagation

of a very restricted type, so-called Singleton Linear Arc-Consistency (SLAC).

In order to explain SLAC, we need to start with Arc-Consistency (AC). AC is one of the basic levels of

local consistency notions. It is a property of a CSP and also an algorithm turning an instance P ∈ CSP(Γ)
into an equivalent subinstance P ′ ∈ CSP(Γ) that satisfies the AC property. Intuitively, given an instance

P = (V,D, C) ∈ CSP(Γ), the AC algorithm starts with setting the domain Dv = D for every variable

v ∈ V . Then, it prunes the sets {Dv}v∈V in an iterative fashion, terminating (in polynomial time in the size

of P) with a maximal subinstance of P that satisfies the AC condition; namely, for every variable v ∈ V ,

every value a ∈ Dv, and every constraint 〈s, R〉 ∈ C such that s[i] = v for some i, there is a tuple a ∈ R
with a[i] = a. The resulting subinstance P ′ is equivalent to P in the sense that P has a solution if and only

if P ′ has a solution. We say that AC solves an instance P if P has a solution whenever P ′ is consistent;

i.e., none of the sets Dv in P ′ is empty. AC is not strong enough to solve all CSPs of bounded width (e.g.,

2-SAT) but its full power is understood [23, 21].

Equivalently, Arc-Consistency can be described in terms of a Datalog program [35]. In general, a

Datalog program derives facts about an instance P ∈ CSP(Γ) using a fixed set of rules that depend on the

constraint language Γ. The rules are defined using relations from Γ called extensional databases (EDBs) as

well as a number of auxiliary relations called intensional databases (IDBs). Each rule consists of a head,

which is a single IDB, and the body, which is a sequence of IDBs and EDBs. The execution of the program

updates the head IDB whenever the body of the rule is satisfied, that is, every EDB and IDB in the body is

satisfied. The computation of the program ends when no relation can be updated, or when the goal predicate

is reached. If we require that a Datalog program should only include unary IDBs and that every rule should

have at most one EDB then the power of the program for CSPs amounts to AC. In detail, the AC Datalog

program has a unary relation (IDB) TS(v) for each subset S ⊆ D. Then for every 〈(v1, . . . , vr), R〉 ∈ C and

for any IDBs TS1 , . . . , TSm , TS the program contains the rule

TS(vi) : −R(v1, . . . , vr), TS1(vi1), . . . , TSm(vim)

4One characterization implies that checking whether a constraint language has bounded width is decidable [39].

5



Input: A CSP instance P = (V,D, C).

Output: A SLAC-consistent instance P ′ equivalent to P

1. for each v ∈ V set Dv = Ud

2. P ′ = P +
∑

v∈V 〈v,Dv〉

3. until the process stabilizes

3.1 pick a variable v ∈ V

3.2 for each a ∈ Dv do

3.2.1 run Linear Arc-Consistency on P ′ + 〈v, {a}〉

3.2.2 if the problem is inconsistent, set Dv = Dv − {a}

endfor

enduntil

4. return P ′
Figure 1: SLAC.

if for any a ∈ R such that a[ij ] ∈ Sj we have a[i] ∈ S. The Arc-Consistency algorithm is Linear if m = 1
for every rule in the corresponding Datalog program.

The Singleton Arc-Consistency (SAC) algorithm is a modification of the AC algorithm [22]. SAC

updates the sets {Dv}v∈V as follows: it removes a from Dv if the current instance augmented with the con-

straint fixing the value a to the variable v is found inconsistent by the AC algorithm. Finally, the Singleton

Linear Arc-Consistency algorithm is a modification of SAC (due to Kozik [38] and Zhuk [57]) that uses the

Linear AC algorithm rather than the AC algorithm. Kozik has shown that SLAC solves all CSPs of bounded

width [38]. As with AC, SLAC is not only an algorithm but also a condition (of the instance P ′ produced

by the algorithm). We say that an instance P is SLAC-consistent if the SLAC algorithm, given in Figure 1,

does not change the instance.

Multi-dimensional Fourier transform Let Ud be the set of d-th roots of unity, that is, Ud = {λk =

e
2πi
d

k | 0 ≤ k < d}. The Fourier transform (FT) of a function f : Un
d → Ud is defined, for a ∈ Un

d , as

FT (f,a) =
∑

b∈Un
d
f(b)λa·b

1 . Then it is not hard to see that f(a) =
∑

b∈Un
d
FT (f,b)λa·b

1 , which gives

rise to a representation of f by a polynomial

f(x) =
∑

b∈Un
d

FT (f,b)xb′

,

where b
′ = (k1, . . . , kn) and b[j] = λkj . This representation is unique [46].

Linear operators and Hilbert spaces Let V be a complex vector space. A linear operator on V is a

linear map from V to V . The identity linear operator on V is denoted by I . The linear operator that is

identically 0 is denoted by 0. Let A and B be two linear operators. Then, their pointwise addition is denoted

by A+B, their composition is denoted by AB, and the pointwise scaling of A by a scalar c ∈ C is denoted

by cA. All of these are linear operators and thus we can plug linear operators in polynomials. Note that if

A1, . . . , An pairwise commute (i.e., AiAj = AjAi for every i, j ∈ [n]) then P (A1, . . . , An) is well defined.

We denote by C[x1, . . . , xn] the ring of polynomials with complex coefficients and commuting variables

x1, . . . , xn.

A Hilbert space is a complex vector space with an inner product whose norm induces a complete metric.

All Hilbert spaces of finite dimension d are isomorphic to C
d with the standard complex inner product. Thus,

after the choice of basis, linear operators on a d-dimensional Hilbert space can be identified with matrices

6



in C
d×d, and operator composition becomes matrix multiplication. All Hilbert spaces in this paper will be

of finite dimension; thus we will freely switch between the operator and matrix terminology.

A diagonal matrix has all off-diagonal entries equal to 0. For a matrix A, we denote by A∗ its conjugate

transpose. Recall that (AB)∗ = B∗A∗. A matrix A is unitary if A∗A = AA∗ = I , where I is the identity

matrix. Two matrices A and B commute if AB = BA. A collection of matrices A1, . . . , Ar pairwise

commute if AiAj = AjAi for all i, j ∈ [r]. A linear operator A is called normal if it commutes with A∗;

i.e., AA∗ = A∗A.

We will use the following form of the so-called strong spectral theorem.

Theorem 1 ([26]). Let A1, . . . , Ar be normal matrices. If A1, . . . , Ar pairwise commute then there exists a

unitary matrix U and diagonal matrices E1, . . . , Er such that Ai = U−1EiU for every i ∈ [r].

3 Operator CSP

In order to relax the notion of satisfiability, we first consider CSPs on Ud for some d and represent CSPs via

polynomials. Let Γ be a constraint language over Ud. Every constraint 〈s, R〉 of an instance P = (V,Ud, C)
of CSP(Γ) is represented by a polynomial PR(s) that represents the characteristic function fR of R:

fR(s) =

{

λ0, if R(s) is true,

λ1, otherwise.

We note that our choice of the polynomial representation is somewhat arbitrary but other choices lead to the

same results. (For instance, [2] studied the d = 2 case and used λ1 to represent true.)

An operator A over a Hilbert space H is a normal operator of order d if A is normal and Ad = I .

Operator assignment to the instance P over a Hilbert space H is a mapping that assigns to every variable

from V an operator Av over H such that

(a) Av is a normal operator of order d for every v ∈ V ;

(b) the operators Av1 , . . . , Avr pairwise commute for every constraint 〈(v1, . . . , vr), R〉 ∈ C.

We call an operator assignment {Av} satisfying for P if PR(Av1 , . . . , Avr ) = I for every constraint

〈(v1, . . . , vr), R〉 ∈ C. We say that CSP(Γ) has a satisfiability gap if there are instances of CSP(Γ) that are

not satisfiable over Ud but are satisfiable by an operator assignment over a finite-dimensional Hilbert space.

We shall repeatedly use the following simple lemma.

Lemma 2. Let x1, . . . , xr be variables, let Q1, . . . , Qm, Q be polynomials in C[x1, . . . , xr], and letH be a

Hilbert space. If every assignment over Ud that satisfies the equations Q1 = · · · = Qm = 0 also satisfies

the equation Q = 0, then every fully commuting operator assignment over H that satisfies the equations

Q1 = · · · = Qm = 0 also satisfies the equation Q = 0.

The proof of this lemma is very similar to that of the analogous claim in [2, Lemma 3], where it was

established for d = 2. The main difference is to use Ad = I rather than A2 = I . For the sake of

completeness we give the proof here.

Proof. Suppose that the conditions of the lemma hold and A1, . . . , Ar are pairwise commuting operators

such that the equations Q1 = · · · = Qm = 0 are true when these matrices are assigned to x1, . . . , xr.

Then, since A1, . . . , Ar are normal and commute, by Theorem 1 there is a unitary matrix U such that

Ei = UAiU
−1 is a diagonal matrix. Then, Ed

i = I , because Ad
i = I . Therefore, every diagonal entry

Ei(jj) belongs to Ud. For every equation Qℓ we have Qℓ(A1, . . . , Ar) = 0 implying Qℓ(E1, . . . , Er) =
UQℓ(A1, . . . , Ar)U

−1 = 0. Since every Ei is diagonal, for every j it also holds Qℓ(E1(jj), . . . , Er(jj)) =
0. By the conditions of the lemma we also have Q((E1(jj), . . . , Er(jj)) = 0, and Q(A1, . . . , Ar) =
U−1Q(E1, . . . , Er)U = 0.

7



4 Overview of results and techniques

In this section, we give an overview of how our main result is proved. All definitions and details are provided

in the main part of the paper comprizing of Sections 5–8.

Bounded width One direction of our main result is the following.

Theorem 3. Let Γ be a constraint language over Ud. If CSP(Γ) has bounded width then it has no satisfia-

bility gap.

The main idea behind the proof of Theorem 3 is to simulate the inference provided by SLAC by inference

in polynomial equations. Let S be a SLAC-program solving CSP(Γ). In order to prove Theorem 3 we

take an instance P = (V,Ud, C) of CSP(Γ) that is not SLAC-consistent, and therefore has no solution, as

CSP(Γ) has bounded width, and prove that it also has no operator solution. We will prove it by contradiction,

assuming P has an operator solution {Av} and then using the rules of a SLAC-program solving CSP(Γ) to

infer stronger and stronger conditions on {Av} that eventually lead to a contradiction.

Recall that every rule of a SLAC-program has the form (x ∈ S) ∧ R(x, y, z1, . . . , zr)) → (y ∈ S′) for

some variables x, y ∈ V , a constraint 〈(x, y, z1, . . . , zr), R〉, and sets S, S′ ⊆ Ud. Therefore, we need to

show how to encode unary relations and rules of a SLAC-program through polynomials. For any S ⊆ Ud,

the unary constraint restricting the domain of a variable x to the set S is represented by the polynomial

DomS(x) =
∏

k∈S

(λk − x) + 1.5

Similarly, the rule (x ∈ S) ∧R(x, y, z1, . . . , zr))→ (y ∈ S′) of the SLAC program is represented by

RuleS,R,S′(x, y, z1, . . . , zr) = (DomS(x)− 1)(PR(x, y, z1, . . . , zr)− λ1)(DomS′(y)− 1).

To give an idea of how Theorem 3 is proved, we sketch the proof of the following.

Lemma 4. Let (v1 ∈ S1) → · · · → (vℓ ∈ Sℓ) be a derivation in the SLAC-program S and {Av} an

operator assignment for P. Then for each i = 2, . . . , ℓ

(DomS1
(Av1)− I)(DomSi

(Avi)− I) = 0.

Sketch. First, one shows via Lemma 2 that any operator assignment is a zero of RuleS,R,S′ (cf. Lemma 11).

This can be used to establish the claim for i = 2 (cf. Lemma 12). The rest of the proof is done by induction

on i. In the induction case we have equations

(DomS1
(Av1)− I)(DomSi

(Avi)− I) = 0, (2)

and

(DomSi
(Avi)− I)(DomSi+1(Avi+1)− I) = 0. (3)

The idea is to multiply (2) by (DomSi+1(Avi+1) − I) on the right, multiply (3) by (DomS1
(Av1) − I) on

the left and subtract. The problem is, however, that

DomSi
(Avi)−DomSi

(Avi)

5This is not the representation of S as in the beginning of Section 3, as DomS(a) is not necessarily equal to λ1. However, it

suffices for our purposes, because we only need the property that DomS(a) = 1 if and only if a ∈ S.

8



is not a constant polynomial. So, we also need to prove that any polynomial of the form

DomS(x)−DomS(x)

is invertible modulo xd − 1. The polynomial has the form

p(x) =
∏

k∈S

(x− λk)−
∏

k 6∈S

(x− λk).

As is easily seen, if S 6= Ud and S 6= ∅, then λk is not a root of p(x) for any λk ∈ Ud. Therefore the

greatest common divisor of p(x) and xd − 1 has degree 0, and hence there exists q(x) such that

p(x)q(x) = c+ r(x)(xd − 1).

Thus before subtracting equations (2) and (3) we also multiply them by q(Avi). Then we get

(DomS1
(Av1)− I)(DomSi

(Avi)q(Avi)− q(Avi)DomSi
(Avi))(DomSi+1(Avi+1)− I) = 0

(DomS1
(Av1)− I)q(Avi)(DomSi

(Avi)−DomSi
(Avi))(DomSi+1(Avi+1)− I) = 0

c(DomS1
(Av1)− I)(DomSi+1(Avi+1)− I) = 0.

The first transformation uses the fact that Avi commutes with itself, while the second one uses the property

Ad
vi
= I . The result follows.

To complete the proof of Theorem 3 note that the lack of SLAC-consistency means that for some v ∈ V
the statement (v = λk) → (v 6= λk) can be derived from P for every λk ∈ Ud. By Lemma 4, for any

operator assignment {Aw} and any λk ∈ Ud the operator Av satisfies the equation
∏

j 6=k(Av − λjI) = 0.

By reverse induction on the size of S, one can show that for any S ⊆ Ud these equations imply
∏

j∈S(Av −
λjI) = 0. Then for S = ∅ we get I = 0, witnessing that P has no satisfying operator assignment.

Magic squares modulo d Here we construct a CSP that is not satisfied over Ud but is satisfied over normal

operators of order d. The construction is similar to the Mermin-Peres magic square [44, 45, 48].

Let let g, f : Zd → Zd be any function. By Ag,f we denote the d× d matrix such that Ag,f (x, y) 6= 0 if

and only if y = x+ g(x) (addition is modulo d), in which case Ag,f (x, y) = λ
f(x)
1 . For instance,

A1,x =















0 1 0 0 · · · 0
0 0 λ1 0 · · · 0
0 0 0 λ2

1 · · · 0
...

...
...

...
...

λd−1
1 0 0 0 · · · 0















.

We remark that the solutions to the Mermin-Peres magic square constructed from Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

fit into this framework: I ⊗ σz = A0,2x, σz ⊗ I = A0,x−x2 , σz ⊗ σz = A0,3x−x2 , σx ⊗ I = A2,0, I ⊗ σx =
A2x+1,0, σx ⊗σx = A3+2x,0,−σx⊗σz = A2,2x+2,−σz ⊗ σx = A2x+1,x−x2+2,−σy ⊗σy = A3+2x,3x−x2 ,

respectively, assuming λ1 = i. Also, A0,0 is the identity matrix. In this section g(x) is always a constant,

and we use the notation Ap,f for g(x) = p ∈ Zd.

9



CSP(Γ) ↔ CSP(core(Γ))↔ CSP(core(Γ)∗) ← CSP(core(Γ)∗B) ← CSP(core(Γ)∗B/θ)

Figure 2: Reductions between CSPs corresponding to derivative languages.

As is easily seen, multiplication of matrices Ap,f satisfies the following identity:

Ap1,f1 ·Ap2,f2 = Ap1+p2,f1(x)+f2(x+p1).

Since every row of Ap,f contains exactly one nonzero entry, the same is true for any Kronecker product

of such matrices. Therefore, a convenient way to represent elements of a product

Ap,f = Ap1,f1 ⊗ · · · ⊗Apk,fk ,

f(x1, . . . , xk) = f1(x1) + · · · + fk(xk), is to specify the only nonzero element in row (x1, . . . , xk). We

denote this element Ap,f (x1, . . . , xk). Note that this element is in the column (x1 + p1, . . . , xk + pk) and is

equal to λ
f(x1,...,xk)
1 .

Consider the following Kronecker products of d+ 1 matrices

Bℓ = A(0,...,0,−1,0,...,0),−xℓ
,

Cℓ = A(1,...,1),xℓ−1,

where the nonzero entry for the matrix Bℓ is in position ℓ. The magic square (or rather rectangle) for an odd

d > 2 is then constructed as follows:

Md =





(B1 · C1)
−1 · · · (Bd+1 · Cd+1)

−1 B1 · C1 · · · · ·Bd+1 · Cd+1

B1 · · · Bd+1 (B1 · · · · · Bd+1)
−1

C1 · · · Cd+1 (C1 · · · · · Cd+1)
−1





In Section 6 we prove that the matrices above satisfy the required properties (cf. Proposition 14).

Unbounded width The second direction of our main result is the following.

Theorem 5. Let Γ be a constraint language over Ud. If CSP(Γ) does not have bounded width then CSP(Γ)
has a satisfiability gap.

The overall idea of proving Theorem 5 is to “implement” the “magic rectangle” from above in CSP(Γ)
provided CSP(Γ) does not have bounded width. We achieve this in several steps via a chain of reductions

that lies at the heart of the algebraic approach to CSPs [12]. The reductions are shown in Figure 2. They are

known to preserve satisfiability; we show that they also preserve satisfiability gaps.

The most basic reduction (used in the chain in several places) is that of primitive positive definitions.

Let Γ be a constraint language over Ud, let r be an integer, and let x1, . . . , xr be variables ranging over the

domain Ud. A primitive positive formula (pp-formula) over Γ is a formula of the form

φ(x1, . . . , xr) = ∃y1 · · · ∃ys(R1(z1) ∧ · · · ∧Rm(zm)), (4)

where Ri ∈ Γ is a relation over Ud of arity ri and each zi is an ri-tuple of variables from {x1, . . . , xr} ∪
{y1, . . . , ys}. A relation R ⊆ U r

d is primitive positive definable (pp-definable) from Γ if there exists a

pp-formula φ(x1, . . . , xr) over Γ such that R is equal to the set of models of φ, that is, the set of r-tuples

(a1, . . . , ar) ∈ U r
d that make the formula φ true over Ud if ai is substituted for xi in φ for every i ∈ [r].

10



Theorem 6. Let Γ be a constraint language over Ud and let R be pp-definable from Γ. Then, if CSP(Γ ∪
{R}) has a satisfiability gap then so does CSP(Γ).

Let R ⊆ U r
d be a pp-definable formula over Γ via the pp-formula φ(x1, . . . , xr) as in (4). Given an

instance P ∈ CSP(Γ ∪ {R}), one can turn it into an instance P ′ ∈ CSP(Γ) that is equivalent to P.

Intuitively, each constraint 〈u, R〉 of P is replaced with constraints from its pp-definition in (4) over fresh

new variables. This construction is known as the gadget construction in the CSP literature and it is known

that P has a solution over Ud if and only if P ′ has a solution over Ud [12, 5]. Thus, to prove Theorem 6, it

suffices to show the following lemma, whose proof is a simple generalization of the special case for d = 2
proved in [2].

Lemma 7. Let Γ be a constraint language over Ud and let R be pp-definable from Γ. Furthermore, let

P ∈ CSP(Γ ∪ {R}) and let P ′ ∈ CSP(Γ) be the gadget construction replacing constraints involving R in

P. If there is a satisfying operator assignment for P then there is a satisfying operator assignment for P ′.

If CSP(Γ∪{R}) has a satisfiability gap then there is an unsatisfiable instance P ∈ CSP(Γ∪{R}) with

a satisfying operator assignment. By [12] (cf. also [5]), P ′ is unsatisfiable. By Lemma 7, P ′ has a satisfying

operator assignment. Hence P ′ establishes that CSP(Γ) has a satisfiability gap, and Theorem 6 is proved.

Pp-definitions are the starting point of the algebraic approach to CSPs [12] and suffice for dealing with

Boolean CSPs, not only in [2] but also in all papers on Boolean (variants of) CSPs. For CSPs over larger

domains, more tools are needed.

A constraint language Γ is a core language if all its endomorphisms are permutations; that is, Γ has no

endomorphisms that are not automorphisms. There always exists an endomorphism ̺ of Γ such that ̺(Γ) is

core and ̺ ◦ ̺ = ̺ [12]. We will denote this core language by core(Γ), as it (up to an isomorphism) does

not depend on the choice of ̺.

A constraint language Γ is called idempotent if it contains all the constant relations, that is, relations of

the form Ca = {(a)}, a ∈ Ud. For an arbitrary language Γ over Ud we use Γ∗ = Γ ∪ {Ca | a ∈ Ud}. A

unary relation (a set) B ⊆ Ud pp-definable in Γ is called a subalgebra of Γ. For a subalgebra B we introduce

the restriction ΓB of Γ to B defined as ΓB = {R ∩Bar(R) | R ∈ Γ}.
An equivalence relation θ pp-definable in Γ is said to be a congruence of Γ. The equivalence class of

θ containing a ∈ Ud will be denoted by a/θ, and the set of all equivalence classes, the factor-set, by Ud/θ.
Congruences of a constraint language allow one to define a factor-language as follows. For a congruence θ
of the language Γ the factor language Γ/θ is the language over Ud/θ given by Γ/θ = {R/θ | R ∈ Γ}, where

R/θ = {(a1/θ, . . . , an/θ) | (a1, . . . , an) ∈ R}.
All the languages above are related to each other by the reducibility of the corresponding CSPs, as Fig-

ure 2 indicates (cf. Proposition 20). In Section 8, we show that all arrows in Figure 2 preserve satisfiability

gaps. To relate these reductions with bounded width and magic squares we use the following result.

Proposition 8 ([11, 3, 5]). For a constraint language Γ over Ud, CSP(Γ) does not have bounded width if and

only there exists a language ∆ pp-definable in Γ, a subalgebra B of core(∆)∗, a congruence θ of core(∆)∗B,

and an Abelian group A of prime order p such that core(∆)∗B/θ contains relations R3,a, Rp+2 for every

a ∈ A given by R3,a = {(x, y, z) | x+ y + z = a} and Rp+2 = {(a1, . . . , ap+2) | a1 + · · ·+ ap+2 = 0}.6

To prove Theorem 5, suppose that CSP(Γ) does not have bounded width. By Proposition 8 there is a

language ∆ pp-definable in Γ, a subalgebra B of core(∆)∗, a congruence θ of core(∆)∗B, and an Abelian

group A of prime order p such that core(∆)∗B/θ contains relations R3,a, Rp+2 for every a ∈ A. As reduc-

tions preserve satisfiability gaps, it suffices to prove that CSP(∆p), where ∆p = {R3,a | a ∈ A}∪ {Rp+2},

6The relations R3,a, Rp+2 are chosen here because they are needed for our purpose. In fact, they can be replaced with any

relations expressible by linear equations over A.

11



has a satisfiability gap. For p = 2 the Mermin-Peres magic square from [44] provides a gap instance of

CSP({R3,1, R3,−1}), and our construction above provides a gap instance for CSP(∆p) for all odd p > 2.

Note that in both cases the group A is the multiplicative group of roots of unity.

To give an idea of the gap-preservation proofs, we sketch how a satisfiability gap is preserved from

subalgebras. Let Γ be a constraint language over the set Ud and let B be its subalgebra. We show that if

CSP(ΓB) has a satisfiability gap then so does CSP(Γ).
Let ∆ = ΓB. Then by Theorem 6 we may assume ∆ ⊆ Γ and B ∈ Γ. Let e = |B| and π : Ue → Ud

a bijection between Ue and B. Let P = (V,Ue, C) be a gap instance of CSP(π−1(∆)) and the instance

Pπ = (V,Ud, C
π) constructed as follows: For every 〈s, R〉 ∈ C the instance Pπ contains 〈s, π(R)〉. As

is easily seen, Pπ has no classic solution. Therefore, it suffices to show that for any satisfying operator

assignment {Av | v ∈ V } for P, the assignment Cv = π(Av) is a satisfying operator assignment for Pπ .

By a technical lemma that shows that injective maps on finite sets that are interpolated by polyno-

mials preserve normal operators that pairwise commute (cf. Lemma 22), the Cv’s are normal, satisfy

the condition Cd
v = I , and locally commute. For 〈s, R〉 ∈ C, s = (v1, . . . , vk), let fπ

R(x1, . . . , xk) =
fR(π

−1(x1), . . . , π
−1(xk)). It can be shown that π−1(Cv) = Av, and therefore fπ

R(Cv1 , . . . , Cvk) = I . For

any a1, . . . , ak ∈ Ud, if (a1, . . . , ak) ∈ π(R) then a1, . . . , ak ∈ B. Therefore, fπ
R(a1, . . . , ak) = 1 then

fπ(R)(a1, . . . , ak) = 1. By Lemma 2 this implies fπ(R)(Cv1 , . . . , Cvk) = I .

The other reductions use similar ideas, carefully relying on the spectral theorem given in Theorem 1 to

simultaneously diagonalize the restriction of an operator assignment to the scope of a constraint, Lemma 2

that relates polynomial equations over Ud and operators, and the above mentioned result on preservation of

operator assignments by certain polynomials (Lemma 22).

5 Bounded width and no gaps

In this section we prove the first direction of our main result.

Theorem 9. Let Γ be a constraint language over Ud. If CSP(Γ) has bounded width then it has no satisfia-

bility gap.

The main idea behind the proof of Theorem 9 is to simulate the inference provided by SLAC by inference

in polynomial equations. Let S be a SLAC-program solving CSP(Γ). In order to prove Theorem 9 we take

an instance P = (V,Ud, C) of CSP(Γ) that is not SLAC-consistent, and therefore has no solution, as

CSP(Γ) has bounded width, and prove that it also has no satisfying operator assignment. We will prove

it by contradiction, assuming P has a satisfying operator assignment {Av} and then using the rules of a

SLAC-program solving CSP(Γ) to infer stronger and stronger conditions on {Av} that eventually lead to a

contradiction. We start with a series of lemmas that will help to express the restrictions on {Av}.
The following lemma introduces a restriction that is satisfied by any operator assignment.

Lemma 10. Let P = (V,Ud, C) ∈ CSP(Γ). For any operator assignment {Av} for P we have

d−1
∏

k=0

(λkI −Av) = 0.

Proof. Note that the equation
∏d−1

k=0(λk − x) = 0 is true for any x ∈ Ud, that is, it follows from the empty

set of equations. By Lemma 2, it also holds for any fully commuting operator assignment. However, as the

equation contains only one variable any operator assignment is fully commuting, and the result follows.

Recall that every rule of a SLAC-program has the form (x ∈ S) ∧ R(x, y, z1, . . . , zr)) → (y ∈ S′) for

some variables x, y ∈ V , a constraint 〈(x, y, z1, . . . , zr), R〉, and sets S, S′ ⊆ Ud. Therefore, we need to

12



show how to encode unary relations and rules of a SLAC-program through polynomials. For any S ⊆ Ud,

we represent the unary constraint restricting the domain of a variable x to the set S by the polynomial

DomS(x) =
∏

k∈S

(λk − x) + 1.7

Similarly, the rule (x ∈ S) ∧R(x, y, z1, . . . , zr))→ (y ∈ S′) of the SLAC program is represented by

RuleS,R,S′(x, y, z1, . . . , zr) = (DomS(x)− 1)(PR(x, y, z1, . . . , zr)− λ1)(DomS′(y)− 1).

As the next lemma shows, any operator assignment is a zero of RuleS,R,S′ .

Lemma 11. Let P = (V,Ud, C) ∈ CSP(Γ). For any operator assignment {Av} for P and any rule

(x ∈ S) ∧R(x, y, z1, . . . , zr))→ (y ∈ S′) of the SLAC program for CSP(Γ) we have

RuleS,R,S′(Ax, Ay, Az1 , . . . , Azr )

= (DomS(Ax)− I)(PR(Ax, Ay, Az1 , . . . , Azr)− λ1I)(DomS′(Ay)− I) = 0.

Proof. Note that the equation RuleS,R,S′(x, y, z1, . . . , zr) = 0 is true for any x, y, z1, . . . , zr ∈ Ud, that is,

it follows from the empty set of equations. By Lemma 2, it also holds for any fully commuting operator

assignment. However, as all the variables x, y, z1, . . . , zr belong to the scope of the same constraint, the

operators Ax, Ay, Az1 , . . . , Azr pairwise commute. The result follows.

Now, assume P = (V,Ud, C) is not SLAC-consistent and Dv denote the domain of v ∈ V obtained

after establishing SLAC-consistency. This means that for some v ∈ V there is a derivation of Dv = ∅

using only facts R(s) for 〈s, R〉 ∈ C and TB(xi) ∧ R(x1, . . . , xk) → TC(xj) for the rules of the SLAC-

program. Moreover, this derivation can be subdivided into sections of the form (v = a) → (v 6= a),
each of which is linear. The latter condition means that each such section looks like a chain (v = a) →
(v1 ∈ S1) → · · · → (vℓ ∈ Sℓ) → (v ∈ Dv − {a}), where each step is by a rule of the form ((vi ∈
Si) ∧Ri(vi, vi+1, u1, . . . , ur))→ (vi+1 ∈ Si+1).

Lemma 12. For any satisfying operator assignment {Av} forP and any rule (x ∈ S)∧R(x, y, z1, . . . , zr))→
(y ∈ S′) of the SLAC program for CSP(Γ) if R(x, y, z1, . . . , zr) ∈ C then

(DomS(Ax)− I)(DomS′(Ay)− I) = I.

Proof. By Lemma 11, the equation

(DomS(Ax)− I)(PR(Ax, Ay, Az1 , . . . , Azr)− λ1I)(DomS′(Ay)− I) = 0

holds as well as the equation

PR(Ax, Ay, Az1 , . . . , Azr)− I = 0.

Multiplying the latter one by (DomS(Ax) − I) on the left, and by (DomS′(Ay) − I) on the right and

subtracting it from the first equation we obtain

−(DomS(Ax)− I)(1− λ1)I(DomS′(Ay)− I) = 0.

The result follows.

7This is not the representation of S as in the beginning of Section 3, as DomS(a) is not necessarily equal to λ1. However, it

suffices for our purposes, because we only need the property that DomS(a) = 1 if and only if a ∈ S.

13



Lemma 13. Let (v1 ∈ S1) → · · · → (vℓ ∈ Sℓ) be a derivation in the SLAC-program S and {Av} a

satisfying operator assignment for P. Then for each i = 2, . . . , ℓ

(DomS1
(Av1)− I)(DomSi

(Avi)− I) = 0.

Proof. We proceed by induction on i. For i = 2 the equation holds by Lemma 12. In the induction case we

have equations

(DomS1
(Av1)− I)(DomSi

(Avi)− I) = 0, (5)

and

(DomSi
(Avi)− I)(DomSi+1(Avi+1)− I) = 0. (6)

The idea is to multiply (5) by (DomSi+1(Avi+1) − I) on the right, multiply (6) by (DomS1
(Av1) − I) on

the left and subtract. The problem is, however, that

DomSi
(Avi)−DomSi

(Avi)

is not a constant polynomial. So, we also need to prove that any polynomial of the form

DomS(x)−DomS(x)

is invertible modulo xd − 1. The polynomial has the form

p(x) =
∏

k∈S

(x− λk)−
∏

k 6∈S

(x− λk).

As is easily seen, assuming that the product of an empty set of factors equals 1, λk is not a root of p(x) for

any λk ∈ Ud. Therefore the greatest common divisor of p(x) and xd−1 has degree 0, and hence there exists

q(x) such that

p(x)q(x) = c+ r(x)(xd − 1).

Thus before subtracting equations (5) and (6) we also multiply them by q(Avi). Then we get

(DomS1
(Av1)− I)(DomSi

(Avi)q(Avi)− q(Avi)DomSi
(Avi))(DomSi+1(Avi+1)− I) = 0

(DomS1
(Av1)− I)q(Avi)(DomSi

(Avi)−DomSi
(Avi))(DomSi+1(Avi+1)− I) = 0

c(DomS1
(Av1)− I)(DomSi+1(Avi+1)− I) = 0.

The first transformation uses the fact that Avi commutes with itself, while the second one uses the property

Ad
vi
= I . The result follows.

Proof of Theorem 9. To complete the proof of Theorem 9 note that the lack of SLAC-consistency means

that for some v ∈ V the statement (v = λk) → (v 6= λk) can be derived from P for every λk ∈ Ud. By

Lemma 13, for any operator assignment {Aw} and any λk ∈ Ud the operator Av satisfies the equation

∏

j 6=k

(Av − λjI) = 0.

We show that for any S ⊆ Ud these equations imply

∏

j∈S

(Av − λjI) = 0.

Then for S = ∅ we get I = 0, witnessing that P has no satisfying operator assignment.

14



We proceed by (reverse) induction on the size of S. Suppose the statement is true for all sets of size r
and let S ⊆ Ud be such that |S| = r − 1. Without loss fo generality, assume that S = {λ0, . . . , λr−1}. Let

S1 = S ∪ {λr}, S2 = S ∪ {λr+1}. Consider

∏

j∈S1

(Av − λjI) = 0 (7)

and
∏

j∈S2

(Av − λjI) = 0. (8)

Subtracting (8) from (7) we obtain

(Av − λrI −Av + λr+1I)

r−1
∏

j=0

(Av − λjI) = (λr+1 − λr)I

r−1
∏

j=0

(Av − λjI) = 0,

implying the equation for S.

6 Magic square modulo d

Here we construct a CSP that is not satisfied over Ud but is satisfied over normal operators of order d. The

construction is similar to the Mermin-Peres magic square [44, 45, 48].

Let let g, f : Zd → Zd be any function. By Ag,f we denote the d× d matrix such that Ag,f (x, y) 6= 0 if

and only if y = x+ g(x) (addition is modulo d), in which case Ag,f (x, y) = λ
f(x)
1 . For instance,

A1,x =















0 1 0 0 · · · 0
0 0 λ1 0 · · · 0
0 0 0 λ2

1 · · · 0
...

...
...

...
...

λd−1
1 0 0 0 · · · 0















.

We remark that the solutions to the Mermin-Peres magic square constructed from Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

fit into this framework: I ⊗ σz = A0,2x, σz ⊗ I = A0,x−x2 , σz ⊗ σz = A0,3x−x2 , σx ⊗ I = A2,0, I ⊗ σx =
A2x+1,0, σx ⊗σx = A3+2x,0,−σx⊗σz = A2,2x+2,−σz ⊗ σx = A2x+1,x−x2+2,−σy ⊗σy = A3+2x,3x−x2 ,

respectively, assuming λ1 = i. Also, A0,0 is the identity matrix. In this section g(x) is always a constant,

and we use the notation Ap,f for g(x) = p ∈ Zd.

As is easily seen, multiplication of matrices Ap,f satisfies the following identity:

Ap1,f1 ·Ap2,f2 = Ap1+p2,f1(x)+f2(x+p1). (9)

Indeed, for x ∈ [d] the only nonzero element of the x-th row of C = Ap1,f1 · Ap2,f2 is the element

Ap1,f1(x, x+ p1) ·Ap2,f2(x+ p1, x+ p1 + p2) = λf1(x) · λf2(x+p1) = λf1(x)+f2(x+p1).

We will also use the mixed-product rule for Kronecker product ⊗.

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

15



Since every row of Ap,f contains exactly one nonzero entry, the same is true for any Kronecker product

of such matrices. Therefore, a convenient way to represent elements of a product

Ap,f = Ap1,f1 ⊗ · · · ⊗Apk,fk ,

f(x1, . . . , xk) = f1(x1) + · · · + fk(xk), is to specify the only nonzero element in row (x1, . . . , xk). We

denote this element Ap,f (x1, . . . , xk). Note that this element is in the column (x1 + p1, . . . , xk + pk) and is

equal to λf(x1,...,xk).

Consider the following Kronecker products of d+ 1 matrices

Bℓ = A(0,...,0,−1,0,...,0),−xℓ
,

Cℓ = A(1,...,1),xℓ−1,

where the nonzero entry for the matrix Bℓ is in position ℓ. The magic square (or rather rectangle) for an odd

d > 2 is then constructed as follows:

Md =





(B1 · C1)
−1 · · · (Bd+1 · Cd+1)

−1 B1 · C1 · · · · ·Bd+1 · Cd+1

B1 · · · Bd+1 (B1 · · · · · Bd+1)
−1

C1 · · · Cd+1 (C1 · · · · · Cd+1)
−1





We now prove that the matrices above satisfy the required properties.

Proposition 14. If d is odd then for the entries of the matrix Md it holds that

(a) every entry D of Md is normal and satisfies Dd = I;

(b) the matrices in each row and each column of Md commute;

(c) the product of the matrices in every row and every column of Md except for the last column is the

identity matrix;

(d) the product of matrices in the last column of Md is a scalar matrix, but not the identity matrix.

Proof. We start with (b) for matrices Bℓ, Cℓ, which will also allow us to find the remaining matrices. By

the mixed product rule and because A0,0 = I , in order to verify Bℓ · Cℓ = Cℓ ·Bℓ it suffices to show that

A−1,−x ·A1,x−1 = A0,x−1−(x+1) = A0,−2 = A1,x−1 ·A−1,−x.

This also implies

Bℓ · Cℓ = A(1,...,1,0,1,...,1),−2 and Dℓ = (Bℓ · Cℓ)
−1 = A(−1,...,−1,0,−1,...,−1),2.

For Bℓ ·Bj and Cℓ · Cj , ℓ 6= j, we have

Bℓ · Bj(x1, . . . , xd) = Bℓ(x1, . . . , xd)Bj(x1, . . . , xℓ−1, xℓ − 1, xℓ+1, . . . , xd)

= λ−xℓ−xj ,

= Bj(x1, . . . , xd)Bℓ(x1, . . . , xj−1, xj − 1, xj+1, . . . , xd)

= Bj ·Bℓ(x1, . . . , xd+1);

Cℓ · Cj(x1, . . . , xd) = Cℓ(x1, . . . , xd)Cj(x1 + 1, . . . , xd + 1)

= λxℓ−1+(xj+1)−1,

= λxj−1+(xℓ+1)−1,

= Cj · Cℓ(x1, . . . , xd).

16



This also implies that

Bℓ ·Bj = A(0,...,0,−1,0,...,0,−1,0,...,0),−xℓ−xj
, Cℓ · Cj = A(2,...,2),xℓ+xj−1.

Therefore,

B1 · . . . ·Bd+1 = A(−1,...,−1),−(x1+···+xd+1)

C1 · . . . · Cd+1 = A(d+1,...,d+1),x1−1+(x2+1)−1+···+(xd+1+d)−1

= A
(d+1,...,d+1),x1+x2+···+xd+1−1+

d(d+1)
2

= A(1,...,1),x1+x2+···+xd+1−1,

which implies

F = (B1 · . . . · Bd+1)
−1 = A(1,...,1),(x1+···+xd+1)+1

G = (C1 · . . . · Cd+1)
−1 = A(−1,...,−1),−(x1+x2+···+xd+1).

Finally,

E = B1 · C1 · . . . · Bd+1 · Cd+1 = A(0,1,...,1),−2 · . . . ·A(1,...,1,0),−2

= A(d,...,d),−2(d+1)

= A(0,...,0),−2.

(a) By Fuglede’s theorem if two normal operators commute, their product is normal. By what is proved

above it suffices to show that Bℓ, Cℓ are normal. Indeed, the only case that does not follows from this is the

matrix E, but this matrix is diagonal. Then by the mixed-product rule and the equalities (A∗)−1 = (A−1)∗,

(A ⊗ B)∗ = A∗ ⊗ B∗ it suffices to check that matrices A0,0, A−1,−x, A1,x−1 are normal. Note first that

(Ap,f )
∗ = A−p,−f . Then we have that A0,0 is the identity matrix,

A−1,−x · (A−1,−x)
∗ = A−1,−x · A1,x = A0,−x+x−1 = A0,−1

= A0,x−(x+1) = A1,x · A−1,−x = (A−1,−x)
∗ ·A−1,−x;

A1,x−1 · (A1,x−1)
∗ = A1,x−1 · A−1,−x+1 = A0,x−1+(−(x+1)+1) = A0,−1

= A0,−x+1+((x−1)−1) = A−1,−x+1 · A1,x−1 = (A1,x−1)
∗ · A1,x−1.

Next, we need to find Bd
ℓ , C

d
ℓ ,D

d
ℓ , E

d, F d, Gd:

Bd
ℓ = (A(0,...,,0,−1,0,...,0),−xℓ

)d

= A(0,...,0),−xℓ+(−xℓ−1)+···+(−xℓ−(d−1))

= A
(0,...,0),− (d−1)d

2

= A(0,...,0),0;

Cd
i = (A(1,...,1),xℓ

)d

= A(0,...,0),xℓ+(xℓ+1)+···+(xℓ+(d−1))

= A
(0,...,0),

(d−1)d
2

= A(0,...,0),0;

Dd
i = (A(−1,...,−1,0,−1,...,−1),2)

d = A(0,...,0),0;

Ed = (A(0,...,0),−2)
d = A(0,...,0),0.

17



Since Bℓ, Bj commute, as do Ci, Cj , we have

F d = (B1 · . . . · Bd+1)
−d = B−d

1 · . . . · B
−d
d+1 = A(0,...,0),0;

Gd = (C1 · . . . · Cd+1)
−d = C−d

1 · . . . · C−d
d+1 = A(0,...,0),0.

(b) We have verified that Bi, Ci commute, and so do Bi, Bj , and Ci, Cj . This means that Di commutes

with Bi, Ci, and also F commutes with each of B1, . . . , Bd+1, and G commutes with each of C1, . . . , Cd+1.

Matrices Di and E are scalar, so they commute with each other, and E commutes with F,G. It remains to

verify that F,G commute, as well. We have

F ·G = A(1,...,1),(x1+···+xd+1)+1 · A(−1,...,−1),−(x1+x2+···+xd+1)

= A(0,...,0),(x1+···+xd+1)+1−((x1+1)+(x2+1)+···+(xd+1+1))

= A(0,...,0),−(d+1)+1

= A(0,...,0),0.

On the other hand,

G · F = A(−1,...,−1),−(x1+···+xd+1) ·A(1,...,1),(x1+x2+···+xd+1)+1

= A(0,...,0),−(x1+···+xd+1)+((x1−1)+(x2−1)+···+(xd+1−1))+1

= A(0,...,0),1−(d+1)

= A(0,...,0),0.

(c) follows from the construction.

(d) By (b) we have that

E · F ·G = A(0,...,0),−2 ·A(0,...,0),0 = A(0,...,0),−2,

as required.

7 Reductions through pp-definitions

In this section we prove that the so-called primitive positive definitions, a key tool in the algebraic approach

to CSPs [12], not only give rise to (polynomial-time) reductions that preserve satisfiability over Ud but also

preserve satisfiability over operators. This was established for the special case of Boolean domains (i.e., for

d = 2) in [2] and the same idea works for larger domains. We will need this result later in Section 8 to prove

that CSPs of unbounded width admit a satisfiability gap.

Let Γ be a constraint language over Ud, let r be an integer, and let x1, . . . , xr be variables ranging over

the domain Ud. A primitive positive formula (pp-formula) over Γ is a formula of the form

φ(x1, . . . , xr) = ∃y1 · · · ∃ys(R1(z1) ∧ · · · ∧Rm(zm)), (10)

where Ri ∈ Γ is a relation over Ud of arity ri and each zi is an ri-tuple of variables from {x1, . . . , xr} ∪
{y1, . . . , ys}. A relation R ⊆ U r

d is primitive positive definable (pp-definable) from Γ if there exists a

pp-formula φ(x1, . . . , xr) over Γ such that R is equal to the set of models of φ, that is, the set of r-tuples

(a1, . . . , ar) ∈ U r
d that make the formula φ true over Ud if ai is substituted for xi in φ for every i ∈ [r].

Our goal in this section is to prove the following result.

Theorem 15. Let Γ be a constraint language over Ud and let R be pp-definable from Γ. Then, if CSP(Γ ∪
{R}) has a satisfiability gap then so does CSP(Γ).

18



Let R ⊆ U r
d be a pp-definable formula over Γ via the pp-formula φ(x1, . . . , xr) as in (10). Given an

instance P ∈ CSP(Γ∪{R}) we describe a construction of an instance P ′ ∈ CSP(Γ) that is, in some sense,

equivalent to P. We start with the instance P. For every constraint 〈u, R〉 of P with u = (u1, . . . , ur), we

introduce s fresh new variables t1, . . . , ts for the quantified variables in (10); furthermore, we replace 〈u, R〉
by m constraints 〈wi, Ri〉, i ∈ [m], where wi is the tuple of variables obtained from zi in (10) by replacing

xj by uj , j ∈ [r], and by replacing yj by tj , j ∈ [s]. The collection of variables u1, . . . , ur, t1, . . . , ts is

called the block of the constraint 〈u, R〉 in P ′. This construction is known as the gadget construction in the

CSP literature and it is known that P has a solution over Ud if and only if P ′ has a solution over Ud [12, 5].

Thus, in order to prove Theorem 15, it suffices to show the following lemma.

Lemma 16. Let Γ be a constraint language over Ud and let R be pp-definable from Γ. Furthermore, let

P ∈ CSP(Γ ∪ {R}) and let P ′ ∈ CSP(Γ) be the gadget construction replacing constraints involving R in

P. If there is a satisfying operator assignment for P then there is a satisfying operator assignment for P ′.

Indeed, if CSP(Γ ∪ {R}) has a satisfiability gap then there is an unsatisfiable instance P ∈ CSP(Γ ∪
{R}) that has a satisfying operator assignment. By the results in [12] (cf. also [5]), P ′ is unsatisfiable.

By Lemma 16,P ′ has a satisfying operator assignment. HenceP ′ establishes that CSP(Γ) has a satisfiability

gap, as required to prove Theorem 15.

We will frequently use (below and also in Section 8) the following observations. We give a proof of

them for the sake of completeness.

Lemma 17. Let f be a polynomial and A,B operators in a finite-dimensional Hilbert space.

(1) If A,B commute, then so do f(A), f(B).
(2) If A is normal, then so is f(A).
(3) If U is a unitary operator, then Uf(A)U−1 = f(UAU−1).

Proof. Let f(x) =
∑k

i=0 αix
i.

(1) We have

f(A)f(B) =

(

k
∑

i=0

αiA
i

)(

k
∑

i=0

αiB
i

)

=
k
∑

i,j=0

αiαjA
iBj

=
k
∑

i,j=0

αjαiB
jAi =

(

k
∑

i=0

αiB
i

)(

k
∑

i=0

αiA
i

)

= f(B)f(A).

(2) The operator A is normal if it commutes with its conjugate transpose A∗. Since for any operators B,C
it holds that (B +C)∗ = B∗ +C∗ and (Bk)∗ = (B∗)k, we obtain f(A∗) = f(A)∗. The result then follows

from item (1).

(3) We have

Uf(A)U−1 = U

(

k
∑

i=0

αiA
i

)

U−1 =
k
∑

i=0

UαiA
iU−1 =

k
∑

i=0

αi(UAU−1)(UAU−1) . . . (UAU−1)

=
k
∑

i=0

αi(UAU−1)i = f(UAU−1).

19



Proof of Lemma 16. Let P = (V,Ud, C) and let {Av}v∈V be an operator assignment that is satisfying for

P over a finite-dimensional Hilbert space H. We may assume that H = C
p for some positive integer p and

thus {Av}v∈V are p× p matrices. We will construct an operator assignment that is satisfying for P ′; it will

be an operator assignment over the same space and an extension of the original assignment.

Given a constraint 〈(u1, . . . , ur), R〉 ∈ C, the operators {Aui
}1≤i≤r pairwise commute by assumption.

Since they are also normal, by Theorem 1 there is a unitary matrix U such that Ei = UAui
U−1 is a diagonal

matrix for each i ∈ [r]. Since Ad
ui

= I , we have Ed
ui

= I . Thus every diagonal entry Eui
(jj) belongs to Ud.

Since PR(Au1 , . . . , Aur) = I , we have PR(Eu1 , . . . , Eur) = UPR(Au1 , . . . , Aur)U
−1 = I by Lemma 17.

As Eui
is a diagonal matrix, we have that PR(Eu1(jj), . . . , Eur(jj)) = 1 = λ0 for every j ∈ [p]. Thus the

tuple (Eu1(jj), . . . , Eur(jj)) ∈ R for every j ∈ [p]. For each j ∈ [p], let b(j) = (b1(j), . . . , bs(j)) ∈ U s
d

be a tuple of witnesses to the existentially quantified variables y1, . . . , ys in the formula pp-defining R
in (10) when Eui

(jj) is substituted for xi. For i ∈ [s], let Bi be the diagonal matrix with Bi(jj) = bi(j)
for every j ∈ [d]. Now let Ci = U−1BiU . Since U is unitary we have U−1 = U∗ and thus each Ci is

normal: CiC
∗
i = U∗BiU(U∗BiU)∗ = U∗BiUU∗B∗

i U = U∗BiB
∗
i U = U∗B∗

i BiU = U∗B∗
i UU∗BiU =

(U∗BiU)∗U∗BiU = C∗
i Ci. Since bi(j) ∈ Ud, we have Cd

i = I . Also E1, . . . , Er, B1, . . . , Bs pairwise

commute since they are all diagonal matrices. Hence, Ai, . . . , Ar, C1, . . . , Cs also pairwise commute since

they all are simultaneously similar via U . As each conjunct in (10) is satisfied by the assignment sending xi
to Eui

(jj) and yi to bi(j) for all j ∈ [d], we can conclude that the matrices that are assigned to the variables

in the conjuncts make the corresponding polynomial evaluate to I . But this means that the assignment to

the variables in the block of the constraint 〈(u1, . . . , ur), R〉 makes a satisfying operator assignment for the

constraint of P ′ that has come from the conjunct. As different constraints involving R in P produce their

own sets of fresh variables, the operator assignments do not affect each other.

We do not know whether the converse of Lemma 16 holds; this is not known even in the case of d = 2 [2].

The obvious idea would be to take the restriction of the operator assignment that is satisfying for P ′ but it

is not clear why this should be satisfying for P, because there is no guarantee that the operators assigned

to variable in the scope of a constraint of P of the form 〈s, R〉 commute. However, under a slight technical

assumption on Γ — namely, that it includes the full binary relation8 on Ud — one can enforce commutativity

within a constraint scope and thus project an operator assignment. While this result is not needed for our

main result, we include it for completeness.

Let RT = U2
d denote the full binary relation on Ud. For an instance P ′ as defined above (and in the

statement of Lemma 16), we denote by P ′′ the instance obtained from P ′ by adding, for every constraint

〈(u1, . . . , ur), R〉 of P, constraints of the form 〈(ui, uj), RT 〉. for every i 6= j ∈ [r].

Lemma 18. Let Γ be a constraint language over Ud with RT ∈ Γ and let R be pp-definable from Γ.

Furthermore, let P ∈ CSP(Γ ∪ {R}) and let P ′′ ∈ CSP(Γ) be defined as above. Then, we have the

following:

(1) If there is a satisfying operator assignment for P then there is a satisfying operator assignment for P ′′.

(2) If there is a satisfying operator assignment for P ′′ then there is a satisfying operator assignment for P.

Proof. (1) follows from Lemma 16: The satisfying operator assignment for P ′ constructed in the proof of

Lemma 16 is also a satisfying operator assignment or P ′′. Indeed, the constraints already present in P ′ are

by assumption satisfied in P ′′. Regarding the extra constraints in P ′′ not present in P ′, each such constraint

involves the RT relation and the two variables in the scope of the constraint come from the block of some

constraint in P ′. The proof of Lemma 16 established that the constructed operators pairwise commute on

these variables. Also, as PRT
(a, b) = 1 for any a, b ∈ Ud, the polynomial constraints are satisfied as they

evaluate to I .

8This is a special case of the so-called commutativity gadget [2].

20



For (2), take a satisfying operator assignment for P ′′ and consider its restriction {Av}v∈V onto the

variables of P. Any two operators whose variables appear within the scope of some constraint of P nec-

essarily commute since the two variables are in the block of some constraint in P ′′. It remains to show

that the polynomial constraints of P are satisfied, that is, that PR(Au1 , . . . , Aur) = I for every constraint

〈(u1, . . . , ur), R〉 of P. For this, we use Lemma 2. Let φ be the formula pp-defining R as in (10). We

define several polynomials over variables x1, . . . , xr, y1, . . . , ys that correspond to the variables in (10). For

every i ∈ [m], let Qi be the polynomial PRi
(zi) − 1 so that the equation Qi = 0 ensures PRi

(zi) = 1,

where PRi
is the characteristic polynomial of Ri, and zi is the tuple of variables from x1, . . . , xr, y1, . . . , ys

that correspond to the variables of the same name that appear in the conjunct Ri(zi) of (10). Let Q be the

polynomial PR(x1, . . . , xr)− 1, where PR is the characteristic polynomial of R. By the construction of the

polynomials and the choice of φ, every assignment over Ud that satisfies all equations Q1 = · · · = Qm = 0
also satisfies Q = 0. By Lemma 2, we get PR(Au1 , . . . , Aur)− I = 0, as required.

8 Unbounded width and gaps

In this section we prove the second direction of our main result.

Theorem 19. Let Γ be a constraint language over Ud. If CSP(Γ) does not have bounded width then CSP(Γ)
has a satisfiability gap.

The overall idea of proving Theorem 19 is to “implement” the “magic rectangle” from Section 6 in

CSP(Γ) provided CSP(Γ) does not have bounded width. We achieve this in several steps via a chain of

reductions that has been used since the inception of the algebraic method to the CSP [12]. While more direct

constructions have been developed later, see, e.g., [5], we find this original approach to be better suited for

operator CSPs.

8.1 Bounded width, Abelian groups, and the magic square

We start by introducing several definitions.

A constraint language Γ over Ud is said to be a core language if its every endomorphism is a permu-

tation. This term comes from finite model theory where it is used for relational structures that do not have

endomorphisms (homomorphisms to themselves) that are not automorphisms. Such structures, and there-

fore languages, have a number of useful properties that we will exploit later. The standard way to convert a

constraint language Γ into a core language is to repeat the following procedure until the resulting language

is a core language: Pick an endomorphism ̺ of Γ that is not a permutation and set

̺(Γ) = {̺(R) | R ∈ Γ}, where ̺(R) = {(̺(a1), . . . , ̺(an)) | (a1, . . . , an) ∈ R}.

There always exists an endomorphism ̺ of Γ such that ̺(Γ) is core [12, 5] and ̺ is idempotent, that is,

̺ ◦ ̺ = ̺. We will denote this core language by core(Γ), as it (up to an isomorphism) does not depend on

the choice of ̺. Note that the fact that ̺ is idempotent implies that it acts as identity on its image.

The language Γ is called idempotent if it contains all the constant relations, that is, relations of the form

Ca = {(a)}, a ∈ Ud. For an arbitrary language Γ over Ud we use Γ∗ = Γ ∪ {Ca | a ∈ Ud}. A unary

relation (a set) B ⊆ Ud pp-definable in Γ is called a subalgebra of Γ. For a subalgebra B we introduce the

restriction ΓB of Γ to B defined as follows

ΓB = {R ∩Bar(R) | R ∈ Γ}.

An equivalence relation θ pp-definable in Γ is said to be a congruence of Γ. The equivalence class of

θ containing a ∈ Ud will be denoted by a/θ, and the set of all equivalence classes, the factor-set, by Ud/θ.

21



CSP(Γ) ↔ CSP(core(Γ))↔ CSP(core(Γ)∗) ← CSP(core(Γ)∗B) ← CSP(core(Γ)∗B/θ)

Figure 3: Reductions between CSPs corresponding to derivative languages

Congruences of a constraint language allow one to define a factor-language as follows. For a congruence θ
of the language Γ the factor language Γ/θ is the language over Ud/θ given by

Γ/θ = {R/θ | R ∈ Γ}, where R/θ = {(a1/θ, . . . , an/θ) | (a1, . . . , an) ∈ R}.

In order to fit core languages, subalgebras, and factor-languages in our framework where the domain

is the set of roots of unity, we let e = |̺(Ud)|, e = |B| or e = |Ud/θ|, respectively, arbitrarily choose a

bijection π : ̺(Ud) → Ue, π : B → Ue, and π : Ud/θ → Ue, and replace ̺(Γ), ΓB, and Γ/θ with π(̺(Γ)),
π(ΓB), and π(Γ/θ), respectively.

All the languages above are connected with each other in terms of the reducibility of the corresponding

CSPs, as Figure 3 and the following statements indicate.

Proposition 20 ([12, 5]). Let Γ be a constraint language over Ud. Then

(1) For any endomorphism ̺ of Γ, CSP(Γ) and CSP(core(Γ)) are polynomial-time interreducible.

(2) If Γ is a core language, CSP(Γ) and CSP(Γ∗) are polynomial-time interreducible.

(3) If B is a subalgebra of Γ then CSP(ΓB) is polynomial-time reducible to CSP(Γ).

(4) If θ is a congruence of Γ then CSP(Γ/θ) is polynomial-time reducible to CSP(Γ).

Finally, to relate the reductions above with bounded width and the magic square we apply the following

result that can be extracted from the known results on the algebraic approach to CSPs [11, 3, 5].

Proposition 21 ([11, 3, 5]). For a constraint language Γ over Ud, CSP(Γ) does not have bounded width

if and only there exists a language ∆ pp-definable in Γ, a subalgebra B of core(∆)∗, a congruence θ of

core(∆)∗B, and an Abelian group A of prime order p such that core(∆)∗B/θ contains relations R3,a, Rp+2

for every a ∈ A given by

R3,a = {(x, y, z) | x+ y + z = a}, and Rp+2 = {(a1, . . . , ap+2) | a1 + · · ·+ ap+2 = 0}.9

8.2 Proof of Theorem 19

In this section we prove that the connections shown in Figure 3 hold in terms of satisfiability gaps. We

start with a helpful observation. As any mapping on a finite set of complex numbers can be interpolated

by a polynomial, we may apply such mappings to operators as well (we assume that such an interpolating

polynomial is of the lowest degree possible, and so is unique). A polynomial ̺ is said to interpolate a set

B ⊆ Ud if ̺(λ) = 1 if λ ∈ B and ̺(λ) = 0 if λ ∈ Ud −B.

Lemma 22. Let d, e ∈ N, e ≤ d. Let π : Ue → Ud be an injective mapping and ̺ a unary polyno-

mial that interpolates B = Im (π). Let A1, . . . , Ak be pairwise commuting normal operators of order e.

Then Ci = π(Ai), i ∈ [k], are pairwise commuting normal operators of order d, and ̺(Ci) = I . Con-

versely, let C1, . . . , Ck be pairwise commuting normal operators of order d such that ̺(Ci) = I . Then for

9The relations R3,a, Rp+2 are chosen here because they are needed for our purpose. In fact, they can be replaced with any

relations expressible by linear equations over A.

22



Ai = π−1(Ci), i ∈ [k], it holds that the Ai’s are pairwise commuting normal operators of order e, and the

eigenvalues of the Ci’s belong to B.

Proof. That the Ci’s are normal and pairwise commute follow from Lemma 17. Let the Ai’s be ℓ-dimensional

and U a unitary operator guaranteed by Theorem 1 such that UAiU
−1 is diagonal for all i ∈ [k], and let

UAiU
−1 =







µi1 . . . 0
...

. . .
...

0 . . . µiℓ






.

Then,

Cd
i = (π(Ai))

d = U−1U(π(Ai))
dU−1U = U−1(π(UAiU

−1))dU

= U−1







(π(µi1))
d . . . 0

...
. . .

...

0 . . . (π(µiℓ))
d






U = U−1







1 . . . 0
...

. . .
...

0 . . . 1






U = I,

because π(µij) ∈ Ud and by Lemma 17. In a similar way, as π(µij) ∈ B,

̺(Ci) = U−1







̺(µi1) . . . 0
...

. . .
...

0 . . . ̺(µiℓ)






U = I.

For the second part of the claim we first need verify that all the eigenvalues of the Ci’s belong to B. Let

U be a unitary operator that diagonalizes the Ci’s and

UCiU
−1 =







µi1 . . . 0
...

. . .
...

0 . . . µiℓ






,

assuming that the Ci’s are ℓ-dimensional. Then we have

I = ̺(Ci) = U−1U̺(Ci)U
−1U = U−1̺(UCiU

−1)U = U−1







̺(µi1) . . . 0
...

. . .
...

0 . . . ̺(µiℓ)






U,

implying ̺(µij) = 1. Then we proceed as in the first part of the claim.

Next we consider the four connections from Figure 3 one by one and prove that each of them preserves

the satisfiability gap.

Step 1 (Reductions to a core). Let Γ be a constraint language over the set Ud and ̺ : Ud → Ud an

idempotent endomorphism of Γ. Then CSP(Γ) has a satisfiability gap if and only if CSP(̺(Γ)) does.

Suppose that |Im (̺)| = e, let π′ : Im (̺)→ Ue be any bijection between Ue and Im (̺), and π = π′ ◦̺.

Let ∆ = {π(R) | R ∈ Γ}, we show that CSP(∆) has a satisfiability gap if and only if CSP(Γ) does.

Let P = (V,Ue, C) be a gap instance of CSP(∆), and let Pπ = (V,Ud, C
π) be the corresponding

instance of CSP(Γ), where for each 〈s, R〉 ∈ C the set Cπ includes 〈s, Q〉 with Q ∈ Γ and π(Q) = R. As is

easily seen, Pπ has no solution, because for any solution ϕ of Pπ the mapping π ◦ ϕ is a solution of P. Let

23



{Av | v ∈ V } be an ℓ-dimensional satisfying operator assignment for P. We prove that {π′−1(Av) | v ∈ V }
is a satisfying operator assignment for Pπ . Let Cv = π′−1(Av).

By Lemma 22, the Cv’s are normal, Cd
v = I , v ∈ V , and for any constraint 〈s, R〉 ∈ C and any v,w ∈ s,

Cv, Cw commute. Now, let 〈s, R〉 ∈ C, s = (v1, . . . , vk), 〈s, Q〉 be the corresponding constraint of Pπ , and

fR, fQ be the polynomials representing R,Q over Ue, Ud respectively. We have fR(Av1 , . . . , Avk ) = I , and

we need to show that fQ(Cv1 , . . . , Cvk) = I . Let U diagonalize Av1 , . . . , Avk and

UAviU
−1 =







µi1 . . . 0
. . .

0 . . . µiℓ






.

Then (µ1j, . . . , µkj) ∈ R for j ∈ [ℓ], because

I = fR(Av1 , . . . , Avk) = fR(UAv1U
−1, . . . , UAvkU

−1) =







fR(µ11, . . . , µk1) . . . 0
. . .

0 . . . fR(µ1ℓ, . . . , µkℓ)






.

Therefore, (π′−1(µ1j), . . . , π
′−1(µkj)) ∈ ̺(Q) for j ∈ [ℓ], and, as ̺ is an endomorphism, (π′−1(µ1j), . . . , π

′−1(µkj)) ∈
Q and so fQ(π

′−1(µ1j), . . . , π
′−1(µkj)) = λ0 = 1. Since

UCviU
−1 = Uπ′−1(Avi)U

−1 = π′−1(UAviU
−1) =







π′−1(µi1) . . . 0
. . .

0 . . . π′−1(µiℓ)






,

we also have fQ(Cv1 , . . . , Cvk) = λ0 = 1.

Now, let Pπ = (V,Ud, C
π) be a gap instance of CSP(Γ), {Cv | v ∈ V } an ℓ-dimensional satisfying

operator assignment for Pπ , and P = (V,Ue, C), C = {〈s, R〉 | 〈s, Q〉 ∈ C
π, R = π(Q)}, the corresponding

instance of CSP(∆). Then again P has no solution over Ue, and it remains to prove that {Av | v ∈ V },
Av = π(Cv) is a satisfying operator assignment for P = (V, C). For 〈s, R〉 ∈ C, s = (v1, . . . , vk), let

fR, fQ be polynomials representing R and Q ∈ Γ with π(Q) = R, respectively.

First, we show that the Cv’s can be replaced with ̺(Cv). Since for any 〈s, Q〉 ∈ Cπ, s = (v1, . . . , vk),
and any a1, . . . , ak ∈ Ud, we have that fQ(̺(a1), . . . , ̺(ak)) = 1 whenever fQ(a1, . . . , ak) = 1, by

Lemma 2 fQ(̺(Cv1), . . . , ̺(Cvk)) = I whenever fQ(Cv1 , . . . , Cvk) = I . Thus, we assume Av = π′(Cv)
for v ∈ V .

That Av is normal, Ae
v = I , v ∈ V , and the Av’s locally commute follows from Lemma 22. Let

fπ
Q(x1, . . . , xk) = fQ(π

′−1(x1), . . . , π
′−1(xk)). As is easily seen, for any a1, . . . , ak ∈ Ue, if fπ

Q(a1, . . . , ak) =
1 then fR(a1, . . . , ak) = 1. Hence, by Lemma 2 fR(Av1 , . . . , Avk) = I whenever fπ

Q(Av1 , . . . , Avk) = I .

Finally, we prove that π′−1(Av) = Cv; this implies that fπ
Q(Av1 , . . . , Avk) = I completing the proof. Let

U diagonalize Cv and

UCvU
−1 =







µ1 . . . 0
. . .

0 . . . µℓ






.

Then

π′−1(Av) = π′−1(π′(Cv)) = U−1Uπ′−1(π′(Cv))U
−1U = U−1π′−1(π′(UCvU

−1))U

= U−1







π′−1(π′(µ1)) . . . 0
. . .

0 . . . π′−1(π′(µℓ))






U = U−1







µ1 . . . 0
. . .

0 . . . µℓ






U = Cv.

24



Step 2 (Adding constant relations). Let Γ be a core language. Then CSP(Γ) has a satisfiability gap if

and only if CSP(Γ∗) does.

Since Γ ⊆ Γ∗, if CSP(Γ) has a satisfiability gap, so does CSP(Γ∗). We prove that if CSP(Γ∗) has a

satisfiability gap then CSP(Γ) has a satisfiability gap.

We will use the following relation RΓ that is known to be pp-definable in Γ [29]:

RΓ = {(̺(λ0), . . . , ̺(λd−1)) | ̺ is an endomorphism of Γ}.

As Γ is a core language, for any (a1, . . . , ad) ∈ RΓ it holds that {a1, . . . , ad} = Ud. By Theorem 15 we

may assume that RΓ ∈ Γ.

Let P = (V,Ud, C) be a gap instance of CSP(Γ∗). We construct an instance P ′ = (V ′, Ud, C
′) of

CSP(Γ) as follows.

• V ′ = V ∪ {va|a ∈ Ud};

• C′ consists of three parts: {C = 〈s, R〉 ∈ C | R ∈ Γ}, {〈(va1 , . . . , van), RΓ〉}, and {〈(v, va),=d〉 |
〈(v), Ca〉 ∈ C}, where =d denotes the equality relation on Ud.

It is known [29] that P ′ has a classic solution if and only if P has one. If ϕ : V → Ud is a solution of P
then we can extend it to a solution ofP ′ by mapping va to a. Conversely, let ϕ : V ′ → Ud be a solution ofP ′.

The restriction of ϕ to V may not be a solution of P, because for some constraint 〈(v), Ca〉 ∈ C it may be the

case that ϕ(v) = ϕ(va) 6= a. This can be fixed as follows. As ϕ is a solution, (ϕ(vλ0), . . . , ϕ(vλd−1
)) ∈ RΓ,

hence, the mapping ̺ : Ud → Ud given by ̺(a) = ϕ(va) is an endomorphism of Γ. As Γ is a core language,

̺ is a permutation on Ud and ̺s is the identity permutation for some s. Then ̺s−1 is the inverse ̺−1 of ̺
and is also an endomorphism of Γ. Therefore ϕ′ = ̺−1 ◦ ϕ is also a solution of P ′ and ϕ′(va) = a for

a ∈ Ud. Thus, ϕ′
V is a solution of P.

Now, suppose that {Av | v ∈ V } is an ℓ-dimensional satisfying operator assignment for P. First, we

observe that if C contains a constraint 〈(v), Ca〉 then Av is the scalar operator aI . Indeed, let fa(x) be a

polynomial representing Ca, that is, fa(a) = λ0 and fa(b) = λ1 for b ∈ Ud − {a}. Let also U be a unitary

operator that diagonalizes Av and µ1, . . . , µℓ the eigenvalues of Av. Then, as fa(Av) = I we obtain

I = UIU−1 = Ufa(Av)U
−1 = fa(UAvU

−1) =







fa(µ1)) . . . 0
. . .

0 . . . fa(µℓ))







implying that fa(µi) = λ0 for i ∈ [ℓ]. Thus, a is the only eigenvalue of Av and

Av = U−1aIU = aI.

All such operators pairwise commute regardless of the value of a. Therefore va can be assigned aI for

a ∈ Ud, and the resulting assignment is a satisfying operator assignment for P ′.

Step 3 (Satisfiability gap from subalgebras). Let Γ be a constraint language over the set Ud and let B
be its subalgebra. Then if CSP(ΓB) has a satisfiability gap then so does CSP(Γ).

Let ∆ = ΓB. Then by Theorem 15 we may assume ∆ ⊆ Γ and B ∈ Γ. Let e = |B| and π : Ue → Ud a

bijection between Ue and B.

Let P = (V,Ue, C) be a gap instance of CSP(π−1(∆)) and the instance Pπ = (V,Ud, C
π) constructed

as follows. For every 〈s, R〉 ∈ C the instance Pπ contains 〈s, π(R)〉. As is easily seen, Pπ has no classic

solution. Therefore, it suffices to show that for any ℓ-dimensional satisfying operator assignment {Av | v ∈
V } for P, the assignment Cv = π(Av) is a satisfying operator assignment for Pπ .

25



By Lemma 22, the Cv’s are normal, satisfy the condition Cd
v = I , and locally commute. For 〈s, R〉 ∈ C,

s = (v1, . . . , vk), let fπ
R(x1, . . . , xk) = fR(π

−1(x1), . . . , π
−1(xk)). As in Step 1, it can be shown that

π−1(Cv) = Av, and therefore fπ
R(Cv1 , . . . , Cvk) = I . For any a1, . . . , ak ∈ Ud, if (a1, . . . , ak) ∈ π(R)

then a1, . . . , ak ∈ B. Therefore, if fπ
R(a1, . . . , ak) = 1 then fπ(R)(a1, . . . , ak) = 1. By Lemma 2 this

implies fπ(R)(Cv1 , . . . , Cvk) = I .

Step 4 (Satisfiability gap from homomorphic images). Let Γ be a constraint language over the set Ud

and θ a congruence of Γ. Then if CSP(Γ/θ) has a satisfiability gap then so does CSP(Γ).

Let ̺ : Ud → Ud/θ be the natural mapping a 7→ a/θ and π′ : Ud/θ → Ue, where e = |Ud/θ|, a bijection.

Finally, let π = π′ ◦ ̺ and ∆ = π(Γ). For R ∈ ∆ let π−1(R) be the full preimage of R under π. Since θ is

pp-definable in Γ, so is π−1(R) for any R ∈ ∆. Indeed, if R = π(Q) for some Q ∈ Γ, then

π−1(R)(x1, . . . , xk) = ∃y1, . . . , yk Q(y1, . . . , yk) ∧
∧

i∈[k]

θ(xi, yi).

Using Theorem 15 we may assume that π−1(R) ∈ Γ for R ∈ ∆. Let π∗ : Ue → Ud assign to a ∈ Ue a

representative of the θ-class π′−1(a). Thus, in a certain sense, π∗ is an inverse of π.

Suppose that P = (V,Ue, C) is a gap instance of CSP(∆) and let Pπ = (V,Ud, C
π) be given by Cπ =

{〈s, π−1(R)〉 | 〈s, R〉 ∈ C}. We prove that Pπ is a gap instance of CSP(Γ). Firstly, observe that Pπ has no

classic solution, because for any solution ϕ of Pπ the mapping π ◦ ϕ is a solution of P. Let {Av | v ∈ V }
be a satisfying operator assignment for P. We set Cv = π∗(Av) and prove that {Cv | v ∈ V } is a satisfying

operator assignment for Pπ. By Lemma 22, the Cv’s are normal, satisfy the condition Cd
v = I , and locally

commute. For 〈s, R〉 ∈ C, s = (v1, . . . , vk), let fπ
R(x1, . . . , xk) = fR(π(x1), . . . , π(xk)). As before, it is

easy to see that π(Cv) = Av for v ∈ V , and therefore fπ
R(Cv1 , . . . , Cvk) = I . Finally, for any (a1, . . . , ak) ∈

Ud, if fπ
R(a1, . . . , ak) = fR(π(a1), . . . , π(ak)) = 1, then (π(a1), . . . , π(ak)) ∈ R, and so (a1, . . . , ak) ∈

π−1(R) and fπ−1(R)(a1, . . . , ak) = 1. By Lemma 2 this implies that fπ−1(R)(Cv1 , . . . , Cvk) = I .

Proof of Theorem 19. Suppose that CSP(Γ) does not have bounded width. Then by Proposition 21 there

exists a language ∆ pp-definable in Γ, a subalgebra B of core(∆)∗, a congruence θ of core(∆)∗B, and an

Abelian group A of prime order p such that core(∆)∗B/θ contains relations R3,a, Rp+2 for every a ∈ A

given by

R3,a = {(x, y, z) | x+ y + z = a}, and Rp+2 = {(a1, . . . , ap+2) | a1 + · · ·+ ap+2 = 0}.

By what is proved above it suffices to prove that CSP(∆p), ∆p = {R3,a | a ∈ A} ∪ {Rp+2}, has a

satisfiability gap. However, if p = 2, the Mermin-Peres magic square from [44] provides a gap instance of

CSP({R3,1, R3,−1}), and the construction from Proposition 14 provides a gap instance for CSP(∆p) when

p > 2. Note that in both cases the group A is the multiplicative group of roots of unity.

References

[1] Padmanabhan K Aravind. Bell’s theorem without inequalities and only two distant observers. Found. Phys.,

15:397–405, 2002. doi:10.1023/A:1021272729475.

[2] Albert Atserias, Phokion G. Kolaitis, and Simone Severini. Generalized satisfiability problems

via operator assignments. J. Comput. Syst. Sci., 105:171–198, 2019. arXiv:1704.01736,

doi:10.1016/J.JCSS.2019.05.003.

[3] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency methods. J. ACM,

61(1):3:1–3:19, 2014. doi:10.1145/2556646.

26

https://doi.org/10.1023/A:1021272729475
https://arxiv.org/abs/1704.01736
https://doi.org/10.1016/J.JCSS.2019.05.003
https://doi.org/10.1145/2556646


[4] Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction problems. SIAM J. Comput.,

45(4):1646–1669, 2016. arXiv:1512.01157, doi:10.1137/130915479.

[5] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In Andrei Krokhin

and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability, volume 7

of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

2017. doi:10.4230/DFU.Vol7.15301.1.

[6] John S Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38(3):447, 1966.

doi:10.1103/RevModPhys.38.447.

[7] Manuel Bodirsky. Complexity of infinite-domain constraint satisfaction, volume 52. Cambridge University Press,

2021.

[8] Manuel Bodirsky and Jakub Rydval. On the descriptive complexity of temporal constraint satisfaction problems.

J. ACM, 70(1):2:1–2:58, 2023. doi:10.1145/3566051.

[9] Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. SDPs and robust satisfiability of promise CSP.

In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 609–622. ACM, 2023.

arXiv:2211.08373, doi:10.1145/3564246.3585180.

[10] Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via polymorphisms.

CoRR, abs/1501.01598, 2015. arXiv:1501.01598.

[11] Andrei Bulatov. Bounded relational width. Unpublished manuscript, 2009. URL:

https://www2.cs.sfu.ca/˜abulatov/papers/relwidth.pdf.

[12] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using finite alge-

bras. SIAM J. Comput., 34(3):720–742, 2005. doi:10.1137/S0097539700376676.

[13] Andrei A. Bulatov. A Dichotomy Theorem for Constraints on a Three-Element Set. In Proc. 43rd Sym-

posium on Foundations of Computer Science (FOCS’02), pages 649–658. IEEE Computer Society, 2002.

doi:10.1109/SFCS.2002.1181990.

[14] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM,

53(1):66–120, 2006. doi:10.1145/1120582.1120584.

[15] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS’17), pages 319–330, 2017. arXiv:1703.03021,

doi:10.1109/FOCS.2017.37.

[16] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and limits of nonlocal strate-

gies. In Proc. 19th Annual IEEE Conference on Computational Complexity (CCC’04), pages 236–249. IEEE

Computer Society, 2004. doi:10.1109/CCC.2004.1313847.

[17] Richard Cleve, Li Liu, and William Slofstra. Perfect commuting-operator strategies for linear system games. J.

Math. Phys., 58(1), 2017. arXiv:1606.02278, doi:10.1063/1.4973422.

[18] Richard Cleve and Rajat Mittal. Characterization of binary constraint system games. In Proc. 41st Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP’14), volume 8572 of Lecture Notes in

Computer Science, pages 320–331. Springer, 2014. doi:10.1007/978-3-662-43948-7\_27.

[19] Eric Culf, Hamoon Mousavi, and Taro Spirig. Approximation algorithms for noncommutative constraint satis-

faction problems. 2023. arXiv:2312.16765.

[20] Vı́ctor Dalmau and Andrei A. Krokhin. Robust Satisfiability for CSPs: Hardness and Algorithmic Results. ACM

Trans. Comput. Theory, 5(4):15:1–15:25, 2013. doi:10.1145/2540090.

[21] Vı́ctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proc. 4th International Confer-

ence on Principles and Practice of Constraint Programming (CP’99), volume 1713 of Lecture Notes in Computer

Science, pages 159–173. Springer, 1999. doi:10.1007/978-3-540-48085-3\_12.

27

https://arxiv.org/abs/1512.01157
https://doi.org/10.1137/130915479
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1145/3566051
https://arxiv.org/abs/2211.08373
https://doi.org/10.1145/3564246.3585180
https://arxiv.org/abs/1501.01598
https://www2.cs.sfu.ca/~abulatov/papers/relwidth.pdf
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/SFCS.2002.1181990
https://doi.org/10.1145/1120582.1120584
https://arxiv.org/abs/1703.03021
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/CCC.2004.1313847
https://arxiv.org/abs/1606.02278
https://doi.org/10.1063/1.4973422
https://doi.org/10.1007/978-3-662-43948-7_27
https://arxiv.org/abs/2312.16765
https://doi.org/10.1145/2540090
https://doi.org/10.1007/978-3-540-48085-3_12


[22] Romuald Debruyne and Christian Bessière. Some Practicable Filtering Techniques for the Constraint Satisfaction

Problem. In Proc. 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pages 412–417.

Morgan Kaufmann, 1997.

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and con-

straint satisfaction: A study through Datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998.

doi:10.1137/S0097539794266766.

[24] Michel X. Goemans and David P. Williamson. Approximation algorithms for Max-3-Cut and other

problems via complex semidefinite programming. J. Comput. Syst. Sci., 68(2):442–470, 2004.

doi:10.1016/J.JCSS.2003.07.012.

[25] Venkatesan Guruswami and Yuan Zhou. Tight Bounds on the Approximability of Almost-Satisfiable Horn SAT

and Exact Hitting Set. Theory Comput., 8(1):239–267, 2012. doi:10.4086/TOC.2012.V008A011.

[26] Paul R Halmos. Introduction to Hilbert space and the theory of spectral multiplicity. Courier Dover Publications,

2017.

[27] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92–110, 1990.

doi:10.1016/0095-8956(90)90132-J.

[28] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture Series in Mathe-

matics and its Applications. OUP Oxford, 2004.

[29] Peter Jeavons, David A. Cohen, and Marc Gyssens. How to determine the expressive power of constraints.

Constraints, 4(2):113–131, 1999. doi:10.1023/A:1009890709297.

[30] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM, 44(4):527–548,

1997. doi:10.1145/263867.263489.

[31] Zhengfeng Ji. Binary constraint system games and locally commutative reductions. 2013. arXiv:1310.3794.

[32] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗=RE. Technical report,

2020. arXiv:2001.04383.

[33] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗ = RE. Commun. ACM,

64(11):131–138, 2021. doi:10.1145/3485628.

[34] Simon Kochen and E. P. Specker. The problem of hidden variables in quantum mechanics. J. Mathematics and

Mechanics, 17(1):59–87, 1967. URL: http://www.jstor.org/stable/24902153.

[35] Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: Tools and a case study. J. Comput.

Syst. Sci., 51(1):110–134, 1995. doi:10.1006/jcss.1995.1055.

[36] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint satisfaction. J. Comput.

Syst. Sci., 61(2):302–332, 2000. doi:10.1006/jcss.2000.1713.

[37] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolı́nek. The complexity of general-valued CSPs. SIAM

J. Comput., 46(3):1087–1110, 2017. arXiv:1502.07327, doi:10.1137/16M1091836.

[38] Marcin Kozik. Solving CSPs Using Weak Local Consistency. SIAM J. Comput., 50(4):1263–1286, 2021.

arXiv:1605.00565, doi:10.1137/18M117577X.

[39] Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of several Maltsev condi-

tions. Algebra universalis, 73(3):205–224, 2015. doi:10.1007/s00012-015-0327-2.

[40] Benoit Larose and Lázló Zádori. Bounded width problems and algebras. Algebra Univers., 56:439–466, 2007.

doi:10.1007/s00012-007-2012-6.

[41] Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism

counts from planar graphs. In Proc. 61st IEEE Annual Symposium on Foundations of Computer Science

(FOCS’20), pages 661–672. IEEE, 2020. doi:10.1109/FOCS46700.2020.00067.

[42] Laura Mančinska and David E. Roberson. Quantum homomorphisms. J. Comb. Theory, Ser. B, 118:228–267,

2016. doi:10.1016/J.JCTB.2015.12.009.

28

https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1016/J.JCSS.2003.07.012
https://doi.org/10.4086/TOC.2012.V008A011
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1023/A:1009890709297
https://doi.org/10.1145/263867.263489
https://arxiv.org/abs/1310.3794
https://arxiv.org/abs/2001.04383
https://doi.org/10.1145/3485628
http://www.jstor.org/stable/24902153
https://doi.org/10.1006/jcss.1995.1055
https://doi.org/10.1006/jcss.2000.1713
https://arxiv.org/abs/1502.07327
https://doi.org/10.1137/16M1091836
https://arxiv.org/abs/1605.00565
https://doi.org/10.1137/18M117577X
https://doi.org/10.1007/s00012-015-0327-2
https://doi.org/10.1007/s00012-007-2012-6
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1016/J.JCTB.2015.12.009


[43] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations. Algebra Univers.,

59(3-4):463–489, 2008. doi:10.1007/s00012-008-2122-9.

[44] N. David Mermin. Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett.,

65(27):3373, 1990. doi:10.1103/PhysRevLett.65.3373.

[45] N. David Mermin. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys., 65(3):803, 1993.

doi:10.1103/RevModPhys.65.803.

[46] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[47] Connor Paddock and William Slofstra. Satisfiability problems and algebras of boolean constraint system games.

2023. arXiv:2310.07901.

[48] Asher Peres. Incompatible results of quantum measurements. Phys. Lett., 151(3-4):107–108, 1990.

doi:10.1016/0375-9601(90)90172-K.

[49] E.L. Post. The two-valued iterative systems of mathematical logic, volume 5 of Annals of Mathematical Studies.

Princeton University Press, 1941. doi:10.2307/2268608.

[50] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proc.

40th Annual ACM Symposium on Theory of Computing (STOC’08), pages 245–254. ACM, 2008.

doi:10.1145/1374376.1374414.

[51] Thomas Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on the

Theory of Computing (STOC’78), pages 216–226, 1978. doi:10.1145/800133.804350.

[52] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from non-local games. J.

Am. Math. Soc., 33(1):1–56, 2020. doi:10.1090/jams/929.

[53] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1–37:33, 2016.

arXiv:1210.2987, doi:10.1145/2974019.

[54] Johan Thapper and Stanislav Živný. The power of Sherali–Adams relaxations for general-valued CSPs. SIAM J.

Comput., 46(4):1241–1279, 2017. arXiv:1606.02577, doi:10.1137/16M1079245.

[55] Johan Thapper and Stanislav Živný. The limits of SDP relaxations for general-valued CSPs. ACM Trans. Comput.

Theory, 10(3):12:1–12:22, 2018. arXiv:1612.01147, doi:10.1145/3201777.

[56] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Proc. 58th Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS’17), pages 331–342, 2017. arXiv:1704.01914,

doi:10.1109/FOCS.2017.38.

[57] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.

arXiv:1704.01914, doi:10.1145/3402029.

29

https://doi.org/10.1007/s00012-008-2122-9
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/RevModPhys.65.803
https://arxiv.org/abs/2310.07901
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.2307/2268608
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/800133.804350
https://doi.org/10.1090/jams/929
https://arxiv.org/abs/1210.2987
https://doi.org/10.1145/2974019
https://arxiv.org/abs/1606.02577
https://doi.org/10.1137/16M1079245
https://arxiv.org/abs/1612.01147
https://doi.org/10.1145/3201777
https://arxiv.org/abs/1704.01914
https://doi.org/10.1109/FOCS.2017.38
https://arxiv.org/abs/1704.01914
https://doi.org/10.1145/3402029

	Introduction
	Preliminaries
	Operator CSP
	Overview of results and techniques
	Bounded width and no gaps
	Magic square modulo d
	Reductions through pp-definitions
	Unbounded width and gaps
	Bounded width, Abelian groups, and the magic square
	Proof of Theorem 19


