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Abstract

How hard is it to program n robots to move about a long narrow aisle such that only w of them can
fit across the width of the aisle? In this paper, we answer that question by calculating the topological
complexity of conf(n,w), the ordered configuration space of open unit-diameter disks in the infinite strip
of width w. By studying its cohomology ring, we prove that, as long as n is greater than w, the topological
complexity of conf(n,w) is 2n − 2

⌈
n
w

⌉
+ 1, providing a lower bound for the minimum number of cases

such a program must consider.

1 Introduction
How hard is it to program a fleet of n robots to move about a long narrow aisle such that only w of the
robots can fit across the width of the aisle? If we are given the initial and final configurations of the robots,
it is rather easy to tell the robots how to move without bumping into each other or the walls. However,
if we seek a universal program that can guide the robots between every possible combination of initial and
final configurations and avoids collisions, the programing task becomes far more daunting. We could write
a program that considers every possible relative configuration of the robots, but as n grows the number of
cases quickly gets out of hand. Instead of dealing with such a task, we would like to develop a program that
breaks this problem into as few cases as possible.

In this motion planning problem we seek to minimize the number of different cases of starting and ending
positions of the fleet of robots for which we can find a continuous rule, or motion planner. In the case of
n robots in a long aisle such that at most w of the robots fit across the width of the aisle, this problem is
equivalent to determining the topological complexity, denoted TC, of the ordered configuration space of n
open unit-diameter disks in the infinite strip of width w, see Figure 1. This space, abbreviated conf(n,w),
is the space of ways of embedding n open unit-diameter disks in the infinite strip of width w, i.e., it is the
following subspace of R2n

conf(n,w) :=
{
(x1, y1, . . . , xn, yn) ∈ R2n|(xi − xj)

2 + (yi − yj)
2 ≥ 1 for i ̸= j and

1

2
≤ yi ≤ w − 1

2
for all i

}
,

and its topology as has been studied in [AKM21, AM24, BBK14, Waw22, Waw24] among others. It is a
natural restriction of the ordered configuration space of n points in the plane, Fn(R2), which Farber and
Yuzvinsky proved has topological complexity 2n− 2 if n > 1 [FY02, Theorem 1].

In this paper, we determine TC
(
conf(n,w)

)
by studying the cohomology ring of conf(n,w). This gives

us a lower bound for TC
(
conf(n,w)

)
. This, combined with an identical upper bound arising from a space

homotopy equivalent to conf(n,w), yields the following result.

Theorem 1.1.

TC
(
conf(n,w)

)
=


1 if n = 1,

2n− 2 if 1 < n ≤ w,

2n− 2
⌈
n
w

⌉
+ 1 if n > w.

It follows that, as long as we have sufficiently many robots, only w of which fit across the aisle, we could
never write a program that uses fewer than 2n−2

⌈
n
w

⌉
+1 cases for the pairs of initial and final configurations.

Moreover, if we are very clever, we could write a program with exactly 2n− 2
⌈
n
w

⌉
+ 1 rules.
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Figure 1: A point in conf(5, 2). Note that two disks can be aligned vertically, but three
cannot.
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2 Topological complexity
Given a space X, there is a natural motion planning problem: one would like a motion planner that takes
in pair of points x1, x2 ∈ X and produces a continuous path from x1 to x2. For example, given two points
in conf(n,w), i.e., two configurations of ordered disks, we would like a rule that tells us how to move from
one point to another, i.e., how to move the disks in the first configuration to get the second configuration,
keeping the disks in the strip and avoiding collisions. Moreover, small perturbations to x1 or x2 should not
change the path drastically, i.e., this motion planner should be continuous. In the case of conf(n,w), this
means that configurations near to the initial and final ones should lead to similar movements of the disks.

We formalize the general problem by letting XI denote the space of all continuous paths

γ : [0, 1] → X,

with the compact-open topology, and write

π : XI → X ×X

π(γ) =
(
γ(0), γ(1)

)
for the map π that associates a path γ ∈ XI to its endpoints. In this setting the problem of finding a
continuous motion planner is equivalent to finding a continuous section of π, i.e., a map

s : X ×X → XI ,

such that π ◦ s = idX×X . If X is convex, such a motion planner exists, namely s takes the points x1 and x2

to the constant speed straight-line path between them, i.e.,

s(x1, x2)(t) = tx1 + (1− t)x2.

Unfortunately, continuous motion planners s only exist for slightly more general X, as Farber proved that
such an s exists if and only if X is contractible [Far03, Theorem 1].

Since only the simplest spaces have continuous motion planners, we change our question and ask how bad
can the motion planning problem really be? Instead of seeking a single motion planner s for all of X×X, we
seek to find the minimal number k of open subsets Ui ⊂ X ×X covering X, such that there are continuous
sections

si : Ui → XI ,

such that π ◦ si = idX×X |Ui . This number k is the topological complexity of X, and we say TC(X) = k. If
no such k exists, then we set TC(X) = ∞.

Example 2.1. The configuration space of a robot arm consisting of n bars L1, . . . , Ln, such that Li and
Li+1 are connected a flexible joint can be viewed as the n-fold product of spheres, S1s if the joints are hinges
with one dimension of freedom and S2s if the joints are balls and sockets with two dimensions of freedom. In
the hinge case the topology complexity is n+1, whereas in the ball and socket case the topological complexity
is 2n+ 1 [Far03, Theorem 12].
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Example 2.2. If we shrink our robots from disks to points, we move from conf(n,w) to Fn(R2), the ordered
configuration space of n points in the plane. Farber and Yuzvinksy proved that TC

(
Fn(R2)

)
= 2n−2 [FY02,

Theorem 1], and Farber and Grant extended this to ordered configurations in arbitrary Rm, proving that
TC

(
Fn(Rm)

)
= 2n− 1 is m is even and TC

(
Fn(Rm)

)
= 2n− 2 if m is odd [FG09, Theorem 1].

Often the space X is hard to work with directly, and this makes computing TC(X) a challenge. Fortu-
nately, Farber proved that topological complexity is a homotopy invariant of X, [Far03, Theorem 3]. This
result will allow us to replace conf(n,w) with a finite cellular complex called cell(n,w) that is significantly
easier to manipulate.

Proposition 2.3. (Farber [Far03, Theorem 3]) Topological complexity is a homotopy invariant.

Even though we can often replace X with a simpler space Y , finding open sets {V1, · · · , Vk} of Y ×Y with
continuous sections si : Vi → Y I with k relatively small is a challenge. Proving that such a k is minimal is
even harder. As such we seek upper and lower bounds for topological complexity. Farber gave such bounds
in [Far03, Sections 3 and 4], and we will show that they are sharp in the case of conf(n,w) when n > w.

2.1 An upper bound for topological complexity
We seek an upper bound for the topological complexity of X. As long as X is path connected and paracom-
pact such a bound arises from the dimension of X.

Proposition 2.4. (Farber [Far03, Theorem 4]) For any path-connected paracompact space X,

TC(X) ≤ 2 dimX + 1.

We may naturally view conf(n,w) a subspace of R2n, proving that

TC
(
conf(n,w)

)
≤ 4n+ 1.

This bound is sub-optimal. As we will see in the next section, conf(n,w) is homotopy equivalent to an(
n −

⌈
n
w

⌉)
-dimensional cellular complex. It follows that Proposition 2.3 proves that TC

(
conf(n,w)

)
is at

most 2n− 2
⌈
n
w

⌉
+ 1. We will show that this bound is sharp when w < n.

2.2 A lower bound for topological complexity
Finding meaningful lower bounds for the topological complexity of a space, X, is a harder problem, as
this corresponds to showing that any motion planning program must consider a certain number of cases.
Fortunately, the cup product structure on the cohomology ring of X leads to a reasonable lower bound that
will be sharp in our case.

Given a space X, let ∆X ⊂ X × X denote the diagonal, i.e., the set of points
{
(x, x) ∈ X × X

}
. A

cohomology class
ϕ ∈ H∗(X ×X;R)

is called a zero-divisor if its restriction to the diagonal is trivial, i.e.,

ϕ|∆X
= 0 ∈ H∗(X;R).

We say that the zero-divisor-cup-length of H∗(X;R) is the length of the longest non-trivial cup product
(
in

H∗(X ×X;R)
)

of zero-divisors. Farber proved that the zero-divisor-cup-length serves as a lower bound for
the topological complexity of X.

Proposition 2.5. (Farber [Far03, Theorem 7]) The zero-divisor-cup-length of H∗(X;R) is less than the
topological complexity of X.

Farber also noted that if α ∈ H∗(X;R), then

α := 1⊗ α− α⊗ 1 ∈ H∗(X;R)⊗H∗(X;R) ∼= H∗(X ×X;R)

is a zero-divisor, where the isomorphism H∗(X;R) ⊗H∗(X;R) ∼= H∗(X ×X;R) is given by the Künneth
theorem. We will use this construction to find a family of 2n − 2

⌈
n
w

⌉
zero-divisors in H∗(conf(n,w) ×

conf(n,w)
)

that have non-trivial cup product, yielding a lower bound for the topological complexity of
conf(n,w).
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3 Bounds for TC
(
conf(n,w)

)
In this section we determine sharp upper and lower bounds for the topological complexity of conf(n,w). We
do this by recalling the definitions of two spaces homotopy equivalent to conf(n,w) that will allow us to use
Propositions 2.4 and 2.5 to bound the topological complexity of conf(n,w). The first space is the cellular
complex cell(n,w), whose dimension can easily be determined, yielding an upper bound for TC

(
conf(n,w)

)
.

The second space, denoted M(n,w), will allow us to compute certain cup products in H∗(conf(n,w)
)
, which

we will use to find a lower bound for TC
(
conf(n,w)

)
. We begin by stating several facts about cell(n,w).

In the next subsection we will recall Alpert and Manin’s construction of a discrete gradient vector field on
cell(n,w), the critical cells of which correspond to a basis for the cohomology of M(n,w).

3.1 cell(n,w) and an upper bound for TC
(
conf(n, 2)

)
In this subsection we recall the definition of the cellular complex cell(n,w), which was introduced in [BZ14],
and is homotopy equivalent to conf(n,w).

Let cell(n) denote the cellular complex whose cells are represented by symbols consisting of an ordering
of the numbers 1, . . . , n separated by vertical bars into blocks such that no block is empty. A cell f ∈ cell(n)
is a codimensional-1 face of a cell g ∈ cell(n) if g can be obtained by deleting a bar in f and shuffling the
resulting block. We say that g is a co-face of f . It follows that cells represented by symbols with no bars are
the top-dimensional cells of cell(n). It follows that we can view cell(n) as an (n − 1)-dimensional complex,
and each bar in a symbol lowers the dimension of the corresponding cell by 1.

By restricting how big a block can be in cell(n), one gets the cellular complex cell(n,w). The cellular
complex cell(n,w) is the subcomplex of cell(n) consisting of the cells represented by symbols whose blocks
have at most w elements; see Figure 2. Alpert, Kahle, and MacPherson proved that cell(n,w) is homotopy
equivalent to conf(n,w) [AKM21, Theorem 3.1], allowing us to study it in place of conf(n,w).

Proposition 3.1. (Alpert–Kahle–MacPherson [AKM21, Theorem 3.1]) There is an Sn-equivariant homo-
topy equivalence conf(n,w) ≃ cell(n,w).

It follows from Proposition 2.3 that if we can determine the dimension of cell(n,w) we will get an upper
bound for the topological complexity of conf(n,w).

Proposition 3.2. The dimension of cell(n,w) is n−
⌈
n
w

⌉
.

Proof. We seek to find the cells represented by the symbols with the least number of vertical bars. The
symbol

1 · · · w
∣∣∣w + 1 · · · 2w

∣∣∣ · · · ∣∣∣⌈ n
w

⌉
− n+ 1 · · · n

corresponds to a top dimensional cell of cell(n,w) as it has the fewest possible vertical bars, as any fewer bars
would result in a block of size greater than w and every block, perhaps other than the last, has w elements.
This cell is

(
n−

⌈
n
w

⌉)
-dimensional as it has

⌈
n
w

⌉
− 1 bars.

This gives improves our upper bound on the topological complexity of conf(n,w).

Proposition 3.3.
TC

(
conf(n,w)

)
≤ 2n− 2

⌈ n
w

⌉
+ 1.

Proof. This follows immediately from Propositions 2.4 and 3.2.

Next, we find a lower bound the topological complexity of conf(n,w). Our bound will coincide with that
of Proposition 3.3, proving that they are sharp.
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3.2 M(n,w) and a lower bound for TC
(
conf(n,w)

)
Having found an upper bound for TC

(
conf(n,w)

)
we seek a suitable lower bound, i.e., the minimal number

of cases any program controlling the movement of the n robots about the aisle must contain. In order to
use Proposition 2.5 we need to understand the cohomology ring of conf(n,w). Alpert and Manin construct
a discrete gradient vector field on cell(n,w). The critical j-cells of this vector field will correspond to a basis
for Hj

(
conf(n,w)

)
, via Poincaré–Lefschetz duality applied to another space called M(n,w) that is homotopy

equivalent to conf(n,w).
We begin by describing the critical cells of Alpert and Manin’s discrete gradient vector field as they will

correspond to elements in the cohomology of conf(n,w); see [AM24, Sections 3 and 4] for further details.
Given a cell f ∈ cell(n,w), we break f into its blocks. Each block is further decomposed into wheels, where
each entry of a block is the axle of a wheel if it is the largest entry of the block up to that point, and the
wheel consists of the axle and all the following smaller entries before the next axle. A block fi of f is a
unicycle if it consists of a single wheel, i.e., the largest element in fi is also the first element. We say that
fi+1 is a follower if fi is a unicycle (its leader), which is not itself a follower and whose wheel is smaller than
any of the follower’s wheels. The cell f is critical if every block fi is either

• a unicycle which is not a follower, or

• a follower such that it and its leader have at least w + 1 elements in total.

See Figure 2 for an example.

Figure 2: The cellular complex cell(3, 2) with Alpert and Manin’s discrete gradient
vector field. The critical cells of this vector field are in red. This vector field arises
from a total ordering of the cells of cell(3, 2), and a vector [f, g] is included if and only
if f is the greatest face of g and g is the least coface of f . For more on Alpert and
Manin’s ordering see [AM24, Sections 3 and 4].

We relate these critical cells to the cohomology ring of conf(n,w) by studying another space, M(n,w),
that will allow us to take advantage of Poincaré–Lefschetz duality. The follower-free critical cells of cell(n,w),
i.e., those such that no block is a follower, will be of special interest to us, as the corresponding basis elements
behave especially nicely under taking cup products.

Let M(n,w) ⊂ R2n be the configuration space of open disks of radius 1 in a strip of any finite length
N > n and width w + ϵ for any 0 < ϵ < 1. This space is a manifold (with boundary) of dimension 2n, and
it homotopy equivalent to conf(n,w). It follows from Poincaré–Lefschetz duality that

Hi
(
conf(n,w)

) ∼= Hi
(
M(n,w)

) ∼= H2n−i

(
M(n,w), ∂M(n,w)

)
,
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and the cup product between classes in Hi
(
M(n,w)

)
and Hj

(
M(n,w)

)
is given by the transverse intersection

map

⋔ H2n−i

(
M(n,w), ∂M(n,w)

)
⊗H2n−j

(
M(n,w), ∂M(n,w)

)
→ H2n−i−j

(
M(n,w), ∂M(n,w)

)
.

Alpert and Manin describe a basis for H2n−j

(
M(n,w), ∂M(n,w)

)
, hence a basis for Hj

(
conf(n,w)

)
,

by associating basis elements to critical j-cells of cell(n,w). Let f be the label of a critical cell, then the
submanifold V (f) ⊂ M(n,w) is the set of disk configurations such that

1. The disks in each block of f are lined up vertically in order.

2. If a block b1 comes before b2 in f , they have a least w + 1 elements combined, and one of them is a
follower, then the column of disks labeled by elements of b1 is to the left of the column of disks labeled
by elements of b2.

See Figure 3 for an example.

Figure 3: A point in V (14 10 9 8|13 7 6 5|12 4 3 2|11 1). Note that the disks may wiggle
up and down while remaining aligned. The columns of the disks are allowed to move
left and right, and in this submanifold the order of the columns can be permuted, so
this point is one of the twenty four components of V (14 10 9 8|13 7 6 5|12 4 3 2|11 1).

Clearly this is a (2n− j)-dimensional submanifold of M(n,w), and one can check that ∂V (f) = V (f) ∩
∂M(n,w), proving that it represents a class in H2n−j

(
M(n,w), ∂M(n,w)

)
. Lemma 6.1 of Alpert and Manin

proves that the V (f) are in fact a basis for H2n−j

(
M(n,w), ∂M(n,w)

)
[AM24, Lemma 6.1], and we will

write ν(f) for the Poincaré–Lefschetz dual of V (f). Additionally, note that the follower-free critical cells
correspond to submanifolds in which the columns of disks can be arranged in any order.

Given Proposition 2.5, we wish to understand the cup product structure of H∗(conf(n,w)
)
. First we

recall a result of Alpert and Manin that will simplify our computations.

Proposition 3.4. (Alpert–Manin [AM24, Proposition 6.2]) If there is a pair of labels i and j which are
contained in the same block of critical cells f and g, then ν(f) ∪ ν(g) = 0.

Next, we note a fact that will greatly reduce the number of cup products we will need to take to
determine whether a cup product is nonzero. This result, along with the previous one, will allow us to use

the identification H2n−2
⌈

n
w

⌉(
conf(n,w)× conf(n,w)

) ∼= Hn−
⌈

n
w

⌉(
conf(n,w)

)
⊗Hn−

⌈
n
w

⌉(
conf(n,w)

)
.

Proposition 3.5. For k ≥ w and i > jl where 1 ≤ l ≤ k, let

al = i jl|n| · · · |̂i| · · · |ĵl| · · · |1

be a follower-free critical cell of cell(n,w). Then,∏
ν(al) = 0.

Proof. Consider the intersection of the V (al). In such an intersection the disk labeled i is aligned above the
disks labeled j1, . . . , jk. Since k ≥ w, this means that k + 1 > w disks must be aligned vertically in the
intersection, which is impossible. Therefore, the intersection is empty and the cup product is 0.
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The following two propositions will allow us to determine what terms might appear when we take the
cup product of n−

⌈
n
w

⌉
classes in H1

(
conf(n,w)

)
.

Proposition 3.6. Let
f = i i1 · · · ik|n| · · · |̂i| · · · |îl| · · · |1

be a follower-free critical k-cell of cell(n,w) such that k + 1 < w, and let

a = i j|n| · · · |̂i| · · · |̂j| · · · |1

be a follower-free critical 1-cell of cell(n,w) such that j ̸= i1, . . . , ik. Then,

ν(f) ∪ ν(a)
∑

ν(el),

where for 0 ≤ l ≤ k,
el = i i1 · · · il j il+1 · · · ik|n| · · · |̂i| · · · |îl| · · · |1.

is a follower-free critical (k + 1)-cell of cell(n,w).

Proof. The intersection of V (f) and V (a) is transverse. It consists of all configurations such that the disk
labeled i is aligned above the disks labeled j, i1, . . . , ik, and the disk labeled il is above the disk labeled il+1.
This exactly the submanifold ⊔V (el), completing the proof.

Proposition 3.7. Let
f = i1,1 · · · i1,n1

| · · · |ij,1 · · · ij,nj
|in1+···+nj+1| · · · |in

be a follower-free critical cell of cell(n,w), and let

g = ij+1,1 · · · ij+1,nj+1 |i′nj+1
| · · · |i′n

be a follower-free critical cell of cell(n,w), such that ij+1,k ∈ {in1+···+nj+1, . . . , in} for 1 ≤ k ≤ nj+1. Then

ν(f) ∪ ν(g) = ν(e),

where

e = i1,1 · · · i1,n1
| · · · |ij+1,1 · · · ij+1,nj+1

| · · · |ij,1 · · · ij,nj
|in1+···+nj+1| · · · |îj+1,1| · · · | ̂ij+1,nj+1

| · · · |in

is a follower-free critical cell of cell(n,w), i.e., there is an 1 ≤ l ≤ j such that nl ≤ nj+1 ≤ nl+1 and if
nl = nj+1, then i1,l > i1,j+1, and if nj+1 = nl+1, then i1,j+1 > i1,l+1.

Proof. It is clear that V (f) and V (g) have transverse intersection. Moreover, their intersection is the
submanifold of V (f) such that the disks ij+1,1, . . . , ij+1,nj+1

are aligned vertically in that order. It follows
that this column of disks can be anywhere among the columns of the other disks of V (f). This is exactly
V (e).

Now we are ready to calculate the zero-divisor-cup-length of H∗(conf(n,w)
)

for n > w. Our proof relies
on the observation that the submanifold of M(n,w) corresponding to V (f) where f is a follower-free top
dimensional critical cell of cell(n,w) such that the

⌈
n
w

⌉
blocks of f have first element in

{
n, . . . , n−

⌈
n
w

⌉
+1

}
,

see Figure 3, is a submanifold contained in the intersection of n−
⌈
n
w

⌉
submanifolds arising from follower-free

critical 1-cells of cell(n,w) such that the first element of the block with two elements is in
{
n, . . . , n−

⌈
n
w

⌉
+1

}
,

and the second element is in
{
n−

⌈
n
w

⌉
, . . . , 1

}
. If we carefully choose two disjoint sets A and B of n−

⌈
n
w

⌉
such follower-free critical 1-cells, we will get a non-trivial product in H∗(conf(n,w)⊗ conf(n,w)

)
.

Lemma 3.8. For n > w the zero-divisor-cup-length of H∗(conf(n,w)
)

is 2n− 2
⌈
n
w

⌉
.
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Proof. Set m :=
⌈
n
w

⌉
. For 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ w − 2, let

ai,j = (n− i)
(
n−m− (w − 1)i− j

)
|n| · · · |(̂n− i)| · · · | ̂(

n−m− (w − 1)i− j
)
| · · · |1

and, for i = m− 1 and 0 ≤ j ≤ (n modw)− 2, let

ai,j = (n−m+ 1)
(
n−m− (w− 1)(m− 1)− j

)
|n| · · · | ̂(n−m+ 1)| · · · | ̂(

n−m− (w − 1)(m− 1)− j
)
| · · · |1

be critical 1-cells of cell(n,w). Similarly, for 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ w − 2, let

bi,j = (n− i+ 1)
(
n−m− (w − 1)i− j

)
|n| · · · |(̂n− i)| · · · | ̂(

n−m− (w − 1)i− j
)
| · · · |1

and, for i = m− 1 and 0 ≤ j ≤ (n modw)− 2,

bi,j = (n)
(
n−m− (w − 1)(m− 1)− j

)
|n| · · · | ̂(n−m+ 1)| · · · | ̂(

n−m− (w − 1)(m− 1)− j
)
| · · · |1

be critical 1-cells of cell(n,w). There are precisely n−
⌈
n
w

⌉
of each of the ai,js and bi,js.

Set
αi,j = ν(ai,j) and βi,j = ν(bi,j),

and
αi,j = αi,j ⊗ 1− 1⊗ αi,j and βi,j = βi,j ⊗ 1− 1⊗ βi,j .

We claim that ∏
αi,j ∪ βi,j ̸= 0.

To see this note that any nonzero term in the cup product in H2n−2
⌈

n
w

⌉(
conf(n,w) × conf(n,w)

)
must

be in Hn−⌈ n
w ⌉(conf(n,w)

)
⊗Hn−⌈ n

w ⌉(conf(n,w)
)

as Hk
(
conf(n,w)

)
= 0 for k > n−

⌈
n
w

⌉
.

Consider any cup product of a total of n −
⌈
n
w

⌉
of the αi,js and βi,js. Since the cohomology ring is

graded commutative, it follows that we may first take the product of all the terms such that i = 0, take the
product of all the terms such that i = 1, etc, and then take the product of the resulting classes. Note that
by Proposition 3.5, if for any 0 ≤ i ≤ m− 1 there are more than w − 1 total terms of the form αi,j or βi,j ,
then the cup product is 0. By Proposition 3.6 for each 0 ≤ i ≤ m − 1 we may rewrite the product of the
αi,js and βi,js as a sum of products of ν(ei), where the ei are follower-free critical cells of the form

ei = n− i ii,2 · · · , ii,l|n|n̂− i| · · · |îi,2| · · · |îi,l| · · · |1,

where the i2, . . . , il are permutations of the second elements in the block with two elements of the critical
cells of the form ai,j and bi,j corresponding to the αi,js and βi,js. Moreover, if some element appears as the
second element in the block with two elements in two of the ai,js and bi,js, then the cup product is trivial.
This follows from the fact the first element of the two blocks must be different, and since we may assume
that no first entry n− i appears more than w − 1 times in product, any two first elements of a block must
appear more than w − 1 times in the product. It follows that every non-trivial product of n −

⌈
n
w

⌉
of the

αi,js and βi,js can be written as sum of products the ν(ei)s where for each product of the αi,js and βi,js and
at least 1 of i, the labels in the first block of the eis is different than in any other product. By Proposition
3.7 every such product can be written as a sum of follower-free critical

(
n−

⌈
n
w

⌉)
-cells of cell(n,w) whose m

blocks are the first blocks of the eis for 0 ≤ i ≤ m− 1. Additionally, these are all basis elements. Moreover,
every nontrivial product of the αi,js and βi,js is such that the elements in at least one of the m blocks are
unique to that set of n−

⌈
n
w

⌉
of the αi,js and βi,js. Therefore,

∏
αi,j ∪ βi,j ̸= 0.

Combining this lemma and Proposition 2.5 yields the following lower bound for TC
(
conf(n,w)

)
.

Corollary 3.9.
TC

(
conf(n,w)

)
> 2n− 2

⌈ n
w

⌉
.

It follows that we have a proof of Theorem 1.1, which we restate for convenience.
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Theorem 1.1.

TC
(
conf(n,w)

)
=


1 if n = 1,

2n− 2 if 1 < n ≤ w,

2n− 2
⌈
n
w

⌉
+ 1 if n > w.

Proof. If n = 1, then conf(n,w) is contractible, so [Far03, Theorem 1] proves that TC
(
conf(1, w)

)
= 1.

If 1 < n ≤ w, then conf(n,w) is homotopy equivalent to Fn(R2), so [FY02, Theorem 1] proves that
TC

(
conf(n,w)

)
= 2n − 2. Finally, if n > w, then Corollary 3.9 proves that TC

(
conf(n,w)

)
> 2n − 2

⌈
n
w

⌉
and Proposition 3.3 proves that TC

(
conf(n,w)

)
≤ 2n− 2

⌈
n
w

⌉
+ 1, forcing

TC
(
conf(n,w)

)
= 2n− 2

⌈ n
w

⌉
+ 1.

It follows that any program guiding n robots in the width w aisle must consider at least 2n− 2
⌈
n
w

⌉
+ 1

cases. Moreover, if we are very clever, we could develop a program that considers exactly 2n − 2
⌈
n
w

⌉
+ 1

cases.

References
[AKM21] Hannah Alpert, Matthew Kahle, and Robert MacPherson, Configuration spaces of disks in an

infinite strip, Journal of Applied and Computational Topology (2021), 1–34. 1, 4

[AM24] Hannah Alpert and Fedor Manin, Configuration spaces of disks in a strip, twisted algebras, per-
sistence, and other stories, Geometry & Topology (2024). 1, 5, 6

[BBK14] Yuliy Baryshnikov, Peter Bubenik, and Matthew Kahle, Min-type Morse theory for configuration
spaces of hard spheres, International Mathematics Research Notices 2014 (2014), no. 9, 2577–2592.
1

[BZ14] Pavle V.M. Blagojević and Günter M. Ziegler, Convex equipartitions via equivariant obstruction
theory, Israel Journal of Mathematics 200 (2014), no. 1, 49–77. 4

[Far03] Michael Farber, Topological complexity of motion planning, Discrete & Computational Geometry
29 (2003), 211–221. 2, 3, 9

[FG09] Michael Farber and Mark Grant, Topological complexity of configuration spaces, Proceedings of
the American Mathematical Society 137 (2009), no. 5, 1841–1847. 3

[FY02] Michael Farber and Sergey Yuzvinsky, Topological robotics: subspace arrangements and collision
free motion planning, arXiv preprint math/0210115 (2002). 1, 3, 9

[Waw22] Nicholas Wawrykow, On the symmetric group action on rigid disks in a strip, Journal of Applied
and Computational Topology 6 (2022). 1

[Waw24] Nicholas Wawrykow, Representation stability for disks in a strip, Journal of Topology and Analysis
(2024). 1

9


	Introduction
	Acknowledgements

	Topological complexity
	An upper bound for topological complexity
	A lower bound for topological complexity

	Bounds for TC(to.conf(n,w))to.
	cell(n,w) and an upper bound for TC(to.conf(n,2))to.
	M(n,w) and a lower bound for TC(to.conf(n,w))to.


