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Abstract

Estimating the causal treatment effects by subgroups is important in observational studies

when the treatment effect heterogeneity may be present. Existing propensity score methods rely

on a correctly specified propensity score model. Model misspecification results in biased treat-

ment effect estimation and covariate imbalance. We proposed a new algorithm, the propensity

score analysis with guaranteed subgroup balance (G-SBPS), to achieve covariate mean balance

in all subgroups. We further incorporated nonparametric kernel regression for the propensity

scores and developed a kernelized G-SBPS (kG-SBPS) to improve the subgroup mean balance of

covariate transformations in a rich functional class. This extension is more robust to propensity

score model misspecification. Extensive numerical studies showed that G-SBPS and kG-SBPS

improve both subgroup covariate balance and subgroup treatment effect estimation, compared

to existing approaches. We applied G-SBPS and kG-SBPS to a dataset on right heart catheter-

ization to estimate the subgroup average treatment effects on the hospital length of stay and

a dataset on diabetes self-management training to estimate the subgroup average treatment

effects for the treated on the hospitalization rate.
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1 Introduction

An important goal of observational studies is to estimate the treatment effect. Naive comparison

between treatment groups is subject to selection bias when covariates are unbalanced between

treatment groups due to lack of randomization. Propensity score, the conditional probability

of treatment assignment given the covariates, is widely used to adjust for covariate imbalance

and remove selection bias through matching [Stuart, 2010], stratification [Rosenbaum and Rubin,

1984], regression [Vansteelandt and Daniel, 2014], and weighting [Lunceford and Davidian, 2004].

Commonly used estimands of the treatment effect include the average treatment effect (ATE) and

the average treatment effect for the treated (ATT). When there are heterogeneous treatment effects

(HTEs), subgroups with different characteristics respond to the treatment differently. For example,

a drug may have better efficacy on patients with certain genetic traits. The overall treatment effects

that ignore the underlying heterogeneity, such as the ATE or ATT, do not provide sufficient granular

information for scientific investigation and clinical practice. The HTE is common in biomedical,

epidemiological, and social research. In this paper, we study HTEs among pre-specified subgroups

of scientific interest, and these subgroups are defined through covariates.

The subgroup HTEs can be estimated with or without modeling the outcome. Examples of the

former approach include regression models stratified on subgroups, Bayesian additive regression

trees [Hill, 2011, Chipman et al., 2010], causal forest [Wager and Athey, 2018], etc. However, their

performance depends on a correctly specified outcome model. Additionally, there are benefits

to being blinded from the outcome data when developing causal models [Rubin, 2008]. In this

paper, we focus on the latter approach and study the causal subgroup analysis, an HTE estimation

method that adjusts subgroup covariate imbalance in a propensity score analysis [Dong et al., 2020,

Yang et al., 2021]. Our proposed approach is built upon propensity score weighting.

The propensity score is a balancing score, i.e., the treatment assignments and covariates are in-

dependent conditional on the propensity score [Rosenbaum and Rubin, 1983]. Theoretically, the

propensity score balances covariates in the overall population and any covariate-defined subgroups.

We define overall balance as the mean difference of covariates or their transformations between

the two treatments in the overall population. This is the type of covariate balance that most pub-

lished propensity score methods deal with. We define subgroup balance as the mean difference

of covariates or their transformations between the two treatments in subgroups. This is the fo-
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cus of this paper. The propensity scores are unknown and must be estimated from a parametric

or nonparametric model, such as logistic regression, covariate balancing propensity score (CBPS;

[Imai and Ratkovic, 2014]), boosting (GBM; [McCaffrey et al., 2004]), or covariate balancing scor-

ing rules (CBSR; [Zhao, 2019]). When the estimated model deviates from the true propensity score

model or has an explicit or hidden lack of fit, the estimated propensity scores do not have the

desired balancing property [Li and Li, 2023]. This scenario may result in a lack of overall or sub-

group balance. The latter is usually more severe because the majority of propensity score analysis

procedures are developed to achieve overall balance. The subgroups have smaller sample sizes and

hence are more prone to covariate imbalance, and there are often many subgroups under simulta-

neous consideration. For example, when the estimated propensity model is misspecified, the CBPS

ensures exact overall balance by method design but subgroup covariate imbalance may still arise,

which causes bias in the subgroup treatment effect estimation [Dong et al., 2020].

Nonparametric propensity score models, such as boosting [McCaffrey et al., 2004], random for-

est [Lee et al., 2009] and CBSR [Zhao, 2019], do not guarantee overall and subgroup balance

[Dong et al., 2020, Yang et al., 2021, Li and Li, 2021, 2023]. Although the nonparametric methods

may reduce model misspecification and bias due to the higher flexibility than their parametric coun-

terparts, the estimation may have more variability, a typical bias-variance trade-off phenomenon.

This has been observed, for example, in the comparison between CBSR and CBPS [Li and Li,

2021]. This trade-off is amplified in the subgroup analysis due to the large number of subgroups

under research and the limited sample size of each subgroup.

Developing methods that ensure both overall and subgroup covariate balance is essential when

studying subgroup HTEs. For this purpose, Dong et al. [2020] proposed the subgroup balancing

propensity score (SBPS). SBPS selects among either parametric logistic regression models with

covariate-by-subgroup interactions fitted to the overall sample or parametric logistic regression

models fitted to the subgroup samples. However, this method cannot guarantee subgroup balance

when the propensity score model is misspecified or when the sampling variability results in extreme

inverse probability weights. The SBPS needs to examine up to 2R logistic regression models with

various combinations of covariates and covariate-by-subgroup interactions, where R is the number

of subgroups. When R is large, the computational burden can be tremendous. Furthermore, the

SBPS requires mutually exclusive subgroups, which limits its use in statistical practice. Yang et al.

[2021] extended the overlap weights, originally developed for exact overall balance [Li et al., 2017],
3



to the subgroup analysis. The overlap weights require a deviation from the widely used estimands

such as ATE and ATT. When the propensity score model is misspecified, the overlap weights

produce biased estimation despite showing no signs of covariate imbalance [Mao et al., 2018].

In this paper, we propose the propensity score weighting analysis with guaranteed subgroup bal-

ance (G-SBPS), which optimizes both overall and subgroup balance simultaneously. The G-SBPS

does not require mutually exclusive subgroups. We estimate the propensity scores by solving a

system of equations that achieves the mean independence between the treatment indicator and the

covariate terms in the propensity score model, which includes covariates, subgroup indicators and

their interactions. We show that the G-SBPS guarantees both overall and subgroup balance. To

further improve the flexibility of propensity score models and reduce misspecification, we extend

the G-SBPS to nonparametric estimation by using kernel principle component analysis (PCA). We

propose a parameter tuning algorithm tailored for the subgroup analysis, which optimizes the sub-

group covariate balance while controlling the overall balance. This kernelized G-SBPS (kG-SBPS)

optimizes the overall and subgroup balance of the covariates and their transformations from a rich

functional class. In simulations and two empirical data applications, both the G-SBPS and kG-

SBPS demonstrated robustness to model misspecification compared to existing propensity score

methods or subgroup propensity score analysis methods.

The rest of the paper is organized as follows. Section 2 presents the model, the G-SBPS algorithm,

the kG-SBPS algorithm, and the tuning algorithm. Section 3 evaluates the numerical performance

of G-SBPS and kG-SBPS and compares them with other published methods in a simulation study.

Section 4 presents two real data applications, one for the estimation of ATE and one for ATT.

We conclude this paper with a summary and discussion in Section 5. Some tables and figures are

included in the online supplementary materials and numbered as Table S1, Fig. S1, etc.

2 Methodology

2.1 Model set-up

We consider a sample of N observations with N0 untreated subjects, denoted by Ti = 0, and N1

treated subjects, denoted by Ti = 1. For each subject, we observe a vector of M covariates Zi =
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(Zi1, . . . , ZiM )T and the outcome variable Yi. The observed outcome is Yi = TiYi(1)+(1−Ti)Yi(0),

where Yi(1) and Yi(0) are two potential outcomes corresponding to the treated and untreated,

respectively. Let the pre-specified subgroups of interest be denoted by Si = (Si1, . . . , SiK)T , where

Sik = 1 if the ith subject belongs to the kth (k = 1, . . . ,K) subgroup and 0 otherwise. The subgroup

variables {Sik} are functions of the covariates Zi. For example, Sik = I(Zi1 > 50 years, Zi2 =

male, Zi3 = no diabetes) represents a male subject who is older than 50 and has no diabetes. The

K groups do not need to be mutually exclusive, and each subject can belong to multiple subgroups,

i.e.
∑K

k=1 Sik 6= 1. Let Nk be the number of subjects in the kth subgroup with N0k untreated and

N1k treated.

The propensity score of subject i is denoted by p(Zi) = P (Ti = 1 | Zi). We use standard as-

sumptions for propensity score analysis [Rosenbaum and Rubin, 1983], including the stable unit

treatment value assumption (SUTVA), the no unmeasured confounding assumption, and the over-

lap assumption (0 < P (Z) < 1). The propensity score is a balancing score, i.e. the treatment

assignment is independent of the covariates conditional on the propensity score: T ⊥ Z | p(Z).

The treatment assignment can be viewed as being “randomized” within a small neighborhood of

the propensity scores. Thus, the propensity score can balance covariates in not only the overall

sample but also the subgroups. The overall and subgroup treatment effects, such as ATE or ATT,

can be estimated without bias. In the next two subsections, we present the parametric G-SBPS

model for the propensity scores, and the nonparametric kG-SBPS model. The presentation focuses

on how these models guarantee covariate balance in the subgroups.

2.2 Parametric propensity score model with guaranteed subgroup balance (G-

SBPS)

This subsection discusses G-SBPS as a parametric approach. We model the propensity score by

the logit link function as

πi = pθ(Zi,Si) = pθ(X i) =
exp(XT

i θ)

1 + exp(XT
i θ)

,

where Xi = φ(Zi,Si) = [1,ST
i ,Z

T
i , Si1Z

T
i , . . . , SiKZT

i ] is the design vector that includes the

observed covariates Zi, the subgroup indicator Si and their interactions.
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We discuss ATE estimation first. To optimize the overall and subgroup balance, we consider the

following loss functions proposed in CBSR [Zhao, 2019, Li and Li, 2021].

LATE =

N
∑

i=1

Ti

[

log

(

pθ(X i)

1− pθ(X i)

)

−
1

pθ(Xi)

]

+
N
∑

i=1

(1− Ti)

[

log

(

1− pθ(X i)

pθ(X i)

)

−
1

1− pθ(X i)

]

(1)

The propensity scores are estimated by maximizing this loss function with respect to the modeling

parameters θ, and the estimated parameters are consistent [Zhao, 2019]. When πi = pθ(Xi) is

twice continuously differentiable with respect to θ, the corresponding estimating equation is

∂LATE

∂θ
=

N
∑

i=1

BATE(θ|Ti,X i) =

N
∑

i=1

(

Ti

pθ(X i)
−

1− Ti

1− pθ(Xi)

)

Xi = 0. (2)

Notably, Equation (2) is the overall covariate balancing condition, as studied in CBPS [Imai and Ratkovic,

2014]. However, our design vector Xi includes an intercept, the covariates Zi, the subgroup indica-

tor Si, and the interactions between the covariates and subgroup indicators Zi×Si. The balancing

conditions corresponding to Zi ensure the overall balance, and more importantly, the balancing

conditions corresponding to Zi×Si guarantee the subgroup balance. The conditions corresponding

to the intercept and Si ensure an equal total sum of weights between the treated and untreated in

the overall population and subgroups. There are a total of (1 +K)(1 +M) of balance conditions

and parameters.

The loss function in (1) is concave with a global maximum. The Hessian matrix ( the matrix of

second-order partial and cross-partial derivatives) is:

HATE(θ) =

N
∑

i=1

−[Ti exp(−XT
i θ) + (1− Ti) exp(X

T
i θ)]X iX

T
i ,

which is negative semi-definite. Estimating θ by solving the balance conditions in (2) is equivalent

to maximizing equation (1), which produces globally optimal solutions.

Therefore, we choose to estimate the coefficient θ in the propensity score model by solving the

balance conditions using the generalized method of moments (GMM), which was utilized by CBPS
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[Imai and Ratkovic, 2014]. Specifically, we use the following GMM estimators,

θ̂GMM = argmin
θ∈Θ

B̄(θ|T,X)TΣ(T,X)−1B̄(θ|T,X) (3)

B̄(θ|T,X) =
1

N

n
∑

i=1

BATE(θ|Ti,X i),

where Xi = φ(Zi,Si) includes the covariates, subgroup indicators, and their interactions. We

choose a consistent covariance estimator of B̄(θ|T,X), which is given by

Σ(T,X) = XXT . (4)

We used the “continuous updating” GMM estimator, which has been shown to have better finite

sample properties than “two-step optimal” GMM estimator [Hansen et al., 1996].

Next, we discuss the estimation procedure for the ATT. The procedure is similar to the ATE but

with the following changes. The CBSR loss function, the estimating equation, and the Hessian

matrix become

LATT =
N
∑

i=1

{Ti log(
pθ(Xi)

1− pθ(Xi)
)−

1− Ti

1− pθ(X i)
},

∂LATT

∂θ
=

N
∑

i=1

BATT (θ|Ti,X i) =

N
∑

i=1

(Ti − (1− Ti)
pθ(Xi)

1− pθ(Xi)
)X i = 0,

HATT (θ) =
N
∑

i=1

−(1− Ti) exp(X
T
i θ)X iX

T
i .

Because HATT (θ) are negative semi-definite, θ can be estimated as a global maximum of LATT ,

which is also the solutions to the balance equations
∂LATT

∂θ
= 0.

The proposed G-SBPS avoids some of the limitations of SBPS mentioned in the Introduction

section. The parameter estimation of G-SBPS produces global optimization, which guarantees the

minimally possible overall and subgroup imbalance. In data analysis practice, we often observed

that the G-SBPS produced exact subgroup balance. The SBPS stochastically searches through a

large number of parametric propensity score models to find one with the best overall and subgroup

balance among the candidate models. This process does not produce globally optimal solution or

guaranteed exact global or subgroup balance.
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2.3 Nonparametric propensity score model with guaranteed subgroup balance

(kG-SBPS)

A misspecified propensity score model leads to covariate imbalance and bias in estimated treat-

ment effects [Li and Li, 2021]. A commonly used practice to alleviate this problem is to tweak

the logistic model by adding covariate transformations or interaction terms, until a satisfactory

covariate balance is achieved. However, this process is ad hoc, lacks methodologically justified

guidelines, and does not guarantee good balance. Some methods that force overall covariate bal-

ance (e.g., [Imai and Ratkovic, 2014]) are subject to model misspecification and biased treatment

effect estimation [Mao et al., 2018].

We propose to improve the flexibility of the propensity score model in G-SBPS through reproducing

kernel Hilbert space (RKHS), which transforms the observed covariate vector into an N -dimensional

vector of features on which overall and subgroup balance can be achieved. Specifically, we use

the kernel PCA (Schölkopf and Smola, 2002). First, we construct the kernel matrix KN×N by

producing a measure of similarity between any two subjects using a pre-specified kernel function.

In this paper, we use the Gaussian kernel k(Zi,Zj) = exp(−‖Zi − Zj‖
2/σ). Second, we conduct

eigen-decomposition of the kernel matrix, i.e., K = PDP T . The feature space containing the

covariate transformations is ω(Z) = PD1/2. Each column of ω(Z) represents one transformed

feature of the covariate matrix Z. Because we would like to balance the most informative features,

we only select a finite number of columns in ω(Z), corresponding to 99% variance calculated from

the eigenvalues. We denote the transformed feature space as ωl99(Z). We replace the observed

covariates Zi in equation (3) of G-SBPS with the new transformed features ωl99(Z) such that

Xi = [1,ST
i ,ωl99(Z)Ti , Si1ωl99(Z)Ti , . . . , SiKωl99(Z)Ti ]. We aim to achieve overall and subgroup

balances in those transformed covariates instead of the original covariates. The bandwidth of the

Gaussian kernel σ, which determines the set of covariate transformations, is tuned by the algorithm

below.

The existing subgroup propensity score methods, such as the SBPS [Dong et al., 2020], models

the propensity score parametrically. Although it produces improved subgroup balance, it suffers

from propensity score model misspecification (shown in the simulation results below). Nonpara-

metric methods not designed for subgroup analysis, such as boosting [McCaffrey et al., 2004], of-

ten give unsatisfactory subgroup balance, leading to biased subgroup treatment effect estimation
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[Dong et al., 2020, Yang et al., 2021]. The kernelized G-SBPS is the first subgroup propensity score

analysis method that aims at both goals: flexible nonparametric modeling and guaranteed overall

and subgroup balance.

When modeling the propensity score without using the outcome, the commonly used out-of-sample

target for optimization, such as prediction error, does not always produce overall or subgroup

balance, which may lead to suboptimal performance in treatment effect estimation. We propose to

optimize the subgroup balance, while controlling the overall balance. The standardized difference

(S/D) is used to measure covariate balance [Griffin et al., 2017, Cannas and Arpino, 2019]. The

S/D is the absolute difference in weighted mean between treated and untreated groups, divided by

the pooled standard deviation of the weighted data [Li and Greene, 2013]. In addition to the S/D

of covariates in the overall population, we optimize the S/D in the subgroups. The details of this

tuning process are presented in the supplementary materials (Algorithm 1). We use this algorithm

to tune the bandwidth σ of the kernelized G-SBPS. Specifically, we set the range of σ to be the

0.1 and 0.9 quantile of the Euclidean distances between samples. The 20 candidate values of σ

are equally spaced on the log scale within this range. We choose the σ that optimizes subgroup

balance while controlling the overall balance. We name the analytical framework that couples the

kernelized G-SBPS and this tuning process as kG-SBPS.

3 Simulations

In this section, we compare the proposed G-SBPS (parametric method) and kG-SBPS (nonparamet-

ric method) with two popular propensity score methods and two representative subgroup propensity

score analysis methods under various numerical settings.

3.1 Simulation design

Let G be the subgroup indicator, taking values in {1, 2, ...,K}. We use K = 4. The sample

size of the k-th subgroup is Nk = 500. There are four covariates. X1 ∼ N(µk, 1), where µk =

3 − 3(k − 1)/(K − 1). X2 ∼ Uniform(0, 1). X3 ∼ N(0, 1). X4 ∼ Bernoulli(0.4). We consider two

propensity score model specifications:
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PS1: (Correct PS model) The propensity score model is a logistic regression with the main effects

of covariates and subgroup-specific intercept:

logit(π) =

K
∑

k=1

δk1{G = k}+ β1X1 + β2X2 + β3X3 + β4X4

where β = (−0.2,−0.2, 0.4,−0.4).

PS2: (Misspecified PS model) The propensity score model has additional interaction and nonlinear

terms:

logit(π) =

K
∑

k=1

δk1{G = k}+ β1X1 + β2X2 + β3X3 + β4X4 + β5X
2
1 + β6X1X4

where β = (−1.5,−0.5, 0.5,−0.5, 0.5, 0.5) for ATE estimation and

β = (−1.5,−0.8, 0.2,−0.8, 0.5, 0.5) for ATT estimation.

In practice, the data analyst usually just uses the main effect terms. With many covariates, there

are numerous possible interactions and nonlinear terms, and it is difficult to determine which ones

should be added to the model. In this simulation study, we call PS1 the “correct PS model” because

our parametric data analysis uses this model, and call PS2 the “misspecified PS model” because

the parametric analysis does not include any interaction or nonlinear terms. For both PS1 and

PS2, δk = −1 + 2(k − 1)/(K − 1).

We consider two outcome models:

OM1: (Standard outcome model): The outcome model includes the main effects of all covariates in

the propensity score model. The treatment effects {ηk} vary across subgroups.

Y = 200 +

K
∑

k=1

ηk[1(G = k)T ] + 20X1 + 10X2 + 10X3 + 10X4 + ǫ

OM2: (Extended outcome model): The outcome model includes additional interactions and non-

linear transformations of the covariates. These additional terms are unknown to the data
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analyst and hence are not explicitly accounted for in the data analysis.

Y = 200 +

K
∑

k=1

ηk[1(G = k)T ] + 20X1 + 10X2 + 10X3 + 10X4 − 5X2
1 + 10X1X4 + ǫ

The residual is ǫ ∼ N(0, 1). The true subgroup treatment effects are ηk = −10+20(k−1)/(K−1).

As stated above, our parametric propensity score model includes all the main effects of covariates.

The theory of Hazlett [2020] suggests that consistent treatment effect estimation can be achieved

even when the propensity score model is misspecified, as long as the propensity score adjustment

balances all the linear terms in the outcome model. Therefore, the OM1 and OM2 help us observe

a performance difference in the different methods under model misspecification.

The two propensity score models (PS1, PS2) and the two outcome models (OM1, OM2) produce

four scenarios. We simulated data under each scenario, and evaluated the performance of the

following six methods in the subgroup treatment effect estimation and overall and subgroup balance.

(a) Logistic: the logistic regression analysis with the main effects of observed covariates and the

subgroup indicator (R package glm).

(b) Logistic-S: separately fitted logistic models within each subgroup. Each model includes the

main effects of covariates. This was studied in Dong et al. [2020] and implemented in R

package WeightIt.

(c) CBPS: the just-identified CBPS with the main effects of covariates and the subgroup indicator

(R package CBPS).

(d) SBPS: the SBPS approach of Dong et al. [2020], implemented in the SBPS function of R

package WeightIt with the main effects of covariates.

(e) G-SBPS: the proposed parametric G-SBPS method with the main effects of covariates.

(f) kG-SBPS: the proposed nonparametric kG-SBPS method.

We studied both ATE and ATT estimation these are widely used estimands. The treatment effect

estimators were evaluated by percent bias and root mean squared error (RMSE) in each subgroup.

The overall or subgroup covariate balance were quantified by the S/D of covariates in the overall
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population or the subgroups. In each simulation scenario, the results were aggregated from 500

Monte Carlo repetitions.

3.2 Covariate balance

First, we examine the overall balance. When the propensity score model was correctly specified

(PS1), all methods under comparison had good overall balance in the sense that the S/Ds were

generally less than 5% (Fig S1 and S2). This result held when the estimand was either ATE or

ATT. CBPS and G-SBPS had nearly zero imbalance in X1-X4 because they both used the correct

model and had balance constraints on these covariates. The balance is slightly worse with the

interaction terms because they are not in the propensity score model used by logistic, logistic-S,

CBPS, SBPS, and G-SBPS. The kG-SBPS, in contrast, achieved notably better balance in these

two interaction terms because it is a nonparametric method and it has built-in balance constraints

on a large number of covariate transformations. The SBPS and G-SBPS are both parametric

methods, but the latter had better performance, probably due to its more effective balance control.

While G-SBPS had constraints on subgroup balance and CBPS had constraints on overall balance,

the G-SBPS achieved comparable overall balance as the CBPS, because good subgroup balance

implies good overall balance.

When the propensity score model was misspecified (PS2), the only method that maintained good

performance is the kG-SBPS because it is the only nonparametric method. CBPS and G-SBPS

maintained good balance in X1-X4, because this was what their balance constraints were designed

for. However, the enlarged imbalance in the interaction terms contradicted with the property of

the propensity scores, suggesting that the “twisting” of a parametric propensity score model to

satisfy the balance constraints under misspecification may inadvertently create scores that are not

propensity scores. Therefore, checking the goodness-of-fit is as important as checking the balance

when using a parametric model for propensity score.

Next, we study the subgroup balance and subgroup treatment effects. Fig 1-2 present the results

from ATE estimation, and we comment on those results here. The results from ATT estimation

are presented in Fig S3-S4 and they produce similar conclusions. Comparing Fig 1 and Fig 2, we

observe the expected results that all parametric methods performed better under the correct PS

model (PS1). The subgroup S/Ds are usually higher than the corresponding overall S/Ds because
12



the subgroups have smaller sample sizes. Nonetheless, the subgroup S/Ds are generally less than

10% under the PS1. The Logistic-S and SBPS methods performed better than Logistic and CBPS

in subgroup balance, because the former methods were designed for subgroup propensity score

analysis. This is the opposite of the overall balance results in Fig S1, where the latter methods

were better. The proposed G-SBPS and kG-SBPS had equivalent or better performance than all

other methods in terms of subgroup balance.

Under the misspecified PS model (PS2), Logistic, Logistic-S, CBPS and SBPS have deteriorated

subgroup balance performance in all covariates and their transformations, as expected. The G-

SBPS still gives exact subgroup balance of X1-X4 despite the propensity score model misspecifica-

tion, because it enforces the subgroup balance constraints. This is a step forward in the protection

against model misspecification compared to the other 4 methods. The G-SBPS does not properly

balance X2
1 and X1X4 terms because they are not in the propensity score model. This deficiency

was addressed by the kG-SBPS, which produced the best subgroup balance results in all scenarios.

In addition, to evaluate the effect of small sample size on the performance of the proposed methods,

we applied all methods on the simulations with a correct PS model (PS 1) with only 40 units for

subgroup 2. We found that only G-SBPS achieves good subgroup balance for subgroup 2 if 5% of

S/D is used as the threshold; this was observed in both the ATE and ATT estimation (Figure S7

and S8). This finding is supported by the theoretical justification that the estimation of G-SBPS

is globally optimal. Therefore, G-SBPS always leads to the smallest weighted mean difference

between two treatments in the covariate-defined subpopulations. Intriguingly, kG-SBPS does not

achieve subgroup balance in this case, which suggests that it needs a larger sample size for accurate

estimation, as expected from a nonparametric method.

3.3 Treatment effect estimation

Tables 1 and 2 show the estimation of subgroup ATEs under the correct or misspecified PS models.

Lower % bias and smaller RMSE indicate better performance. The two methods that explicitly

deal with subgroup balance (Logistic-S, SBPS) perform better than the ones that do not (Logistic,

CBPS). This is consistent with the subgroup covariate balance results above. Compared with the

other four methods (Logistic, Logistic-S, CBPS, SBPS), the G-SBPS has the best % bias and RMSE,

due to its use of the globally optimal solution to the subgroup balance constraints (Section 2). The
13



kG-SBPS has more variation than the G-SBPS, due to its nonparametric nature. Nonetheless, the

kG-SBPS still has better % bias and RMSE than the other four methods.

The benefit of kG-SBPS is best shown when the model is under misspecification, where it is the only

method that performs well in all scenarios. Even under misspecification, the G-SBPS did not break

down in all scenarios like the other four methods: it still performed well under standard outcome

model. This is due to the theory in Hazlett [2020], which states that even when a propensity

score model is misspecified, as long as it balances the linear additive terms in the outcome model

(which is the case here with the standard outcome model), the misspecification does not cause bias

to the treatment effect estimation. Of the three parametric subgroup propensity score analysis

methods (Logistic-S, SBPS, G-SBPS), only our proposed method exploited this theoretical result,

which produces the doubly-robust-like performance shown in Table 2. This is because the optimal

solution from the G-SBPS results in exact subgroup balance, while Logistic-S and SBPS do not

have this guarantee.

The estimation of ATT is presented in the online supplementary materials (Table S1 and S2).

The results are similar, demonstrating better performance of the proposed G-SBPS and kG-SBPS

methods over the four other existing methods (Logistic, Logistic-S, SBPS, CBPS). The G-SBPS

has no bias under the standard outcome model but some bias under the extended outcome model.

The kG-SBPS shows some bias in ATT estimation under both outcome models, although the bias

is generally smaller than the other four existing methods. Increasing the subgroup sample size to

1000 per group can reduce the bias of kG-SBPS to no or slight bias in ATT estimation, which

suggests that kG-SBPS requires a larger sample size as a nonparametric method (Table S3).

4 Data Applications

4.1 Right Heart Catheterization (RHC) data

We applied the proposed methods, G-SBPS and kG-SBPS, to the right heart catheterization (RHC)

data [Connors et al., 1996] to examine the average treatment effect (ATE) of RHC vs. non-RHC

on the length of hospital stay. The data set contains 5, 735 subjects, including 2184 receiving RHC

and 3551 who did not (non-RHC). The study design was reported previously [Connors et al., 1996,
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Hirano and Imbens, 2001]. We excluded one subject from the analysis due to a missing outcome

value. The observed covariates include demographic characteristics, comorbidity conditions, lab

test results, etc. Among the 72 covariates, 57 were tested to have statistically significant mean dif-

ference between the RHC and non-RHC groups, and these covariates were included in our subgroup

analysis.

For illustration, we studied the subgroup treatment effects of RHC in a non-overlapping sub-

group scheme and an overlapping subgroup scheme (Table S4). In the former scheme, three

non-overlapping subgroups (“3-subgroup scheme”) were defined from mean blood pressure (< 80,

80-120,or > 120mmHg); each patient belongs to only one subgroup. In the latter scheme, six

overlapping subgroups were defined (“6-subgroup scheme”), with three based on the mean blood

pressure and another three based on the estimated probability of surviving 2 months. These six

subgroups overlap because a patient can belong to a blood pressure subgroup and a survival prob-

ability subgroup simultaneously. Here the estimated 2 months survival probability was calculated

using the SUPPORT prognostic model [Knaus et al., 1995]. It is known that high blood pressure

can induce cardiovascular damage, which may lead to worse prognosis after RHC treatment. In

addition, patients with lower estimated survival probability are usually sicker and may need longer

hospital stay after the RHC treatment. These are the motivations to study those subgroups. The

Logistic-S and SBPS methods do not work with overlapping subgroups. Therefore, we compared all

six methods in the simulation among the three non-overlapping subgroups, but excluded Logistic-S

and SBPS from the analysis with the overlapping subgroups.

All methods achieved overall covariate balance for the two subgroup schemes in the sense that the

S/Ds were generally less than 5%, with CBPS and G-SBPS being the best (Fig. S5). The subgroup

balance results are in Figure 3. For the 3-subgroup scheme in Fig 3(a), all methods give reasonably

good subgroup balance. The two subgroup analysis methods, Logistic-S and SBPS, performed

better than Logistic and CBPS, but performed worse than the proposed methods, GSBPS and

k-GSBPS. For the 6-subgroup scheme in Fig 3(b), G-SBPS and kG-SBPS had notably better

subgroup balance than Logistic and CBPS. On average, G-SBPS has slightly better subgroup

balances than kG-SBPS, which may be attributed to the larger variation in kG-SBPS results, a

typical bias-variance trade-off phenomenon between parametric vs. nonparametric methods. These

observations are consistent with the results of simulation studies.
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Before propensity score adjustment, the average lengths of hospital stay in the RHC was on average

4.20, 6.28, 8.22, 3.54, 5.59 and 4.87 days longer than in the non-RHC in the subgroups 1 to 6,

respectively. The estimated subgroup ATEs by various methods are reported in Table S5. They

are considerable differences in the estimated ATEs across subgroups, but these results are ignored in

the usual propensity score analysis. This example highlights the importance of exploring subgroup

treatment effects. The estimated subgroup ATEs are generally smaller after the propensity score

adjustment, regardless which method was used. Notably, the estimated ATEs by the four subgroup

analysis methods are smaller than the the general propensity score methods (Logistic and CBPS),

which may suggest that the improved subgroup covariate balance reduced heterogeneity between the

RHC and non-RHC and hence also reduced bias. The ATEs of subgroup 1 (low blood pressure, <

80) and subgroup 2 (normal blood pressure, 80−120) are similar after propensity score adjustment,

but they are smaller than the ATE of subgroup 3 (high blood pressure, > 120). These results show

that the RHC causes longer hospital stay among patients with higher blood pressure. The RHC

causes longer hospital stay in subgroup with highest mortality risk (subgroup4), whose baseline

health may be worse.

4.2 Diabetes Outpatient Self-management Training Services (DSMT) data

We applied G-SBPS and kG-SBPS to a second dataset to illustrate their performance in estimating

the ATT. The ATT is best applied to situations where the treated group has a much smaller sample

size than the control group. We used Texas Cancer Registry-Medicare linkage data for Diabetes Self-

management Training (DSMT) program among 5+ year cancer survivors with diabetes, aged 66+,

and alive in 2006-2019 [Lee et al., 2023]. If patients were eligible for multiple years, the first year

meeting the eligibility criteria was selected as the index year. The treatment variable is the receipt

of the DSMT training vs. not. The outcome variable is the hospitalization rate within 3 years of

the index year. The original data contain 3, 348 patients who received DSMT for the first time and

71, 307 controls. We excluded around 2% patients whose race is not identified as Hispanic, White

or Black. The resulting dataset includes 3, 283 treated patients (DSMT) and 69, 871 controls (no

DSMT) in 2006-2018. As a pre-processing step to balance key patient characteristics, we performed

1 to 5 matches between treated and untreated subjects by gender, the type of diabetes, and incident

diabetes. The resulting matched data contains all 3, 283 treated units and 16, 401 matched controls.

Table S6 presents the summary statistics of the baseline covariates in the matched data. Baseline
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demographic covariates were extracted from Medicare enrollment file in the index year. Baseline

comorbidities and diabetic complications were identified from inpatient and outpatient claims in the

year before the index year. This study examines the effect of DSMT training on the hospitalization

rate.

We are interested in the ATTs in subgroups of various social statuses, which are described in Table

S7. Patients eligible for dual Medicaid or living in the metropolitan area have easier access to

medical care. But we also speculate that patients living in rural areas or city may have different

lifestyles, which can contribute to the heterogeneity in the effect of DSMT training. Similarly,

married and unmarried patients might respond to DSMT training differently due to the differences

in their way of life or personalities. There is overlap among the six subgroups. Again, Logistic-S

and SBPS were only applied to the non-overlapped subgroups 1-4 (Table S7). All subgroups have

relatively sufficient sample sizes except subgroup 4, which allows us to study the proposed method

with a small subgroup size.

For both overlapped and non-overlapped subgroups, global balances are attained by all methods,

with less than 1% of S/D in most covariates (Fig S6). However, the subgroup balances are not

achieved by all methods (Fig 4). For subgroup 1, all methods gave good balance. For subgroups 2

to 4, Logistic and CBPS did not achieve good balance for all covariates at the benchmark level of

10% S/D. Logistic-S, SBPS, G-SBPS, and kG-SBPS achieved good balance, although G-SBPS and

kG-SBPS resulted in even smaller S/D on average. For the overlapping subgroups 5 and 6, G-SBPS

and kG-SBPS achieved better balance than other methods. However, the balances of Logistic and

CBPS are reasonably well. In summary, Logistic and CBPS produced the worst subgroup balance,

while G-SBPS and kG-SBPS resulted in the best subgroup balance.

Before propensity score adjustment, the average rates of 3-year hospitalization from the index

year are 5.9%, 18.7%, 6.5%, 33.7%, 11.7% and 2.7% lower in the DSMT than the control, from

subgroups 1 to 6 respectively. Generally, the effect size becomes smaller after propensity score

adjustment (Table S8). The impact of DSMT is most pronounced among individuals residing in

metropolitan areas and possessing a dual-eligible health plan during the index year, and least among

the population characterized by both factors being negative (Table S7 and S8), following propensity

score adjustment. These observations support our hypothesis that easier access to medical care may

boost the effect of DSMT. For subgroup 1 with the largest sample size, the estimated ATTs are
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around 4% after adjustment of all methods. For subgroups 2, 3, and 4, the estimated ATTs are

similar for the four subgroup analysis methods, but larger for the general propensity score methods

(Table S8). We attribute this result to the better subgroup covariate balance from the subgroup

analysis methods (Table S6). DSMT training has a larger effect on the rate of hospitalization

among the unmarried subgroups (Table S8). The ATTs were reduced to around 3% by G-SBPS

and kG-SBPS and 1% by Logistic and CBPS among unmarried subgroups (Table S8).

5 Discussion

Subgroup causal effect estimation has wide application, but received limited attention in the propen-

sity score analysis field. Previously, we demonstrated that global covariate balance is not equivalent

to having propensity score’s balancing property when the fitted propensity score model is subject to

misspecification Li and Li [2023]. Thus, propensity score methods that optimize the global balance,

such as CBPS, may result in subgroup imbalance and biased subgroup treatment effect estimation.

There are critical limitations in the current subgroup analysis methods. Firstly, subgroup analysis

methods, such as SBPS, are not applicable to overlapped subgroups. Secondly, while the SBPS

can improve the subgroup balance (as shown in the numerical studies in this paper), it suffers from

suboptimal parameter estimation and may not ensure adequate subgroup balance. We propose the

novel G-SBPS (parametric method) and kG-SBPS (nonparametric method) that guarantee exact

subgroup balance through globally optimal parameter estimations. Our numerical studies demon-

strated that the proposed methods significantly outperform the existing methods in the literature.

G-SBPS shows a doubly-robust-like property, i.e., if the fitted propensity model coincides with

either the true propensity score model or the true outcome model, the estimated treatment effect

shows no bias and small RMSE. Our simulations demonstrate this (Tables 1, 2, S1 and S2). Being

a nonparametric method, kG-SBPS requires large subgroup sample sizes for its good performance

(Table S3, Fig S7 and S8). However, kG-SBPS is more robust to model misspecification, especially

when both the propensity score and outcome models are unknown (Table 2, S2 and S3). Hence, it is

necessary to conduct model diagnostics, particularly when the subgroup sample sizes are small. If

the data analysts are confident that the fitted model agrees with either the true propensity score or

outcome model, G-SBPS should perform the best because it has less variability than the kG-SBPS.
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In future work, it is necessary to develop new model selection methods for the subgroup propensity

score analysis. It is also important to study the sensitivity of G-SBPS and kG-SBPS on the level of

model misspecification, effect sizes, and the subgroup sample sizes. Last, there are various potential

extensions beyond the scope of this paper. For example, G-SBPS and kG-SBPS can be extended

for subgroup analysis with multiple treatment groups.
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Table 1: The performance of various methods in the estimation of subgroup ATEs in the sim-
ulation. The correct PS model (PS1) was used. The true treatment effect for subgroup 1 to
4 are −10, −10/3, 10/3 and 10, respectively. The results were aggregated from 500 Monte Carlo
repetitions.

Outcome Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

%Bias

Standard

1 -0.35 0.23 -0.04 0.23 -0.09 -1.45
2 -4.85 -1.56 -4.54 -1.56 -0.17 -1.20
3 -1.41 0.37 -1.53 0.37 0.22 0.59
4 -0.80 -0.31 -0.91 -0.31 -0.01 0.38

Extended

1 -1.76 -1.49 -1.72 -1.49 -1.45 -1.23
2 -3.95 -2.33 -3.60 -2.33 -2.07 -2.43
3 0.23 3.13 0.06 3.13 2.95 0.76
4 -1.15 -0.71 -1.21 -0.71 -0.38 0.14

RMSE

Standard

1 2.98 1.34 2.59 1.34 0.14 0.42
2 1.97 0.67 2.01 0.67 0.11 0.25
3 1.92 0.26 2.11 0.26 0.10 0.18
4 2.03 0.47 2.13 0.47 0.10 0.20

Extended

1 3.48 2.02 3.10 2.02 1.31 0.60
2 1.98 1.13 1.98 1.13 0.96 0.27
3 1.87 0.85 2.02 0.85 0.82 0.23
4 2.53 1.10 2.62 1.10 0.88 0.33
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Figure 1: Boxplots of the standardized differences (S/D; %) in the four subgroups when estimating
the ATE in the simulation studies. The data are simulated from the Correct PS model (PS1).
The boxplots show the distribution of S/D from 500 Monte Carlo repetitions. Red line: 10% S/D;
Green line: 5% S/D.
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Figure 2: Boxplots of the standardized differences (S/D; %) in the four subgroups when estimating
the ATE in the simulation studies. The data are simulated from the Misspecified PS model
(PS2). The boxplots show the distribution of S/D from 500 Monte Carlo repetitions. Red line:
10% S/D; Green line: 5% S/D.
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Figure 3: Boxplots of the subgroup standardized differences (S/D) of all covariates in the RHC
data analysis. Red line: 10% S/D; Green line: 5% S/D.

26



0

10

20

30

40

subgroup 1 subgroup 2 subgroup 3 subgroup 4
covariate balance

a
b

s
o

lu
te

 S
/D

Methods

Logistic

Logistic−S

CBPS

SBPS

G−SBPS

kG−SBPS

(a) DMST data analysis with 4 subgroups

0

10

20

30

40

subgroup 1 subgroup 2 subgroup 3 subgroup 4 subgroup 5 subgroup 6
covariate balance

a
b

s
o

lu
te

 S
/D

Methods

Logistic

CBPS

G−SBPS

kG−SBPS

(b) DMST data analysis with 6 subgroups

Figure 4: Boxplots of the subgroup standardized differences (S/D) of all covariates in the DSMT
data analysis. Red line: 10% S/D; Green line: 5% S/D.
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Table 2: The performance of various methods in the estimation of subgroup ATEs in the simu-
lation. The misspecified PS model (PS2) was used. The true treatment effect for subgroup 1
to 4 are −10, −10/3, 10/3 and 10, respectively. The results were aggregated from 500 Monte Carlo
repetitions.

Outcome Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

%Bias

Standard

1 -204.95 108.82 -207.29 32.86 -0.14 -5.20
2 -272.65 197.57 -286.45 180.88 -0.15 -7.14
3 -291.67 32.14 -277.67 32.14 -0.11 -0.61
4 -193.97 -17.49 -191.34 -17.49 -0.15 -2.64

Extended

1 32.62 53.51 33.52 37.22 33.16 2.34
2 -9.94 216.10 -14.31 205.92 114.39 1.19
3 317.42 -73.53 -305.91 -73.53 -95.91 -4.97
4 -236.97 -47.23 -234.09 -47.23 -29.74 -6.52

RMSE

Standard

1 20.57 16.21 20.80 12.73 0.15 0.66
2 9.45 7.56 9.85 7.44 0.11 0.38
3 9.95 1.30 9.49 1.30 0.09 0.21
4 19.49 2.20 19.23 2.20 0.12 0.41

Extended

1 3.94 8.61 4.03 4.93 3.91 0.46
2 2.16 8.02 2.12 7.57 4.05 0.29
3 10.78 2.65 10.40 2.65 3.33 0.29
4 23.80 5.09 23.51 5.09 3.24 0.79
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6 Supplemental Tables and Figures

Algorithm 1 : Choosing σ in kG-SBPS

1: For each σ ∈ {σ1, . . . , σ20}.
2: Compute IPW: {p̂θ(ωl99(Z)i,Si); i = 1, 2, ..., N} using the kG-SBPS in Section 2.3 and 2.4.
3: Compute wi1 = 1/p̂θ(ωl99(Z)i,Si) and wi0 = 1/(1 − p̂θ(ωl99(Z)i,Si)) for ATE estimation or

wi1 = 1 and wi0 = p̂θ(ωl99(Z)i,Si)/(1 − p̂θ(ωl99(Z)i,Si)) for ATT estimation.
4: Evaluate global balance: calculate the S/D of each observed covariates Z in the overall popu-

lation such that

Bglobal = 100×

∣

∣

∣

∣

∣

∑N
i=1wi1ZiTi
∑N

i=1wi1Ti

−

∑N
i=1wi0Zi(1− Ti)
∑N

i=1 wi0(1− Ti)

∣

∣

∣

∣

∣

/sd(Z),

where sd(Z) are the pooled standard deviations of Z between two treatment groups such that

sd(Z) =
√

(sd2(1) + sd2(0))/2, where sd(1) and sd(0) are the weighted standard deviations of Z

sd2(1) =

∑

wi1Ti

(
∑

wi1Ti)2 −
∑

w2
i1Ti

∑

wi1Ti

(

Zi −
wi1ZiTi
∑

wi1T i

)2

sd2(0) =

∑

wi0(1− Ti)

(
∑

wi0(1− Ti))2 −
∑

w2
i0(1− Ti)

∑

wi0(1− Ti)

(

Zi −
wi0Zi(1− Ti)
∑

wi0(1− T i)

)2

.

5: Evaluate subgroup balance: calculate the S/D of the observed covariates in the covariate-defined
subpopulations such that

BSk
= 100×

∣

∣

∣

∣

∑

wi1ZiTi
∑

wi1Ti
−

∑

wi0Zi(1− Ti)
∑

wi0(1− Ti)

∣

∣

∣

∣

/sdk(Z)
∣

∣

Sik=1
,

where Sk = {i|Sik = 1}. And sdk(Z) is calculated from subjects in each subpopulation.

6: Output l∗ = arg min 1
MK

M
∑

m=1

K
∑

k=1

BSk
subject to max(Bglobal) ≤ 10%. Output “fail” if

max(Bglobal) > 10%.
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Table S1: The performance of various methods to estimate subgroup ATTs in the simulations
with the correct PS model (PS1, see Section 3.1). The true treatment effect for subgroup 1
to 4 are −10, −10/3, 10/3, and 10, respectively. The number of Monte Carlo repetitions is 500.

Outcome Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

%Bias

Standard

1 -0.23 -0.12 -0.59 -0.12 -0.10 0.22
2 -3.88 0.57 -4.93 0.57 -0.18 -0.25
3 -1.29 0.15 0.01 0.15 0.23 0.59
4 -0.99 -0.54 -0.70 -0.54 -0.02 0.67

Extended

1 -1.61 -0.95 -1.28 -0.95 -1.09 -0.62
2 -3.38 -0.57 -3.42 -0.57 -0.75 -0.35
3 0.24 2.46 1.23 2.46 2.40 -0.07
4 -1.37 -0.98 -1.18 -0.98 -0.39 0.15

RMSE

Standard

1 2.78 0.34 3.08 0.34 0.14 0.24
2 1.99 0.42 2.22 0.42 0.11 0.17
3 2.01 0.58 2.09 0.58 0.10 0.16
4 2.15 0.84 1.67 0.84 0.10 0.25

Extended

1 2.82 1.11 3.02 1.11 1.12 0.34
2 1.84 0.98 2.02 0.98 0.94 0.25
3 1.98 1.01 2.02 1.01 0.82 0.25
4 2.70 1.44 2.18 1.44 0.91 0.42
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Table S2: The performance of various methods to estimate subgroup ATTs in the simulations
with themisspecified PS model (PS2, see Section 3.1). The true treatment effect for subgroup
1 to 4 are −10, −10/3, 10/3, and 10, respectively. The number of Monte Carlo repetitions is 500.

Outcome Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

%Bias

Standard

1 -241.55 -34.98 -299.36 -34.98 -3.40 -13.31
2 -285.46 -34.71 -464.46 -34.71 0.01 -7.35
3 -267.60 -80.45 -112.08 -80.17 -0.15 -11.35
4 -165.89 -55.06 -123.82 -55.06 -0.10 -11.36

Extended

1 45.82 29.88 39.41 29.88 21.15 7.62
2 2.08 96.21 -79.89 96.21 105.05 6.36
3 -293.19 -148.20 -173.98 -148.02 -81.50 -15.65
4 -206.03 -84.18 -162.27 -84.18 -18.31 -17.92

RMSE

Standard

1 24.27 3.81 30.06 3.81 0.50 1.79
2 10.03 1.38 15.86 1.38 0.12 0.57
3 9.16 2.80 4.36 2.80 0.10 0.60
4 16.68 5.79 12.47 5.79 0.16 1.45

Extended

1 5.41 3.85 4.97 3.85 2.44 1.12
2 2.45 3.50 3.75 3.50 3.74 0.46
3 9.97 5.10 6.18 5.10 2.90 0.71
4 20.71 8.83 16.33 8.83 2.10 2.18
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Table S3: The performance of various methods to estimate subgroup ATTs in the simulations
with the misspecified PS model (PS2, see Section 3.1). The simulation setting is the same
as Table S2 except that the sample size per subgroup is doubled at Nk = 1000.

Outcome Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

%Bias

Standard

1 -241.72 -33.73 -299.05 -33.73 -11.76 -8.71
2 -275.92 -33.55 -450.34 -33.55 -1.76 -5.63
3 -257.87 -78.71 -106.73 -78.48 -0.31 -6.72
4 -165.83 -53.84 -124.16 -53.84 0.08 -7.68

Extended

1 46.60 29.03 40.87 29.03 22.57 5.57
2 11.55 99.93 -67.43 99.93 108.39 6.97
3 -283.78 -145.66 -168.21 -145.53 -80.29 -13.09
4 -205.95 -83.08 -162.64 -83.08 -17.65 -13.55

RMSE

Standard

1 24.23 3.54 29.97 3.54 1.32 1.05
2 9.46 1.23 15.21 1.23 0.13 0.36
3 8.74 2.68 3.94 2.68 0.08 0.35
4 16.63 5.54 12.46 5.54 0.11 0.94

Extended

1 5.07 3.37 4.59 3.37 2.44 0.74
2 1.87 3.49 2.97 3.49 3.75 0.38
3 9.59 4.94 5.85 4.94 2.76 0.53
4 20.65 8.55 16.32 8.55 1.94 1.56
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Figure S1. Boxplots of the standardized differences (S/D; %) in the overall population when
estimating the ATE in the simulation studies. The data are simulated from the correct PS model
(PS1) or the misspecified PS model (PS2). The boxplots show the distribution of S/D from 500
Monte Carlo repetitions. The red and green horizontal lines mark the 10% and 5% S/D, respectively.
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Figure S2. Boxplots of the standardized differences (S/D; %) in the overall population when
estimating the ATT in the simulation studies. The data are simulated from the correct PS model
(PS1) or the misspecified PS model (PS2). The boxplots show the distribution of S/D from 500
Monte Carlo repetitions. The red and green horizontal lines mark the 10% and 5% S/D, respectively.
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Figure S3. Boxplots of the subgroup S/D in the estimation of ATT from the simulations. The data
are simulated from the correct PS model (PS1; see Section 3.1). The boxplots show the distribution
of S/D from 500 Monte Carlo repetitions. The red and green horizontal lines mark the 10% and
5% S/D, respectively.
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Figure S4. Boxplots of the subgroup S/D in the estimation of ATT from the simulations. The
data are simulated from the misspecified PS model (PS2; see Section 3.1). The boxplots show the
distribution of S/D from 500 Monte Carlo repetitions. The red and green horizontal lines mark the
10% and 5% S/D, respectively.
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Table S4: Description of the subgroups in the RHC data application. N0: the number of non-RHC
patients; N1 the number of RHC patients.

Sample Size
Subgroup Description N0 N1

3 subgroups (Non-overlapped)

Mean Blood Pressure
subgroup 1: < 80 2028 1690
subgroup 2: 80 ≥ and ≤ 120 679 229
subgroup 3: > 120 844 264

6 subgroups (Overlapped)

Mean Blood Pressure
subgroup 1: < 80 2028 1690
subgroup 2: 80 ≥ and ≤ 120 679 229
subgroup 3: > 120 844 264
Estimated Probability of Surviving 2 Months
subgroup 4: < 0.3 302 238
subgroup 5: ≥ 0.3 and ≤ 0.7 1910 1296
subgroup 6: > 0.7 1339 649
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Table S5: The estimated subgroup ATEs in the RHC data using the different propensity score
analysis methods. The treatment effect measures the average increase in the hospital length of stay
in days between RHC and non-RHC.

Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

3 subgroups (Non-overlapped)
subgroup 1 1.77 1.98 1.26 1.98 1.69 1.75
subgroup 2 5.65 1.97 5.95 1.97 1.61 1.13
subgroup 3 4.88 3.47 4.89 3.47 2.34 3.38

6 subgroups (Overlapped)

subgroup 1 1.71 - 1.21 - 1.28 1.05
subgroup 2 5.46 - 5.58 - 0.84 1.48
subgroup 3 4.92 - 4.84 - 2.70 3.10
subgroup 4 4.35 - 3.64 - 3.86 2.32
subgroup 5 2.51 - 2.05 - 0.58 1.82
subgroup 6 3.03 - 3.12 - 2.34 0.87
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Figure S5. Boxplots of the standardized differences (S/D) of all covariates in the RHC data analysis.
Green line: 5% S/D. The S/D is calculated for the overall population (“global” covariance balance).
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Table S6: Baseline covariates of subjects in the DSMT data. Mean (standard deviation) is reported
for age and percent of residents living below poverty. Count (percentage) is reported for all other
categorical variables.

Covariate Untreated DSMT
n = 16401 n = 3283

Age (in years) 75.3 (7.2) 75.3 (6.3)
Percent of residents living below poverty (%) 14.6 (9.3) 15.2 (9.5)
Female sex - n(%) 8048 (49.1) 1611 (49.1)
Type II diabetes - n(%) 15891 (96.9) 3181 (96.9)
Type I diabetes - n(%) 516 (3.1) 106 (3.2)
Incident diabetes - n(%) 2450 (14.9) 490 (14.9)
Race (Hispanic) - n(%)
White 11410 (69.6) 2168 (66.0)
Black 1931 (11.8) 375 (11.4)
Cancer category (Colorectal cancer) - n(%)
Prostate cancer 6763 (41.2) 1393 (42.4)
Breast cancer 6717 (41.0) 1340 (40.8)
Married - n(%) 6855 (41.8) 1503 (45.8)
Medicare original entitlement status - n(%) 1301 (7.9) 277 (8.4)
Elixhauser comorbidity index category (0− 1) - n(%)
1− 2 5922 (36.1) 1254 (38.2)
> 3 6723 (41.0) 1250 (38.1)
Quantile of zip code percent non-high school graduates (Very poor) - n(%)
Very good 4202 (25.6) 811 (24.7)
Good 3924 (23.9) 707 (21.5)
Poor 3602 (22.0) 731 (22.3)
Medicaid dual eligible during index year - n(%) 2380 (14.5) 589 (17.9)
Primary care provider in the year prior the index year - n(%) 9202 (56.1) 1601 (48.8)
Living in metropolitan - n(%) 2959 (18.0) 692 (21.1)
Diabetes complication category (No complication)- n(%)
Renal manifestation 1677 (10.2) 386 (11.8)
Ophthalmic manifestation 2069 (12.6) 567 (17.3)
Neurological manifestation 3618 (22.1) 941 (28.7)
Unspecified 1094 (6.7) 267 (8.1)
Elixhauser comorbidity category - n(%)
Alcohol abuse 195 (1.2) 46 (1.4)
Arrhythmia 4289 (26.2) 847 (25.8)
Blood loss Anemia 379 (2.3) 70 (2.1)
Congestive heart failure 2964 (18.1) 543 (16.5)
COPD (chronic obstructive pulmonary disease) 4092 (24.9) 688 (21.0)
Coagulopathy 802 (4.9) 158 (4.8)
Deficiency anemia 2570 (15.7) 444 (13.5)
Depression 2639 (16.1) 432 (13.2)
Drug abuse 224 (1.4) 34 (1.0)
Fluid and electrolyte disorders 2801 (17.1) 496 (15.1)
AIDS/HIV 12 (0.1) NA*
Hypothyroidism 4612 (28.2) 864 (26.3)
Liver disease 1224 (7.5) 259 (7.9)
Obesity 2531 (15.4) 557 (17.0)
Other neurological disorders 1403 (8.6) 187 (5.7)
Pulmonary circulation disorders 674 (4.1) 120 (3.7)
Peptic ulcer disease excluding bleeding 252 (1.5) 50 (1.5)
Peripheral vascular disorders 3580 (21.8) 626 (19.1)
Paralysis 275 (1.7) 41 (1.2)
Psychoses 475 (2.9) 61 (1.9)
Renal failure 3010 (18.4) 680 (20.7)
Rheumatoid arthritis 1057 (6.4) 187 (5.7)
Valvular disease 2513 (15.3) 500 (15.2)
Weight loss 875 (5.3) 122 (3.7)
Hypertension 14152 ( 86.3) 2892 (88.1)

*The AIDS/HIV in DSMT group contains fewer than 11 patients. It was not reported because of the
CMS cell size suppression policy to protect the confidentiality of entrollees.
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Table S7: Description of the subgroups in the DSMT data application. N0: the number of DSMT
patients; N1 the number of non-DSMT patients.

Sample Size
Subgroup Description N0 N1

4 subgroups (Non-overlapped)

Living area and Medicaid dual eligibility during index year
subgroup 1: Non-metropolitan and Non-eligible 11599 2201
subgroup 2: Non-metropolitan and Eligible 1843 390
subgroup 3: Metropolitan and Non-eligible 2422 493
subgroup 4: Metropolitan and Eligible 537 199

6 subgroups (Overlapped)

Living area and Medicaid dual eligibility during index year
subgroup 1: Non-metropolitan and Non-eligible 11599 2201
subgroup 2: Non-metropolitan and Eligible 1843 390
subgroup 3: Metropolitan and Non-eligible 2422 493
subgroup 4: Metropolitan and Eligible 537 199
Marriage status
subgroup 5: Not married 9546 1780
subgroup 6: Married 6855 1503
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Table S8: The estimated subgroup ATEs in the DSMT data using the different propensity score
analysis methods. The treatment effect measures the average increase in the hospitalization rate
(%) within 3 years of index year between DSMT and non-DSMT.

Subgroup Logistic Logistic-S CBPS SBPS G-SBPS kG-SBPS

4 subgroups (Non-overlapped)

subgroup 1 -3.8 -4.0 -3.8 -4.0 -4.0 -3.8
subgroup 2 -12.6 -6.4 -12.6 -6.4 -6.6 -5.4
subgroup 3 -4.3 -8.8 -4.3 -8.8 -9.1 -9.4
subgroup 4 -26.2 -15.1 -26.5 -15.1 -16.9 -19.1

6 subgroups (Overlapped)

subgroup 1 -3.8 - -3.7 - -3.9 -3.9
subgroup 2 -12.6 - -12.7 - -6.6 -5.5
subgroup 3 -4.3 - -4.0 - -9.7 -9.1
subgroup 4 -26.2 - -27.2 - -17.6 -19.7
subgroup 5 -10.4 - -10.5 - -8.3 -8.5
subgroup 6 -1.4 - -1.2 - -3.1 -2.7
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(a) DMST data analysis with 4 subgroups
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Figure S6. Boxplots of the standardized differences (S/D) of all covariates in the DSMT data
analysis. Red line: 10% S/D; Green line: 5% S/D. The S/D is calculated for the overall population
(“global” covariance balance).
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Figure S7. Boxplots of the S/D in four subgroups by different methods using IPW estimator
to estimate ATE. The simulation scenario is Correct PS model (PS1; see Section 3.1), with 4
subgroups. N2 = 40 for subgroup 2 and Nk = 500 for subgroup k ∈ [1, 3, 4]T . The number of
simulations is 500. Red line: 10% S/D; Green line: 5% S/D; S/D: standardized difference.
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Figure S8. Boxplots of the S/D in four subgroups by different methods using IPW estimator
to estimate ATT. The simulation scenario is Correct PS model (PS1; see Section 3.1), with 4
subgroups. N2 = 40 for subgroup 2 and Nk = 500 for subgroup k ∈ [1, 3, 4]T . The number of
simulations is 500. Red line: 10% S/D; Green line: 5% S/D; S/D: standardized difference.
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